ArticlePDF Available

Abstract and Figures

Abstract: An order, family and genus are validated, seven new genera, 35 new species, two new combinations, two epitypes, two lectotypes, and 17 interesting new host and / or geographical records are introduced in this study. Validated order, family and genus: Superstratomycetales and Superstratomycetaceae (based on Superstratomyces). New genera: Haudseptoria (based on Haudseptoria typhae); Hogelandia (based on Hogelandia lambearum); Neoscirrhia (based on Neoscirrhia osmundae); Nothoanungitopsis (based on Nothoanungitopsis urophyllae); Nothomicrosphaeropsis (based on Nothomicrosphaeropsis welwitschiae); Populomyces (based on Populomyces zwinianus); Pseudoacrospermum (based on Pseudoacrospermum goniomae). New species: Apiospora sasae on dead culms of Sasa veitchii (Netherlands); Apiospora stipae on dead culms of Stipa gigantea (Spain); Bagadiella eucalyptorum on leaves of Eucalyptus sp. (Australia); Calonectria singaporensis from submerged leaf litter (Singapore); Castanediella neomalaysiana on leaves of Eucalyptus sp. (Malaysia); Colletotrichum pleopeltidis on leaves of Pleopeltis sp. (South Africa); Coniochaeta deborreae from soil (Netherlands); Diaporthe durionigena on branches of Durio zibethinus (Vietnam); Floricola juncicola on dead culm of Juncus sp. (France); Haudseptoria typhae on leaf sheath of Typha sp. (Germany); Hogelandia lambearum from soil (Netherlands); Lomentospora valparaisensis from soil (Chile); Neofusicoccum mystacidii on dead stems of Mystacidium capense (South Africa); Neomycosphaerella guibourtiae on leaves of Guibourtia sp. (Angola); Niesslia neoexosporioides on dead leaves of Carex paniculata (Germany); Nothoanungitopsis urophyllae on seed capsules of Eucalyptus urophylla (South Africa); Nothomicrosphaeropsis welwitschiae on dead leaves of Welwitschia mirabilis (Namibia); Paracremonium bendijkiorum from soil (Netherlands); Paraphoma ledniceana on dead wood of Buxus sempervirens (Czech Republic); Paraphoma salicis on leaves of Salix cf. alba (Ukraine); Parasarocladium wereldwijsianum from soil (Netherlands); Peziza ligni on masonry and plastering (France); Phyllosticta phoenicis on leaves of Phoenix reclinata (South Africa); Plectosphaerella slobbergiarum from soil (Netherlands); Populomyces zwinianus from soil (Netherlands); Pseudoacrospermum goniomae on leaves of Gonioma kamassi (South Africa); Pseudopyricularia festucae on leaves of Festuca californica (USA); Sarocladium sasijaorum from soil (Netherlands); Sporothrix hypoxyli in sporocarp of Hypoxylon petriniae on Fraxinus wood (Netherlands); Superstratomyces albomucosus on Pycnanthus angolensis (Netherlands); Superstratomyces atroviridis on Pinus sylvestris (Netherlands); Superstratomyces flavomucosus on leaf of Hakea multilinearis (Australia); Superstratomyces tardicrescens from human eye specimen (USA); Taeniolella platani on twig of Platanus hispanica (Germany), and Tympanis pini on twigs of Pinus sylvestris (Spain).
Content may be subject to copyright.
Fungal Systemacs and Evoluon is licensed under a Creave Commons Aribuon-NonCommercial-ShareAlike 4.0 Internaonal License
© 2021 Westerdijk Fungal Biodiversity Instute 255
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
Fungal Systemacs and Evoluon
doi.org/10.3114/fuse.2021.07.13
VOLUME 7
JUNE 2021
PAGES 255–343
New and Interesng Fungi. 4
P.W. Crous1,2*, M. Hernández-Restrepo1, R.K. Schumacher3, D.A. Cowan4, G. Maggs-Kölling5, E. Marais5, M.J. Wingeld2, N. Yilmaz2, O.C.G.
Adan6, A. Akulov7, E. Álvarez Duarte8, A. Berraf-Tebbal9, T.S. Bulgakov10, A.J. Carnegie11,12, Z.W. de Beer2, C. Decock13, J. Dijksterhuis1,
T.A. Duong2, A. Eichmeier9, L.T. Hien14, J.A.M.P. Houbraken1, T.N. Khanh14, N.V. Liem14, L. Lombard1, F.M. Lutzoni15, J.M. Miadlikowska15,
W.J. Nel2, I.G. Pascoe16, F. Roets17, J. Roux18, R.A. Samson1, M. Shen19, M. Spek9, R. Thangavel20, H.M. Thanh14, L.D. Thao14, E.J. van
Nieuwenhuijzen1, J.Q. Zhang19, Y. Zhang19, L.L. Zhao19, J.Z. Groenewald1
1Westerdijk Fungal Biodiversity Instute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
2Department of Biochemistry, Genecs and Microbiology, Forestry and Agricultural Biotechnology Instute (FABI), Faculty of Natural and Agricultural
Sciences, University of Pretoria, Private Bag X20, Haield 0028, Pretoria, South Africa
3Hölderlinstraße 25, 15517 Fürstenwalde / Spree, Germany
4Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genecs and Microbiology, University of Pretoria, Private Bag X20, Haield
0028, Pretoria, South Africa
5Gobabeb-Namib Research Instute, Walvis Bay, Namibia
6Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
7Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv Naonal University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
8Mycology Unit, Microbiology and Mycology Program, Instute of Biomedical Sciences, University of Chile, Sanago, Chile
9Mendeleum – Instute of Genecs, Mendel University in Brno, Valcká 334, Lednice, 69144, Czech Republic
10Department of Plant Protecon, Federal Research Centre the Subtropical Scienc Centre of the Russian Academy of Sciences, Yana Fabritsiusa
street 2/28, 354002 Sochi, Krasnodar region, Russia
11Forest Health & Biosecurity, Forest Science, NSW Department of Primary Industries - Forestry, Level 12, 10 Valenne Ave, Parramaa NSW 2150,
Australia
12School of Environment Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
13Mycothèque de l’Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Instute – ELIM – Mycology, Université catholique de Louvain,
Croix du Sud 2 bte L7.05.25, B-1348 Louvain-la-Neuve, Belgium
14Division of Plant Pathology, Plant Protecon Research Instute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam
15Department of Biology, Duke University, Durham, NC 27708, USA
1630 Beach Road, Rhyll, Victoria 3923, Australia
17Department of Conservaon Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
18Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Instute (FABI), Faculty of Natural and Agricultural Sciences,
University of Pretoria, Private Bag X20, Haield 0028, Pretoria, South Africa
19School of Ecology and Nature Conservaon, Beijing Forestry University, P.O. Box 61, Beijing 100083, PR China
20Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
*Corresponding author: p.crous@wi.knaw.nl
Abstract: An order, family and genus are validated, seven new genera, 35 new species, two new combinaons, two
epitypes, two lectotypes, and 17 interesng new host and / or geographical records are introduced in this study.
Validated order, family and genus: Superstratomycetales and Superstratomycetaceae (based on Superstratomyces).
New genera: Haudseptoria (based on Haudseptoria typhae); Hogelandia (based on Hogelandia lambearum);
Neoscirrhia (based on Neoscirrhia osmundae); Nothoanungitopsis (based on Nothoanungitopsis urophyllae);
Nothomicrosphaeropsis (based on Nothomicrosphaeropsis welwitschiae); Populomyces (based on Populomyces
zwinianus); Pseudoacrospermum (based on Pseudoacrospermum goniomae). New species: Apiospora sasae on
dead culms of Sasa veitchii (Netherlands); Apiospora spae on dead culms of Spa gigantea (Spain); Bagadiella
eucalyptorum on leaves of Eucalyptus sp. (Australia); Calonectria singaporensis from submerged leaf lier (Singapore);
Castanediella neomalaysiana on leaves of Eucalyptus sp. (Malaysia); Colletotrichum pleopeldis on leaves of Pleopels
sp. (South Africa); Coniochaeta deborreae from soil (Netherlands); Diaporthe durionigena on branches of Durio
zibethinus (Vietnam); Floricola juncicola on dead culm of Juncus sp. (France); Haudseptoria typhae on leaf sheath of
Typha sp. (Germany); Hogelandia lambearum from soil (Netherlands); Lomentospora valparaisensis from soil (Chile);
Neofusicoccum mystacidii on dead stems of Mystacidium capense (South Africa); Neomycosphaerella guibourae
on leaves of Guiboura sp. (Angola); Niesslia neoexosporioides on dead leaves of Carex paniculata (Germany);
Nothoanungitopsis urophyllae on seed capsules of Eucalyptus urophylla (South Africa); Nothomicrosphaeropsis
welwitschiae on dead leaves of Welwitschia mirabilis (Namibia); Paracremonium bendijkiorum from soil (Netherlands);
Paraphoma ledniceana on dead wood of Buxus sempervirens (Czech Republic); Paraphoma salicis on leaves of Salix
Key words:
biodiversity
ITS barcodes
mul-gene phylogeny
new taxa
systemacs
typicaon
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
256
INTRODUCTION
The present study represents the fourth instalment of the New
and Interesng Fungi (NIF) series that is published annually in
the journal Fungal Systemacs and Evoluon. Papers report new
knowledge on fungal biodiversity, list new host or geographical
records, and new sexual-asexual connecons. The present study
also includes validaons and descripons of new fungal taxa,
and lists interesng observaons relang to fungal biology.
Mycologists and other researchers wishing to contribute to
future issues of NIF are encouraged to contact the Editor-in-
Chief (p.crous@wi.knaw.nl).
MATERIALS AND METHODS
Isolates
Twig and leaf samples collected from around the world (see
Table 1) were treated as previously detailed (Crous et al. 2019b),
while the treatment of soil samples followed the methods
of Giraldo et al. (2019) and Hou et al. (2020b). Single conidial
colonies were established on Petri dishes containing 2 % malt
extract agar (MEA) as described by Crous et al. (1991), and single
ascospore cultures were established following the method
described by Crous (1998). Colonies were sub-cultured on 2 %
potato-dextrose agar (PDA), oatmeal agar (OA), MEA (Crous et al.
2019b), or autoclaved pine needles on 2 % tap water agar (PNA)
(Smith et al. 1996), and incubated at 25 °C under connuous
near-ultraviolet light to promote sporulaon. Reference strains
and specimens of the studied fungi are maintained in the culture
collecon (CBS) of the Westerdijk Fungal Biodiversity Instute
(WI), Utrecht, the Netherlands.
DNA extracon, amplicaon (PCR) and phylogeny
Fungal mycelium (Table 1) was scraped from the surface of agar
cultures with a sterile scalpel and the genomic DNA was isolated
using the Wizard® Genomic DNA Puricaon Kit (Promega
Corporaon, WI, USA) following the manufacturers’ protocols.
All loci were amplied following previously published protocols.
First, the 28S nrRNA gene (LSU) and internal transcribed spacer
regions with intervening 5.8S nrRNA gene (ITS) of the nrDNA
operon were sequenced for all the isolates included in this
study (for amplicaon condions, see Fan et al. 2018). Other
loci were sequenced for various species or genera using primers
and condions specic for those groups of fungi. Amplicaon
of the paral DNA-directed RNA polymerase II second largest
subunit gene (rpb2), the paral translaon elongaon factor
1-alpha gene (tef1, rst part) and the paral beta-tubulin gene
(tub2) followed Braun et al. (2018), while amplicaon of the
paral acn gene (actA), the paral calmodulin gene (cmdA),
the paral glyceraldehyde-3-phosphate dehydrogenase gene
(gapdh) and the paral histone H3 gene (his3) followed Videira
et al. (2016). Amplicaon of the paral DNA-directed RNA
polymerase II largest subunit gene (rpb1) followed Klaubauf et
al. (2014), the paral translaon elongaon factor 1-alpha gene
(tef1, second part) followed Réblová et al. (2020) and of the
paral chin synthase-1 (chs-1) followed Damm et al. (2019).
The resulng fragments were sequenced in both direcons using
the respecve PCR primers and the BigDye Terminator Cycle
Sequencing Kit v. 3.1 (Applied Biosystems Life Technologies,
Carlsbad, CA, USA); DNA sequencing amplicons were puried
through Sephadex G-50 Superne columns (Sigma-Aldrich, St.
Louis, MO) in MulScreen HV plates (Millipore, Billerica, MA).
Puried sequence reacons were analysed on an Applied
Biosystems 3730xl DNA Analyzer (Life Technologies, Carlsbad,
CA, USA). The DNA sequences were analysed and consensus
sequences were computed using Geneious v. 11.1.5 (hp://
www.geneious.com, Kearse et al. 2012).
The sequences for each gene region were subjected to
megablast searches (Zhang et al. 2000) to idenfy closely related
sequences in the NCBI’s GenBank nucleode database. The
results are provided as part of the species notes or as selected
phylogenec trees. Phylogenec trees were generated using
Bayesian analyses performed with MrBayes v. 3.2.7a (Ronquist
et al. 2012) for the overview trees and Maximum Parsimony
analyses performed with PAUP v. 4.0b10 (Swoord 2003) as
explained in Braun et al. (2018) for the genus and species
trees. All resulng trees were printed with Geneious v. 11.1.5
and the layout of the trees was done in Adobe Illustrator v. CC
2017. Stascal measures calculated for the parsimony analyses
included tree length (TL), consistency index (CI), retenon index
(RI) and rescaled consistency index (RC). Maximum-likelihood
trees were generated with IQ-TREE v. 1.6.12 (Nguyen et al. 2015)
and branch support values were calculated with 5 000 ultrafast
Citaon: Crous PW, Hernández-Restrepo M, Schumacher RK, Cowan DA, Maggs-Kölling G, Marais E, Wingeld MJ, Yilmaz N, Adan OCG, Akulov A,
Álvarez Duarte E, Berraf-Tebbal A, Bulgakov TS, Carnegie AJ, de Beer ZW, Decock C, Dijksterhuis J, Duong TA, Eichmeier A, Hien LT, Houbraken JAMP,
Khanh TN, Liem NV, Lombard L, Lutzoni FM, Miadlikowska JM, Nel WJ, Pascoe IG, Roets F, Roux J, Samson RA, Shen M, Spek M, Thangavel R, Thanh
HM, Thao LD, van Nieuwenhuijzen EJ, Zhang JQ, Zhang Y, Zhao LL, Groenewald JZ (2021). New and Interesng Fungi. 4. Fungal Systemacs and
Evoluon 7: 255–343. doi: 10.3114/fuse.2021.07.13
Received: 10 March 2021; Accepted: 14 April 2021; Effectively published online: 28 April 2021
Corresponding editor: A.J.L. Phillips
cf. alba (Ukraine); Parasarocladium wereldwijsianum from soil (Netherlands); Peziza ligni on masonry and plastering
(France); Phylloscta phoenicis on leaves of Phoenix reclinata (South Africa); Plectosphaerella slobbergiarum from soil
(Netherlands); Populomyces zwinianus from soil (Netherlands); Pseudoacrospermum goniomae on leaves of Gonioma
kamassi (South Africa); Pseudopyricularia festucae on leaves of Festuca californica (USA); Sarocladium sasijaorum
from soil (Netherlands); Sporothrix hypoxyli in sporocarp of Hypoxylon petriniae on Fraxinus wood (Netherlands);
Superstratomyces albomucosus on Pycnanthus angolensis (Netherlands); Superstratomyces atroviridis on Pinus
sylvestris (Netherlands); Superstratomyces avomucosus on leaf of Hakea mullinearis (Australia); Superstratomyces
tardicrescens from human eye specimen (USA); Taeniolella platani on twig of Platanus hispanica (Germany), and
Tympanis pini on twigs of Pinus sylvestris (Spain).
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
257
Table 1. Collecon details and GenBank accession numbers of isolates treated in this study, and associated ex-type strains where available. Species for which addional sequences were generated during the course of this study
are also listed here.
