Article

Positive effects of roflumilast on behavior, neuroinflammation, and white matter injury in mice with global cerebral ischemia

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Inhibition of phosphodiesterase 4 (PDE4) is a promising pharmacological strategy for the treatment of cerebral ischemic conditions. To increase the relevance and increase the translational value of preclinical studies, it is important to conduct experiments using different animal species and strains, different animal models, and to evaluate long-term functional outcomes after cerebral ischemia. In the present study, the effects of the selective PDE4 inhibitor roflumilast were evaluated in vivo and in vitro. Balb/c mice were subjected to bilateral common carotid artery occlusion (BCCAO) and tested during 21 days in multiple behavioral tasks to investigate the long-term effects of roflumilast on functional recovery. The effects of roflumilast were also investigated on hippocampal cell loss, white matter injury, and expression of neuroinflammatory markers. Roflumilast prevented cognitive and emotional deficits induced by BCCAO in mice. Roflumilast also prevented neurodegeneration and reduced the white matter damage in the brain of ischemic animals. Besides, roflumilast decreased Iba-1 (microglia marker) levels and increased Arginase-1 (Arg-1; microglia M2 phenotype marker) levels in the hippocampus of these mice. Likewise, roflumilast suppressed inducible nitric oxide synthase (microglia M1 phenotype marker) expression and increased Arg-1 levels in a primary mouse microglia culture. These findings support evidence that PDE4 inhibition by roflumilast might be beneficial in cerebral ischemic conditions. The neuroprotective effects of roflumilast appear to be mediated by a decrease in neuroinflammation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Several cAMP-specific pan-PDE4 inhibitors have been reported to improve ischemic stroke outcome by exerting anti-inflammatory, anti-apoptotic, and neuroplastic actions. PDE4 inhibitors include, among others, rolipram, roflumilast, FCPR03, and FCPR16 [55,[73][74][75][76][77][78]. However, an important drawback of pan-PDE4 inhibitors is their dose-limiting emetic side effects [70]. ...
... To lower the stimulation of the emetic reflex, second-generation pan-PDE4 inhibitors with a lower emetic potential have been developed. These inhibitors include roflumilast, FCPR03, and FCPR16 [78,79,85]. The emetic potential of compounds can be investigated in rodents by means of the surrogate xylazine/ketamine test, and observation of emetic behavior in ferrets and dogs [85][86][87][88][89]. ...
Article
Full-text available
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
... Roflumilast is established to be brain penetrant targeting PDE4 sites in the cortico-striatal-thalamic circuitry including the nigral area (Vanmierlo et al. 2016;Heckman et al. 2018). Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders such as Alzheimer's disease, cerebral ischemia, sleep deprivation-induced cognitive deficits, and depression via improving neuroinflammation, memory, and cognition (Wang et al. 2020a;Vilhena et al. 2021;Bhat et al. 2022;Zaki et al. 2023). Recently, Desouky et al. (2023) illustrated that roflumilast is capable of prompting proteasomal degradation of detrimental α-Syn deposits in PD animal model. ...
Article
Full-text available
Parkinson’s disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation. Graphical Abstract
... PDE4 inhibition is the most widely studied cAMP-specific modifying therapy in SCI, but its clinical translation is hampered mainly because of severe emetic side effects. Secondgeneration PDE4 inhibitors, including roflumilast, FCPR03, and FCPR16, show lower emetic potential [140][141][142]. Nevertheless, the molecular fingerprint of PDE4 subfamilies in the CNS provides the opportunity to affect neuroinflammation in the early phases and neuroregeneration in later phases of SCI to improve functional outcomes and limit side effects. ...
Article
Full-text available
Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.
... In vitro, we have seen that phagocytes are affected by PDE4B inhibition. Human monocyte-derived macrophages and murine BMDMs, and murine microglia, which is in line with the previously reported phagocyte polarization effects of roflumilast (Santiago et al., 2018;Vilhena et al., 2021). In primary brain microvasculature endothelial Fig. 8. Inhibition of pde4 by roflumilast and pde4b by a33 alters mouse and human phagocyte activation and lowers the mean fluorescent intensity of icam on murine endothelial cells. ...
Article
Full-text available
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct pde4d isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that PDE4D1/2 and PDE4D6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.
Article
This study was implemented to address the role of Roflumilast in polycystic ovary syndrome (PCOS) as well as to discuss its reaction mechanism in vivo and in vitro. In vivo, mice were administrated with 6 mg dehydroepiandrosterone (DHEA) per 100 g body weight and fed with 60% high fat diet to induce PCOS. The expression of phosphodiesterases 4 (PDE4) was assessed with RT-qPCR. The ovary pathology was observed by hematoxylin and eosin staining and follicles were counted. Enzyme-linked immunosorbent assay was adopted for the estimation of progesterone, testosterone and inflammatory factors and lipid accumulation was observed by Oil Red O staining. With the application of reverse transcription-quantitative PCR (RT-qPCR) and western blot, the messenger RNA (mRNA) and protein expressions of low-density lipoprotein receptor (LDLR) was resolved. In vitro, Cell counting kit-8 and flow cytometry analysis were applied for the assessment of cell proliferation and apoptosis. The proliferation- and apoptosis-related proteins were appraised with western blot. Additionally, the expressions of PDE-4 at both mRNA and protein levels were tested with RT-qPCR and western blot. Here, it was discovered that PDE4 was greatly elevated in PCOS mice and DHEA-induced ovarian granulosa cells (KGN). In PCOS mice, PDE4 was negative correlated with progesterone and had positive correlation with testosterone. Roflumilast could enhanced progesterone expression, increased the number of primary follicles, preantral follicles and antral follicles but reduced testosterone and decreased the number of cystic follicles in PCOS mice. It was also testified that Roflumilast could inhibit the release of inflammatory factors and lipid accumulation in PCOS mice. Besides, the proliferation of DHEA-induced KGN cells was enhanced while the apoptosis was declined by Roflumilast, accompanied by elevated contents of PCNA, Ki67 and antiapoptotic protein Bcl-2. Collectively, Roflumilast inhibited inflammation and lipid accumulation in PCOS mice to improve ovarian function and reduce DHEA-induced granulosa cell apoptosis.
Article
Diabetic encephalopathy is related to serious damage to the Central Nervous System leading to several disturbances in memory processing and emotions. It is known that the cyclic adenosine 3′,5′-monophosphate (cAMP) responsive element-binding protein (CREB) pathway participates in neuronal plasticity and prevention of neuroinflammation, as well as the mediation of learning/memory processes and emotions in brain areas such as the hippocampus (HIP) and prefrontal cortex (PFC). We aimed to investigate the effect of acute (one injection) and long-term treatment (21 days) with roflumilast (ROF; i.p.; 0, 0.01, 0.03, 0.1 mg/kg), a drug able to inhibit the enzyme phosphodiesterase-4 (PDE-4) responsible for cAMP hydrolysis, on parameters related to the acquisition of fear extinction memory and anxiety-like responses in animals with type-1 diabetes mellitus (T1DM) induced through one injection of streptozotocin (60 mg/kg; ip; STZ animals). When we performed acute treatment, no difference was observed between all the groups when resubmitted to the same context paired with an aversive stimulus (footshock) or to a neutral context. In contrast, long-term treatment was able to improve learning of extinction fear memory and discriminating between a conditioned and neutral context. Moreover, this treatment decreased the pronounced anxiety-like response of STZ animals. In addition, there was an increase in the product of the CREB signaling pathway, the pro brain-derived neurotrophic factor, in the HIP and PFC of these animals. The treatment did not impair glycemic control, whereas it decreased the animal’s blood glucose levels. To conclude, these findings suggest that ROF treatment repositioning has potential for future translational investigations involving diabetic patients considering its beneficial effects on emotional processes related to fear memory and anxiety, in addition to improvement of glycemic control.
