Article

Nicotinic Acetylcholine Receptor Partial Antagonist Polyamides from Tunicates and Their Predatory Sea Slugs

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... As shown above, nAChR agonists from marine sources could have a tremendous effect on the drug design field. A few novel marine nAChR agonists have been discovered in recent years, including 6-bromohypaphorine from the nudibranch mollusk Hemissena crassicornis, targeting α7 nAChR [93] and molleamines [94]. The latter have recently been shown to be partial agonists at α3and α6-containing nAChRs expressed in dorsal root ganglions [94]. ...
... A few novel marine nAChR agonists have been discovered in recent years, including 6-bromohypaphorine from the nudibranch mollusk Hemissena crassicornis, targeting α7 nAChR [93] and molleamines [94]. The latter have recently been shown to be partial agonists at α3and α6-containing nAChRs expressed in dorsal root ganglions [94]. Moreover, signs of antinociceptive activity and the lack of acute toxicity make molleamines promising hits for drug design. ...
Article
Full-text available
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
... The most studied among them are conotoxins [228,229]. Beside those, molleamine C isolated from mollusk Pleurobranchus forskalii was recently shown to act as a partial antagonist of nAChRs with a maximal blockage of 76-82 % of the ACh-induced ion flux and no partial agonistic response [230]. Components of lionfish venom have been shown to block the ACh-triggered effects of human neuronal α3β2 nAChR [231]. ...
Article
Full-text available
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
... A series of polymeric MNPs, molleamines A-E 1444-1448 were isolated from the Pleurobranch mollusc Pleurobranchus forskalii. 617 Molleamine C was identied as being capable of blocking acetylcholine-induced calcium inux while electrophysiology experiments determined it to be a weak partial antagonist of a3b4 and a6/a3b4 nAChR's. A Brazilian collection of the nudibranch Roboastra ernesti was the source of tambjamines M-O 1449-1451, identied during a metabolomics-driven MS/MS study with the structures conrmed by synthesis. ...
Article
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
... Previous work has defined 16 specific cell types in the DRGs, used to screen ligands for the management of neuropathic pain. 4,21 Here, we identified and characterized one of the bioactive ligands from our library of marine natural products, DIMTA (Figure 1). The compound was active in constellation pharmacology assays performed on dissociated neurons from the mouse DRG, selectively targeting just one of the cell types (LTCTs) at lower doses ( Figure 1). ...
Article
Full-text available
Significance In this work, cell-specific temporal changes that occur in DRG neurons after peripheral nerve injury were monitored. Altered responses of neurons to bradykinin, ATP, and acetylcholine were observed; three bradykinin responsive neuronal cell types appear that correlate with increased pain. The ability to temporally monitor cell-specific alterations in receptors and ion channels (termed as “Pigafetta Disease Chronicles”) should make it possible to uncover cell type-specific disease-relevant alterations in membrane macromolecules and potentially identify drug targets whose function is required to establish a pathological state. This opens up the possibility of designing novel therapeutic interventions that do not merely treat disease symptoms but prevent a pathological state altogether.
Article
Full-text available
Conotoxins form a diverse group of peptide toxins found in the venom of predatory marine cone snails. Decades of conotoxin research have provided numerous measurable scientific and societal benefits. These include their use as a drug, diagnostic agent, drug leads, and research tools in neuroscience, pharmacology, biochemistry, structural biology, and molecular evolution. Human envenomations by cone snails are rare but can be fatal. Death by envenomation is likely caused by a small set of toxins that induce muscle paralysis of the diaphragm, resulting in respiratory arrest. The potency of these toxins led to concerns regarding the potential development and use of conotoxins as biological weapons. To address this, various regulatory measures have been introduced that limit the use and access of conotoxins within the research community. Some of these regulations apply to all of the ≈200,000 conotoxins predicted to exist in nature of which less than 0.05% are estimated to have any significant toxicity in humans. In this review we provide an overview of the many benefits of conotoxin research, and contrast these to the perceived biosecurity concerns of conotoxins and research thereof.
Article
Full-text available
Somatosensory neurons have historically been classified by a variety of approaches including structural, anatomical and genetic markers, electrophysiological properties, pharmacological sensitivities and, more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents, as measured by changes in cytosolic calcium concentration, for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as Tripartite Constellation Analysis (TCA), we focused on large-diameter dorsal-root ganglion (DRG) neurons with myelinated axons (L-DRG). Divergent responses to the K-channel antagonist, M-conopeptide RIIIJ (RIIIJ) reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca]i. Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca]i corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low threshold mechanoreceptors RIIIJ effects were replicated by application of the Kv1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional Kv1.1/Kv1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.