Species Culture or voucher accession
number(s)1
Locality and Substrate Collector(s) GenBank accession number2
ITS LSU rpb2 tub2 Other loci
Alternaria chartarum CBS 200.67 = ATCC 18044 =
DAOM 59616b = IMI 124943
= MUCL 18564 = QM 8328,
ex-epitype
Canada: Populus plywood E.G. Simmons MH858944.1 NG_069727.1 KC584481.1 gapdh: KC584172.1, SSU:
NG_062919.1, tef1 (rst part):
KC584741.1
Alternaria chartarum CPC 38971 Namibia: Lichen hypolith
under a rock
P.W. Crous MW883400.1 MW883795.1 MW890118.1 actA: MW890017.1, cmdA:
MW890037.1, gapdh:
MW890046.1, tef1 (rst part):
MW890080.1
Alternaria heterospora CBS 123376, ex-type of
Ulocladium solani
China: Lycopersicon
esculentum, diseased
leaves
Y. Wang KC584248.1 KC584363.1 KC584488.1 gapdh: KC584176.1, SSU:
KC584621.1, tef1 (rst part):
KC584748.1
CPC 38969 Namibia: Lichen hypolith
under a rock
P.W. Crous MW883401.1 MW883796.1 MW890119.1 actA: MW890018.1, cmdA:
MW890038.1, gapdh:
MW890047.1, tef1 (rst part):
MW890081.1
Apiospora sasae, sp. nov. CBS 146808 = CPC 38165,
ex-type
Netherlands: Sasa
veitchii, dead culms
L. van der Linde MW883402.1 MW883797.1 MW890058.1 MW890120.1 tef1 (second part):
MW890104.1
Apiospora spae, sp. nov. CBS 146804 = CPC 38101,
ex-type
Spain: Spa gigantea,
dead culm
M.A. Delgado MW883403.1 MW883798.1 MW890059.1 MW890121.1 tef1 (rst part): MW890082.1,
tef1 (second part):
MW890105.1
Bagadiella eucalyptorum, sp. nov. CBS 147177 = CPC 39299,
ex-type
Australia: Eucalyptus sp.,
leaves
A.J. Carnegie MW883404.1 MW883799.1 ‒‒‒
Blastacervulus metrosideri CBS 147006 = CPC 38759 =
T19_05741C
New Zealand:
Metrosideros sp., leaves
L. Rabbidge MW883405.1 MW883800.1 ‒‒‒
ICMP 21883, ex-type New Zealand:
Metrosideros excelsa,
living leaves
P.R. Johnston NR_169959.1 NG_068290.1 ‒‒‒
Calonectria singaporensis, sp. nov. CBS 146712 = MUCL 048012 Singapore: Submerged
leaf lier in a small
stream
C. Decock MW883406.1 MW883801.1 MW890122.1 actA: MW890019.1,
cmdA: MW890039.1, his3:
MW890052.1, tef1 (rst part):
MW890083.1
CBS 146713 = MUCL 048171 Singapore: Submerged
leaf lier in a small
stream
C. Decock MW883407.1 MW883802.1 MW890123.1 actA: MW890020.1,
cmdA: MW890040.1, his3:
MW890053.1, tef1 (rst part):
MW890084.1
CBS 146714 = MUCL 048187 Singapore: Submerged
leaf lier in a small
stream
C. Decock MW883408.1 MW883803.1 ‒‒actA: MW890021.1,
cmdA: MW890041.1, his3:
MW890054.1, tef1 (rst part):
MW890085.1
CBS 146715 = MUCL 048320,
ex-type
Singapore: Submerged
leaf lier in a small
stream
C. Decock MW883409.1 MW883804.1 MW890124.1 actA: MW890022.1,
cmdA: MW890042.1, his3:
MW890055.1, tef1 (rst part):
MW890086.1
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
258
Table 1. (Connued).
Species Culture or voucher accession
number(s)1
Locality and Substrate Collector(s) GenBank accession number2
ITS LSU rpb2 tub2 Other loci
Castanediella neomalaysiana, sp. nov. CBS 147093 = CPC 39275,
ex-type
Malaysia: Eucalyptus sp.,
leaves
M.J. Wingeld MW883410.1 MW883805.1 ‒‒‒
Colletotrichum kinghornii CBS 198.35, ex-type UK: Phormium tenax N.L. Alcock NR_111751.1 NG_069631.1 JQ950105.1 actA: JQ949775.1, chs-
1: JQ949115.1, gapdh:
JQ948785.1, his3: JQ949445.1
CPC 38766 = T19_05774B New Zealand: Phormium
cookianum
C. Inglis MW883411.1 MW883806.1 MW890125.1 actA: MW890023.1, gapdh:
MW890048.1
CBS 147082 = CPC 39342 South Africa: Pleopels
sp.
J. Roux MW883412.1 MW883807.1 ‒‒actA: MW890024.1, chs-1:
MW890035.1,
Coniochaeta deborreae, sp. nov. CBS 147215 = BE19_001008,
ex-type
Netherlands: Soil K. de Borre MW883413.1 MW883808.1 ‒‒tef1 (rst part): MW890087.1,
tef1 (second part):
MW890106.1
CBS 551.75 Norway: Pinus sylvestris,
wood
MW883416.1 MW883809.1 ‒‒‒
Coniochaeta pulveracea CBS 114628 = D3409 = UNI
393
Turkey: Rinsing machine
in so drinks factory
M. Straord MW883414.1 GQ351560.1 ‒‒‒
Coniochaeta rhopalochaeta CBS 109872 = BAFC 272, ex-
type
Argenna: Bulnesia
retamas, decorcated
wood
C.C. Carmarán MW883415.1 GQ351561.1 ‒‒‒
Diaporthe durionigena, sp. nov. KCSR1812.8 = VTCC 930005,
ex-type
Vietnam: Durio
zibethinus, branches
L.D. Thao MN453530.1 ‒‒MT276159.1 tef1 (rst part): MT276157.1
Endoconidioma euphorbiae CBS 146776 = CPC 38551,
ex-type
South Africa: Euphorbia
mauritanica, leaf p
dieback
P.W. Crous MW175350.1 MW175390.1 ‒‒‒
CPC 38649 South Africa: Euphorbia
mauritanica, p dieback
P.W. Crous MW883417.1 MW883810.1 MW890060.1 MW890126.1 actA: MW890025.1, tef1
(second part): MW890107.1
Flammocladiella aceris CBS 138906 = CPC 24422,
ex-type
Germany: Acer
platanoides, twigs
R.K. Schumacher NG_058175.1 KR611901.1 MW890061.1 MW890127.1 tef1 (rst part): MW890088.1
Flammocladiella anomiae CBS 142775 = CLL16017 Bulgaria: On stromata
of Massaria anomia, on
a thin branch of Robinia
pseudoacacia
D. Stoykov MN597422.1 MW883811.1 MW890062.1 MW890128.1 tef1 (rst part): MW890089.1
CBS 144256 = JF17087, ex-
type
France: On ascomata
of Massaria anomia on
a branchlet of Robinia
pseudoacacia
J. Fournier MN597423.1 MN597425.1 MW890129.1 tef1 (rst part): MW890090.1
CBS 146685 = CPC 36302 Ukraine: On conidiomata
of Diaporthe oncostoma,
on dead branch of
Robinia pseudoacacia
A. Akulov MW883418.1 MW883812.1 MW890130.1 tef1 (rst part): MW890091.1
Floricola juncicola, sp. nov. CBS 146811 = CPC 38197,
ex-type
France: Juncus sp., dead
culm
A. Gardiennet MW883419.1 MW883813.1 MW890063.1 tef1 (rst part): MW890092.1,
tef1 (second part):
MW890108.1
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
259
Table 1. (Connued).
Species Culture or voucher accession
number(s)1
Locality and Substrate Collector(s) GenBank accession number2
ITS LSU rpb2 tub2 Other loci
Harzia tenella CPC 38667 South Africa: Grielum
humifusum, stems
P.W. Crous MW883420.1 MW883814.1 ‒‒‒
Haudseptoria typhae, gen. et sp. nov. CBS 146790 = CPC 38203,
ex-type
Germany: Typha sp.,
dead leaf sheath
R.K. Schumacher MW883421.1 MW883815.1 MW890131.1
Heimiodora vercillata CBS 147089 = CPC 39015 Namibia: Salvadora sp. P.W. Crous MW883422.1 MW883816.1 ‒‒‒
CBS 201.60 = IMI 090702 =
LCP 57.1589, ex-type
Thailand: Sandy coastal
soil
MH857955.1 MH869505.1 ‒‒‒
Hogelandia lambearum, gen. et sp.
no v.
CBS 147626 = NL19_27007,
ex-type
Netherlands: Soil L. Alssema & M. van
Berkel
MW883423.1 MW883817.1 ‒‒‒
Lomentospora valparaisensis, sp. nov. ChFC-164, ex-type Chile: Soil F. Salas MG495075.1 ‒‒MG544878.1
Muyocopron zamiae CBS 146636 = CPC 37461 USA: Zamia integrifolia,
leaves
M.J. Wingeld MW883424.1 MW883818.1 MW890064.1 tef1 (second part):
MW890109.1
CBS 202.71 = No. 070-2288 USA: Zamia integrifolia,
leaf spot and necroc p
MW883425.1 ‒‒‒‒
CBS 203.71 = No. 070-2273,
ex-type
USA: Zamia sheri, leaf
spot and necroc p
MW883426.1 NG_066338.1 MK492731.1 tef1 (second part): MK495973.1
Neocamarosporium leipoldae CBS 146812 = CPC 38543,
ex-type
South Africa:
Cephalophyllum pilansii,
leaves
P.W. Crous MW883427.1 MW883819.1 MW890132.1 tef1 (rst part): MW890093.1
Neofusicoccum mystacidii, sp. nov. CBS 147079 = CPC 39221,
ex-type
South Africa:
Mystacidium capense,
dead stems
P.W. Crous MW883428.1 MW883820.1 MW890065.1 MW890133.1 gapdh: MW890049.1, his3:
MW890056.1, tef1 (rst part):
MW890094.1
Neomycosphaerella guibourae, sp.
no v.
CBS 147083 = CPC 39348,
ex-type
Angola: Guiboura sp.,
leaves
J. Roux MW883429.1 MW883821.1 MW890134.1 actA: MW890026.1, cmdA:
MW890043.1, tef1 (rst part):
MW890095.1
Neoscirrhia maeucciicola, comb. nov. CBS 259.92 = IMI 286996 = PD
91/272, ex-type
Canada: Maeuccia
struthiopteris, aected
leaf stem
GU237812.1 GU238100.1 GU237627.1
Neoscirrhia osmundae, gen. et comb.
no v.
CBS 146803 = CPC 38085,
ex-type
Netherlands: Sasa
veitchii, culms
L. van der Linde MW883430.1 MW883822.1 MW890066.1 MW890135.1
Neoscytalidium dimidiatum CBS 146816 = CPC 38666,
ex-type
South Africa: Epiphyte
on stems of Aloidendron
dichotomum
P.W. Crous MW883431.1 MW883823.1 MW890136.1 chs-1: MW890036.1, tef1 (rst
part): MW890096.1
Niesslia neoexosporioides, sp. nov. CBS 146810 = CPC 38177,
ex-type
Germany: Carex
paniculata, dead leaves
R.K. Schumacher MW883432.1 MW883824.1 MW890137.1 actA: MW890027.1, tef1 (rst
part): MW890097.1
Nothoanungitopsis urophyllae, gen. et
sp. nov.
CBS 146799 = CPC 38059,
ex-type
South Africa: Eucalyptus
urophylla, seed capsules
M.J. Wingeld MW883433.1 MW883825.1 ‒‒‒
Nothomicrosphaeropsis welwitschiae
gen. et sp. nov.
CBS 146829 = CPC 38879,
ex-type
Namibia: Welwitschia
mirabilis, dead leaves
P.W. Crous MW883434.1 MW883826.1 MW890067.1 MW890138.1
Ophioceras leptosporum CBS 147090 = CPC 39147 South Africa: Syzygium
cordatum, twigs
P.W. Crous MW883435.1 MW883827.1 ‒‒tef1 (second part):
MW890110.1
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
260
Table 1. (Connued).
Species Culture or voucher accession
number(s)1
Locality and Substrate Collector(s) GenBank accession number2
ITS LSU rpb2 tub2 Other loci
CBS 894.70 = ATCC 24161 =
HME 2955, ex-type
UK: Dead stem of dicot
plant, probably Urca
dioica
NR_111768.1 NG_057959.1 ‒‒rpb1: JX134732.1, SSU:
JX134664.1, tef1 (second part):
JX134704.1
Paracremonium bendijkiorum, sp. nov. CBS 147228 = NL19_24005,
ex-type
Netherlands: Soil Y. Bentem & J. van
Dijken
MW883436.1 MW883828.1 MW890068.1 MW890139.1 tef1 (second part):
MW890111.1
Paraphoma ledniceana, sp. nov. CBS 146533 = MEND-F-82,
ex-type
Czech Republic: Saprobe
on dead wood of Buxus
sempervirens
M. Spek MT371091.1 MT371396.1 MT372655.1 MT372661.1 tef1 (rst part): MT372654.1
Paraphoma salicis, sp. nov. CBS 146797 = CPC 38651,
ex-type
Ukraine: Salix cf. alba,
leaves
A. Akulov MW883437.1 MW883829.1 MW890069.1 MW890140.1 actA: MW890028.1
Parasarocladium wereldwijsianum,
sp. nov.
CBS 147223 = NL19094001 Netherlands: Soil S. Frederikze, J. Mes
& S. Maghnouji
MW883438.1 MW890070.1 MW890141.1
CBS 147224 = NL19094011 Netherlands: Soil S. Frederikze, J. Mes
& S. Maghnouji
MW883439.1 MW883830.1 MW890071.1 MW890142.1 actA: MW890029.1, tef1
(second part): MW890112.1
CBS 147226 = NL19095011,
ex-type
Netherlands: Soil S. Frederikze, J. Mes
& S. Maghnouji
MW883440.1 MW883831.1 MW890072.1 MW890143.1 actA: MW890030.1, tef1
(second part): MW890113.1
Peziza ligni, sp. nov. CBS 146637 = CPC 39110 =
MUCL 57889, ex-type
France: On masonry
and plastering, near a
wooden staircase
C. Decock MW883441.1 MW883832.1 MW890073.1 ‒ ‒
Phylloscta phoenicis, sp. nov. CBS 147091 = CPC 39164,
ex-type
South Africa: Phoenix
reclinata, leaves
M.J. Wingeld MW883442.1 MW883833.1 ‒‒actA: MW890031.1, gapdh:
MW890050.1, tef1 (rst part):
MW890098.1
Plectosphaerella slobbergiarum, sp.
no v.
CBS 147227 = NL1930002,
ex-type
Netherlands: Soil J. Slob & M. Berghuis MW883443.1 MW883834.1 MW890074.1 tef1 (second part):
MW890114.1
Populomyces zwinianus, gen. et sp.
no v.
CBS 147307 = NL1976004,
ex-type
Netherlands: Soil W. Vercouteren, S.
Meas & R. Verhije
MW883444.1 MW883835.1 ‒‒‒
Porodiplodia livistonae CBS 144428 = CPC 32154,
ex-type
Australia: Livistona
australis, leaves
P.W. Crous NR_160355.1 NG_069575.1 ‒‒tef1 (rst part): MW890099.1
Porodiplodia vis CBS 144634 = CPC 31642,
ex-type
USA: Vis vinifera, canes E. Crenson & R.K.
Schumacher
NR_163376.1 NG_070080.1 ‒‒tef1 (rst part): MK442707.1
CBS 146818 = CPC 38692 South Africa: Virgilia
oroboides, seed pods
M.J. Wingeld MW883445.1 MW883836.1 ‒‒tef1 (rst part): MW890100.1
Pseudoacrospermum goniomae, gen.
et sp. nov.
CBS 146732 = CPC 37030,
ex-type
South Africa: Gonioma
kamassi, leaves
F. Roets MW883446.1 MW883837.1 MW890075.1 tef1 (rst part): MW890101.1,
tef1 (second part):
MW890115.1
Pseudopyricularia festucae, sp. nov. CBS 146629 = CPC 37915,
ex-type
USA: Festuca californica,
leaves
P.W. Crous MW883447.1 MW883838.1 ‒‒cmdA: MW890044.1, rpb1:
MW890057.1
Sarocladium sasijaorum, sp. nov. CBS 147213 = NL19100007,
ex-type
Netherlands: Soil S. Frederikze, J. Mes
& S. Maghnouji
MW883448.1 MW883839.1 MW890076.1 MW890144.1 actA: MW890032.1, tef1
(second part): MW890116.1
Septoria protearum CBS 778.97 = CPC 1470 =
STE-U 1470 = IMI 375230 =
ATCC 201159, ex-type
South Africa: Protea
cynaroides, leaves
L. Viljoen KF251523.1 KF252028.1 KF252517.1 KF252992.1 actA: KF253827.1, cmdA:
KF254176.1, tef1 (rst part):
KF253472.1
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
261
Table 1. (Connued).