Article
Full-text available
Vascular cognitive impairment (VCI) or vascular dementia occurs as a result of brain ischemia and represents the second most common type of dementia after Alzheimer’s disease. To explore the underlying mechanisms of VCI, several animal models of chronic cerebral hypoperfusion have been developed in rats, mice, and primates. We established a mouse model of chronic cerebral hypoperfusion by narrowing the bilateral common carotid arteries with microcoils, eventually resulting in hippocampal atrophy. In addition, a mouse model of white matter infarct-related damage with cognitive and motor dysfunction has also been established by asymmetric common carotid artery surgery. Although most experiments studying chronic cerebral hypoperfusion have been performed in rodents because of the ease of handling and greater ethical acceptability, non-human primates appear to represent the best model for the study of VCI, due to their similarities in much larger white matter volume and amyloid β depositions like humans. Therefore, we also recently developed a baboon model of VCI through three-vessel occlusion (both the internal carotid arteries and the left vertebral artery). In this review, several animal models of chronic cerebral hypoperfusion, from mouse to primate, are extensively discussed to aid in better understanding of pathophysiology of VCI.
Article
Full-text available
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage‐gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex‐dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1‐polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro‐inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion‐induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1‐/‐), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight‐arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis‐induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild‐type (WT) mice, Hv1‐/‐ mice exhibited reduced ROS generation, decreased pro‐inflammatory cytokines production, and an M2‐dominant rather than M1‐dominant microglial polarization. Furthermore, Hv1‐/‐ mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse‐derived microglia‐OPC co‐cultures suggested that PI3K/Akt signaling was involved in Hv1‐deficiency‐induced M2‐type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.
Article
Full-text available
Tumor necrosis factor-α (TNF-α) is a critical pro-inflammatory cytokine regulating neuroinflammation. At high concentrations, it is toxic to neurons, and such damage is positively correlated with acute and chronic neurological diseases. Our previous studies showed that inhibition of phosphodiesterase 4 (PDE4) attenuated the production of TNF-α induced by lipopolysaccharides in microglial cells. However, whether PDE4 inhibition can block the neurotoxic effects of TNF-α in neuronal cells is unknown. In this study, we investigated the protective effects of FCPR16, a novel PDE4 inhibitor, against TNF-α-induced cellular apoptosis in HT-22 hippocampal neuronal cells. We demonstrated that FCPR16 dose-dependently increased the viability of HT-22 cells exposed to TNF-α insult. Propidium iodide/calcein staining and flow cytometry analysis showed that FCPR16 decreased cell apoptosis triggered by TNF-α. Western blot analysis showed that FCPR16 decreased the level of cleaved caspase 3 and caspase 8, but had no effect on caspase 9. Mechanistically, FCPR16 blocked the TNF-α-induced phosphorylation of c-Jun N-terminal kinase (JNK) in HT-22 cells, and inhibition of JNK showed a similar protective effect as FCPR16. Furthermore, FCPR16 decreased the translocation of nuclear factor-κB (NF-κB) p65 from the cytosol into the nucleus. In addition, FCPR16 decreased the expression of inducible nitric oxide synthase and the production of reactive oxygen species in HT-22 cells exposed to TNF-α. Moreover, knockdown of PDE4B by specific small interfering RNA reduced the apoptosis of HT-22 cells treated with TNF-α. Taken together, our findings suggest that FCPR16 promotes the survival of neuronal cells exposed to TNF-α by suppressing the activation of JNK and NF-κB.
Article
Full-text available
Probiotics are referred to species of living microscopic organisms may help conserve the normal balance of the digestive system and/or manage diseases. A number of autoimmune, psychiatric, cardiovascular and cerebrovascular disorders may be associated with the imbalance of gut microbiota. This study examines the effect of 21 days consumption of multistrain probiotics on hippocampus injury, spatial and learning memory and some potential molecular mechanisms in a mouse model with cerebral hypoperfusion. Cerebral hypoperfusion was established in the mouse model by bilateral common carotid artery occlusion (BCCAO) for 20 min and 24 h reperfusion. Mixtures of several probiotic bacteria at concentrations of 10⁷, 10⁸ and 10⁹ CFU/day were orally administrated for 3 weeks before the BCCAO. Spatial and learning memory, histological damage and apoptosis were assessed in the CA1, CA3 and dentate gyrus (DG) of the hippocampus 24 h after ischemia. The malondialdehyde (MDA) content and brain-derived neurotrophic factor (BDNF) level were measured by ELISA technique. Prophylactic of probiotic considerably reduced the number of apoptotic cells and neuronal death in the CA1, CA3 and DG of the hippocampus at all three concentrations (P < 0.001). In addition, probiotics reduced spatial memory impairment and neurological dysfunction only at the 10⁹-CFU/day (P < 0.01). Nonetheless, probiotics did not change the levels of BDNF and MDA in the hippocampus (P > 0.05). According to the findings, the daily prophylactic ingestion of probiotics reduced hippocampus damage and prevented the spatial learning and memory deficit by suppressing apoptosis in the mouse model with cerebral hypoperfusion. Probiotic supplementation may be suggested as a useful preventive dietary strategy for groups susceptible to cerebrovascular diseases.
Article
Full-text available
Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH). Cannabidiol (CBD) is a phytocannabinoid present in the Cannabis sativa plant. It has beneficial effects on both cerebral ischemic diseases and diabetes. We have recently reported that diabetes interacted synergistically with aging to increase neuroinflammation and memory deficits in rats subjected to CCH. The present study investigated whether CBD would alleviate cognitive decline and affect markers of inflammation and neuroplasticity in the hippocampus in middle-aged diabetic rats submitted to CCH. Diabetes was induced in middle-aged rats (14 months old) by intravenous streptozotocin (SZT) administration. Thirty days later, the diabetic animals were subjected to sham or CCH surgeries and treated with CBD (10 mg/kg, once a day) during 30 days. Diabetes exacerbated cognitive deficits induced by CCH in middle-aged rats. Repeated CBD treatment decreased body weight in both sham- and CCH-operated animals. Cannabidiol improved memory performance and reduced hippocampal levels of inflammation markers (inducible nitric oxide synthase, ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and arginase 1). Cannabidiol attenuated the decrease in hippocampal levels of brain-derived neurotrophic factor induced by CCH in diabetic animals, but it did not affect the levels of neuroplasticity markers (growth-associated protein-43 and synaptophysin) in middle-aged diabetic rats. These results suggest that the neuroprotective effects of CBD in middle-aged diabetic rats subjected to CCH are related to a reduction in neuroinflammation. However, they seemed to occur independently of hippocampal neuroplasticity changes.
Article
Full-text available
The aging process, comorbidities, and age-associated diseases are closely dependent on each other. Cerebral ischemia impacts a wide range of systems in an age-dependent manner. However, the aging process has many facets which are influenced by the genetic background and epigenetic or environmental factors, which can explain why some people age differently than others. Therefore, there is an urgent need to identify age-related changes in body functions or structures that increase the risk for stroke and which are associated with a poor outcome. Multimodal imaging, electrophysiology, cell biology, proteomics, and transcriptomics, offer a useful approach to link structural and functional changes in the aging brain, with or without comorbidities, to post-stroke rehabilitation. This can help us to improve our knowledge about senescence firstly, and in this context, aids in elucidating the pathophysiology of age-related diseases that allows us to develop therapeutic strategies or prevent diseases. These processes, including potential therapeutical interventions, need to be studied first in relevant preclinical models using aged animals, with and without comorbidities. Therefore, preclinical research on ischemic stroke should consider age as the most important risk factor for cerebral ischemia. Furthermore, the identification of effective therapeutic strategies, corroborated with successful translational studies, will have a dramatic impact on the lives of millions of people with cerebrovascular diseases.