Article
Full-text available
Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post‐traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real‐time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, β2, and β4 subunits. Whole‐cell patch‐clamp electrophysiology of chromaffin cells and subtype‐selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA‐5469, was created that is highly selective for α3β2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA‐5469 and the α3β4‐selective α‐conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with the α3β2β4 subtype. Conclusions were derived from observations that acetylcholine‐gated currents in some cells were sensitive to inhibition by PeIA‐5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7‐selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α‐conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3β2β4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells. image
Article
Full-text available
Our previous immunoprecipitation analysis of nicotinic acetylcholine receptors (nAChRs) in the mouse superior cervical ganglion (SCG) revealed that approximately 55%, 24%, and 21% of receptors are comprised of α3β4, α3β4α5, and α3β4β2 subunits, respectively. Moreover, mice lacking β4 subunits do not express α5‐containing receptors but still express a small number of α3β2 receptors. Here, we investigated how synaptic transmission is affected in the SCG of α5β4‐KO and α5β2‐KO mice. Using an ex vivo SCG preparation, we stimulated the preganglionic cervical sympathetic trunk and measured compound action potentials (CAPs) in the postganglionic internal carotid nerve. We found that CAP amplitude was unaffected in α5β4‐KO and α5β2‐KO ganglia, whereas the stimulation threshold for eliciting CAPs was significantly higher in α5β4‐KO ganglia. Moreover, intracellular recordings in SCG neurons revealed no difference in EPSP amplitude. We also found that the ganglionic blocking agent hexamethonium was the most potent in α5β4‐KO ganglia (IC50: 22.1 μmol/L), followed by α5β2‐KO (IC50: 126.7 μmol/L) and WT ganglia (IC50: 389.2 μmol/L). Based on these data, we estimated an IC50 of 568.6 μmol/L for a receptor population consisting solely of α3β4α5 receptors; and we estimated that α3β4α5 receptors comprise 72% of nAChRs expressed in the mouse SCG. Similarly, by measuring the effects of hexamethonium on ACh‐induced currents in cultured SCG neurons, we found that α3β4α5 receptors comprise 63% of nAChRs. Thus, in contrast to our results obtained using immunoprecipitation, these data indicate that the majority of receptors at the cell surface of SCG neurons consist of α3β4α5.
Article
Full-text available
Nicotinic acetylcholine receptors (nAChRs) containing α6 and β4 subunits are expressed by dorsal root ganglion neurons and have been implicated in neuropathic pain. Rodent models are often used to evaluate the efficacy of analgesic compounds, but species differences may affect the activity of some nAChR ligands. A previous candidate α-conotoxin-based therapeutic yielded promising results in rodent models, but failed in human clinical trials, emphasizing the importance of understanding species differences in ligand activity. Here, we show that human and rat α6/α3β4 nAChRs expressed in Xenopus laevis oocytes exhibit differential sensitivity to α-conotoxins. Sequence homology comparisons of human and rat α6β4 nAChR subunits indicated that α6 residues forming the ligand-binding pocket are highly conserved between the two species, but several residues of β4 differed, including a Leu-Gln difference at position 119. X-ray crystallography of α-conotoxin PeIA complexed with the Aplysia californica acetylcholine-binding protein (AChBP) revealed that binding of PeIA orients Pro-13 in close proximity to residue 119 of the AChBP complementary subunit. Site-directed mutagenesis studies revealed that Leu-119 of human β4 contributes to higher sensitivity of human α6/α3β4 nAChRs to α-conotoxins, and structure-activity studies indicated that PeIA Pro-13 is critical for high potency. Human and rat α6/α3β4 nAChRs displayed differential sensitivities to perturbations of the interaction between PeIA Pro-13 and residue 119 of the β4 subunit. These results highlight the potential significance of species differences in α6β4 nAChR pharmacology that should be taken into consideration when evaluating the activity of candidate human therapeutics in rodent models.
Article
Full-text available
Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment.
Article
Full-text available
Wood/biomass smoke particulate materials (WBSPM) are pneumotoxic, but mechanisms by which these materials affect lung cells are not fully understood. We previously identified transient receptor potential (TRP) ankyrin-1 as a sensor for electrophiles in WBSPM and hypothesized that other TRP channels expressed by lung cells might also be activated by WBSPM, contributing to pneumotoxicity. Screening TRP channel activation by WBSPM using calcium flux assays revealed TRPV3 activation by materials obtained from burning multiple types of wood under fixed conditions. TRPV3 activation by WBSPM was dependent on the chemical composition and the pattern of activation and chemical components of PM agonists was different from that of TRPA1. Chemical analysis of particle constituents by gas chromatography-mass spectrometry and principal component analysis, indicated enrichment of cresol, ethyl-phenol, and xylenol analogues, plus several other chemicals among the most potent samples. 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-xylenol, 2-, 3-, 4-ethyphenol, 2-methoxy-4-methylphenol, and 5,8-dihydronaphthol were TRPV3 agonists exhibiting preferential activation versus TRPA1, M8, V1, and V4. The concentration of 2,3- and 3,4-xylenol in the most potent samples of pine and mesquite smoke PM (<3μm) was 0.1-0.3% by weight, while 5-8-dihydronaphthol was 0.03%. TRPV3 was expressed by several human lung epithelial cell lines, and both pine PM and pure chemical TRPV3 agonists found in WBSPM were more toxic to TRPV3-overexpressing cells via TRPV3 activation. Finally, mice treated sub-acutely with pine particles exhibited an increase in sensitivity to inhaled methacholine involving TRPV3. In summary, TRPV3 is activated by specific chemicals in WBSPM, potentially contributing to the pneumotoxic properties of certain WBSPM.
Article
Full-text available
To better understand how adverse health effects are caused by particulate materials, and to develop preventative measures, it is important to identify the properties of particles and proteins that link exposure with specific biological outcomes. Coal fly ash (CFA) is a by-product of coal combustion that can affect human health. Here we show that human transient receptor potential melastatin-8 (TRPM8) and an N-terminally truncated TRPM8 variant (TRPM8-Δ801) are activated by CFA and calcium-rich nanoparticles and/or soluble salts within CFA. Human TRPM8 activation by CFA was potentiated by cold temperature and involved the phosphatidylinositol 4,5-bisphosphate binding site (L1008). Activation also occurred independent of the icilin and menthol binding site residue Y745, as well as to a large extent, the N-terminal amino acids 1-800. CFA, calcium nanoparticles and calcium salts also activated TRPV1 and TRPA1, but not TRPV4. Finally, CFA treatment caused CXCL1 and IL-8 mRNA induction in BEAS-2B and primary human bronchial epithelial cells through activation of both TRPM8 and TRPV1. However, neither mouse nor rat TRPM8 were activated by these materials, and Trpm8-knockout had no effect on cytokine induction in the lungs of mice following CFA instillation. These results imply that TRPM8, in conjunction with TRPV1 and TRPA1, might sense selected forms of inhaled particulate materials in human airways, shaping cellular responses to these materials. These findings improve our understanding of how and why certain particulate materials elicit different responses in biological systems, as well as ways in which certain particles might affect human health.