Species Culture or voucher accession
number(s)1
Locality and Substrate Collector(s) GenBank accession number2
ITS LSU rpb2 tub2 Other loci
CPC 38736 = T19_05709B New Zealand: Kniphoa
uvaria
D. Burnt MW883449.1 MW883840.1 ‒‒actA: MW890033.1, tef1 (rst
part): MW890102.1
Sporothrix hypoxyli, sp. nov. CBS 141567 = CMW 47439 Netherlands: Ascomata
embedded in fruing
body of Hypoxylon
petriniae on Fraxinus
wood
E. Osieck & W.J. Nel MT637056.1 MW012947.1 MT649176.1
CBS 141568 = CMW 47436 Netherlands: Ascomata
embedded in fruing
body of Hypoxylon
petriniae on Fraxinus
wood
E. Osieck & W.J. Nel MT637053.1 MW012946.1 MT649173.1
CBS 141569 = CMW 47441,
ex-type
Netherlands: Ascomata
embedded in fruing
body of Hypoxylon
petriniae on Fraxinus
wood
E. Osieck & W.J. Nel MT637058.1 MW012948.1 MT649178.1
Stemphylium eturmiunum CBS 109845 = EGS 29.099,
ex-type
New Zealand:
Lycopersicon esculentum,
fruit
E.G. Simmons NR_154927.1 NG_069866.1 ‒‒cmdA: KU850831.1, gapdh:
KU850689.1
CBS 146783 = CPC 38613,
ex-type
South Africa: Bulbinella
lafolia, leaves
P.W. Crous MW883450.1 MW883841.1 MW890077.1 MW890145.1 actA: MW890034.1, cmdA:
MW890045.1, gapdh:
MW890051.1, tef1 (rst part):
MW890103.1
Superstratomyces albomucosus, gen.
et sp. nov.
CBS 140270 = DTO 277-D2,
ex-type
Netherlands: Outdoor
exposed Pycnanthus
angolensis impregnated
with olive oil
E.J. van
Nieuwenhuijzen
NR_152544.1 KX950439.1 KX950498.1 rpb1: KX950494.1, SSU:
NG_061256.1, tef1 (second
part): KX950471.1
Superstratomyces atroviridis, sp. nov. CBS 140272 = DTO 305-E1,
ex-type
Netherlands: Outdoor
exposed Pinus sylvestris
impregnated with raw
linseed oil
E.J. van
Nieuwenhuijzen
NR_152545.1 NG_058271.1 KX950500.1 rpb1: KX950496.1, SSU:
NG_063075.1, tef1 (second
part): KX950473.1
Superstratomyces avomucosus, sp.
no v.
CBS 353.84 = DTO 305-C3,
ex-type
Australia: Hakea
mullinearis, leaf
W. Gams NR_152543.1 KX950438.1 KX950497.1 rpb1: KX950493.1, SSU:
NG_065661.1, tef1 (second
part): KX950470.1
Superstratomyces tardicrescens, sp.
no v.
FMR 13786, ex-type USA: Human eye
specimen
D.A. Suon LR025130.1 LR025130.1 ‒‒tef1 (second part): LR025141.1
Taeniolella exilis CBS 122902 = DAOM 14683 =
MUCL 1878
Canada: Betula
papyrifera, bark
G. Hennebert MW883451.1 KX244968.1 ‒‒‒
Taeniolella platani, sp. nov. CBS 146733 = CPC 33568,
ex-type
Germany: Platanus
hispanica, twig
R.K. Schumacher MW883452.1 MW883842.1 ‒‒tef1 (second part):
MW890117.1
Tricellula auranaca CBS 146627 = CPC 36629 Russia: Lonicera tatarica,
leaves
T.S. Bulgakov MW883453.1 MW883843.1 ‒‒‒
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
262
Table 1. (Connued).
Species Culture or voucher accession
number(s)1
Locality and Substrate Collector(s) GenBank accession number2
ITS LSU rpb2 tub2 Other loci
CBS 399.58 = ATCC 13128 =
IMI 073024 = MUCL 28102 =
PRL 1554, ex-type
Canada: Soil MH857822.1 MH869354.1 ‒‒‒
Tryssglobulus aspergilloides CBS 147388 = CPC 40100, ex-
isoepitype
Australia: Banksia
marginata
I.G. Pascoe & B.J.
Brentwood
MW883454.1 MW883844.1 MW890078.1 ‒ ‒
CBS 147556 = CPC 40369 =
VPRI 43962, ex-epitype
Australia: Banksia
marginata
I.G. Pascoe & B.J.
Brentwood
MW883455.1 MW883845.1 MW890079.1 ‒ ‒
Tympanis pini, sp. nov. CBS 146809 = CPC 38169,
ex-type
Spain: Pinus sylvestris,
twigs
R. Blasco MW883456.1 MW883846.1 ‒‒‒
Venturia cerasi CBS 444.54, ex-epitype Germany: Prunus cerasus H. Schweizer NR_168750.1 MH868928.1 MK887849.1 MK926519.1 tef1 (rst part): MK888785.1
Zelosatchmopsis sacciformis CBS 116.88 = INIFAT C87/53.1
= MW i 1640, ex-isotype
Cuba: Guazuma ulmifolia,
fallen leaf
R.F. Castañeda MH862122.1 MH873812.1 ‒‒‒
1 ATCC: American Type Culture Collecon, Virginia, USA; BAFC: Universidad de Buenos Aires, Departamento de Ciencias Biologicas; CBS: Westerdijk Fungal Biodiversity Instute, Utrecht, The Netherlands; CMW: Culture Collecon
of the Forestry and Agricultural Biotechnology Instute (FABI) of the University of Pretoria, Pretoria, South Africa; CPC: Culture collecon of Pedro Crous, housed at CBS; DAOM: Plant Research Instute, Department of Agriculture
(Mycology), Oawa, Canada; DTO: Working collecon of the Indoor air and Industrial Mycology group, housed at CBS; FMR: Facultat de Medicina, Universitat Rovira i Virgili, Reus, Spain; ICMP: Internaonal Collecon of Micro-
organisms from Plants, Landcare Research, Private Bag 92170, Auckland, New Zealand; IMI: Internaonal Mycological Instute, CABI-Bioscience, Egham, Bakeham Lane, United Kingdom; INIFAT: Alexander Humboldt Instute for
Basic Research in Tropical Agriculture, Ciudad de La Habana, Cuba; LCP: Laboratory of Cryptogamy, Naonal Museum of Natural History, Paris, France; MFLUCC: Mae Fah Luang University Culture Collecon, Chiang Rai, Thailand;
MUCL: Université Catholique de Louvain, Louvain-la-Neuve, Belgium; VPRI: Victorian Department of Primary Industries, Knoxeld, Australia; VTCC: Vietnam Type Culture Collecon, Center of Biotechnology, Vietnam Naonal
University, Hanoi, Vietnam.
2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; LSU: large subunit (28S) of the nrRNA gene operon; actA: paral acn gene; chs-1: paral chin synthase-1 gene; cmdA: paral calmodulin gene; gapdh: paral
glyceraldehyde-3-phosphate dehydrogenase gene; his3: paral histone H3 gene; rpb1: paral DNA-directed RNA polymerase II largest subunit gene; rpb2: paral DNA-directed RNA polymerase II second largest subunit gene; SSU:
small subunit (18S) of the nrRNA gene operon; tef1: paral translaon elongaon factor 1-alpha gene; tub2: paral beta-tubulin gene.
bootstrap replicates (Hoang et al. 2018). Best
models were esmated for data parons using
ModelFinder (Kalyaanamoorthy et al. 2017) as
implemented in IQ-TREE.
Morphology
Slide preparaons were mounted in lacc acid,
Shear’s mounng uid or water, from colonies
sporulang on MEA, PDA, PNA or OA. Observaons
were made with a Nikon SMZ25 dissecon-
microscope, and with a Zeiss Axio Imager 2 light
microscope using dierenal interference contrast
(DIC) illuminaon and images recorded on a Nikon
DS-Ri2 camera with associated soware. Cryo
Scanning Electron Microscopy methods followed
Bensch et al. (2018). Colony characters and pigment
producon were noted aer 2–4 wk of growth on
MEA, PDA and OA (Crous et al. 2019b) incubated
at 25 °C. Colony colours (surface and reverse) were
scored using the colour charts of Rayner (1970).
Sequences derived in this study were deposited
in GenBank (Table 1), the alignments in TreeBASE
(www.treebase.org; study number S28000), and
taxonomic noveles in MycoBank (www.MycoBank.
org; Crous et al. 2004).
RESULTS
Phylogeny
Dothideomycetes LSU phylogeny (Fig. 1, parts
1–5): The alignment contained 260 isolates and
the tree was rooted to Diaporthe perjuncta (strain
BPI 748437, GenBank NG_059064.1). The nal
alignment contained a total of 776 characters used
for the phylogenec analyses, including alignment
gaps. The alignment contained a total of 538 unique
site paerns. Based on the results of MrModelTest,
dirichlet base frequencies and the GTR+I+G model
was used for the Bayesian analysis. The Bayesian
analyses generated 309 402 trees (saved every 100
generaons) from which 232 052 were sampled
aer 25 % of the trees were discarded as burn-in.
Leoomycetes LSU phylogeny (Fig. 2): The
alignment contained 61 isolates and the tree was
rooted to Xylaria hypoxylon (voucher OSC 100004,
GenBank AY544648.1). The nal alignment
contained a total of 760 characters used for the
phylogenec analyses, including alignment gaps.
The alignment contained a total of 185 unique site
paerns. Based on the results of MrModelTest,
dirichlet base frequencies and the GTR+I+G model
was used for the Bayesian analysis. The Bayesian
analyses generated 542 002 trees (saved every ve
generaons) from which 406 502 were sampled
aer 25 % of the trees were discarded as burn-in.
Pezizomycetes LSU phylogeny (Fig. 3): The
alignment contained 37 isolates and the tree
was rooted to Candida broadrunensis (strain CBS
11838, GenBank KY106372.1). The nal alignment
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
263
0.1
0.97
0.99
0.98
0.99
0.84
1
0.98
0.99
0.92
0.99
0.95
0.89
0.96
0.99
0.95
0.99
0.89
1
1
1
1
Diaporthe perjuncta BPI 748437NG_059064.1
Venturia cerasi CBS 444.54MH868928.1
Venturia carpophila CBS 497.62EU035426.1
Venturia effusa CPC 4524EU035429.1
Venturia pyrina CBS 331.65MH870232.1
Venturia tremulae var. tremulae CBS 257.38MH867456.1
Venturia peltigericola VKM F-4740MF494608.1
Venturia chlorospora CBS 470.61EU035454.1
Nothoanungitopsis urophyllae gen. et sp. nov. CPC 38059
Anungitopsis speciosa CBS 181.95EU035401.1
Neoanungitea eucalyptorum CPC 35763NG_068313.1
Neoanungitea eucalypti CBS 143173MG386031.2
Sympodiella multiseptata CBS 566.71MH872028.1
Microthyrium propagulensis IFRD 9037NG_060339.1
Microthyrium quercus HKAS 92487KY911453.1
Spirosphaera beverwijkiana CBS 474.66MH870501.1
Microthyrium ilicinum VUL.315MG844151.1
Microthyrium microscopicum CBS 115976GU301846.1
Ellismarsporium parvum CBS 190.95NG_066264.1
Kirschsteiniothelia phoenicis MFLU 18-0153NG_064508.1
Kirschsteiniothelia cangshanensis MFLUCC 16-1350MH182592.1
Kirschsteiniothelia arasbaranica IRAN 2508CKX621984.1
Scolecostigmina chibaensis CBS 122976MH874784.1
Kirschsteiniothelia lignicola MFLUCC 10-0036HQ441568.1
Kirschsteiniothelia aethiops CBS 109.53AY016361.1
Kirschsteiniothelia aethiops CBS 118.59MH877780.1
Kirschsteiniothelia atra AFTOL-ID 273DQ678046.1
Kirschsteiniothelia submersa S-601MH182593.1
Solicorynespora insolita FMR 11497HF571133.1
Clypeosphaeria phillyreae CBS 165.51MH868313.1
Astrosphaeriella livistonicola HKUCC 5737GU205214.1
Kirschsteiniothelia thailandica MFLU 20-0263MT984443.1
Kirschsteiniothelia rostrata MFLU 15-1154NG_059790.1
Kirschsteiniothelia tectonae MFLUCC 12-0050KU764707.1
Brachysporiella navarrica FMR 12426KY853487.1
Taeniolella exilis CBS 122902KX244968.1
Taeniolella platani sp. nov. CPC 33568
Kirschsteiniothelia thujina JF13210KM982718.1
Phyllosticta aristolochiicola BRIP 53316aJX486128.1
Phyllosticta phoenicis sp. nov. CPC 39164
Phyllosticta minima CBS 111635EU754194.1
Phyllosticta paxistimae CBS 112527NG_070607.1
Guignardia gaultheriae CBS 447.70NG_068998.1
Phyllosticta paracapitalensis CBS 141353NG_069457.1
Phyllosticta rhizophorae NCYUCC 19-0352MT360039.1
Phyllosticta capitalensis MUCC 2916LC543421.1
Phyllosticta elongata CBS 114751EU167584.1
Neoscytalidium dimidiatum CBS 499.66DQ377925.1
Neoscytalidium dimidiatum CPC 38666
Neoscytalidium dimidiatum CBS 125699MH875087.1
Neoscytalidium dimidiatum CMW 26170NG_059496.1
Neofusicoccum mystacidii sp. nov. CPC 39221
Neofusicoccum cryptoaustrale CBS 122814MH874766.1
Neofusicoccum mediterraneum CBS 121718NG_069899.1
Neofusicoccum pistaciae CBS 595.76MH872782.1
Neofusicoccum nonquaesitum CBS 126655MH875645.1
Neofusicoccum arbuti CBS 117090DQ377919.1
Neofusicoccum vitifusiforme CBS 125790MH875228.1
Neofusicoccum vitifusiforme CPC 12926DQ923533.1
Neofusicoccum mangiferae CBS 118532NG_055730.1
Neofusicoccum parviconidium CSF5682MT029176.1
Venturiaceae
Venturiales
Microthyriaceae
Microthyriales
Kirschsteiniotheliaceae
Kirschsteiniotheliales
Phyllostictaceae
Botryosphaeriales
Botryosphaeriaceae
Fig. 1, parts 1–5. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Dothideomycetes LSU nucleode alignment.
Bayesian posterior probabilies (PP) > 0.79 are shown at the nodes and the scale bar represents the expected changes per site. Thickened branches
represent PP = 1. The branch leading to Superstratomycetales was halved to facilitate layout. Families and orders are indicated with coloured blocks
to the right of the tree. GenBank accession (superscript) and / or culture collecon / voucher numbers are indicated for all species. The tree was
rooted to Diaporthe perjuncta (voucher BPI 748437, GenBank NG_059064.1) and the species treated in this study for which LSU sequence data were
available are indicated in bold face.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
264
Fig. 1. (Connued).
Acrospermaceae
Acrospermales
Monoblastiaceae
0.1
0.95
0.93
0.90
0.99
0.94
0.97
0.97
0.94
0.97
0.80
0.94
0.91
0.99
Funbolia dimorpha CBS 126491NG_064276.1
Heleiosa barbatula JK 5548IGU479787.1
Acrocordia subglobosa HTL940JN887392.1
Italiofungus phillyreae CPC 35566MT223899.1
Eriomyces heveae MFLUCC 17-2232MH109524.1
Pseudopassalora gouriqua CBS 101954NG_067272.1
Haudseptoria typhae gen. et sp. nov. CPC 38203
Phellinocrescentia guianensis CBS 138913NG_058119.1
Pseudoacrospermum goniomae gen. et sp. nov. CPC 37030
Acrospermum adeanum M133EU940104.1
Acrospermum longisporium MFLU 17-2849NG_064506.1
Acrospermum leucocephalum 3342MK561988.1
Acrospermum gorditum 1774MK561981.1
Acrospermum maxonii 3114MK561987.1
Gonatophragmium epilobii CBS 122271MH874728.1
Gonatophragmium triuniae CBS 138901NG_058117.1
Acrospermum compressum M151EU940084.1
Phaeodactylium stadleri CBS 132715NG_064286.1
Pseudovirgaria hyperparasitica CBS 121740NG_064200.1
Pseudovirgaria grisea CBS 129279MH876637.1
Radulidium subulatum CBS 405.76NG_057780.1
Radulidium epichloes CBS 361.63NG_057779.1
Acrospermum graminum M152EU940085.1
Zelosatchmopsis sacciformis CBS 116.88MH873812.1
Setoapiospora thailandica MFLUCC 17-1426NG_068914.1
Arxiella terrestris CBS 268.65MH870201.1
Arxiella dolichandrae CBS 138853NG_057053.1
Mycoleptodiscus endophytica MFLUCC 17-0545NG_064487.1
Neomycoleptodiscus venezuelense CBS 100519NG_066340.1
Neocochlearomyces chromolaenae BCC 68250NG_066431.1
Paramycoleptodiscus albizziae CBS 141320NG_058240.1
Mycoleptodiscus terrestris CBS 231.53MK487730.1
Mycoleptodiscus suttonii CBS 276.72NG_066339.1
Mycoleptodiscus terrestris CBS 276.72MH872193.1
Muyocopron alcornii CBS 141314NG_066336.1
Muyocopron laterale CBS 141029NG_066337.1
Muyocopron coloratum CBS 720.95NG_070843.1
Muyocopron heveae MFLUCC 17-0066NG_068599.1
Muyocopron lithocarpi MFLUCC 14-1106KU726967.1
Muyocopron dipterocarpi MFLUCC 14-1103NG_059661.1
Muyocopron garethjonesii MFLU 16-2664aN G_064417.1
Muyocopron atromaculans BPI GB1369NG_066446.1
Muyocopron chromolaenae MFLUCC 17-1513NG_068700.1
Muyocopron geniculatum CBS 721.95NG_066266.1
CPC 37461
CBS 203.71NG_066338.1 Muyocopron zamiae
Monoblastiales
Muyocopronaceae
Muyocopronales
contained a total of 739 characters used for the phylogenec
analyses, including alignment gaps. The alignment contained
a total of 279 unique site paerns. Based on the results of
MrModelTest, dirichlet base frequencies and the GTR+I+G
model was used for the Bayesian analysis. The Bayesian analyses
generated 376 002 trees (saved every ve generaons) from
which 282 002 were sampled aer 25 % of the trees were
discarded as burn-in.