Article
Full-text available
As the major cellular component of the innate immune system in the central nervous system (CNS) and the first line of defense whenever injury or disease occurs, microglia play a critical role in neuroinflammation following a traumatic brain injury (TBI). In the injured brain microglia can produce neuroprotective factors, clear cellular debris and orchestrate neurorestorative processes that are beneficial for neurological recovery after TBI. However, microglia can also become dysregulated and can produce high levels of pro-inflammatory and cytotoxic mediators that hinder CNS repair and contribute to neuronal dysfunction and cell death. The dual role of microglial activation in promoting beneficial and detrimental effects on neurons may be accounted for by their polarization state and functional responses after injury. In this review article we discuss emerging research on microglial activation phenotypes in the context of acute brain injury, and the potential role of microglia in phenotype-specific neurorestorative processes such as neurogenesis, angiogenesis, oligodendrogenesis and regeneration. We also describe some of the known molecular mechanisms that regulate phenotype switching, and highlight new therapeutic approaches that alter microglial activation state balance to enhance long-term functional recovery after TBI. An improved understanding of the regulatory mechanisms that control microglial phenotypic shifts may advance our knowledge of post-injury recovery and repair, and provide opportunities for the development of novel therapeutic strategies for TBI.
Article
Full-text available
Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals.
Article
Full-text available
Phosphodiesterases (PDEs) are the only known enzymes to degrade intracellular cyclic AMP and/or cyclic GMP. The PDE superfamily consists of 11 families (PDE1- PDE11), each of which has 1 to 4 subtypes. Some of the subtypes may have multiple splice variants (e.g. PDE4D1-PDE4D11), leading to a total of more than 100 known proteins to date. Growing attention has been paid to the potential of PDEs as therapeutic targets for mood disorders and/or diseases affecting cognitive activity by controlling the rate of hydrolysis of the two aforementioned second messengers in recent years. The loss of cognitive functions is one of the major complaints most patients with CNS diseases face; it has an even more prominent negative impact on the quality of daily life. Cognitive dysfunction is usually a prognosis in patients suffering from neuropsychiatric and neurodegenerative diseases, including depression, schizophrenia, and Alzheimer's disease. This review will focus on the contributions of PDEs to the interface between cognitive deficits and neuropsychiatric and neurodegenerative disorders. It is expected to make for the understanding and discovery that selective PDE inhibitors have the therapeutic potential for cognitive dysfunctions associated with neuropsychiatric and neurodegenerative disorders.
Article
Full-text available
The concept of multiple macrophage activation states is not new. However, extending this idea to resident tissue macrophages, like microglia, has gained increased interest in recent years. Unfortunately, the research on peripheral macrophage polarization does not necessarily translate accurately to their central nervous system (CNS) counterparts. Even though pro- and anti-inflammatory cytokines can polarize microglia to distinct activation states, the specific functions of these states is still an area of intense debate. This review examines the multiple possible activation states microglia can be polarized to. This is followed by a detailed description of microglial polarization and the functional relevance of this process in both acute and chronic CNS disease models described in the literature. Particular attention is given to utilizing M2 microglial polarization as a potential therapeutic option in treating diseases.
Article
Full-text available
Despite testing more than 1,026 therapeutic strategies in models of ischemic stroke and 114 therapies in human ischemic stroke, only one agent tissue plasminogen activator has successfully been translated to clinical practice as a treatment for acute stroke. Though disappointing, this immense body of work has led to a rethinking of animal stroke models and how to better translate therapies to patients with ischemic stroke. Several recommendations have been made, including the STAIR recommendations and statements of RIGOR from the NIH/NINDS. In this commentary we discuss additional aspects that may be important to improve the translational success of ischemic stroke therapies. These include use of tissue plasminogen activator in animal studies; modeling ischemic stroke heterogeneity in terms of infarct size and cause of human stroke; addressing the confounding effect of anesthesia; use of comparable therapeutic dosage between humans and animals based on biological effect; modeling the human immune system; and developing outcome measures in animals comparable to those used in human stroke trials. With additional study and improved animal modeling of factors involved in human ischemic stroke, we are optimistic that new stroke therapies will be developed.
Article
Full-text available
Microglia are critical nervous system-specific cells influencing brain development, , maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, andaxonal degeneration. Changes inmicroglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microgliapotentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging.
Article
Full-text available
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.
Article
Full-text available
Mononuclear phagocytes are highly plastic cells that assume diverse phenotypes in response to microenvironmental signals. The phenotype-specific roles of microglia/macrophages in ischemic brain injury are poorly understood. A comprehensive characterization of microglia/macrophage polarization after ischemia may advance our knowledge of poststroke damage/recovery. Focal transient cerebral ischemia was induced in mice for 60 minutes; animals were euthanized at 1 to 14 days of reperfusion. Reverse-transcriptase polymerase chain reaction and immunohistochemical staining for M1 and M2 markers were performed to characterize phenotypic changes in brain cells, including microglia and infiltrating macrophages. In vitro experiments using a transwell system, a conditioned medium transfer system, or a coculture system allowing cell-to-cell contacts were used to further elucidate the effect of neuronal ischemia on microglia/macrophage polarization and, conversely, the effect of microglia/macrophage phenotype on the fate of ischemic neurons. Local microglia and newly recruited macrophages assume the M2 phenotype at early stages of ischemic stroke but gradually transformed into the M1 phenotype in peri-infarct regions. In vitro experiments revealed that ischemic neurons prime microglial polarization toward M1 phenotype. M1-polarized microglia or M1-conditioned media exacerbated oxygen glucose deprivation-induced neuronal death. In contrast, maintaining the M2 phenotype of microglia protected neurons against oxygen glucose deprivation. Our results suggest that microglia/macrophages respond dynamically to ischemic injury, experiencing an early "healthy" M2 phenotype, followed by a transition to a "sick" M1 phenotype. These dual and opposing roles of microglia/macrophages suggest that stroke therapies should be shifted from simply suppressing microglia/macrophage toward adjusting the balance between beneficial and detrimental microglia/macrophage responses.
Article
Full-text available
Cooling can reduce primary injury and prevent secondary injury to the brain after insults in certain clinical settings and in animal models of brain insult. The mechanisms that underlie the protective effects of cooling - also known as therapeutic hypothermia - are slowly beginning to be understood. Hypothermia influences multiple aspects of brain physiology in the acute, subacute and chronic stages of ischaemia. It affects pathways leading to excitotoxicity, apoptosis, inflammation and free radical production, as well as blood flow, metabolism and blood-brain barrier integrity. Hypothermia may also influence neurogenesis, gliogenesis and angiogenesis after injury. It is likely that no single factor can explain the neuroprotection provided by hypothermia, but understanding its myriad effects may shed light on important neuroprotective mechanisms.
Article
Full-text available
How glial cells and cytokines are associated with the progression of delayed neuronal death induced by transient global ischemia is still unclear. To further clarify this point, we studied morphological changes in glial cells (microglial cells and astrocytes), and cytokine protein levels, during the progression of neuronal cell loss in CA1 (Cornu Ammonis 1) of the hippocampus after transient global ischemia. Morphological changes in glial cells were studied immuno-histochemically. Nine cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ and TNF-α) were simultaneously measured by a multiplexed bead-based immunoassay from 6 h to day21 after transient four vessel occlusion (4VO) in rats. During the process of neuronal loss, we observed four distinct phases: (1) lag phase day0-2 (no NeuN+ cell loss observed), (2) exponential phase day2-7 (NeuN+ cells reduced in number exponentially), (3) deceleration phase day7-14 (reduction rate of NeuN+ cells became low), (4) stationary phase day14 onward (NeuN+ cell loss progressed no longer). In the lag phase, activated glial cells were observed in the entire hippocampus but later were gradually restricted to CA1. Cytokine protein levels in the lag and exponential phases were lower than in the deceleration and stationary phases. IL-1α, IL-1β, IL-4, IL-6 and IFN-γ in 4VO were significantly higher in all four phases than in sham. Compared with sham level, GM-CSF was significantly high in the deceleration phase. TNF-α was significantly high in both the deceleration and stationary phases. Ischemic stress in 4VO activated glial cells in areas beyond CA1 in the lag phase. Pyramidal neurons were injured in CA1 from the end of the lag phase and then neuronal cells reduced in CA1 in the exponential phase. After neuronal death began, the influence of dead cells on glial cells and cytokine expression gradually became stronger than the influence by ischemic stress. Therefore, from the deceleration phase, changes in glial cells and cytokine production were likely caused by dead cells. Cytokine interaction in the microenvironment may determine the functions of IL-1α, IL-1β, IL-4, IL-6 and IFN-γ in all four phases. The function of GM-CSF and TNF-α in the deceleration phase may be neurotrophic.