Article
Full-text available
Transcripts for α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are found in diverse tissues. The function of α9α10 nAChRs is best known in mechanosensory cochlear hair cells, but elsewhere their roles are less well-understood. α9α10 nAChRs have been implicated as analgesic targets and α-conotoxins that block α9α10 nAChRs produce analgesia. However, some of these peptides show large potency differences between species. Additionally several studies have indicated that these conotoxins may also activate GABAB receptors (GABABRs). To further address these issues, we cloned the cDNAs of mouse α9 and α10 nAChR subunits. When heterologously expressed in Xenopus oocytes, the resulting α9α10 nAChRs had the expected pharmacology of being activated by acetylcholine and choline but not by nicotine. A conotoxin analog, RgIA4, potently, and selectively blocked mouse α9α10 nAChRs with low nanomolar affinity indicating that RgIA4 may be effectively used to study murine α9α10 nAChR function. Previous reports indicated that RgIA4 attenuates chemotherapy-induced cold allodynia. Here we demonstrate that RgIA4 analgesic effects following oxaliplatin treatment are sustained for 21 days after last RgIA4 administration indicating that RgIA4 may provide enduring protection against nerve damage. RgIA4 lacks activity at GABAB receptors; a bioluminescence resonance energy transfer assay was used to demonstrate that two other analgesic α-conotoxins, Vc1.1 and AuIB, also do not activate GABABRs expressed in HEK cells. Together these findings further support the targeting of α9α10 nAChRs in the treatment of pain.
Article
Full-text available
Significance This study addresses the need to phase out opioids as the major analgesic drugs for moderate to severe chronic pain. We establish that a highly selective and potent inhibitor of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype prevents the expression of chemotherapy-induced neuropathic pain. Thus, selective antagonists of the α9α10 nAChR are potential leads for nonopioid analgesic drug development. The effects of inhibitors of the α9α10 receptor, together with genetic studies, suggest a key role for the α9α10 nAChR subtype in an intercellular signaling network that can be activated by diverse insults (e.g., chemotherapy, nerve injury, and diabetes).
Article
Full-text available
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.
Article
Full-text available
6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.
Article
Full-text available
For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP), a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([125I]-αBgt) for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (Ki 0.5-1.3 μM). With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [125I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (Ki ~ 1.5 μM) were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.
Article
Full-text available
Significance Change in the nervous system occurs in response to diverse inputs, both normal and pathological. Defining such changes is required for understanding normal nervous-system functions and pathologies—e.g., from learning and memory to intractable disease. A unique combination pharmacology strategy allows identification of distinct neuronal subclasses through their constant functional expression of a specific subset of signaling proteins. Phenotypic alterations in signaling for one specific neuronal subclass were tracked as a function of development. These alterations provide proof-of-principle that changes in individual types of neurons can be monitored as a function of learning, disease, or aging. Developing biomarkers and therapeutic interventions for intractable nervous-system pathologies will require simultaneously monitoring different neuronal subclasses for such changes early during disease progression.
Article
Full-text available
We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.
Article
Full-text available
A macrocylic dodecapeptide, cycloforskamide, was isolated from the sea slug Pleurobranchus forskalii, collected off Ishigaki Island, Japan. Its planar structure was deduced by extensive NMR analyses and was further confirmed by MS/MS fragmentation analyses. Finally, the absolute configuration was determined by total hydrolysis and chiral-phase gas chromatographic analysis. This novel dodecapeptide contains three d-amino acids and three thiazoline heterocycles and exhibits cytotoxicity against murine leukemia P388 cells, with an IC50 of 5.8 μM.
Article
Full-text available
Tetrodotoxin (TTX) is a potent neurotoxin that has been identified in a range of phylogenetically unrelated marine and terrestrial organisms. Tetrodotoxin was recently detected in New Zealand in Pleurobranchaea maculata (the grey side-gilled sea slug). From June 2010 to June 2011 wild specimens were collected from 10 locations around New Zealand. At one site (Narrow Neck Beach, Auckland) up to 10 individuals were collected monthly for 6 months. Attempts were also made to rear P. maculata in captivity. Tetrodotoxin was detected in samples from eight of the ten sites. The highest average (368.7 mg kg⁻¹) and maximum (1414.0 mg kg⁻¹) concentrations were measured in samples from Illiomama Rock (Auckland). Of the toxic populations tested there was significant variability in TTX concentrations among individuals, with the highest difference (62 fold) measured at Illiomama Rock. Tetrodotoxin concentrations in samples from Narrow Neck Beach varied temporally, ranging from an average of 184 mg kg⁻¹ in June 2010 to 17.5 mg kg⁻¹ by December 2010. There was no correlation between TTX levels and mass. The highest levels correspond with the egg laying season (June-August) and this, in concert with the detection of high levels of TTX in eggs and early larval stages, suggests that TTX may have a defensive function in P. maculata. Only one larva was successfully reared to full maturation and no TTX was detected.