Sordariomycetes (Hypocreales) LSU phylogeny (Fig. 4): The
alignment contained 70 isolates and the tree was rooted to
Ramularia endophylla (strain CBS 113265, GenBank AY490776.1).
The nal alignment contained a total of 752 characters used
for the phylogenec analyses, including alignment gaps. The
alignment contained a total of 199 unique site paerns. Based
on the results of MrModelTest, dirichlet base frequencies and
the GTR+I+G model was used for the Bayesian analysis. The
Bayesian analyses generated 426 002 trees (saved every ve
generaons) from which 319 502 were sampled aer 25 % of
the trees were discarded as burn-in.
Sordariomycetes (other orders) LSU phylogeny (Fig. 5,
parts 1–2): The alignment contained 89 isolates and the tree
was rooted to Ramularia endophylla (strain CBS 113265,
GenBank AY490776.1). The nal alignment contained a total
of 796 characters used for the phylogenec analyses, including
alignment gaps. The alignment contained a total of 340 unique
site paerns. Based on the results of MrModelTest, dirichlet base
frequencies and the GTR+I+G model was used for the Bayesian
analysis. The Bayesian analyses generated 878 002 trees (saved
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
265
Cladosporiaceae
0.1
0.99
0.93
0.91
0.99
0.98
0.95
0.93
0.83
0.97
0.96
0.99
0.89
0.80
0.99
0.82
0.99
Blastacervulus eucalypti CBS 124759N G_067266.1
Blastacervulus eucalyptorum CPC 29450NG_068246.1
NIF4 ICMP 21883NG_068290.1
CPC 38759
Thyrinula eucalyptina CPC 35779MN162280.1
Thyrinula eucalypti CPC 33637MN162244.1
Thyrinula uruguayensis CPC 31923MN162295.1
Thyrinula dunnii CPC 12977NG_070471. 1
Thyrinula eucalyptina CPC 33762MN162279.1
Thyrinula dunnii CPC 12974MN162223.1
Thyrinula parasitica CPC 36157MN162290.1
Superstratomyces tardicrescens sp. nov. FMR 13786LR025130.1
Superstratomyces atroviridis sp. nov. CBS 140272NG_058271.1
Superstratomyces albomucosus gen. et sp. nov. DTO 277-D2KX950439.1
Superstratomyces flavomucosus sp. nov. CBS 353.84KX950438.1
Rhexothecium globosum CBS 955.73NG_057864.1
Faurelina fimigena CBS 352.78MH872911.1
Eremomyces bilateralis CBS 781.70NG_059206.1
Arthrographis grakistii CBS 145530NG_068348.1
Arthrographis longispora CBS 135935NG_064259.1
Arthrographis globosa UTHSC 11-757NG_056972.1
Arthrographis chlamydospora CBS 135936NG_064260.1
Arthrographis arxii IFM 47378AB213426.1
Dothidea insculpta CBS 189.58DQ247802.1
Dothidea sambuci DAOM 231303NG_027611.1
Dothidea eucalypti CBS 143417MG386106.1
Endoconidioma rosae-hissaricae TASM 6106NG_059269.1
Hormonema carpetanum ATCC 74360MF611880.1
CPC 38551MW175390.1
CPC 38649
Endoconidioma leucospermi CBS 111289EU552113.1
Endoconidioma populi UAMH 10297NG_059198.1
Graphiopsis chlorocephala CBS 121523MH874669.1
Fumagospora capnodioides CBS 131.34EU019269.1
Scorias leucadendri CBS 131318JQ044456.1
Readerielliopsis fuscoporiae CBS 139900NG_058161.1
Readerielliopsis guyanensis CBS 117550FJ493211.1
CPC 40100
CPC 40369
Paramycosphaerella intermedia CMW 7163NG_059428.1
Paramycosphaerella marksii CPC 11222GU214447.1
Madagascaromyces intermedius CBS 124154NG_057816.1
Pseudopericoniella levispora CBS 873.73NG_057778.1
“Mycosphaerella” rosigena CBS 330.51EU167587.1
Paramycosphaerella watsoniae CPC 37392NG_068339.1
Paramycosphaerella brachystegiae CBS 136436NG_058048.1
Neomycosphaerella guibourtiae sp. nov. CPC 39348
Neomycosphaerella pseudopentameridis CBS 136407N G_058044.1
Septoria anthurii CBS 148.41NG_069641.1
Septoria eucalyptorum CBS 118505MH874585.1
CPC 38736
CBS 778.97KF252028.1
Septoria malagutii CBS 106.80NG_069161.1
Septoria citricola CBS 356.36NG_069158.1
Septoria chamaecisti CBS 350.58KF251875.1
Septoria cucubali CBS 102368GU214698.1
Septoria chamaecysti CBS 350.58JN940671.1
Septoria protearum CBS 778.97N G_069851.1
Septoria matthiolae PDD 96769K M975370.1
Blastacervulus metrosideri
Endoconidioma euphorbiae
Tryssglobulus aspergilloides
Septoria protearum
Mycosphaerellaceae
Thyrinulaceae
Incertae sedis
Superstratomy-
cetaceae fam. nov.
Superstrato-
mycetales
ord. nov.
Eremomycetaceae
Eremomycetales
Readerielliopsidaceae
Capnodiaceae
Dothioraceae
Dothideaceae
Cladosporiales
DothidealesMycosphaerellales Capnodiales
2x
Fig. 1. (Connued).
every ve generaons) from which 658 502 were sampled aer
25 % of the trees were discarded as burn-in.
Sordariomycetes (Amphisphaeriales) LSU phylogeny (Fig. 6):
The alignment contained 54 isolates and the tree was rooted to
Ramularia endophylla (strain CBS 113265, GenBank AY490776.1).
The nal alignment contained a total of 754 characters used
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
266
0.1
0.89
0.90
0.85
0.94
0.85
0.90
0.83
0.86
0.99
0.92
0.85
0.99
0.95
0.88
0.88
Magnibotryascoma rubriostiolata TR5KU601589.1
Magnibotryascoma uniseriatum ANM 909NG_059929.1
Aurantiascoma minimum ANM 933GU385195.1
“Teichospora” quercus CBS 143396N G_067335.1
Pseudoaurantiascoma kenyense GKM 1195NG_059928.1
Pseudomisturatosphaeria cruciformis SMH 5151NG_059931.1
Floricola juncicola sp. nov. CPC 38197
Asymmetrispora mariae C136KU601581.1
Asymmetrispora tennesseensis ANM 911NG_059930.1
Paulkirkia arundinis MFLUCC 12-0328KU848206.1
“Teichospora” kingiae CPC 29104NG_059761.1
Floricola striata JK 5678IGU301813.1
Misturatosphaeria aurantiacinotata GKM 1238NG_059927.1
Misturatosphaeria radicans SMH 4330GU385167.1
Misturatosphaeria viridibrunnea MFLUCC 10-0930NG_068586.1
Teichospora pusilla C140KU601586.1
Teichospora austroafricana CBS 122674EU552116.1
Teichospora proteae CBS 122675EU552117.1
Teichospora claviformis GKM 1210NG_059932.1
Teichospora trabicola C141KU601592.1
Neoscirrhia matteucciicola comb. nov. CBS 259.92GU238100.1
Neoscirrhia osmundae gen. et comb. nov. CPC 38085
Faurelina indica CBS 301.78GU180654.1
Microsphaeropsis ononidicola MFLUCC 15-0459MG967668.1
Microsphaeropsis hellebori JAC13132MK431469.1
Ascochyta fabae CBS 649.71MH872045.1
Ascochyta nigripycnidia CBS 116.96NG_070603.1
Ascochyta pisi CBS 122785NG_070518.1
Ascochyta versabilis CBS 876.97GU238152.1
Coniothyrium genistae CBS 294.74MH872596.1
Macroventuria anomochaeta CBS 525.71NG_069039.1
Macroventuria wentii CBS 526.71NG_069040.1
Microsphaeropsis olivacea CBS 354.69MH859322.1
Vacuiphoma bulgarica CBS 357.84NG_069800.1
Nothophoma macrospora UTHSC DI16-308LN907451.1
Nothophoma prosopidis CPC 21699KF777204.1
Didymella anserina CBS 167.42MH867609.1
Didymella glomerata CBS 528.66NG_069120.1
Didymella microchlamydospora CBS 105.95NG_069838.1
Didysimulans italica MFLUCC 15-0059KY496730.1
Paraboeremia selaginellae CBS 122.93NG_069054.1
Phoma herbarum CBS 567.63MH869982.1
Phomatodes aubrietiae CBS 627.97NG_070361.1
Nothomicrosphaeropsis welwitschiae gen. et sp. nov. CPC 38879
Ascochyta rabiei CBS 237.37NG_069312.1
Heterophoma sylvatica CBS 874.97NG_069056.1
Epicoccum mackenziei SN2-3MW227320.1
Epicoccum layuense CS4-1-2MN396395.1
Epicoccum nigrum H1MK732575.1
Nothophoma gossypiicola CBS 377.67GU238079.1
Didymella calidophila CBS 448.83NG_069795.1
Didymella longicolla CBS 124514NG_069050.1
Didymella pinodella JAC12715MK431462.1
Didymella sancta CBS 281.83NG_069792.1
Cumuliphoma indica CBS 654.77NG_069051.1
Cumuliphoma omnivirens CBS 991.95GU238121.1
Teichosporaceae
Pleosporales
Didymellaceae
Fig. 1. (Connued).
for the phylogenec analyses, including alignment gaps. The
alignment contained a total of 194 unique site paerns. Based
on the results of MrModelTest, dirichlet base frequencies and
the GTR+I+G model was used for the Bayesian analysis. The
Bayesian analyses generated 228 002 trees (saved every ve
generaons) from which 171 002 were sampled aer 25 % of
the trees were discarded as burn-in.
Species phylogenies: Specic phylogenec analyses were run
for selected species and the resulng phylogenies are discussed
in the species notes where applicable. Stascs associated
with those phylogenies are provided in the gure legends. The
opmal identy thresholds to discriminate lamentous fungal
species followed Vu et al. (2019), with secondary DNA barcodes
generated where necessary (Selow et al. 2015).
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
267
Taxonomy
Alternaria chartarum Preuss, Bot. Zeitung 6: 412. 1848. Fig. 7.
Descripon and illustraon: Woudenberg et al. (2013).
Material examined: Namibia, Walvis Bay, from hypolithic biomass
under a rock, 19 Nov. 2019, P.W. Crous, HPC 3101, culture CPC 38971.
Notes: Alternaria chartarum, which was isolated from hypolithic
biomass under a rock in the Namib Desert, has previously been
associated with cutaneous alternariosis in humans, and is also
commonly found in indoor environments (Magina et al. 2000,
Samson et al. 2019).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Alternaria alternata (strain F13, GenBank
HQ380767.1; Idenes = 565/565 (100 %), no gaps), Alternaria
chartarum (strain AC85, GenBank LC440618.1; Idenes =
560/560 (100 %), no gaps), and Alternaria aspera (strain CBS
115269, GenBank MH862983.1; Idenes = 568/569 (99 %), one
gap (0 %)). Closest hits using the LSU sequence are Alternaria
mulformis (strain CBS 102060, GenBank NG_069860.1;
Idenes = 809/809 (100 %), no gaps), Alternaria terricola
(strain CBS 202.67, GenBank NG_069728.1; Idenes = 809/809
(100 %), no gaps), and Alternaria chartarum (strain CBS 200.67,
GenBank NG_069727.1; Idenes = 809/809 (100 %), no
gaps) – also see Fig. 1. Closest hits using the actA sequence
had highest similarity to Alternaria chartarum (strain ATCC
18044, GenBank JQ671654.1; Idenes = 588/589 (99 %), no
gaps), Alternaria sp. 3 MG-2016 (strain MF-G013021, GenBank
KU639836.1; Idenes = 583/584 (99 %), no gaps), Alternaria
septospora (strain CBS 109.38, GenBank JQ671655.1; Idenes
= 587/589 (99 %), no gaps), and Alternaria poonensis (strain
EGS 47-138, GenBank JQ671749.1; Idenes = 501/510 (98 %),
no gaps). Closest hits using the cmdA sequence had highest
similarity to Alternaria sp. 3 MG-2016 (strain MF-G242021,
GenBank KU639878.1; Idenes = 525/525 (100 %), no gaps),
Alternaria sp. 1 MG-2016 (strain MF-G333011, GenBank
KU639872.1; Idenes = 525/525 (100 %), no gaps), Alternaria
chartarum (strain ATCC 18044, GenBank JQ646162.1; Idenes
= 524/525 (99 %), no gaps), Alternaria consoralis (strain CBS
Pleosporales (continued)
0.1
0.88
0.89
0.92
Paraphoma dioscoreae CBS 135100KF251671.1
Paraphoma salicis sp. nov. CPC 38651
Paraphoma chrysanthemicola CBS 522.66GQ387582.1
Paraphoma ledniceana sp. nov. CBS 146533
Paraphoma radicina CBS 111.79NG_070446.1
Papulaspora pannosa CBS 133.41MH867580.1
Neocamarosporium salicornicola MFLUCC 15-0957NG_070423.1
Chaetosphaeronema hispidulum CBS 826.88EU754145.1
Neocamarosporium korfii MFLUCC 17-0745NG_070421.1
Neocamarosporium lamiacearum MFLUCC 17-560NG_070422. 1
Neocamarosporium salsolae MFLUCC 17-0827NG_070424.1
Neocamarosporium chersinae CPC 27298NG_070414. 1
Neocamarosporium chichastianum CBS 137502KP004483.1
Neocamarosporium leipoldtiae CPC 38543
Neocamarosporium obiones AFTOL-ID 1240DQ678054.1
Stemphylium callistephi CBS 527.50NG_069667.1
Stemphylium beticola CBS 141024NG_070542.1
Stemphylium botryosum CBS 714.68NG_069738.1
CBS 109845NG_069866.1
CPC 38613
Stemphylium halophilum CBS 337.73NG_069760.1
Stemphylium paludiscirpi CBS 109842NG_069865.1
Stemphylium triglochinicola CBS 718.68NG_069740.1
Stemphylium vesicarium 18ALIM004MT472605.1
Stemphylium rosae-caninae MFLU 16-0245NG_069560.1
Stemphylium rosae MFLU 16-0254NG_069559.1
Alternaria aspera CBS 115269NG_069147.1
Alternaria atra CBS 125894MH875550.1
CBS 200.67NG_069727.1
CPC 38971
Alternaria elegans CBS 109159NG_069132.1
CPC 38969
CBS 123376KC584363.1
Alternaria multiformis CBS 102060NG_069860.1
Alternaria preussii CBS 102062MH874372.1
Alternaria simsimi CBS 115265NG_069141.1
Alternaria subcucurbitae CBS 121491NG_069148.1
Alternaria terricola CBS 202.67NG_069728.1
Stemphylium eturmiunum
Alternaria chartarum
Alternaria heterospora
Phaeosphaeriaceae
Neocamarosporiaceae
Pleosporaceae
Fig. 1. (Connued).