Article
Full-text available
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that are involved in the regulation of the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) by controlling their rates of hydrolysis. There are 11 different PDE families and each family typically has multiple isoforms and splice variants. The PDEs differ in their structures, distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been shown to play distinct roles in processes of emotion and related learning and memory processes, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, modulate mood and related cognitive activity. This review discusses the current state and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.
Article
Full-text available
Multiple sclerosis is characterized by repeated demyelinating attacks of the central nervous system (CNS) white matter tracts. To tailor novel therapeutics to halt or reverse disease process, we require a better understanding of oligodendrocyte biology and of the molecular mechanisms that initiate myelination. Cell extrinsic mechanisms regulate CNS myelination through the interaction of extracellular matrix proteins and their transmembrane receptors. The engagement of one such receptor family, the integrins, initiates intracellular signaling cascades that lead to changes in cell phenotype. Oligodendrocytes express a diverse array of integrins, and the expression of these receptors is developmentally regulated. Integrin-mediated signaling is crucial to the proliferation, survival, and maturation of oligodendrocytes through the activation of downstream signaling pathways involved in cytoskeletal remodeling. Here, we review the current understanding of this important signaling axis and its role in oligodendrocyte biology and ultimately in the myelination of axons within the CNS.
Article
Full-text available
Inhibition of phosphodiesterase-4 (PDE4) by rolipram, a prototypical PDE4 inhibitor, reverses memory impairment produced pharmacologically or genetically. Comparably, much less is known about the effect of rolipram on cerebral ischemia-induced memory deficits. The objective of this study was to determine the effects of rolipram on ischemia-induced memory deficit, neuronal damage, and alteration of PDE4 activity in the hippocampus. Memory was examined using Morris water-maze and step-through passive avoidance tests in rats subjected to global cerebral ischemia with or without repeated treatment with rolipram (0.3 or 1 mg/kg, i.p.); neuronal damage in the hippocampus and PDE4 activity in hippocampal tissues were determined using Nissl staining and HPLC, respectively. In the water-maze test, cerebral ischemia significantly increased the escape latency to reach the platform during acquisition training and decreased the exploration time in the target quadrant in the probe trial test; these were blocked by rolipram in a dose-dependent manner. Rolipram also reduced the distracted platform searches induced by cerebral ischemia. In the passive avoidance test, ischemia decreased the 24-h latency to the dark compartment, which was also blocked by rolipram treatment. In addition, Nissl staining revealed ischemia-induced neuron loss in hippocampal CA1; this was blocked by rolipram. Further, cerebral ischemia led to increases in activity of PDE, primarily PDE4, in the hippocampus, which also was antagonized by rolipram. These results suggest that rolipram prevents cerebral ischemia-induced memory deficits via inhibition of increased PDE4 activity and attenuation of hippocampal, neuronal damages induced by ischemia. PDE4 may be a target for treatment of cognitive disorders associated with cerebral ischemia.
Article
Inhibition of phosphodiesterase 4 (PDE4) protects against neuronal apoptosis induced by cerebral ischemia. However, the exact mechanisms responsible for the protection of PDE4 inhibition have not been completely clarified. Roflumilast (Roflu) is an FDA-approved PDE4 inhibitor for the treatment of chronic obstructive pulmonary disease. The potential protective role of Roflu against ischemic stroke-associated neuronal injury remains unexplored. In this study, we investigated the effect and mechanism of Roflu against ischemic stroke using in vitro oxygen-glucose deprivation reperfusion (OGD/R) and in vivo rat middle cerebral artery occlusion (MCAO) models. We demonstrated that Roflu significantly reduced the apoptosis of HT-22 cells exposed to OGD/R, enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2), and reduced oxidative stress. Treatment with Roflu increased the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase 3β (GSK3β) but decreased the level of phosphorylated inositol requiring enzyme 1α (IRE1α). Interestingly, constitutively active GSK3β (S9A) mutation abolished the effects of Roflu on oxidative stress and IRE1α phosphorylation. Moreover, Roflu decreased the binding of IRE1α to tumor necrosis factor receptor-associated factor 2 (TRAF2) and attenuated the phosphorylation of c-Jun N-terminal kinase (JNK). We also found that PDE4B knockdown reduced the phosphorylation of both IRE1α and JNK, while overexpression of PDE4B antagonized the role of PDE4B knockdown on the activation of IRE1α and JNK. Besides, the inhibition of PDE4 by Roflu produced similar effects in primary cultured neurons. Finally, Roflu ameliorated MCAO-induced cerebral injury by decreasing infarct volume, restoring neurological score, and reducing the phosphorylation of IRE1α and JNK. Collectively, these data suggest that Roflu protects neurons from cerebral ischemia reperfusion-mediated injury via the activation of GSK3β/Nrf-2 signaling and suppression of the IRE1α/TRAF2/JNK pathway. Roflu has the potential as a protective drug for the treatment of cerebral ischemia.
Article
Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element‐binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium‐binding adaptor molecule 1 (Iba‐1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase‐1, interleukin (IL) 4, and IL‐10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti‐inflammatory properties.
Article
Fear extinction is a form of new learning that inhibits expression of the original fear memory without erasing the conditioned stimulus-unconditioned stimulus association. Much is known about the mechanisms that underlie the acquisition of extinction, but the way in which fear extinction is maintained has been scarcely explored. Evidence suggests that protein kinase A (PKA) in the frontal cortex might be related to the persistence of extinction. Phosphodiesterase-4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP). The present study evaluated the effect of the selective PDE4 inhibitor roflumilast (ROF; 0.01, 0.03, and 0.1 mg/kg given i.p.) on acquisition and consolidation of the extinction of fear memory in male Wistar rats in a contextual fear conditioning paradigm. When administered before acquisition, 0.1 mg/kg ROF disrupted short-term (1 day) extinction recall. In contrast, 0.03 mg/kg ROF administration in the late consolidation phase (3 h after extinction learning) but not in the early phase immediately after learning improved long-term extinction recall at 11 days, suggesting potentiation of the persistence of extinction. This effect of ROF requires the first (day 1) exposure to the context. A similar effect was observed when 9 ng ROF or 30 µM 8-bromoadenosine 3’,5’-cAMP (PKA activator) was directly infused in the infralimbic cortex (IL), a brain region necessary for memory extinction. The PKA activity-dependent ROF-induced effect in the IL was correlated with an increase in its brain-derived neurotrophic factor (BDNF) protein expression, while blockade of PKA with 10 µM H89 in the IL abolished the ROF-induced increase in BDNF expression and prevented the effect of ROF on extinction recall. These effects were not associated with changes in anxiety-like behavior or general exploratory behavior. Altogether, these findings suggest that cAMP-PKA activity in the IL during the late consolidation phase after extinction learning underlies the persistence of extinction.