Article
Full-text available
We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-root ganglion neurons. Two general types of challenge compounds were used: agonists of receptors (ionotropic and metabotropic) that alter cytoplasmic calcium concentration (receptor-agonist challenges) and compounds that affect voltage-gated ion channels (membrane-potential challenges). Notably, among the latter are K-channel antagonists, which elicited unexpectedly diverse types of calcium responses in different cells (i.e., phenotypes). We used various challenge compounds to identify several putative neuronal subtypes on the basis of their shared and/or divergent functional, phenotypic profiles. Our results indicate that multiple receptor-agonist and membrane-potential challenges may be applied to a neuronal population to identify, characterize, and discriminate among neuronal subtypes. This experimental approach can uncover constellations of plasma membrane macromolecules that are functionally coupled to confer a specific phenotypic profile on each neuronal subtype. This experimental platform has the potential to bridge a gap between systems and molecular neuroscience with a cellular-focused neuropharmacology, ultimately leading to the identification and functional characterization of all neuronal subtypes at a given locus in the nervous system.
Article
Full-text available
Genomic and pharmacologic data have suggested the involvement of the α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) in drug seeking to nicotine and other drugs of abuse. In order to better examine this receptor subtype, we have identified and characterized the first high affinity and selective α3β4 nAChR antagonist, AT-1001, both in vitro and in vivo. This is the first reported compound with a Ki below 10 nM at α3β4 nAChR and >90-fold selectivity over the other major subtypes, the α4β2 and α7 nAChR. AT-1001 competes with epibatidine, allowing for [³H]epibatidine binding to be used for structure-activity studies, however, both receptor binding and ligand-induced Ca²⁺ flux are not strictly competitive because increasing ligand concentration produces an apparent decrease in receptor number and maximal Ca²⁺ fluorescence. AT-1001 also potently and reversibly blocks epibatidine-induced inward currents in HEK cells transfected with α3β4 nAChR. Importantly, AT-1001 potently and dose-dependently blocks nicotine self-administration in rats, without affecting food responding. When tested in a nucleus accumbens (NAcs) synaptosomal preparation, AT-1001 inhibits nicotine-induced [³H]dopamine release poorly and at significantly higher concentrations compared with mecamylamine and conotoxin MII. These results suggest that its inhibition of nicotine self-administration in rats is not directly due to a decrease in dopamine release from the NAc, and most likely involves an indirect pathway requiring α3β4 nAChR. In conclusion, our studies provide further evidence for the involvement of α3β4 nAChR in nicotine self-administration. These findings suggest the utility of this receptor as a target for smoking cessation medications, and highlight the potential of AT-1001 and congeners as clinically useful compounds.
Article
Full-text available
Neuroactive small molecules are indispensable tools for treating mental illnesses and dissecting nervous system function. However, it has been difficult to discover novel neuroactive drugs. Here, we describe a high-throughput, behavior-based approach to neuroactive small molecule discovery in the zebrafish. We used automated screening assays to evaluate thousands of chemical compounds and found that diverse classes of neuroactive molecules caused distinct patterns of behavior. These 'behavioral barcodes' can be used to rapidly identify new psychotropic chemicals and to predict their molecular targets. For example, we identified new acetylcholinesterase and monoamine oxidase inhibitors using phenotypic comparisons and computational techniques. By combining high-throughput screening technologies with behavioral phenotyping in vivo, behavior-based chemical screens can accelerate the pace of neuroactive drug discovery and provide small-molecule tools for understanding vertebrate behavior.
Article
Full-text available
Abstract: This chapter covers the chemistry and nicotinic pharmacology of naturally occurring homotropane alkaloids, with an emphasis of anatoxin-a. In addition to anatoxin-a, homoanatoxin and pinnamine, as well as the major classes of synthetic derivatives of anatoxin-a including UB-165, are discussed.
Article
Full-text available
Image-based screens can produce hundreds of measured features for each of hundreds of millions of individual cells in a single experiment. Here, we describe CellProfiler Analyst, open-source software for the interactive exploration and analysis of multidimensional data, particularly data from high-throughput, image-based experiments. The system enables interactive data exploration for image-based screens and automated scoring of complex phenotypes that require combinations of multiple measured features per cell.
Article
Non-opioid therapeutics for the treatment of neuropathic pain are urgently needed to address the ongoing opioid crisis. Peptides from cone snail venoms have served as invaluable molecules to target key pain-related receptors but can suffer from unfavorable physicochemical properties, which limit their therapeutic potential. In this work, we developed conformationally constrained α-RgIA analogues with high potency, receptor selectivity, and enhanced human serum stability to target the human α9α10 nicotinic acetylcholine receptor. The key lactam linkage introduced in α-RgIA fixed the favored globular conformation and suppressed disulfide scrambling. The NMR structure of the macrocyclic peptide overlays well with that of α-RgIA4, demonstrating that the cyclization does not perturb the overall conformation of backbone and key side-chain residues. Finally, a molecular docking model was used to rationalize the selective binding between a macrocyclic analogue and the α9α10 nicotinic acetylcholine receptor. These conformationally constrained antagonists are therefore promising candidates for antinociceptive therapeutic intervention.