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
268
0.94
0.81
0.95
0.97
0.99
0.92
0.84
0.80
0.91
0.95
0.82
0.98
0.99
Xylaria hypoxylon OSC 100004AY544648.1
Populomyces zwinianus gen. et sp. nov. NL19076004
Calloria urticae MFLU 18-0697MK591969.1
Calloria urticae G.M. 2016-03-12.3MT509570.1
Tricellula inaequalis CBS 359.53MH868778.1
Tricellula curvata CBS 429.54MH868922.1
Articulospora proliferata CCM F-11200KP234351.1
Tricellula aquatica CBS 271.84MH873442.1
CPC 36629
CBS 399.58MH869354.1
Dactylaria dimorphospora CBS 256.70NG_068277.1
Tetracladium psychrophilum CGMCC 3.15139NG_059962.1
Tetracladium ellipsoideum CGMCC 3.15137NG_059963.1
Tetracladium globosum CGMCC 3.15136NG_059961.1
Trichosporiella cerebriformis CBS 135.68MH870802.1
Marssonina panattoniana CBS 163.25MH866332.1
Tetracladium furcatum CCM F-11883EU883432.1
Tetracladium palmatum CCM F-10001EU883424.1
Tetracladium setigerum CCM F-10186EU883427.1
Tetracladium maxilliforme CCM F-13186E U883430.1
Tetracladium apiense CCM F-23299EU883422.1
Tetracladium breve CCM F-10501EU883418.1
Tetracladium marchalianum CBS 439.51MH868455.1
Chalara aurea CBS 880.73MH872551.1
Chalara crassipes CBS 829.71FJ176254.1
Chalara parvispora CBS 385.94FJ176253.1
Calycellina populina CBS 247.62MH869739.1
Urceolella crispula CBS 608.77JN086682.1
Mollisia caespiticia G.M. 2016-01-06.1KY965813.1
Chalara fungorum CBS 942.72MH877813.1
Graphilbum pleomorphum CBS 109.86MH873616.1
Bisporella subpallida G.M. 2016-02-14KY462818.1
Phaeohelotium epiphyllum H.B. 9911KT876976.1
Phialina lachnobrachyoides KUS F52183JN086715.1
Apiculospora spartii MFLU 15-3556MN688206.1
Chalara africana OC0018FJ176249.1
Chalara clidemiae CPC 26423KX 228321.1
Porodiplodia livistonae CPC 32154NG_069575.1
CBS 144634NG_070080.1
CPC 38692
Collophorina hispanica CBS 128568NG_068581.1
Collophorina germanica CBS 144831NG_070070.1
Collophorina neorubra CBS 144829NG_067864.1
Collophorina badensis GLMC 1637MK314590.1
Collophorina africana CBS 120872NG_070068.1
Tympanis pini sp. nov. CPC 38169
Tympanis abietina CBS 350.55MK314617.1
Tympanis laricina CBS 360.55MK314621.1
Tympanis fasciculata CBS 357.55MK314620.1
Tympanis hansbroughiana CBS 358.55MH869050. 1
Tympanis truncatula CBS 368.55MK314622.1
Tympanis spermatiospora CBS 367.55MK314624.1
Tympanis pitya CBS 363.55MK314623.1
Tympanis confusa CBS 354.55MK314619.1
Tympanis piceae CBS 361.55MH869051.1
Tympanis saligna CBS 366.55MK314626.1
Tympanis tsugae CBS 369.55MH869054.1
Tympanis amelanchieris CBS 353.55MH869048.1
Tympanis piceina CBS 362.55MH869052.1
Tympanis conspersa CBS 355.55MK314618.1
Tympanis diospyri CBS 356.55MH869049.1
0.01
2x
Tricellula aurantiaca
Porodiplodia vitis
Helotiales
Porodiplodiaceae
Helotiaceae
Pezizellaceae
Hyaloscyphaceae s.lat.
Discinellaceae
Calloriaceae
Tympanidaceae
Fig. 2. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Leoomycetes LSU nucleode alignment. Bayesian posterior
probabilies (PP) > 0.79 are shown at the nodes and the scale bar represents the expected changes per site. Thickened branches represent PP = 1
and the most basal branch was halved to facilitate layout. Families and the order Heloales are indicated with coloured blocks to the right of the tree.
GenBank accession (superscript) and / or culture collecon / voucher numbers are indicated for all species. The tree was rooted to Xylaria hypoxylon
(voucher OSC 100004, GenBank AY544648.1) and the species treated in this study for which LSU sequence data were available are indicated in bold
face.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
269
201.67, GenBank JQ646173.1; Idenes = 506/527 (96 %), two
gaps (0 %)), and Alternaria botrys (strain AKC603, GenBank
MT770809.1; Idenes = 504/525 (96 %), no gaps). Closest hits
using the gapdh sequence had highest similarity to Alternaria
chartarum (strain AC85, GenBank LC482041.1; Idenes =
408/409 (99 %), no gaps), Alternaria aspera (strain CBS 115269,
GenBank KC584166.1; Idenes = 408/409 (99 %), no gaps), and
Alternaria concatenata (as Ulocladium capsicum; strain HSAUP_
XF030035, GenBank AY762950.1; Idenes = 408/409 (99 %), no
gaps). Closest hits using the tef1 sequence had highest similarity
to Alternaria aspera (strain CBS 115269, GenBank KC584734.1;
Idenes = 240/242 (99 %), no gaps), Alternaria alternata (strain
DUCC5016, GenBank KJ638247.1; Idenes = 292/311 (94 %),
two gaps (0 %)), and Alternaria japonica (strain P400, GenBank
AY375367.1; Idenes = 366/395 (93 %), four gaps (1 %)). Closest
hits using the tub2 sequence had highest similarity to Alternaria
chartarum (strain ATCC 18044, GenBank JQ671994.1; Idenes
= 337/338 (99 %), no gaps), Alternaria septospora (strain CBS
109.38, GenBank JQ671995.1; Idenes = 336/338 (99 %),
no gaps), and Alternaria atra (strain ATCC 18040, GenBank
JQ671998.1; Idenes = 331/338 (98 %), no gaps).
Authors: P.W. Crous, D.A. Cowan, G. Maggs-Kölling, E. Marais, N.
Yilmaz & M.J. Wingeld
Alternaria heterospora Woudenb. & Crous, Stud. Mycol. 75:
204. 2013. Fig. 8.
Descripon and illustraon: Woudenberg et al. (2013).
Material examined: Namibia, Walvis Bay, from hypolithic biomass
under a rock, 19 Nov. 2019, P.W. Crous, HPC 3101, culture CPC 38969.
Notes: Alternaria heterospora (as Ulocladium solani) was
described as a new species associated with leaf spots on
Lycopersicon esculentum and Duchesnea indica from Hunan
0.84
0.97
0.97
0.89
0.82
0.93
0.93
0.91
0.95
0.89
Candida broadrunensis CBS 11838KY106372.1
Oedocephalum nayoroense NBRC 32546LC146751.1
Oedocephalum elegans CBS 266.64MH870067.1
Peziza nivalis KH-97-44 (C)AF335154.1
Peziza domiciliana C no. 52152 (C)AF335137.1
Peziza fimeti FLAS-F-65627MT373962.1
Peziza buxoides MPU:JCD 288-74MT273596.1
Peziza vesiculosa MA 88766KX344446.1
Peziza oceanica JAC10493MK431436.1
Oedocephalum adhaerens CBS 125450NG_064222.1
Peziza violacea LY:NV 2010.05.34MT476965.1
Peziza pseudoviolacea MPU:JCD 52-77MT273607.1
Peziza lobulata KH 03.157 (FH)AY500548.1
Peziza emileia Brummelen 1921 (L)AF335140.1
Peziza proteana f. sparassoides AFTOL-ID 71AY544659.1
Peziza ligni sp. nov. CPC 39110
Peziza exogelatinosa KH 00.029 (C)AY500545.1
Tuber alcaracense MUB:Fung-0971MN953777.1
Tuber excavatum Trappe 19457DQ191677.1
Tuber neoexcavatum wsp081KY013643.1
Tuber microspiculatum BJTC:FAN220MH115316.1
Tuber sinoalbidum BJTC:FAN105MH115299.1
Tuber umbilicatum T2_HKAS44316GU979086.1
Tuber huidongense T117_CJ409BGU979097.1
Cheilymenia crucipila KH.03.63DQ220320.1
Cheilymenia stercorea BAP 440 (FH)DQ220323.1
Cheilymenia sclerotiorum KH.08.32KC012671.1
Lasiobolus cuniculi C F-54526 (C)DQ168338.1
Lasiobolus ciliatus KS-94-005 (C)DQ167411.1
Cephaliophora tropica CBS 315.66MH870444.1
Cephaliophora irregularis CBS 218.62KC012668.1
Hogelandia lambearum gen. et sp. nov. NL19_27007
Ascodesmis nigricans CBS 163.74MH872582.1
Eleutherascus peruvianus CBS 101.75NG_059191.1
Eleutherascus lectardii CBS 626.71NG_059192.1
Ascodesmis microscopica CBS 275.80MH873032.1
Ascodesmis sphaerospora CBS 125.61MH869550.1
0.1
Pezizales
Tuberaceae
Pezizaceae
Pyronemataceae
Ascodesmidaceae
Fig. 3. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Pezizomycetes LSU nucleode alignment. Bayesian posterior
probabilies (PP) > 0.79 are shown at the nodes and the scale bar represents the expected changes per site. Thickened branches represent PP = 1.
Families and the order Pezizales are indicated with coloured blocks to the right of the tree. GenBank accession (superscript) and / or culture collecon
/ voucher numbers are indicated for all species. The tree was rooted to Candida broadrunensis (culture CBS 11838, GenBank KY106372.1) and the
species treated in this study for which LSU sequence data were available are indicated in bold face.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
270
0.99
0.98
0.92
0.93
0.99
0.89
0.80
0.97
0.99
0.89
0.91
0.99
0.98
0.82
0.90
0.88
0.99
0.94
0.98
0.85
Ramularia endophylla CBS 113265AY490776.2
Calonectria yunnanensis CERC 5337MT359618.1
Calonectria turangicola CMW 35410MT359610.1
Calonectria sumatrensis CMW 30987MT359604.1
Calonectria pseudoyunnanensis CERC 5378MT359584.1
Calonectria pacifica CMW 30988MT359533.1
Calonectria malesiana CBS 112710MT359508.1
Calonectria lateralis CMW 31412MT359495.1
Calonectria lantauensis CERC 3301MT359494.1
Calonectria malesiana CBS 112752MH874470.1
CBS 146714
CBS 146715
CBS 146713
CPC 39015
CBS 201.60MH869505.1
Sarcopodium flavolanatum CBS 128370MH876362.1
Sarcopodium vanillae MFLUCC 17-2597MK691502.1
Sarcopodium macalpinei CBS 128372MH876364.1
Sarcopodium flocculentum MAFF 241413JF832714.1
Sarcopodium circinosetiferum CBS 101116HQ232173.1
Sarcopodium circinatum CBS 587.92HQ232168.1
Parasarocladium debruynii CBS 144942NG_066301.1
Parasarocladium gamsii CBS 726.71NG_056985.1
Parasarocladium wereldwijsianum sp. nov. Nl1994011
Parasarocladium breve CBS 150.62NG_056979.1
Parasarocladium radiatum CBS 142.62NG_070520.1
Sarocladium glaucum MUT<ITA> 3643MG980411.1
Sarocladium bacillisporum CBS 425.67MH870718.1
Sarocladium terricola CBS 243.59MH869389.1
Sarocladium subulatum CBS 217.35NG_070566.1
Sarocladium kiliense CBS 400.52KM231729.1
Sarocladium zeae CBS 800.69NG_067385.1
Sarocladium summerbellii CBS 430.70NG_067387.1
Sarocladium implicatum CBS 125892MH875549.1
Sarocladium sasijaorum sp. nov. NL19100007
Sarocladium dejongiae CBS 144929NG_067854.1
Paracremonium pembeum P169MT252038.1
Paracremonium binnewijzendii MFLUCC 16-1276MK828236.1
Paracremonium variiforme LC5832KU746739.1
Paracremonium inflatum CBS 482.78K M231711.1
Paracremonium bendijkiorum sp. nov. NL19_24005
Varicosporellopsis aquatilis CBS 143509MH107968.1
Hyperdermium bertonii AF242354.1
Lecanicillium coprophilum CGMCC 3.18986NG_067818.1
Beauveria pseudobassiana YHH 1806014MN523539.1
Beauveria brongniartii CBS 109.24MH866265.1
Ijuhya corynospora CBS 342.77KY607554.1
Ijuhya vitellina DSM 104494NG_060350.1
Stromatonectria caraganae CBS 127387HQ112287.1
Ijuhya parilis CBS 136677KY607558.1
CBS 142775
Flammocladiella aceris CBS 138906NG_058175.1
JF17087MN597425.1
CPC 36302
SOMF 30203MN597424.1
Tolypocladium album GB5123AF245296.1
Tolypocladium ophioglossoides NBRC 8992JN941405.1
Tolypocladium paradoxum NBRC 100945JN941410. 1
Tolypocladium inegoense AB027368.1
Purpureocillium lavendulum CBS 128677NG_067468.1
Niesslia curvisetosa CBS 660.94NG_058532.1
Niesslia aemula CBS 261.70MG826761.1
Niesslia indica CBS 313.61NG_058529.1
Niesslia luzulae CBS 691.71MH872060.1
Niesslia neoexosporioides sp. nov. CPC 38177
Niesslia arctiicola CBS 604.76NG_058531.1
Niesslia sp. CBS 885.73MG826847.1
Niesslia nolinae CBS 109837MH874426.1
Niesslia bulbillosa CBS 344.70MF681501.1
Niesslia gamsii 25DPMF681496.1
0.1
Calonectria singaporensis sp. nov.
Heimiodora verticillata
Flammocladiella anomiae
2x
Hypocreales
Nectriaceae I
Nectriaceae II
Nectriaceae III
Sarocladiaceae
Bionectriaceae
Ophiocordycipitaceae
Flammocladiellaceae
Cordycipitaceae
Fig. 4. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Sordariomycetes (Hypocreales) LSU nucleode alignment.