Article
Brain ischemia is one of the principal causes of death and disability worldwide in which prevention or an effective treatment does not exist. In order to develop successful treatments, an adequate and useful ischemia model is essential. Transient global cerebral ischemia is one of the most interesting pathological conditions in stroke studies because of the observed degeneration of forebrain and delayed neuronal cell death in selective vulnerable regions such as hippocampus. Transient occlusion of both common carotid arteries is the most convenient model to induce tGCI. Although there are effective rat and gerbil models using this method, the induction of a reproducible and reliable injury after global ischemia in mouse has presented higher variations, mainly because of its size and the necessary monitoring skills in order to accomplish homogeneous and reproducible results. Further, great variability among cerebral vasculature and susceptibility of the different strains and sub-strains is observed. In recent years, some modifications have been made to the model in order to normalize the heterogenic effects. Analysis of posterior communicating artery patency has been proposed as an exclusion parameter due to the direct relationship reported with the reduction of cerebral blood flow. Another method used to significantly reduce blood flow is the induction of hypotension with isoflurane. Each protocol produces distinct injury outcomes. Further improvements are needed to attain a general, simpler, reproducible and globally accepted model that allows comparisons between research groups, progress in understanding ischemia and the consequent development of therapeutic alternatives for ischemic injury.
Article
Pharmacological interventions that selectively activate serotonin 5-hydroxytryptramine-1A (5-HT1A) heteroreceptors may prevent or attenuate the consequences of brain ischemic episodes. The present study investigated whether the preferential 5-HT1A postsynaptic receptor agonist NLX-101 (a.k.a. F15599) mitigates cognitive and emotional impairments and affects neuroplasticity in mice that are subjected to the bilateral common carotid artery occlusion (BCCAO) model of brain ischemia. The selective serotonin reuptake inhibitor escitalopram (Esc) was used for comparative purposes because it is able to decrease morbidity and improve recovery in stroke patients and ischemic rodents. Sham and BCCAO mice received daily doses of NLX-101 (0.32 mg/kg, i.p) or Esc (20 mg/kg, i.p) for 28 days. During this period, they were evaluated for locomotor activity, anxiety- and despair-related behaviors and hippocampus-dependent cognitive function, using the open field, elevated zero maze, forced swim test and object location test, respectivelly. The mice's brains were processed for biochemical and histological analyses. BCCAO mice exhibited high anxiety and despair-like behaviors and performed worse than controls in the cognitive assessment. BCCAO induced neuronal and dendritic spine loss and decreases in the protein levels of neuronal plasticity markers, including brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein-95 (PSD-95), in prefrontal cortex (PFC) and hippocampus. NLX-101 and Esc attenuated cognitive impairments and despair-like behaviors in BCCAO mice. Only Esc decreased anxiety-like behaviors due to brain ischemia. Both NLX-101 and Esc blocked the increase in plasma corticosterone levels and, restored BDNF, SYN and PSD-95 protein levels in the hippocampus. Moreover, both compounds impacted positively dentritic remodeling in the hippocampus and PFC of ischemic mice. In the PFC, NLX-101 increased the BDNF protein levels, while Esc in turn, attenuated the decrease in the PSD-95 protein levels induced by BCCAO. The present results suggest that activation of post-synaptic 5-HT1A receptors is the molecular mechanism for serotonergic protective effects in BCCAO. Moreover, post-synaptic biased agonists such as NLX-101 might constitute promising therapeutics for treatment of functional and neurodegenerative outcomes of brain ischemia.
Article
Inhibition of phosphodiesterase 4 (PDE4) is a promising strategy for the treatment of ischemic stroke. However, the side effects of nausea and vomiting from the current PDE4 inhibitors have limited their clinical applications. FCPR03 is a novel PDE4 inhibitor with little emetic potential. This study aimed to investigate the effects of FCPR03 on neuronal injury after cerebral ischemia/reperfusion and the underlying signaling pathway. The effects of FCPR03 on cellular apoptosis, intracellular accumulation of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were evaluated in HT-22 neuronal cells and cortical neurons exposed to oxygen-glucose deprivation (OGD). The impact of FCPR03 on brain injury, neurological scores and behavioral performance was investigated in rats subjected to middle cerebral artery occlusion (MCAO). The protein kinase B (AKT) inhibitor MK-2206 and β-catenin siRNA were used to investigate the underlying pathways. FCPR03 dose-dependently protected against OGD-induced cellular apoptosis in both HT-22 cells and cortical neurons. The levels of MMP and ROS were also restored by FCPR03. FCPR03 increased the levels of phosphorylated AKT, glycogen synthase kinase-3β (GSK3β), and β-catenin. Interestingly, the role of FCPR03 was reversed by MK-2206 and β-catenin siRNA. Consistently, FCPR03 reduced the infarct volume and improved neurobehavioral outcomes in rats following MCAO. Moreover, FCPR03 increased the levels of phosphorylated AKT, GSK3β and β-catenin within the ischemic penumbra of rats following cerebral ischemia-reperfusion. Taken together, FCPR03 has therapeutic potential in cerebral ischemia-reperfusion. The neuroprotective effects of FCPR03 are mediated through activation of the AKT/GSK3β/β-catenin pathway.
Article
Current phosphodiesterase-4 (PDE4) inhibitors exert beneficial effects in central nervous system diseases via anti-inflammatory and anti-apoptotic properties, but many of them are plagued by side effects like nausea and emesis. FCPR16, a novel PDE4 inhibitor synthesized in our lab, has potential anti-inflammatory property. In the present study, we aimed to investigate the effects of FCPR16 in a rat model of ischemic stroke and evaluate its emetogenic potential. Our results showed that FCPR16 treatment improved neurological function, reduced cerebral infarct volume, and attenuated brain histological changes in rats subjected to middle cerebral artery occlusion and reperfusion (MCAO/R). Furthermore, levels of proinflammatory cytokines tumor necrosis factor α, interleukin-6 and interleukin-1β were decreased after FCPR16 treatment, as well as the ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein in MCAO/R rats. TUNEL staining and Western blot results showed that FCPR16 reduced apoptosis and regulated apoptotic-related proteins, with increased level of phosphorylated protein kinase B. Moreover, FCPR16 treatment increased cyclic adenosine monophosphate (cAMP) levels and cAMP-response element binding protein (CREB) phosphorylation in ischemic tissue. In addition, oral administration of 3mg/kg FCPR16 did not cause vomiting in beagle dogs. This study indicates that FCPR16 has protective effects against cerebral ischemia-reperfusion injury through inhibiting inflammation and apoptosis via the cAMP/CREB pathway, while it has low emetogenic potential.
Article
Cognitive impairment, anxiety- and depressive-like symptoms are well recognized outcome of cerebral ischemia in clinical and preclinical settings. Rolipram, a phosphodiesterase-4 (PDE-4) inhibitor, improves cognition and produces anxiolytic- and antidepressant-like effects in rodents. Rolipram also exerts anti-inflammatory effects and enhances survival of newborn hippocampal neurons in mice subjected to transient global cerebral ischemia. Here, we evaluated the effects of chronic rolipram treatment in mice subjected to transient global brain ischemia. C56B6/7 mice were subjected to bilateral common carotid artery occlusion (BCCAO) and were then tested in a multi-tiered behavioral battery including the elevated zero maze (EZM), open field (OF), object location test (OLT), and forced swim test (FST). We also investigated the effects of rolipram on hippocampal neurodegeneration and the expression of the neuronal plasticity markers doublecortin (DCX) and microtubule associated protein (MAP-2). Ischemic mice exhibited memory deficits (OLT), higher levels of anxiety (EZM) and behavioral despair (FST). BCCAO caused neuronal loss in the CA3 hippocampal subfield and basolateral amygdala (BLA). In the hippocampus of BCCAO mice, a disrupted neuronal plasticity was evidenced by decreased DCX expression. Chronic treatment with rolipram attenuated the behavioral effects of BCCAO. Rolipram also decreased neurodegeneration in the CA3 while it increased dendritic arborization of DCX-immunoreactive (DCX-IR) neurons and microtubule associate MAP-2 expression in the hippocampus of BCCAO mice. These data suggest that chronic inhibition of PDE-4 can be a useful therapeutic strategy to improve the emotional and cognitive outcomes of transient global cerebral ischemia.