Article
Natural products such as conotoxins have tremendous potential as tools for biomedical research and for the treatment of different human diseases. Conotoxins are peptides present in the venoms of predatory cone snails that have a rich diversity of pharmacological functions. One of the major bottlenecks in natural products research is the rapid identification and evaluation of bioactive molecules. To overcome this limitation, we designed a set of light-induced behavioral assays in zebrafish larvae to screen for bioactive conotoxins. We used this screening approach to test several unique conotoxins derived from different cone snail clades and discovered that a conorfamide from Conus episcopatus, CNF-Ep1, had the most dramatic alterations in the locomotor behavior of zebrafish larvae. Interestingly, CNF-Ep1 is also bioactive in several mouse assay systems when tested in vitro and in vivo. Our novel screening platform can thus accelerate the identification of bioactive marine natural products, and the first compound discovered using this assay has intriguing properties that may uncover novel neuronal circuitry.
Article
Dorsal root ganglion (DRG) sensory neuron subtypes defined by their in vivo properties display distinct intrinsic electrical properties. We used bulk RNA sequencing of genetically labeled neurons and electrophysiological analyses to define ion channel contributions to the intrinsic electrical properties of DRG neuron subtypes. The transcriptome profiles of eight DRG neuron subtypes revealed differentially expressed and functionally relevant genes, including voltage-gated ion channels. Guided by these data, electrophysiological analyses using pharmacological and genetic manipulations as well as computational modeling of DRG neuron subtypes were undertaken to assess the functions of select voltage-gated potassium channels (Kv1, Kv2, Kv3, and Kv4) in shaping action potential (AP) waveforms and firing patterns. Our findings show that the transcriptome profiles have predictive value for defining ion channel contributions to sensory neuron subtype-specific intrinsic physiological properties. The distinct ensembles of voltage-gated ion channels predicted to underlie the unique intrinsic physiological properties of eight DRG neuron subtypes are presented.
Article
Transient receptor potential (TRP) cation channels are molecular targets of various natural products. TRPA1 is specifically activated by natural products like allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), and allicin (garlic). In this study, we demonstrate that TRPA1 is also a target of trans-anethole in Fennel Oil (FO) and fennel seed extract. Similar to FO, trans-anethole selectively elicited calcium influx in TRPA1-expressing mouse sensory neurons of the dorsal root and trigeminal ganglia. These FO- and anethole-induced calcium responses were blocked by a selective TRPA1-channel antagonist, HC-030031. Moreover, both FO and trans-anethole induced calcium influx and transmembrane currents in HEK293 cells stably overexpressing human TRPA1 channels, but not in regular HEK293 cells. Mutation of the "ST" binding site of human TRPA1 significantly attenuated channel activation by trans-anethole, whereas pretreating with glutathione (GSH), a nucleophile, did not. Conversely, activation of TRPA1 by the electrophile allyl isothiocyanate was abolished by glutathione, but was ostensibly unaffected by mutation of the "ST" binding site. Finally, it was found that trans-anethole, was capable of desensitizing TRPA1 and unlike allyl isothiocyanate, it failed to induce nocifensive behaviors in mice. We conclude that trans-anethole is a selective, non-electrophilic, and seemingly less-irritating agonist of TRPA1.
Article
Serotonin (5-HT) receptors are important in health and disease, but the existence of 14 subtypes necessitates selective ligands. Previously, the pulicatins were identified as ligands that specifically bound to the subtype 5-HT2B in the 500 nM to 10 μM range and that exhibited in vitro effects on cultured mouse neurons. Here, we examined the structure–activity relationship of 30 synthetic and natural pulicatin derivatives using binding, receptor functionality, and in vivo assays. The results reveal the 2-arylthiazoline scaffold as a tunable serotonin receptor-targeting pharmacophore. Tests in mice show potential antiseizure and antinociceptive activities at high doses without motor impairment.
Article
The strong reinforcing effects of nicotine and the negative symptoms such as anxiety experienced during a quit attempt often lead to relapse and low success rates for smoking cessation. Treatments that not only block the reinforcing effects of nicotine but also attenuate the motivation to relapse are needed to improve cessation rates. Recent genetic and preclinical studies have highlighted the involvement of the α3, β4, and α5 nicotinic acetylcholine receptor (nAChR) subunits and the α3β4 nAChR subtype in nicotine dependence and withdrawal. However, the involvement of these nAChR in relapse is not fully understood. We previously reported that the α3β4 nAChR partial agonist AT-1001 selectively decreases nicotine self-administration in rats without affecting food responding. In the present experiments, we examined the efficacy of AT-1001 in attenuating reinstatement of nicotine-seeking behavior in a model of stress-induced relapse. Rats extinguished from nicotine self-administration were treated with the pharmacological stressor yohimbine prior to AT-1001 treatment and reinstatement testing. We also examined whether AT-1001 produced any withdrawal-related effects when administered to nicotine-dependent rats. We found that AT-1001 dose-dependently reduced yohimbine stress-induced reinstatement of nicotine seeking. When administered to nicotine-dependent rats at the dose that significantly blocked nicotine reinstatement, AT-1001 elicited minimal somatic withdrawal signs in comparison to the nicotinic antagonist mecamylamine, which is known to produce robust withdrawal. Our data suggest that α3β4 nAChR-targeted compounds may be a promising approach for nicotine addiction treatment because they can not only block nicotine’s reinforcing effects, but also decrease motivation to relapse without producing significant withdrawal effects.