Bayesian posterior probabilies (PP) > 0.79 are shown at the nodes and the scale bar represents the expected changes per site. Thickened branches
represent PP = 1 and the most basal branch was halved to facilitate layout. Families and the order Hypocreales are indicated with coloured blocks to
the right of the tree. GenBank accession (superscript) and / or culture collecon / voucher numbers are indicated for all species. The tree was rooted
to Ramularia endophylla (culture CBS 113265, GenBank AY490776.2) and the species treated in this study for which LSU sequence data were available
are indicated in bold face.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
271
0.1
0.93
0.99
0.99
0.89
0.88
0.86
0.96
0.88
0.95
0.96
Ramularia endophylla CBS 113265AY490776.2
Sporothrix splendens CBS 557.92NG_064164.1
Sporothrix gemella CBS 121959MH874713.1
Sporothrix gossypina ATCC 18999KX590856.1
Sporothrix hypoxyli sp. nov. CBS 141569
Sporothrix palmiculminata CMW 20677DQ316143.1
Sporothrix stylites CBS 118848MH874594.1
Sporothrix pallida CBS 131.56MH869078.1
Sporothrix dimorphospora CBS 125442MH874976.1
Sporothrix guttiliformis CBS 437.76KX590885.1
Sporothrix dentifunda CBS 115790KX590853.1
Spumatoria longicollis CPC 30521NG_070401.1
Ophioceras dolichostomum SMH1888EU528002.1
Ophioceras aquaticus IFRDCC 3091NG_067778.1
Ophioceras commune HKUCC9106DQ341500.1
Ophioceras chiangdaoense CMU 26633NG_066356.1
CPC 39147
CBS 894.70NG_057959.1
Harzia macrospora CBS 122807NG_069429.1
Harzia patula CBS 379.88NG_069430.1
Harzia cameroonensis CPC 22065KF777216.1
Harzia tenella CPC 38667
Harzia acremonioides CBS 101.42NG_067322.1
Harzia metrosideri CPC 37374NG_068338.1
Harzia sphaerospora UAMH 11865NG_067536.1
Microthecium fallax CBS 297.61MH869625.1
Microthecium tenuissimum CBS 112764NG_069432.1
Microthecium quadrangulatum CBS 112763NG_069431.1
Microthecium brevirostre ATCC 42427AY015627.1
Microthecium levitum FMR 13884KP981470.1
Microthecium compressum NBRC 8627KP981459.1
Microthecium zobelii NBRC 9442KP981476.1
Microthecium fimicola CBS 423.62MH869796. 1
Pyricularia angulata P053EU107297.1
Pyricularia pennisetigena S2MH412641.1
Neopyricularia commelinicola CBS 128307KM484984.1
Macgarvieomyces borealis CBS 461.65NG_058088.1
Barretomyces calatheae CBS 129274MH876639.1
Pyricularia caricis JAC12652MK431456.1
Pseudopyricularia iraniana IRAN 2761CNG_060183.1
Pseudopyricularia festucae sp. nov. CPC 37915
Dactylaria higginsii CBS 665.79DQ341512.1
Pseudopyricularia persiana UTFC-PO20MH780974.1
Pseudopyricularia javanii UTFC-PJ01MT472574.1
Pseudopyricularia hagahagae CPC 25635NG_059616.1
Pseudopyricularia bothriochloae CBS 136427NG_058051.1
Pseudopyricularia hyrcaniana Ck3KY457267.1
Ophioceras leptosporum
OphiostomatalesMagnaporthales IMagnaporthales II Coronophorales
Ophiostomataceae
Ophioceraceae
Ceratostomataceae
Pyriculariaceae
Fig. 5, parts 1–2. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Sordariomycetes (other orders) LSU nucleode
alignment. Bayesian posterior probabilies (PP) > 0.79 are shown at the nodes and the scale bar represents the expected changes per site. Thickened
branches represent PP = 1. Families and orders are indicated with coloured blocks to the right of the tree. GenBank accession (superscript) and /
or culture collecon / voucher numbers are indicated for all species. The tree was rooted to Ramularia endophylla (culture CBS 113265, GenBank
AY490776.2) and the species treated in this study for which LSU sequence data were available are indicated in bold face.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
272
0.1
0.89
0.98
0.90
0.98
0.98
0.87
0.99
0.95
0.97
0.88
0.85
0.99
Coniochaeta extramundana CBS 247.77MH872828.1
Coniochaeta marina MFLUCC 18-0408MK458765.1
Microascospora fragariae CBS 128350MH876344.1
Coniochaeta hoffmannii CBS 363.61MH869654.1
Coniochaeta taeniospora MFLU 17-0832MN336234.1
Coniochaeta navarrae LTA3KU762326.1
Fimetariella rabenhorstii PP65FJ890382.1
Coniochaeta savoryi CBS 725.74MH872627.1
Coniochaeta deborreae sp. nov. BE19_001008
Coniochaeta lignicola CBS 127652MH876093.1
Coniochaeta discospora CBS 168.58MH869278.1
Coniochaeta acaciae MFLUCC 18-0776MT501618.1
Coniochaeta mutabilis CBS 295.61MH869623.1
Coniochaeta luteorubra CBS 131710MH877339.1
Coniochaeta luteoviridis CBS 206.38NG_067348.1
Plectosphaerella kunmingensis KUMCC 18-0181MK993015.1
Gibellulopsis serrae CBS 892.70MH871786.1
Gibellulopsis nigrescens CBS 179.40MH867573.1
Brunneochlamydosporium cibotii CBS 147.44NG_067352.1
Brunneochlamydosporium nepalense CBS 971.72NG_067402.1
Plectosphaerella melonis CBS 489.96NG_067323.1
Plectosphaerella populi CBS 139623NG_068249.1
Plectosphaerella pauciseptata CBS 144924LR590476.1
Plectosphaerella slobbergiarum sp. nov. NL1930002
Plectosphaerella cucumerina CBS 137.37MH867359.1
Colletotrichum acutatum CBS 129924MH877103.1
Colletotrichum costaricense RB184MK541033.1
Colletotrichum godetiae JAC13368MK431475.1
Colletotrichum johnstonii CBS 128532NG_069988.1
Colletotrichum tamarilloi CBS 129954MH877133.1
Colletotrichum nymphaeae CBS 127612MH876072.1
Colletotrichum spaethianum UTHSC DI14-253LN907328.1
Colletotrichum pleopeltidis sp. nov. CPC 39342
Colletotrichum fioriniae CBS 126509MH875593.1
Colletotrichum arboricola CBS 144795NG_070064.1
Colletotrichum australe CBS 131325MH877401.1
CPC 38766
CBS 198.35NG_069631.1
Colletotrichum melonis CBS 159.84NG_070037.1
Colletotrichum phormii CBS 118194MH877757.1
Colletotrichum rhombiforme CBS 129953NG_070016.1
Colletotrichum salicis CBS 607.94NG_070038.1
Colletotrichum kinghornii
ConiochaetalesGlomerellales
Coniochaetaceae
Plectosphaerellaceae
Glomerellaceae
Fig. 5. (Connued).
Province in China (Wang et al. 2009). In the present study this
species is reported from hypolithic biomass under a rock in the
Namib Desert.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Alternaria atra (strain AC90, GenBank LC440624.1;
Idenes = 563/563 (100 %), no gaps), Alternaria dauci (strain
AY853, GenBank MG250469.1; Idenes = 563/563 (100 %), no
gaps), and Alternaria heterospora (strain CBS 123376, GenBank
MH863292.1; Idenes = 560/560 (100 %), no gaps). Closest
hits using the LSU sequence are Alternaria mulformis (strain
CBS 102060, GenBank NG_069860.1; Idenes = 787/787 (100
%), no gaps), Alternaria terricola (strain CBS 202.67, GenBank
NG_069728.1; Idenes = 787/787 (100 %), no gaps), and
Alternaria chartarum (strain CBS 200.67, GenBank NG_069727.1;
Idenes = 787/787 (100 %), no gaps) – also see Fig. 1. Closest
hits using the actA sequence had highest similarity to Alternaria
atra (strain ATCC 18040, GenBank JQ671660.1; Idenes =
591/591 (100 %), no gaps), Alternaria heterospora (strain MF-
G316021, GenBank KU639828.1; Idenes = 588/588 (100 %),
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
273
0.98
0.99
0.99
0.82
0.96
0.99
0.99
0.97
0.98
0.98
0.86
0.97
0.92
Ramularia endophylla CBS 113265AY490776.2
Castanediella tereticornis CBS 145068NG_068600.1
Castanediella couratarii CBS 579.71NG_066249.1
Castanediella malaysiana CPC 24918NG_067312.1
Castanediella neomalaysiana sp. nov. CPC 39275
Castanediella brevis LCG 10-1MH806358.1
Castanediella ramosa MUCL 39857KC775711.1
Castanediella eucalypticola CBS 141317NG_067309.1
Castanediella eucalypti CBS 139897NG_067292.1
Castanediella acaciae CBS 139896NG_067293.1
Synnemadiella eucalypti CPC 27637NG_067321.1
Beltraniella pseudoportoricensis CBS 145547NG_067875.1
Pseudomassaria carolinensis IFO 9502DQ810233.1
Beltrania pseudorhombica CBS 138003KJ869215.1
Beltraniella endiandrae CBS 137976KJ869185.1
Xyladictyochaeta lusitanica CBS 142290NG_067326.1
Phlogicylindrium eucalyptorum CBS 111680KF251707.1
Anungitea nullica CBS 143406MG386111.1
Anungitea eucalyptorum CBS 137967KJ869176.1
Anungitea grevilleae CPC 25576KX228304.1
Cylindrium aeruginosum CBS 693.83KM231734.1
Cylindrium elongatum CBS 115974K M231733.1
Plectosphaera eucalypti CBS 120063DQ923538.1
Clypeophysalospora latitans CBS 141463N G_058958.1
Paraphysalospora eucalypti CBS 143177NG_058508.1
Neophysalospora eucalypti CBS 138864NG_058123.1
Bagadiella victoriae CPC 17688JF951161.1
Bagadiella lunata CBS 124762NG_058637.1
Bagadiella koalae CBS 129523NG_070001.1
Bagadiella eucalypti CBS 143439NG_058717.1
Bagadiella eucalyptorum sp. nov. CPC 39299
Arthrinium puccinioides AP26418MK014861.1
Arthrinium caricicola CPC 33297MN317266.1
Arthrinium curvatum var. minus AP25418MK014839.1
Arthrinium sporophleum AP21118MK014865.1
Apiospora psedospegazzinii CBS 102052NG_042785.1
Apiospora marii CBS 497.90NG_042781.1
Apiospora longistroma MFLUCC 11-0479KU863130.1
Apiospora piptatheri AP4817AMK014860.1
Apiospora sacchari CBS 212.30KF144962.1
Apiospora hydei CBS 114990NG_042778.1
Apiospora aurea CBS 244.83NG_042777.1
Apiospora rasikravindrae CBS 337.61KF144961.1
Apiospora paraphaeosperma gel bandMT416407.1
Apiospora phragmitis CPC 18900NG_042783.1
Apiospora descalsii AP31118AMK014837.1
Apiospora stipae sp. nov. CPC 38101
Apiospora esporlensis AP16717MK014845.1
Apiospora ovata CBS 115042NG_042782.1
Apiospora yunnana MFLUCC 15-0002NG_057104. 1
Apiospora bambusae ICMP 6889DQ368630.1
Apiospora setosa ICMP 4207DQ368631.1
Apiospora hysterina ICPM 6889MK014841.1
Apiospora sasae sp. nov. CPC 38165
0.01
Amphisphaeriales
Castanediellaceae
Beltraniaceae
Xyladictyochaetaceae
Phlogicylindriaceae
Cylindriaceae
Clypeophysalosporaceae
Apiosporaceae
2x
Fig. 6. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Sordariomycetes (Amphisphaeriales) LSU nucleode
alignment. Bayesian posterior probabilies (PP) > 0.79 are shown at the nodes and the scale bar represents the expected changes per site. Thickened
branches represent PP = 1 and the most basal branch was halved to facilitate layout. Families and the order Amphisphaeriales are indicated with
coloured blocks to the right of the tree. GenBank accession (superscript) and / or culture collecon / voucher numbers are indicated for all species.
The tree was rooted to Ramularia endophylla (culture CBS 113265, GenBank AY490776.2) and the species treated in this study for which LSU sequence
data were available are indicated in bold face.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
274
no gaps), and Alternaria cucurbitae (strain EGS 31-021, GenBank
JQ671663.1; Idenes = 590/591 (99 %), no gaps). Closest hits
using the cmdA sequence had highest similarity to Alternaria
heterospora (strain MF-G316021, GenBank KU639868.1;
Idenes = 549/549 (100 %), no gaps), Alternaria botrys
(strain AKC603, GenBank MT770809.1; Idenes = 548/549
(99 %), no gaps), and Alternaria obovoidea (strain CBS 101229,
GenBank JQ646172.1; Idenes = 548/549 (99 %), no gaps).
Closest hits using the gapdh sequence had highest similarity
to Alternaria heterospora (strain CBS 123376, GenBank
KC584176.1; Idenes = 460/460 (100 %), no gaps), Alternaria
subcucurbitae (as Ulocladium subcucurbitae; strain CBS 121491,
GenBank EU855803.1; Idenes = 460/460 (100 %), no gaps),
and Alternaria cucurbitae (as Ulocladium cucurbitae; strain
HSAUP_XF030282, GenBank AY762951.1; Idenes = 460/460
(100 %), no gaps). Closest hits using the tef1 sequence had
highest similarity to Alternaria atra (strain IR_Ker955, GenBank
MK188501.1; Idenes = 221/224 (99 %), no gaps), Alternaria
alternata (strain MOS635, GenBank KP009004.1; Idenes =
242/255 (95 %), no gaps), and Alternaria phosca (strain CBS
212.86, GenBank FJ214950.1; Idenes = 252/267 (94 %), four
gaps (1 %)). Closest hits using the tub2 sequence had highest
similarity to Alternaria atra (strain ATCC 18040, GenBank
JQ671998.1; Idenes = 335/336 (99 %), no gaps), Alternaria
mulformis (strain CBS 102060, GenBank JQ672002.1; Idenes
= 334/336 (99 %), no gaps), and Alternaria cucurbitae (strain EGS
31-021, GenBank JQ672001.1; Idenes = 333/336 (99 %), no
gaps).
Authors: P.W. Crous, D.A. Cowan, G. Maggs-Kölling, E. Marais, N.
Yilmaz & M.J. Wingeld
Apiospora sasae Crous & R.K. Schumach., sp. nov. MycoBank
MB 839279. Fig. 9.
Etymology: Name refers to the host genus Sasa from which it
was isolated.
Occurring on dead culms of Sasa vetchii. Sporodochia single to
gregarious, inially immersed, opening via longitudinal split of
epidermis, revealing black conidial mass, dry, pulvinate, 1–2
× 0.4 mm. Paraphyses absent. Conidiophores subcylindrical,
rarely branched, basal and apical cell enlarged, subhyaline,
thin-walled, smooth, septa red-brown, thick-walled, secession
apical and lateral, lacking collarees. Conidiogenous cells
discrete, subcylindrical, subhyaline to pale brown, smooth to
nely verruculose, holoblasc, proliferang sympodially, 5–10 ×
3–4 µm. Sterile cells replacing normal conidia, brown, smooth,
irregularly lobed, 8–25 × 7–12 µm. Conidia numerous, aseptate,
subglobose, polygonal (6–7) to urceolate (urniform), red-brown
at maturity, thick-walled, smooth, oen with large central
guulate or mul-guulate, with a lateral hyaline equatorial
Fig. 7. Alternaria chartarum (CPC 38971). Conidiophores giving rise to chains of conidia. Scale bars = 10 µm.
Fig. 8. Alternaria heterospora (CPC 38969). Conidiophores giving rise to conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
275
germ slit over enre length, oen with a lateral, small protruding
hilum, (16–)17–18(–20) × (15–)16–17(–19) µm. Synasexual
morph hyaline, smooth, erect, solitary, with conidiophores
subcylindrical, 1–2-septate, 10–20 × 3–4 µm. Conidiogenous
cells terminal, integrated, hyaline, smooth, subcylindrical,
10–15 × 2.5–3 µm, proliferang sympodially at apex with
subdenculate loci, unthickened nor darkened. Conidia solitary,
hyaline, aseptate, smooth, fusoid, falcate, apex subobtuse, base
truncate, 10–20 × 2–2.5 µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, even margin, covering dish aer
2 wk at 25 °C. On MEA surface smoke grey, reverse olivaceous
grey; on PDA surface and reverse olivaceous grey; on OA surface
olivaceous grey.
Typus: Netherlands, Noord-Holland Province, Hoofddorp, on
dead culms of Sasa veitchii (Poaceae), 20 May 2019, L. van der
Linde, HPC 2959 = RKS 1101 (holotype CBS H-24403, culture ex-
type CPC 38165 = CBS 146808).
Notes: The genus Arthrinium includes plant pathogens,
endophytes and saprobes with a wide host range and geographic
distribuon (Crous & Groenewald 2013, Wang et al. 2018,
Pintos et al. 2019). Although Arthrinium was seen as the asexual
morph of Apiospora (Crous & Groenewald 2013), the recent
epitypicaon of Arthrinium (based on A. caricicola; Crous et
al. 2020b) showed this complex to represent two clades, one
corresponding to Arthrinium, and the other to Apiospora. This
generic complex was recently revised by Pintos et al. (2021),
and will not be treated further here. The two taxa collected in
the present study are thus best accommodated in Apiospora.
Apiospora sasae is related to, but morphologically disnct from
Arthrinium yunnanum (now Apiospora yunnana; conidia 10–
16 µm diam; Dai et al. 2017) and Arthrinium esporlense (now
Apiospora esporlensis; conidia 8–13 µm long; Pintos et al. 2019).