Article
Enhancement of central availability of the second messenger cAMP is a promising approach to improve cognitive function. Pharmacological inhibition of phosphodiesterase type 4 (PDE4), a group of cAMP hydrolyzing enzymes in the brain, has been shown to improve cognitive performances in rodents and monkeys. However, inhibition of PDE4 is generally associated with severe emetic side-effects. Roflumilast, an FDA-approved PDE4 inhibitor for treatment of chronic obstructive pulmonary disease (COPD), is yielding only mild emetic side effects. In the present study we investigate the potential of roflumilast as a cognition enhancer and to determine the potential coinciding emetic response in comparison to rolipram, a classic PDE4 inhibitor with pronounced emetic effects. Cognition enhancement was evaluated in mice and it was found that both roflumilast and rolipram enhanced memory in an object location task (0.03 mg/kg), whereas only roflumilast was effective in a spatial Y-maze (0.1 mg/kg). Emetic potential was measured using competition of PDE4 inhibition for α2-adrenergic receptor antagonism in which recovery from xylazine/ketamine-mediated anesthesia is used as a surrogate marker. While rolipram displayed emetic properties at a dose 10 times the memory-enhancing dose, roflumilast only showed increased emetic-like properties at a dose 100 times the memory-enhancing dose. Moreover, combining sub-efficacious doses of the approved cognition-enhancer donepezil and roflumilast, which did not improve memory when given alone, fully restored object recognition memory deficit in rats induced by the muscarinic receptor antagonist scopolamine. These findings suggest that roflumilast offers a more favorable window for treatment of cognitive deficits compared to rolipram.
Article
Background and purpose: Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Methods: Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Results: Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. Conclusions: White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia.
Article
Parkinsons Disease (PD) is a neurodegenerative disorder of the dopaminergic neurons in the substantia nigra. Much of the scientific literature on the Parkinson's disease has been focused on the evaluation and management of motor conditions in PD. Much less stress has been laid on evaluating and managing the cognitive disturbances found comorbidly in this condition. Studies have suggested that the cognitive dysfunction observed in PD can range anywhere from individual cognitive deficits to the clinical picture of minimal cognitive impairment to as much as a full-blown dementia like clinical picture. Perhaps because of this poor understanding, the treatments for this comorbidity have not been able to be adequately developed. Right now, only rivastigmine is the approved drug of choice for treatment of dementia associated with PD. In this review we aim at elaborating the individual cognitive deficits associated with PD instead of focusing on full-blown dementia. Our aim at focusing on individual symptoms is important because these symptoms should be evaluated even at the most beginning stages of PD rather than waiting for the patient to report for the symptoms. Therefore, we will aim at elaborating the prevalence, symptomatology and implications for treatment for these cognitive dysfunctions individually. Because covering all the domains of cognitive dysfunctions are not possible here, we will focus on three cognitive impairments which are most commonly observed in the PD patients. These are the (1) Executive function deficits (2) Memory deficits and (3) visuospatial deficits. We will, finally, have an overview of the condition of minimal cognitive deficits observed in PD.
Article
Inflammatory caspases play a central role in innate immunity by responding to cytosolic signals and initiating a twofold response. First, caspase-1 induces the activation and secretion of the two prominent pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. Second, either caspase-1 or caspase-11 can trigger a form of lytic, programmed cell death called pyroptosis. Pyroptosis operates to remove the replication niche of intracellular pathogens, making them susceptible to phagocytosis and killing by a secondary phagocyte. However, aberrant, systemic activation of pyroptosis in vivo may contribute to sepsis. Emphasizing the efficiency of inflammasome detection of microbial infections, many pathogens have evolved to avoid or subvert pyroptosis. This review focuses on molecular and morphological characteristics of pyroptosis and the individual inflammasomes and their contribution to defense against infection in mice and humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Article
As the resident immune cells of the central nervous system, microglia rapidly respond to brain insults, including stroke and traumatic brain injury. Microglial activation plays a major role in neuronal cell damage and death by releasing a variety of inflammatory and neurotoxic mediators. Their activation is an early response that may exacerbate brain injury and many other stressors, especially in the acute stages, but are also essential to brain recovery and repair. The full range of microglial activities is still not completely understood, but there is accumulating knowledge about their role following brain injury. We review recent progress related to the deleterious and beneficial effects of microglia in the setting of acute neurological insults and the current literature surrounding pharmacological interventions for intervention. © Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Article
In speech production, an important step before motor programming is the retrieval and encoding of the phonological elements of target words. It has been proposed that phonological encoding is supported by multiple regions in the left frontal, temporal and parietal regions and their underlying white matter, especially the left arcuate fasciculus (AF) or superior longitudinal fasciculus (SLF). It is unclear, however, whether the effects of AF/SLF are indeed related to phonological encoding for output and whether there are other white matter tracts that also contribute to this process. We comprehensively investigated the anatomical connectivity supporting phonological encoding in production by studying the relationship between the integrity of all major white matter tracts across the entire brain and phonological encoding deficits in a group of 69 patients with brain damage. The integrity of each white matter tract was measured both by the percentage of damaged voxels (structural imaging) and the mean fractional anisotropy value (diffusion tensor imaging). The phonological encoding deficits were assessed by various measures in two oral production tasks that involve phonological encoding: the percentage of nonword (phonological) errors in oral picture naming and the accuracy of word reading aloud with word comprehension ability regressed out. We found that the integrity of the left SLF in both the structural and diffusion tensor imaging measures consistently predicted the severity of phonological encoding impairment in the two phonological production tasks. Such effects of the left SLF on phonological production remained significant when a range of potential confounding factors were considered through partial correlation, including total lesion volume, demographic factors, lesions on phonological-relevant grey matter regions, or effects originating from the phonological perception or semantic processes. Our results therefore conclusively demonstrate the central role of the left SLF in phonological encoding in speech production.
Article
Activated microglia were considered to be the toxic inflammatory mediators that induce neuron degeneration after brain ischemia. Hypoxia can enhance the expression of hypoxia-inducible factor-1α (HIF-1α) in microglia and cause microglial activation. However, intermittent hypoxia has been reported recently to be capable of protecting the body from myocardial ischemia. We established a high-altitude environment as the hypoxic condition in this study. The hypoxic condition displayed a neuroprotective effect after brain ischemia, and mice exposed to this condition presented better neurological performance and smaller infarct size. At the same time, a high level of HIF-1α, low level of isoform of nitric oxide synthase, and a reduction in microglial activation were also seen in ischemic focus of hypoxic mice. However, this neuroprotective effect could be blocked by 2-methoxyestradiol, the HIF-1α inhibitor. Our finding suggested that HIF-1α expression was involved in microglial activation in vitro and was regulated by oxygen supply. The microglia were inactivated by re-exposure to hypoxia, which might be due to overexpression of HIF-1α. These results indicated that hypoxic conditions can be exploited to achieve maximum neuroprotection after brain ischemia. This mechanism possibly lies in microglial inactivation through regulation of the expression of HIF-1α.