Article
The extract of a sample of the tunicate Didemnum molle (MAY13-117) collected in Mayotte afforded eight new metabolites, mollecarbamates A–D (1–4) and molleureas B–E (5–8), along with the two known natural products, N,N′-diphenylethyl urea (10) and molleurea A (11). Another sample of D. molle (MAD11-BA065) collected in Baie des Assassins, Madagascar, afforded molledihydroisoquinolone (9). Mollecarbamates 1–4 are a family of compounds that possess repeating o-carboxyphenethylamide units and a carbamate moiety, while the molleureas 5–8 contain tetra- and penta-repeating carboxyphenethylamide units and a urea bridge in different positions. Molledihydroisoquinolone (9) is a cyclic form of o-carboxyphenethylamide. We propose that these unique natural products are most probably produced by an unprecedented biosynthetic pathway that contains a yet unknown chorismate mutase variant. The structures of the compounds were elucidated by interpretation of the data from 1D and 2D NMR, HRESIMS, and MS/MS analyses of the positive ESIMS experiments. Compounds 1–8 were tested against pathogenic bacteria and in a cytoprotective HIV cell based assay but did not show any significant effects in these assays.
Article
The molecular sensor of innocuous (painless) cold sensation is well-established to be Transient Receptor Potential cation channel, subfamily M, member 8 (TRPM8). However, the role of Transient Receptor Potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8 -/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: 1) Cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and 2) voltage-gated potassium (KV) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking KV channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons.
Article
The rodent superior cervical ganglion (SCG) is a useful and readily accessible source of neurons for studying the mechanisms of sympathetic nervous system (SNS) development and growth in vitro. The sympathetic nervous system (SNS) of early postnatal animals undergoes a great deal of remodeling and development; thus, neurons taken from mice at this age are primed to re-grow and establish synaptic connections after in situ removal. The stereotypic location and size of the SCG make it ideal for rapid isolation and dissociation. The protocol described here details the requirements for the dissection, culture and differentiation of SCG neurons. The protocol is suitable for culturing neurons from late embryonic gestation to approximately postnatal day 3. The culture technique discussed below utilizes glass coverslips for the microscopic examination of fixed cells.
Article
The epidemic of opioid abuse is related in part to incomplete understanding of pain-relief management, opioid tolerance, and opioid addiction. Among the prevention strategies are more widespread sharing of data about opioid neuropharmacology and opioid-use patterns.
Article
Spirolides are a large family of lipophilic marine toxins produced by dinoflagellates which have been detected in contaminated shellfish. Among them, 13,19-didesmethyl and 13-desmethyl spirolide C phycotoxins are widely distributed and their mode of action need to be clearly defined. In order to further characterize the pharmacological profiles of these phycotoxins on various nicotinic acetylcholine receptor (nAChR) subtypes and to examine whether they act on muscarinic receptors (mAChRs), functional electrophysiological studies and competition binding experiments have been performed. While 13-desmethyl spirolide C interacted efficiently with sub-nanomolar affinities and low selectivity with muscular and neuronal nAChRs, 13,19-didesmethyl spirolide C was more selective of muscular and homopentameric α7 receptors and recognized only weakly neuronal heteropentameric receptors, especially the α4β2 subtype. Thus, the presence of an additional methyl group on the tetrahydropyran ring modified significantly the pharmacological profile of 13-desmethyl spirolide C by increasing notably its affinity on certain neuronal nAChRs. Structural explanations of this selectivity difference are proposed, based on molecular docking experiments modelling different spirolide-receptor complexes. In addition, the two spirolides interacted only with low micromolar affinities with the five mAChRs, highlighting that the toxicity of the spirolide C analogs is mainly due to their high inhibition potency on various peripheral and central nAChRs and not to their low ability to interact with mAChR subtypes. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Article
Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nicotinic acetylcholine receptors (nAChRs) that, at concentrations >1 μM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβϵδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ~1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([(3)H]phencyclidine; IC50 = 4 μM) than in the resting state ([(3)H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([(3)H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [(3)H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the non-selective nAChR PAMs galantamine and physostigmine at the "canonical" α-γ interface containing the transmitter binding sites and at the "non-canonical" δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [(3)H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. The American Society for Pharmacology and Experimental Therapeutics.
Article
Constellation pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (constellations) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the ongoing development of constellation pharmacology, there is a positive feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As constellation pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform.
Article
P2X receptors (P2XRs) and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between α6β4-containing (α6β4*) nAChRs and P2X2Rs and /or P2X3Rs have not been fully characterized. In oocytes co-expressing α6β4 nAChRs and P2X2Rs, P2X3Rs, or P2X2/3Rs, we measured several types of crosstalk. A novel form of crosstalk occurs between α6β4 nAChRs and P2X2Rs. P2X2Rs were forced into a prolonged desensitized state upon activation by ATP through a mechanism that does not depend on the intracellular C-terminus of the P2X2Rs. Co-expression of α6β4 nAChRs and P2X3Rs shifts the P2X3 dose-response relation to the right, even in the absence of acetylcholine (ACh). Moreover, when ACh and ATP are co-applied, currents become non-additive, as previously reported for other Cys-loop receptors interacting with P2XRs, and this crosstalk is dependent on the presence of P2X3 C-terminal domain. P2X2Rs also functionally interact with α6β4β3 but through a different mechanism from α6β4. The interaction with P2X3Rs is less pronounced for the α6β4β3 than the α6β4 nAChR. We also measured a functional interaction between the α6β4 nAChRs and the heteromeric P2X2/3R. Experiments with the nAChR channel blocker mecamylamine on P2X2 - α6β4 oocytes point to the loss of P2X2 channel activity during the crosstalk, while for P2X2 - α6β4β3, P2X2/3 - α6β4 and P2X2/3 - α6β4β3 the ion channel pores of the P2XRs were fully functional and unaltered by the receptor interaction. These results may be relevant to dorsal root ganglion cells and to other neurons which co-express these receptor subunits.