A phylogenec species tree is presented as Fig. 10.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Arthrinium yunnanum (now Apiospora yunnana;
strain JN2, GenBank MH191120.1; Idenes = 646/648 (99
%), no gaps), Arthrinium hysterinum (now Apiospora hysterina;
voucher AP15318, GenBank MK014873.1; Idenes = 602/605
(99 %), no gaps), and Arthrinium esporlense (now Apiospora
esporlensis; strain 18TJAM004, GenBank MT856406.1; Idenes
= 424/446 (95 %), six gaps (1 %)). Closest hits using the LSU
sequence are Apiospora setosa (voucher ICMP 6888, GenBank
DQ810214.1; Idenes = 826/826 (100 %), no gaps), Arthrinium
hysterinum (now Apiospora hysterina; voucher AP15318,
GenBank MK014840.1; Idenes = 817/817(100 %), no gaps),
and Apiospora nnnabula (voucher ICMP 6889-96, GenBank
DQ810217.1; Idenes = 810/812 (99 %), two gaps (0 %)) – also
see Fig. 6. Closest hits using the rpb2 sequence had highest
similarity to Apiospora bambusae (strain ICMP 6889, GenBank
DQ368649.1; Idenes = 706/710 (99 %), no gaps), Arthrinium
yunnanum (now Apiospora yunnana; voucher MFLU 18-1219,
GenBank MK313857.1; Idenes = 705/710 (99 %), no gaps),
and Apiospora nnnabula (voucher ICMP 7019-96), GenBank
DQ810235.1; Idenes = 705/710 (99 %), no gaps). Closest hits
using the tef1 (second part) sequence had highest similarity to
Arthrinium yunnanum (now Apiospora yunnana; voucher MFLU
18-1219, GenBank MK193869.1; Idenes = 906/908 (99 %), no
gaps), Apiospora locuta-pollinis (as Arthrinium FL-2018a; strain
LC11688, GenBank MF939618.1; Idenes = 856/880 (97 %),
two gaps (0 %)), and Arthrinium pseudoparenchymacum (now
Apiospora pseudoparenchymaca; strain SICAUCC 18-0008,
GenBank MK359205.1; Idenes = 865/909 (95 %), two gaps (0
%)). Closest hits using the tub2 sequence had highest similarity
to Arthrinium hysterinum (now Apiospora hysterina; voucher
AP29717, GenBank MK017981.1; Idenes = 387/390 (99 %),
Fig. 9. Apiospora sasae (CPC 38165). A. Sporulang colony on SNA. B. Conidiogenous cell and conidia. C, E. Conidiogenous cells with both asexual
morphs. D. Conidiogenous cells with conidia. F. Conidiogenous cell with conidia of synasexual morph. G–H. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
276
100
100
100
100
99
100
100
99
100
95
100
100
94
100
100
89
99
98
100
100
100
100
100
100
87
100
98
100
99
100
97
96
100
90
89
95
96
91
99
89
97
100
100
95
100
99
100
100
100
100
96
100
100
87
100
99 100
99
100
85
86
100
100
100
88
100
100
2x
Beltrania rhombica CBS 123.58MH857718.1/MH869260.1/MH704606.1/MH704631.1
Arthrinium trachycarpum CFCC 53038MK301098.1/MISSING/MK303396.1/MK303394.1
Arthrinium trachycarpum CFCC 53039MK301099.1 /MISSING/MK303397.1/MK303395.1
Arthrinium puccinioides AP26418MK014894.1/MK014861.1/MISSING/MK017998.1
Arthrinium puccinioides CBS 549.86AB220253.1/AB220347.1/MISSING/AB220300.1
Arthrinium caricicola CBS 145903MN313782.1/MN317266.1/MISSING/MN313861.1
Arthrinium curvatum var. minus AP25418MK014872.1/MK014839.1/MISSING/MK017978.1
Arthrinium japonicum IFO 30500AB220262.1/AB220356.1/MISSING/AB220309.1
Arthrinium sporophleum AP21118MK014898.1/MK014865.1/MISSING/MK018001.1
Nigrospora chinensis CGMCC 3.18127KX986023.1/KX986107.1/KY019422.1/KY019462.1
Nigrospora guilinensis CGMCC 3.18124KX985983.1/KX986113.1/KY019292.1/KY019459.1
Nigrospora aurantiaca CGMCC 3.18130KX986064.1/KX986098.1/KY019295.1/KY019465.1
Nigrospora vesicularis CGMCC 3.18128KX986088.1/KX986099.1 /KY019294.1/KY019463.1
Nigrospora lacticolonia CGMCC 3.18123KX985978.1/KX986105.1 /KY019291.1/KY019458.1
Nigrospora osmanthi CGMCC 3.18126KX986010.1/KX986106.1/KY019421.1/KY019461.1
Nigrospora oryzae LC2693KX985944.1/KX986101.1/KY019299.1/KY019471.1
Nigrospora camelliae-sinensis CGMCC 3.18125KX985986.1/KX986103.1/KY019293.1/KY019460.1
Nigrospora pyriformis CGMCC 3.18122KX985940.1/KX986100. 1/KY019290.1/KY019457.1
Nigrospora sphaerica LC7298KX985937.1/KX986097.1/KY019401.1/KY019606.1
Nigrospora musae CBS 319.34MH855545.1/KX986110.1/KY019419.1/KY019455.1
Nigrospora haina nensis CGMCC 3.18129KX986091.1/KX986112.1 /KY019415.1/KY019464.1
Nigrospora gorlenkoana CBS 480.73KX986048.1/KX986109.1/KY019420.1/KY019456.1
Nigrospora rubi CGMCC 3.18326KX985948.1/KX986102.1/KY019302.1 /KY019475.1
Apiospora neosubglobosa HKAS 96354KY356090.1/KY356095.1/MISSING/MISSING
Apiospora subglob osa MFLUCC 11-0397KR069112.1/KR069113.1/MISSING/MISSING
Apiospora intestini CBS 135835KR011352.1/MH877577.1/KR011351.1/KR011350.1
Apiospora pterosperma CPC 20193KF144913.1/KF144960.1/KF145046.1/KF145004.1
Apiospora ovata CBS 115042KF144903.1/KF144950.1/KF145037.1/KF144995.1
Apiospora yunnana MFLUCC 15-0002KU940147.1/KU863135.1 /MISSING/MISSING
Apiospora sasae sp. nov. CPC 38165
Apiospora “yunnana” JN2MH191120.1/MISSING/MISSING/MISSING
Apiospora hysterina ICPM 6889MK014874.1/MK014841.1/MK017951.1/MK017980.1
Apiospora “yunnana” MFLUCC 18-1102MK351843.1/MISSING/MK340919.1/MK291950.1
Apiospora hysterina AP15318MK014873.1/MK014840.1/MISSING/MK017979.1
Apiospora hysterina AP29717MK014875.1/MK014842.1/MISSING/MK017981.1
Apiospora jatrophae CBS 134262JQ246355.1/MISSING/MISSING/MISSING
Apiospora hyphopodii MFLUCC 15-003KR069110.1/MISSING/MISSING/MISSING
Apiospora pseudoparenchymatica HMAS 247189KY494743.1/KY494819.1/KY705139.1/KY705211.1
Apiospora pseudoparenchymatica SICAUCC 18-000MK346319.1/MK346321.1/MISSING/MK359209.1
Apiospora neogarethjonesii HKAS 102408MK070897.1/MK070898.1/MISSING/MISSING
Apiospora setostroma KUMC 19-0217MN528012.1/MN528011.1/MN527357.1/MISSING
Apiospora garethjonesii HKAS 96289KY356086.1/KY356091.1/MISSING/MISSING
Apiospora bambusae CGMCC 3.18335KY494718.1/KY494794.1/KY806204.1/KY705186.1
Apiospora neobambusae HMAS LC7106KY494718.1/KY494794.1/KY806204.1/KY705186.1
Apiospora mytilomorpha DAOM 214595KY494685.1/MISSING/MISSING/MISSING
Apiospora subrosea CGMCC 3.18337KY494752.1/KY494828.1/KY705148.1/KY705220.1
Apiospora camelliae-sinsensis HMAS LC5007KY494704.1/KY494780.1/KY705103.1/KY705173.1
Apiospora jiangxie nsis CGMCC 3.18381KY494693.1/KY494769.1/KY705092.1/KY705163.1
Apiospora obovata CGMCC 3.18331KY494696.1/KY494772.1/KY705095.1/KY705166.1
Apiospora iberica CBS 145137MK014879.1/MK014846.1/MISSING/MK017984.1
Apiospora pseudosinensis CBS 135459KF144910.1/KF144957.1/KF145044.1/MISSING
Apiospora dichotomanthi CGMCC 3.18332KY494697.1/KY494773.1/KY705096.1/KY705167.1
Apiospora saccharicola CBS 191.73KF144920.1/KF144966.1/KF145051.1/KF145009.1
Apiospora aquatica MFLU 18-1628MK828608.1/MK835806.1/MISSING/MISSING
Apiospora serenensis IMI 326869NR_137133.1/MISSING/MISSING/AB220297.1
Apiospora sphaerosperma CBS 142.55MH857420.1/MH868958.1/MISSING/AB220303. 1
Apiospora pseudospegazzinii CBS 102052KF144911.1/KF144958.1/KF145045.1/KF145002.1
Apiospora guizhouensis CGMCC 3.18334KY494709.1/KY494785.1/KY705108.1/KY705178.1
Apiospora sacchari CBS 212.30KF144916.1/KF144962.1/KF145047.1/KF145005.1
Apiospora longistroma MFLUCC 11-0481KU940141.1/KU863129.1/MISSING/MISSING
Apiospora piptatheri CBS 145149MK014893.1/MK014860.1/MISSING/MISSING
Apiospora locuta-pollinis LC11683MF939595.1/MISSING/MF939616.1/MF939622.1
Apiospora locuta-pollinis LC11688MF939596.1/MISSING/MF939618.1/MF939623.1
Apiospora gaoyouensis CFCC 52301MH197124.1/MISSING/MH236793.1/MH236789.1
Apiospora gaoyouensis CFCC 52302MH197125.1/MISSING/MH236794.1/MH236790.1
Apiospora marii CBS 497.90MH873913.1/KF144947.1/KF145035.1/KF144993.1
Apiospora hispanica IMI 326877AB220242.1/MISSING/MISSING/AB220289.1
Apiospora mediterranea IMI 326875AB220243.1/MISSING/MISSING/AB220290.1
Apiospora phragmitis CBS 135458KF144909.1/MH877599.1/KF145043.1/KF145001.1
Apiospora balearica CBS 145129MK014869.1/MK014836.1/MISSING/MK017975.1
Apiospora descalsii CBS 145130MK014870.1/MK014837.1/MISSING/MK017976.1
Apiospora aurea CBS 244.83MH861576.1/KF144935.1/KF145023.1/KF144981.1
Apiospora hydei CBS 114990KF144890.1/KF144936.1/KF145024.1/KF144982.1
Apiospora neochinense CFCC 53036MK819291.1/MISSING/MK818545.1/MK818547.1
Apiospora parap haeosperma GUCC 10129MT040113.1/MISSING /MT040134.1/MT040155.1
Apiospora parap haeosperma MFLUCC 13-0644KX822128.1/KX822124.1/MISSING/MISSING
Apiospora rasikravindrae AP10418MK014896.1/MK014863.1/MISSING/MK017999.1
Apiospora sp. 4936FR667986.1/MISSING/MISSING/MISSING
Apiospora stipae sp. nov. CPC 38101
Apiospora qinlingensis JN5MH197120.1/MISSING/MISSING/MISSING
Apiospora esporlensis 18TJAM004MT856406.1/MISSING/MISSING/MT881991.1
Apiospora esporlensis CBS 145136MK014878.1/MK014845.1/MISSING/MK017983.1
Apiospora xenocordella CBS 478.86KF144925.1/KF144970.1/KF145055.1/KF145013.1
Apiospora kogelbergensis CBS 113335KF144893.1/KF144939.1/KF145027.1/KF144985.1
Apiospora kogelbergensis CBS 113333KF144892.1/KF144938.1/KF145026.1/KF144984.1
Apiospora kogelbergensis CBS 117206KF144895.1/KF144941.1/KF145029.1/KF144987.1
Apiospora sacchari ATCC 76289AB220239.1/MISSING/MISSING /AB220286.1
Apiospora arundinis CBS 106.12KF144883.1/KF144927.1/KF145015.1/KF144973.1
Apiospora arundinis DSM 3112AB220260.1/MISSING/MISSING/AB220307.1
Apiospora italica MA Fungi 91733MK014880.1/MK014847.1/MK017956.1/MK017985.1
Apiospora thailandica LC5630KY494714.1/KY494790.1/KY705113.1/KY806200.1
Apiospora phyllostachydis MFLU 18-2333MK351842.1/MISSING/MK340918.1/MK291949.1
Apiospora chromolae nae MFLUCC 17-1505MT214342.1/MT214436.1/MISSING/MISSING
Apiospora vietnamensis IMI 99670KX986096.1/KX986111.1/MISSING/KY019466.1
Apiospora malaysiana CBS 102053KF144896.1/KF144942.1/KF145030.1/KF144988.1
Arthrinium euphorbiae IMI 285638bAB220241.1/MISSING/MISSING/AB220288.1
0.1
2x
2x
Fig. 10. Consensus phylogram (50 % majority rule) obtained from the maximum likelihood analysis with IQ-TREE of the Apiospora mulgene (ITS / LSU
/ tef1 / tub2) nucleode alignment of the two novel Apiospora species treated in this study. Some branches were halved to facilitate layout. Bootstrap
support values (> 79 %) from 5 000 ultrafast bootstrap replicates are shown at the nodes. GenBank accession (superscript) and / or culture collecon /
voucher numbers (in bold face when having a type status) are indicated for all species. The tree was rooted to Beltrania rhombica (culture CBS 123.58)
and the species treated in this study are highlighted with coloured blocks and bold face. Alignment stascs: 96 strains including the outgroup; 4 171
characters including alignment gaps analysed: 2 235 disnct paerns, 1 379 parsimony-informave, 365 singleton sites, 2 427 constant sites. The best
models idened in IQ-TREE were: TNe+I+G4 (ITS), TIM+F+I+G4 (LSU), HKY+F+I+G4 (tef1 and tub2).
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
277
no gaps), Arthrinium yunnanum (now Apiospora yunnana; strain
MFLUCC 18-1102, GenBank MK291950.1; Idenes = 762/774
(98 %), three gaps (0 %)), and Arthrinium ovatum (now Apiospora
ovata; strain CBS 115042, GenBank KF144995.1; Idenes =
697/765 (91 %), 23 gaps (3 %)).
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Apiospora spae Crous & R.K. Schumach., sp. nov. MycoBank
MB 839280. Fig. 11.
Etymology: Name refers to the host genus Spa from which it
was isolated.
Sporodochia on dead ssue, immersed, becoming erumpent,
semi-supercial, single to conuent, cushion-shaped, black,
dry, pulvinate. Paraphyses absent. Conidiophores cylindrical,
unbranched to simple branched, hyaline, thin- and smooth-
walled, septa red-brown, thick-walled, secession lateral and
apical, single, lacking collarees. Conidia numerous, aseptate,
lens-shaped in side view, round to polygonal (6–8) in top view,
olive brown to red-brown, thick-walled, smooth, eguulate to
guulate, with lateral germ slit over enre length of conidium,
oen with a lateral, small, hyaline pronounced hilum, examined
in water, 6.5–10.5 (length) × 6–9 (width) × 5–6 (side view) µm.
Sporulang on PDA. Mycelium consisng of smooth, hyaline,
branched, septate, 2–4 µm diam hyphae. Conidiophores reduced
to conidiogenous cells. Conidiogenous cells aggregated in clusters
on hyphae, pale brown, smooth, ampulliform, 5–8 × 3–4 µm.
Conidia in vitro (in lacc acid) brown, aseptate, smooth, granular,
globose to elongated ellipsoid in surface view, (6.5–)7–8 µm diam,
lencular in side view with pale equatorial germ slit, (4.5–)5–6 µm
in side view, with basal scar 1 µm diam; brown elongated cells
(sterile cells?) at mes intermingled among conidia.
Ascomata on host ssue (link with asexual morph unconrmed):
perithecial, on dead ssue, immersed, single, gregarious,
globose, black; peridium mul-layered, consisng of textura
prismaca-epidermoidea with thick-walled, smooth cells; inner
layers hyaline, outer layers red-brown. Paraphyses present. Asci
8-spored, clavate, inoperculate, pedicel short and furcate, 87–
101 × 17 µm. Ascospores 1-septate, hyaline, 27–30 × 8–10 µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, even margin, covering dish aer 2
wk at 25 °C. On MEA, PDA and OA surface and reverse isabelline.
Typus: Spain, Pontevedra, O Grove, on dead culm of Spa
gigantea (Poaceae), 10 Apr. 2019, M.A. Delgado, HPC 2973 =
RKS 253 (holotype CBS H-24398, culture ex-type CPC 38101 =
CBS 146804).