Article
Stroke presents a major global burden to patients, their relatives, and whole economies.1 Worldwide intense efforts are being undertaken to understand the pathobiology of stroke and to develop novel, effective treatments. This has led to the discovery of a plethora of preclinically promising treatment strategies,2 but intravenous thrombolysis remains the only specific pharmacological treatment with proven efficacy in acute ischemic stroke.3 Apparently, of several hundred controlled clinical trials4 aiming to protect the brain against ischemia (neuroprotection) with compounds previously found effective in animal experiments, not a single one has led to the regulatory approval of a drug for this indication. Many pharmaceutical companies have, therefore, stopped developing treatments for this devastating disease, and nihilism is spreading in the field. A roadblock seems to exist between bench and bedside, preventing the translation of highly effective preclinical neuroprotectants into the clinical realm.5 Despite the prevailing mantra of translational medicine,6 other fields report similar problems when making the preclinical-to-clinical transition. Much has been speculated about the reasons underlying the translational roadblock, and the phrase lost in translation has entered the titles of numerous biomedical publications. In this article, we propose that contrary to current opinion, preclinical stroke research can indeed predict clinical outcomes and phenotypes. Numerous neuroprotectants were reported as lost in translation (Figure 1A), but there is reason to argue that the clinical trials were based on rather weak preclinical evidence, and that many pathophysiological principles and therapies were actually discovered in translation (Figure 1B). We propose that there is little reason for nihilism. We present a concise list of potential improvements that may help to reduce the current attrition rate of bench-to-bedside translation, even in neuroprotection. Stroke may even serve as a model disease because our analysis may apply to other fields where development of …
Article
Phosphodiesterase-4 (PDE4) inhibitors enhance memory, increase hippocampal neurogenesis, and reverse amyloid-β (Aβ)-induced memory deficits. Here, we examined whether long-form PDE4D knockdown by lentiviral RNA construct containing a specific microRNA/miRNA-mir hairpin structure (4DshR) reversed memory impairment caused by amyloid-β1-42 (Aβ42) in mice using the Morris water maze (MWM) and novelty object recognition tests. Western blotting analysis was used to assess protein levels of cAMP response element-binding protein (CREB, unphosphorylated and phosphorylated [pCREB]), brain-derived neurotrophic factor (BDNF), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nuclear factor-κB (NF-κB) to explore the neurochemical mechanisms. Aggregated Aβ42 (0.5 μg/side) bilaterally infused in dentate gyrus decreased cAMP levels (p < 0.01) and produced memory deficits in the MWM (p < 0.01) and object recognition tests (p < 0.01). Microinfusions of lentiviruses resulted in downregulated expression of PDE4D4 and 4D5 proteins and reversed Aβ42-induced cAMP decline (p < 0.05) and memory deficits. Treatment also concomitantly increased pCREB (p < 0.05) and BDNF (p < 0.01) and reduced IL-1β (p < 0.05), TNF-α (p < 0.01), and NF-κB (p65) (p < 0.05) in the hippocampus of Aβ42-challenged mice. These results suggest that long-form PDE4D knockdown may offer a promising treatment for memory loss associated with Alzheimer's disease.
Article
The present study examined the behavioral and neurohistological changes induced by the bilateral common carotid artery occlusion (BCCAO) model of brain ischemia in Swiss mice. The post-ischemic behavioral effects of 17min BCCAO were recorded 7, 14, and 28 days after reperfusion in the Morris water maze, open field, and elevated plus maze to assess spatial learning and memory, general locomotor activity, and levels of anxiety-like behavior, respectively. After behavioral testing, the brains were removed and processed to evaluate hippocampal neurodegeneration using Nissl staining and Fluoro-Jade C histochemistry and hippocampal neurogenesis using doublecortin immunohistochemistry. BCCAO induced memory impairment 7 and 14 days after reperfusion, with apparent functional recovery 28 days later. Anxiety-related behaviors remained elevated in ischemic compared to sham mice tested 28 days after reperfusion. Hippocampal neurodegeneration was detected in all hippocampal subfields (CA1-CA4) from day 7 to day 28. Decreased hippocampal neurogenesis was observed 14 and 28 days after BCCAO. The effects of BCCAO on spatial memory were transient, whereas anxiety-like behavior was persistent and might be related to CA3 hippocampal injury induced by BCCAO in mice.
Article
Transcranial ultrasound and high intensity focused ultrasound technologies have been developed as a method of thrombolysis to be applied to the treatment of acute ischemic stroke. The originating idea to apply ultrasound to treat disease states dates back from the 1930s to 1940s when seminal research findings suggested that ultrasound could have an effect on biological systems and the brain, but the mechanism(s) involved in the effects were unknown. This exciting field of research has flourished since the potential exists to effectively utilize ultrasound to induce thrombolysis noninvasively or perhaps in combination with a thrombolytic agent, such as tissue plasminogen activator or secondary pharmaceutical such as microbubbles to promote cerebral reperfusion and clinical improvement. While there is great enthusiasm in this field of stroke treatment, specific parameters required for optimal sonothrombolysis such as output power, duty cycle, pulse width, and exposure time, as well as the impact of skull bone characteristics and flow mechanics, remain to be defined. This article analyzes relevant ultrasound studies to provide a synthesis of insight in the field of sonothrombolysis to attempt to provide direction for possible future use in stroke patients.
Article
White matter lesions are closely associated with cognitive impairment and motor dysfunction in the aged. To explore the pathophysiology of these lesions, the authors examined the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 in the white matter in a rat model of chronic cerebral hypoperfusion. After bilateral clipping of the common carotid arteries, myelin staining revealed demyelinating changes in the optic tract and the corpus callosum on day 7. Zymographic analyses indicated an increase in the level of MMP-2, but not MMP-9, after the hypoperfusion. Immunohistochemical analyses revealed the presence (most abundantly on day 3) of MMP-2–expressing activated microglia in the optic tract and corpus callosum. In contrast, the capillary endothelial cells expressed MMP-2 later. IgM-immunoreactive glial cells were absent in the sham-operated animals, but were present in the hypoperfused animals by day 3, reflecting the disrupted blood–brain barrier. These findings suggest that the main sources of the elevated MMP-2 were the microglia and the endothelium, and that these cells may contribute to the remodeling of the white matter myelin and microvascular beds in chronic cerebral hypoperfusion.Keywords: Chronic cerebral hypoperfusion, Demyelination, Matrix metalloproteinase, Microglia, Rat, White matter lesions
Article
Stroke causes brain injury with activation of an inflammatory response that can contribute to injury. We tested the hypothesis that the anti-inflammatory cytokine interleukin-4 (IL-4) reduces injury after stroke using IL-4 knockout (KO) adult male mice. IL-4 KO and wild-type mice were subjected to transient middle cerebral artery occlusion. Outcome was assessed by triphenyltetrazolium chloride staining for infarct volume, neuroscore and spontaneous activity for behavioral outcome, and immunostaining and stereological counting for cellular response. Infarction volume at 24 hours was significantly larger in IL-4 KO mice, neurological score was significantly worse, and spontaneous activity was reduced compared with wild-type mice. Increased macrophage/microglial infiltration, increased numbers of myeloperoxidase-positive cells, and increased Th1/Th2 ratio were observed in the infarct core in IL-4 KO mice. Reduced astrocyte activation was observed in the cortical penumbra in IL-4 KO mice. Recombinant IL-4 administered intracerebroventricularly before middle cerebral artery occlusion significantly reduced infarct volume, improved neurological score, reduced macrophages/microglia, and lowered the Th1/Th2 ratio in IL-4 KO mice, but not in wild-type. Loss of IL-4 signaling in KO mice was associated with worse outcome, and this was reversed by giving exogenous IL-4. Worsened outcome was associated with increased inflammation in the core, which was reversed in IL-4 KO but not significantly changed in wild-type mice by exogenous IL-4. This is consistent with IL-4 signaling leading to reduced inflammation in the core and a possible beneficial role for activated astrocytes in the penumbra.
Article
This review focuses on mechanisms and emerging concepts that drive the science of stroke in a therapeutic direction. Once considered exclusively a disorder of blood vessels, growing evidence has led to the realization that the biological processes underlying stroke are driven by the interaction of neurons, glia, vascular cells, and matrix components, which actively participate in mechanisms of tissue injury and repair. As new targets are identified, new opportunities emerge that build on an appreciation of acute cellular events acting in a broader context of ongoing destructive, protective, and reparative processes. The burden of disease is great, and its magnitude widens as a role for blood vessels and stroke in vascular and nonvascular dementias becomes more clearly established. This review then poses a number of fundamental questions, the answers to which may generate new directions for research and possibly new treatments that could reduce the impact of this enormous economic and societal burden.