Article
Unlabelled: Alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists attenuate pain and inflammation in preclinical models. This study tested whether systemic delivery of an α7 nAChR agonist attenuates neuropathic pain and associated immune-mediated pro-inflammation. Hind paw response thresholds to mechanical stimuli in male Sprague Dawley rats were assessed before and after sciatic chronic constriction injury (CCI) or sham surgery. Osmotic mini-pumps containing TC-7020, an α7 nAChR selective agonist, were implanted 10 to 14 days after surgery. TC-7020 (1, 3, and 10 mg/kg/d; s.c.) significantly attenuated CCI-induced allodynia, which lasted through 2 weeks of test compound administration. Spinal cords were collected after 2 weeks and processed for microglial and astrocyte activation markers within the ipsilateral L4-L6 dorsal horn. In addition, ipsilateral L4-5 dorsal root ganglia (DRGs) were processed for neuronal injury and satellite cell activation markers. CCI-induced central glial cell activation markers were not suppressed by TC-7020, even though TC-7020 is mildly blood-brain barrier permeable. However, TC-7020 downregulated the integrated density of activation transcription factor 3 (ATF3) but not the number of ATF positive cells. TC-7020 also downregulated phosphorylated extracellular signal kinase (p-ERK) and satellite cell activation in the CCI-affected DRGs. Therefore, systemic α7 nAChR agonist may be effective in treating neuropathic pain via reducing neuronal injury and immune cells activation occurring in the periphery. Perspective: These studies demonstrated that TC-7020, an alpha7 nicotinic acetylcholine receptor agonist with partial blood-brain barrier permeability, reversed neuropathic pain in rats, likely via attenuation of inflammation in the DRG and/or the site of sciatic injury.
Article
As part of our screening for anti-HIV agents from marine invertebrates, the MeOH extract of Didemnum molle was tested and showed moderate in vitro anti-HIV activity. Bioassay-guided fractionation of a large-scale extract allowed the identification of two new cyclopeptides, mollamides E and F (1 and 2), and one new tris-phenethyl urea, molleurea A (3). The absolute configurations were established using the advanced Marfey's method. The three compounds were evaluated for anti-HIV activity in both an HIV integrase inhibition assay and a cytoprotective cell-based assay. Compound 2 was active in both assays with IC(50) values of 39 and 78 μM, respectively. Compound 3 was active only in the cytoprotective cell-based assay, with an IC(50) value of 60 μM.
Article
Four morphotypes are recognized in the photosymbiotic ascidian Didemnum molle in the Ryukyu Archipelago: three color morphs (white, dark gray, and brown) of small-type colonies and one large-type colony (white with gray patches). The genetic variation among these four morphotypes was investigated by constructing phylogenetic trees based on a 401-bp fragment of the cytochrome oxidase subunit I (COI) gene of 29 specimens collected from five islands (Okinawajima, Sesokojima, Ikeijima, Kumejima, and Ishigakijima). The results support the monophyly of the genus Didemnum and that of the four morphotypes of D.molle. Moreover, the phylogenetic trees discriminated four clades corresponding to each morphotype. The geographic differences of the sequences were much smaller than the differences among the morphotypes, suggesting that the four morphotypes in D.molle are discrete sibling species.
Article
The α6-containing nicotinic acetylcholine receptors (nAChRs) have recently been implicated in diseases of the central nervous system (CNS), including Parkinson's disease and substance abuse. In contrast, little is known about the role of α6* nAChRs in the peripheral nervous system (where the asterisk denotes the possible presence of additional subunits). Dorsal root ganglia (DRG) neurons are known to express nAChRs with a pharmacology consistent with an α7, α3β4*, and α4β2* composition. Here we present evidence that DRG neurons also express α6* nAChRs. We used RT-PCR to show the presence of α6 subunit transcripts and patch-clamp electrophysiology together with subtype-selective α-conotoxins to pharmacologically characterize the nAChRs in rat DRG neurons. α-Conotoxin BuIA (500 nM) blocked acetylcholine-gated currents (I(ACh)) by 90.3 ± 3.0%; the recovery from blockade was very slow, indicating a predominance of α(x)β4* nAChRs. Perfusion with either 300 nM BuIA[T5A;P6O] or 200 nM MII[E11A], α-conotoxins that target the α6β4* subtype, blocked I(ACh) by 49.3 ± 5 and 46.7 ± 8%, respectively. In these neurons, I(ACh) was relatively insensitive to 200 nM ArIB[V11L;V16D] (9.4±2.0% blockade) or 500 nM PnIA (23.0±4% blockade), α-conotoxins that target α7 and α3β2*/α6β2* nAChRs, respectively. We conclude that α6β4* nAChRs are among the subtypes expressed by DRG, and to our knowledge, this is the first demonstration of α6β4* in neurons outside the CNS.
Article
Because psychotropic drugs affect behavior, we can use changes in behavior to discover psychotropic drugs. The original prototypes of most neuroactive medicines were discovered in humans, rodents and other model organisms. Most of these discoveries were made by chance, but the process of behavior based drug discovery can be made more systematic and efficient. Fully automated platforms for analyzing the behavior of embryonic zebrafish capture digital video recordings of animals in each individual well of a 96-well plate before, during, and after a series of stimuli. To analyze systematically the thousands of behavioral recordings obtained from a large-scale chemical screen, we transform these behavioral recordings into numerical barcodes, providing a concise and interpretable summary of the observed phenotypes in each well. Systems-level analysis of these behavioral phenotypes generate testable hypotheses about the molecular mechanisms of poorly understood drugs and behaviors. By combining the in vivo relevance of behavior-based phenotyping with the scale and automation of modern drug screening technologies, systematic behavioral barcoding represents a means of discovering psychotropic drugs and provides a powerful, systematic approach for unraveling the complexities of vertebrate behavior.
Article
New compounds nobilamides A-H and related known compounds A-3302-A and A-3302-B were isolated based upon their suppression of capsaicin-induced calcium uptake in a mouse dorsal root ganglion primary cell culture assay. Two of these compounds, nobilamide B and A-3302-A, were shown to be long-acting antagonists of mouse and human TRPV1 channels, abolishing activity for >1 h after removal of drug presumably via a covalent attachment. Other derivatives also inhibited the TRPV1 channel, albeit with low potency, affording a structure-activity profile to support the proposed mechanism of action. While the activities were modest, we propose a new mechanism of action and a new site of binding for these inhibitors that may spur development of related analogues for treatment of pain.
Article
Didemnum molle, a colonial ascidian that harbors the symbiotic cyanophyte Prochloron spp., is distributed throughout the coral reefs of the Indo-West Pacific Ocean. Several morphotypes of D. molle are characterized by the color and size of their colonies. Previous molecular phylogeny inferred from gene sequences for the cytochrome oxidase subunit I (COI) identified four morphotypes (i.e., gray, brown, white, and large) from several sites in the Ryukyu Islands, Japan. With the addition of 17 specimens, including another morphotype (small), from several collection sites (Taiwan and the Ryukyus), the present report demonstrates genetic separation among the five morphotypes based on COI sequences. A number of sexually mature specimens of the different morphotypes were collected at the same times and sites, indicating reproductive isolation among morphotypes.
Article
The cone snail Conus pulicarius from the Philippines provides a specific habitat for actinomycetes and other bacteria. A phenotypic screen using primary cultures of mouse dorsal root ganglion neurons revealed that one C. pulicarius associate, Streptomyces sp. CP32, produces a series of natural products that enhance or diminish whole-cell Ca(2+) flux. These compounds include known thiazoline compounds and a series of new derivatives, pulicatins A-E (6-10). Individual compounds were shown to bind to a series of human receptors, with selective binding to the human serotonin 5-HT(2B) receptor. Here, we report the structure elucidation of the new compounds and results of the neurological assays.
Article
In complex tissues where multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed, immunohistochemistry has been the most popular tool for investigation of nAChR subunit distribution. However, recent studies with nAChR subunit knockout mice demonstrated that a large panel of antibodies is unsuitable. Thus, we aimed to develop a histochemical method for selective labeling of alpha7 nAChR with neurotoxins, utilizing alpha7 nAChR-transfected cells, dorsal root ganglia (DRG) and spinal cord from wild-type and knockout mouse. The specificity of Alexa Fluor 488-conjugated alpha-bungarotoxin (Alexa-alphaBgt) was demonstrated in binding to alpha7-transfected cells inhibited by long-chain alpha-cobratoxin (CTX), but not short-chain alpha-neurotoxin II (NTII). In contrast, binding to Torpedo muscle-type nAChRs and to motor end plates in mouse tongue sections was prevented by both CTX and NTII. In tissue sections of DRG, expressing all neuronal nAChR subunits, only CTX precluded Alexa-alphaBgt labeling of neurons, with no staining for alpha7 nAChR knockout tissue. It proved that alpha7 nAChRs are the major alphaBgt-binding sites in mouse DRG. Corresponding results were obtained for terminals in the spinal cord. Thus, we present a protocol utilizing Alexa-alphaBgt and non-labeled CTX/NTII that allows specific histochemical detection of alpha7 nAChR with a spatial resolution at the level of single axon terminals.
Article
The use of nicotinic agonists for analgesia is limited by their unacceptable side effects. Sazetidine-A is a new partial agonist nicotinic ligand that has very high selectivity for beta2-containing nicotinic acetylcholine receptors. It potently and selectively desensitizes alpha4beta2 nicotinic acetylcholine receptors without measurable effects on alpha3beta4 receptors. The authors investigated the analgesic effects of Sazetidine-A using the formalin model of chronic inflammatory pain. The formalin test was conducted after rats received intraperitoneal saline, Sazetidine-A (0.125, 0.25, 0.5, 1, 2 mg/kg), or subcutaneous epibatidine (2.5-5-10 mug/kg). In other experiments, Sazetidine-A was preceded by naloxone (0.5 mg/kg) or mecamylamine (10 mg). Effects of Sazetidine-A and epibatidine on locomotor were tested in an open field, and seizure activity was measured using the Racine scale. Locus coeruleus neuron extracellular single-unit spontaneous discharge was recorded in anesthetized animals after Sazetidine-A and epibatidine. Higher doses of Sazetidine-A (0.5, 1, or 2 mg/kg) induced analgesia, with pain scores significantly lower than those seen after saline, lower doses of Sazetidine-A, and epibatidine (P < 0.001). Naloxone did not antagonize the effects of Sazetidine-A, and mecamylamine had partial, dose-dependent antagonistic effects. Epibatidine excited locus coeruleus neurons, whereas Sazetidine-A had no effect on these neurons. Epibatidine and Sazetidine-A affected animals' locomotor activity for the initial 20 min. While analgesic doses of epibatidine caused seizures, no seizure activity or other neurologic complications were seen in animals that received as much as four times the minimum analgesic dose of Sazetidine-A. Sazetidine-A seems to be a potent analgesic without causing neurologic side effects.