Article
The phosphodiesterase-4 inhibitor roflumilast can improve lung function and prevent exacerbations in certain patients with chronic obstructive pulmonary disease (COPD). We therefore investigated whether roflumilast would reduce the frequency of exacerbations requiring corticosteroids in patients with COPD. In two placebo-controlled, double-blind, multicentre trials (M2-124 and M2-125) with identical design that were done in two different populations in an outpatient setting, patients with COPD older than 40 years, with severe airflow limitation, bronchitic symptoms, and a history of exacerbations were randomly assigned to oral roflumilast (500 microg once per day) or placebo for 52 weeks. Primary endpoints were change in prebronchodilator forced expiratory volume in 1 s (FEV(1)) and the rate of exacerbations that were moderate (glucocorticosteroid-treated) or severe. Analysis was by intention to treat. The trials are registered with ClinicalTrials.gov, number NCT00297102 for M2-124, and NCT00297115 for M2-125. Patients were assigned to treatment, stratified according to smoking status and treatment with longacting beta(2) agonists, and given roflumilast (n=1537) or placebo (n=1554). In both studies, the prespecified primary endpoints were achieved and were similar in magnitude. In a pooled analysis, prebronchodilator FEV(1) increased by 48 mL with roflumilast compared with placebo (p<0.0001). The rate of exacerbations that were moderate or severe per patient per year was 1.14 with roflumilast and 1.37 with placebo (reduction 17% [95% CI 8-25], p<0.0003). Adverse events were more common with roflumilast (1040 [67%]) than with placebo (963 [62%]); 219 (14%) patients in the roflumilast group and 177 (12%) in the placebo group discontinued because of adverse events. In the pooled analysis, the difference in weight change during the study between the roflumilast and placebo groups was -2.17 kg. Since different subsets of patients exist within the broad spectrum of COPD, targeted specific therapies could improve disease management. This possibility should be explored further in prospective studies. Nycomed.
Article
The hippocampus, among those vulnerable regions, is the area where anatomic, physiologic, and behavioral can be studied. For understanding the basic mechanism of ischemic neuronal damage, the hippocampus has proven to be one of the most suitable systems for experimental study. There is ample time to examine the CAI neurons before these cells totally lose their viability. Most of the population of nerve cells in the particular location in the hippocampus behaves almost synchronously and therefore it is easier to focus the attention than in a system where the neuronal change is scattered more sparsely. The chapter discusses the “vascular theory” that seems to be unsatisfactory to explain the cell damage in a circumscribed region of the hippocampus. In contrast, there is increasing evidence that the ischemic damage to hippocampal neurons is related to the chemical characteristics and interconnection of individual neurons in the complex circuitry of the brain.
Article
The significance of a characteristic symptomatology (hypothermia, hypoactivity, forepaw shaking, grooming, head twitches) as a potential in vivo correlate of enhanced availability of brain adenosine cyclic 3',5'-monophosphate (cAMP) was examined in rats following systemic administration of various doses of dibutyryladenosine cAMP (dBcAMP) or of the phosphodiesterase (PDE) inhibitors rolipram, Ro 20-1724, ICI 63-197, isobutylmethylxanthine (IBMX) theophylline, cartazolate, and papaverine. The various PDE inhibitors could be assigned to three groups according to the pattern of behavioral alterations they induced. Rolipram, Ro 20-1724, and ICI 63-197 (group 1) caused hypothermia, hypoactivity, forepaw shaking, grooming, and head twitches. All behavioral effects were mimicked by dBcAMP but not dBcGMP. The order of potency and effective dosage range to induce the behavioral alterations were, in descending order, rolipram (0.09-1453 mumol/kg IP), ICI 63-197 (0.48-119 mumol/kg IP), Ro 20-1724 (5.6-1438 mumol/kg IP), corresponding with the recently reported efficacy of the drugs to elevate rat brain cAMP in vivo. Comparatively high doses of the alkylxanthine PDE inhibitors IBMX and theophylline (group 2) caused hypothermia, forepaw shaking, grooming, and head twitches concomitantly with a decline of the motor stimulatory effect, suggesting enhanced availability of brain cAMP. The order of potency and the effective dosage range to induce the behavioral alterations were, in descending order, IBMX (28.1-113 mumol/kg IP) and theophylline (139-555 mumol/kg IP). The third group, papaverine (295-1179 mumol/kg IP) and cartazolate (21.5-345 mumol/kg IP), caused only hypothermia and hypoactivity. The differences in the behavioral pattern of the two latter groups of compounds in comparison with dBcAMP and the selective cAMP PDE inhibitors are discussed with regard to their additional interference with adenosine actions besides their nonselective PDE inhibitory action.
Article
Rats and gerbils have been used widely to investigate the molecular mechanism of selective neuronal death following transient global ischemia. Recently, the availability of transgenic mice has enabled us to examine the involvement of specific gene products in various pathophysiological conditions. However, there has been only limited information about the experimental model of cerebral ischemia in mice, particularly in regard to selective neuronal death. We examined whether bilateral carotid occlusion produced global forebrain ischemia in seven common mouse strains including C57BL/6, ICR, BALB/c, C3H, CBA, ddY and DBA/2, based on neurological signs, histological findings and cortical microcirculatory as well as India ink perfusion patterns. The C57BL/6 strain was found to be the most susceptible among seven strains. All C57BL/6 mice died within 6 h after permanent bilateral carotid occlusion. After transient bilateral carotid occlusion for 20 min, more than 90% of C57BL/6 mice showed typical neurological signs such as torsion of the neck and rolling fits, and developed selective neuronal death in the hippocampus and caudoputamen. Hypothermia prevented the neuronal death. Visualization of brain vasculature by India ink perfusion indicated that the susceptibility of the mice after bilateral carotid occlusion depended mainly on the degree of anastomosis between carotid and basilar arteries. Our results showed the feasibility of investigating selective neuronal death in transgenic mice with simple temporary occlusion of both common carotid arteries, when those from the C57BL/6 strain or inbred transgenic mice from other strains with the C57BL/6 strain in a back-cross manner are used.
Article
In this study the effect of post-treatment with rolipram, an inhibitor of cAMP phosphodiesterase, on neuronal damage following global ischemia was evaluated. Global cerebral ischemia was induced in male Wistar rats by four-vessel occlusion for 20 minutes. Rolipram was administered 6 hours after onset of ischemia and thereafter the following 7 days daily once at a dose of 0.3 or 3.0 mg/kg intraperitoneally. Four weeks after ischemia the amount of intact neurons in the hippocampus and in the striatum was assessed following perfusion fixation. The ischemia-induced neuronal damage in the CA1 sector of the hippocampus and in the striatum was reduced by rolipram at either dose. The present results show that treatment with rolipram reduces ischemic neuronal damage at a therapeutic window of 6 hours.
Article
A two-trial memory task, based on a free-choice exploration paradigm in a Y-maze, was previously developed to study recognition processes in Sprague-Dawley rats. Because this paradigm avoids the use of electric shock or deprivation that may have nonspecific effects and does not require learning of a rule, it may be particularly useful for studying memory in mice. Four inbred strains (Balb/cByJ, DBA/2J, C57BL/6J, and SJL/J), an F1 hybrid (C57BL/6 x SJL/J), and one outbred strain (CD1) were used to validate this task in mice and to characterize a strain distribution in response to novelty and working memory. Exploration was measured with a short (2 min) intertrial interval (ITI) between acquisition and retrieval, while memory was examined with longer intervals (30 min, 1 h, and 2 h). A study of the time course of the response to novelty revealed varying degrees of preference and/or habituation to novelty among the different strains, with CD1 exhibiting a very high response to novelty and others showing lower (C57 x SJL hybrids) to complete absence (SJL) of exploration of novelty. Memory span, assessed with increasing ITIs, varied widely among strains from 30 min (C57 x SJL hybrids) to at least 2 h (C57 and BALB). Such demonstrated sensitivity to a wide range of behavioral phenotypes supports the use of this spatial memory task as an effective tool for the study of genetic influences on the response to novelty and recognition processes in mice.