Notes: Numerous Arthrinium spp. occurring on diverse hosts
in Europe have recently been treated (Crous & Groenewald
2013, Pintos et al. 2019). Apiospora spae represents a new
species closely related to Arthrinium esporlense (now Apiospora
esporlensis; conidia (8–)9–12(–13) µm long; Pintos et al. 2019),
from which it is morphologically disnct. A phylogenec species
tree is presented as Fig. 10.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to “Arthrinium” sp. (strain 4936, GenBank FR667986.1;
Idenes = 490/490 (100 %), no gaps), Arthrinium esporlense
(now Apiospora esporlensis; strain 18TJAM004, GenBank
MT856406.1; Idenes = 543/560 (97 %), one gap (0 %)),
and Arthrinium qinlingense (as Arthrinium sp. NJ-2018a, now
Apiospora qinlingensis; strain JN5, GenBank MH197120.1;
Idenes = 553/571 (97 %), one gap (0 %)). Closest hits using
the LSU sequence are Arthrinium esporlense (now Apiospora
esporlensis; voucher AP16717, GenBank MK014845.1; Idenes =
836/837 (99 %), no gaps), Arthrinium phragmites (now Apiospora
phragmis; strain CPC 18900, GenBank NG_042783.1; Idenes
= 896/900 (99 %), no gaps), and Arthrinium kogelbergense
(now Apiospora kogelbergensis; strain CBS 113335, GenBank
KF144939.1; Idenes = 895/900 (99 %), no gaps) also
see Fig. 6. Closest hits using the rpb2 sequence had highest
similarity to Apiospora bambusae (strain ICMP 6889, GenBank
DQ368649.1; Idenes = 777/863 (90 %), no gaps), Apiospora
nnnabula (voucher ICMP 7019-96), GenBank DQ810235.1;
Idenes = 775/862 (90 %), no gaps), and Arthrinium yunnanum
(now Apiospora yunnana; voucher MFLU 18-1219, GenBank
MK313857.1; Idenes = 773/860 (90 %), no gaps). Closest hits
using the tef1 sequence (rst part) had highest similarity to
Arthrinium italicum (now Apiospora italica; voucher AP221017,
GenBank MK017956.1; Idenes = 327/358 (91 %), six gaps
(1 %)), Arthrinium malaysianum (now Apiospora malaysiana;
strain CBS 102053, GenBank KF145030.1; Idenes = 343/377
(91 %), four gaps (1 %)), and Arthrinium thailandicum (now
Apiospora thailandica; strain LC5630, GenBank KY705113.1;
Idenes = 323/356 (91 %), four gaps (1 %)). Closest hits using
Fig. 11. Apiospora spae (CPC 38101). A. Hyphae giving rise to conidiogenous cells with conidia. B–C. Conidiogenous cells and conidia. Scale bars =
10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
278
the tef1 (second part) sequence had highest similarity to
Arthrinium phyllostachium (as Arthrinium sp., now Apiospora
phyllostachydis; voucher MFLU 18-2333, GenBank MK313853.1;
Idenes = 893/919 (97 %), one gap (0 %)), Arthrinium yunnanum
(now Apiospora yunnana; voucher MFLU 18-1219, GenBank
MK193869.1; Idenes = 884/920 (96 %), three gaps (0 %)), and
Nigrospora globosa (as Nigrospora sp. ZZ-2018a; strain LC12441,
GenBank MK336057.1; Idenes = 858/907 (95 %), four gaps (0
%)). Closest hits using the tub2 sequence had highest similarity to
Arthrinium kogelbergense (now Apiospora kogelbergensis; strain
CBS 117206, GenBank KF144987.1; Idenes = 689/776 (89 %),
30 gaps (3 %)), Arthrinium arundinis (now Apiospora arundinis;
strain DSM 3112, GenBank AB220307.1; Idenes = 687/781
(88 %), 27 gaps (3 %)), and Arthrinium sacchari (now Apiospora
sacchari; strain ATCC 76289, GenBank AB220286.1; Idenes =
684/781 (88 %), 27 gaps (3 %)).
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Bagadiella eucalyptorum Crous & Carnegie, sp. nov. MycoBank
MB 839281. Fig. 12.
Etymology: Name refers to the host genus Eucalyptus from
which it was isolated.
Mycelium consisng of subhyaline, smooth, branched,
septate, 2–3 µm diam hyphae. Conidiomata 80–100 µm diam,
sporodochial, arising from an aggregated subhyaline mass of
hyphal cells, that give rise to a hyaline, mucoid conidial mass.
Conidiophores integrated, arising from a stroma or individual
hyphae, smooth, branched or not, with terminal and intercalary
conidiogenous cells, monophialidic, subcylindrical to lageniform,
10–15 × 2.5–3 µm, with minute collarees. Conidia borne in
mucoid heads, lunate, aseptate, curved, apex obtuse, base
truncate, hyaline, (16–)17–18(–19) × 1.5(–2) µm.
Culture characteriscs: Colonies at, spreading, with sparse to
moderate aerial mycelium and lobate, even margin, reaching 25
mm diam aer 2 wk at 25 °C. On MEA surface saron, reverse
saron to ochreous; on PDA surface saron, reverse ochreous;
on OA surface saron.
Typus: Australia, New South Wales, Belanglo State Forest,
Berrima, on leaves of Eucalyptus sp. (Myrtaceae), Aug. 2015, A.J.
Carnegie, HPC 3219 (holotype CBS H-24560, culture ex-type CPC
39299 = CBS 147177).
Notes: Species of Bagadiella are commonly isolated as
endophyc fungi from eucalypt leaves, but can also be associated
with pale yellow leaf blotches (Cheewangkoon et al. 2009, Crous
et al. 2019c). Bagadiella eucalyptorum is closely related to B.
eucalyp [conidia (12–)14–17(–21) × (1.5–)2 μm; Crous et al.
2017] and B. lunata [conidia (15–)16–18(–22) × (1.3–)1.5(–1.7);
Cheewangkoon et al. 2009]. Morphologically they are very
similar, and best disnguished based on DNA sequence data.
Also see the phylogenec species tree (Fig. 13).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Bagadiella lunata (strain CBS 124762, GenBank
NR_132832.1; Idenes = 587/602 (98 %), ve gaps (0 %)),
Bagadiella koalae (strain CBS 129523, GenBank NR_159638.1;
Idenes = 558/574 (97 %), four gaps (0 %)), and Bagadiella
victoriae (strain CPC 20195, GenBank MN161894.1; Idenes
= 585/602 (97 %), one gap (0 %)). Closest hits using the LSU
sequence are Bagadiella eucalyp (strain CBS 143497, GenBank
MN162174.1; Idenes = 842/846 (99 %), two gaps (0 %)),
Bagadiella koalae (strain CBS 129523, GenBank NG_070001.1;
Idenes = 826/831 (99 %), no gaps), and Bagadiella lunata
(strain CBS 124762, GenBank NG_058637.1; Idenes = 852/858
(99 %), two gaps (0 %)) – also see Fig. 6.
Authors: P.W. Crous, J.Z. Groenewald & A.J. Carnegie
Blastacervulus metrosideri P.R. Johnst., Fungal Syst. Evol. 3:
166. 2019. Fig. 14.
Descripon and illustraon: See Johnston & Park (2019).
Material examined: New Zealand, Tauranga Port, on leaves of
Metrosideros sp. (Myrtaceae), 22 Aug. 2019, L. Rabbidge, specimen
CBS H-24511, culture T19_05741C = CPC 38759 = CBS 147006.
Notes: Blastacervulus metrosideri was described by Johnston &
Park (2019) as a new foliar pathogen on Metrosideros excelsa in
New Zealand, causing round, red-brown to black leaf spots that
mostly occur on the upper leaf surface. The ITS sequence of CPC
38759 is a perfect match to that of the ex-type culture (ICMP
21883; GenBank NR_169959.1; 473/473 (100 %), no gaps) while
there were three gaps present compared to the LSU sequence
(GenBank NG_068290.1; 1 005/1 008 (99 %), three gaps (0 %))
– also see Fig. 1.
Authors: P.W. Crous, J.Z. Groenewald & R. Thangavel
Fig. 12. Bagadiella eucalyptorum (CPC 39299). A. Colony sporulang on OA. B–D. Developing conidiogenous cells. E. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
279
Calonectria singaporensis Crous & Decock, sp. nov. MycoBank
MB 839282. Fig. 15.
Etymology: Name refers to Singapore, the country where this
species was isolated.
Macroconidiophores comprised of a spe, a penicillate
arrangement of ferle branches, and a spe extension ending in
a terminal vesicle. Spe septate, hyaline to pale brown at base,
smooth, 50–350 µm tall. Conidiogenous apparatus with primary
branches aseptate or 1-septate, 20–30 × 6–8 µm; secondary
branches aseptate, 16–20 × 4–5 µm, and terary and addional
Bagadiella eucalyptorum sp. nov. CPC 39299
CBS 129523NR_159638.1
CPC 17725MN161891.1
CPC 17654MN161890.1
CBS 124763GQ303270.1
CPC 17688JF951141.1
CPC 30039MN161895.1
CPC 16624MN161893.1
CPC 13634MN161892.1
NY190KM216344.1
CPC 20195MN161894.1
CPC 31760MN161896.1
Bagadiella lunata CBS 124762NR_132832.1
CBS 143439NR_156394.1
CBS 143497MN161889.1
Neophysalospora eucalypti CBS 138864NR_137941.1
Clypeophysalospora latitans CBS 141463NR_153929.1
Paraphysalospora eucalypti CBS 143177NR_156658.1
Lepteutypa fuckelii CBS 140409NR_154123.1
Lepteutypa qujingensis KUMCC 19-0187NR_169986.1
Apiospora ovata CBS 115042NR_121558.1
10
Bagadiella eucalypti
Bagadiella koalae
Bagadiella victoriae
100
100
89
98
97 90
Fig. 13. The rst of 519 equally most parsimonious trees obtained from a phylogenec analysis of the Bagadiella ITS nucleode alignment. The tree
was rooted to Apiospora ovata (strain CBS 115042, GenBank NR_121558.1) and the scale bar indicates the number of changes. Parsimony bootstrap
support values higher than 79 % are shown at the nodes and the treated species is highlighted with a coloured box and bold text. GenBank accession
(superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. Branches present
in the strict consensus tree are thickened. Alignment stascs: 21 strains including the outgroup; 544 characters including alignment gaps analysed:
348 constant, 71 variable and parsimony-uninformave and 125 parsimony-informave. Tree stascs: TL = 401, CI = 0.783, RI = 0.756, RC = 0.592.
Fig. 14. Blastacervulus metrosideri (CPC 38759). A–E. Conidiogenous cells giving rise to conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
280
(–6) branches aseptate, 12–15 × 4–5 µm, each terminal branch
producing 2–4 phialides; phialides doliiform to reniform, hyaline,
aseptate, 9–15 × 3–5 µm, apex with minute periclinal thickening
and inconspicuous collaree; spe extensions septate, straight
to exuous, 90–200 µm long, 3–4 µm wide at apical septum,
terminang in sphaeropedunculate vesicle, (4–)7–12 µm diam;
lateral spe extensions common, up to 70 µm long, terminang
in small sphaeropedunculate vesicles, 4–6 µm diam. Conidia
cylindrical, rounded at both ends, straight, (33–)37–40(–41) ×
(3.5–)4(–4.5) µm, 1-septate, lacking a visible abscission scar, held
in cylindrical clusters by colourless slime. Chlamydospores dark
brown, thickened, globose, 15–30 µm diam, formed in chains
throughout the medium, and aggregated to form microscleroa.
Culture characteriscs: Colonies at, spreading, with sparse to
moderate aerial mycelium and smooth, even margin, covering
dish aer 2 wk at 25 °C. On MEA surface sienna to umber.
Typus. Singapore, Mac Ritchie Reservoir, South East Asian
rainforest, submerged leaf lier in a small stream, Dec. 2001,
C. Decock # SING365 (holotype CBS H-24749, culture ex-type
MUCL 048320 = CBS 146715).
Addional materials examined: Singapore, Mac Ritchie Reservoir, South
East Asian rainforest, submerged leaf lier in a small stream, Dec. 2001,
C. Decock # SING365, cultures CBS 146712 = MUCL 048012, CBS 146713
= MUCL 048171, CBS 146714 = MUCL 048187.
Notes: A recent revision of the genus Calonectria accepted 11
species complexes, reducing the genus to 120 species (Liu et al.
2020). Calonectria singaporensis is phylogenecally disnct from
all accepted species in the genus, represenng a new species
in the C. kyotensis species complex (Fig. 16). Morphologically,
these taxa are all very similar, sharing sphaeropedunculate
vesicles and 1-septate conidia, and are best disnguished based
on their DNA sequence data.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Calonectria syzygiicola (strain CBS 112827, GenBank
KY653281.1; Idenes = 530/531 (99 %), no gaps), Calonectria
ilicicola (strain CPC 16334, GenBank GU057378.1; Idenes
= 530/531 (99 %), no gaps), and Calonectria curvispora (strain
CBS 116159, GenBank GQ280568.1; Idenes = 530/531 (99 %),
no gaps). Closest hits using the LSU sequence are Calonectria
malesiana (strain CBS 112752, GenBank MH874470.1; Idenes
= 861/865 (99 %), no gaps), Calonectria ilicicola (strain CBS
125938, GenBank MH875288.1; Idenes = 858/862 (99 %),
no gaps), and Calonectria yunnanensis (strain CERC 5337 (R),
GenBank MT359618.1; Idenes = 853/857 (99 %), no gaps)
also see Fig. 4. Closest hits using the actA sequence had highest
similarity to Calonectria turangicola (now Calonectria kyotensis;
strain CMW 35410 (R), GenBank MT335152.1; Idenes =
228/246 (93 %), ve gaps (2 %)), Calonectria pseudoturangicola
(now Calonectria kyotensis; strain CERC 7127 (R), GenBank
MT335122.1; Idenes = 228/246 (93 %), ve gaps (2 %)),
and Calonectria kyotensis (strain CBS 114525 (R), GenBank
MT335039.1; Idenes = 228/246 (93 %), ve gaps (2 %)).
Closest hits using the cmdA sequence had highest similarity
to Calonectria malesiana (strain CMW 23687 (R), GenBank
MT335286.1; Idenes = 646/680 (95 %), two gaps (0 %)),
Calonectria turangicola (now Calonectria kyotensis; strain CMW
35410 (R), GenBank MT335389.1; Idenes = 645/680 (95 %), two
Fig. 15. Calonectria singaporensis (CBS 146715). A. Conidiophores on PNA. B–C. Conidiogenous apparatus. D. Chlamydospores. E–G. Conidiophores
with spe extensions and terminal vesicles. H. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
281
1
1
1
1
0.98
1
1
1
0.98
1
1
1
1
1
0.95
1
1
0.94
0.90
1
1
1
0.89
1
0.81
1
1
0.98
1
1
1
0.99
Curvicladiella cignea CBS 109167
Calonectria multiphialidica CMW 23688
Calonectria pseudonaviculata CMW 23672
Calonectria henricotiae CBS 138102
Calonectria multilateralis CBS 110932
Calonectria naviculata CBS 101121
Calonectria multinaviculata CBS 134858
Calonectria penicilloides CMW 23696
Calonectria canadiana CMW 23673
Calonectria montana CERC 8952
Calonectria malesiana CMW 23687
Calonectria lateralis CMW 31412
Calonectria hongkongensis CBS 114828
Calonectria turangicola CMW 31411
Calonectria pseudoturangicola CERC 7126
Calonectria kyotensis CBS 114525
Calonectria floridana CBS 114692
CBS 146712
CBS 146714
CBS 146713
CBS 146715
Calonectria indonesiae CMW 23683
Calonectria chinensis CMW 23674
Calonectria multistipitata CMW 47192
Calonectria cochinchinensis CMW 49915
Calonectria hevicola CMW 49913
Calonectria uniseptata CBS 413.67
Calonectria syzygiicola CBS 112831
Calonectria brassicicola CBS 112841
Calonectria asiatica CBS 114073
Calonectria yunnanensis CERC 5339
Calonectria pseudoyunnanensis CERC 5376
Calonectria pacifica CMW 16726
Calonectria bumicola CMW 48257
Calonectria lantauensis CERC 3302
Calonectria indonesiana CBS 112936
Calonectria sumatrensis CMW 23698
Calonectria aeknauliensis CMW 48253
Calonectria ilicicola CMW 30998
Calonectria curvispora CMW 23693
Calonectria vegrandis CMW 48245
Calonectria colombiensis CMW 23676
Calonectria magnispora CMW 35184
Calonectria sphaeropedunculata CMW 31390
Calonectria aconidialis CMW 35174
Calonectria arbusta CMW 31370
Calonectria expansa CMW 31392
Calonectria guangxiensis CMW 35409
Calonectria hainanensis CMW 35187
Calonectria parakyotensis CMW 35169
Calonectria pluriramosa CMW 31440
Calonectria pseudokyotensis CMW 31439
0.01
Calonectria singaporensis sp. nov.
Fig. 16. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Calonectria mulgene (actA / cmdA / his3 / ITS / LSU /
rpb2 / tef1 / tub2) nucleode alignment. The alignment is derived from the combined alignment of Liu et al. (2020) and GenBank accession numbers
can be obtained from the same reference. Culture numbers with a type status are in bold face and the novel species is highlighted with a coloured
box and bold text. Bayesian posterior probabilies (> 0.79) are shown at the nodes and the scale bar represents the expected changes per site. The
tree was rooted to Curvicladiella cignea (culture CBS 109167). Alignment stascs: 52 strains including the outgroup; 112 / 290 / 212 / 57 / 37 / 255
/ 241 / 307 unique site paerns, respecvely. Tree stascs: 5 928 sampled trees from 395 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
282
gaps (0 %)), and Calonectria pseudoturangicola (now Calonectria
kyotensis; strain CERC 7127 (R), GenBank MT335357.1; Idenes
= 645/680 (95 %), two gaps (0 %)). Closest hits using the his3
sequence had highest similarity to Calonectria matogrossensis
(strain GFP018, GenBank MH837652.1; Idenes = 366/412 (89
%), 20 gaps (4 %)), Calonectria pseudometrosideri (strain CBS
134843, GenBank KM396081.1; Idenes = 366/412 (89 %),
20 gaps (4 %)), and Calonectria metrosideri (strain CBS 133603,
GenBank KC294307.1; Idenes = 366/412 (89 %), 20 gaps (4
%)). Closest hits using the tef1 sequence had highest similarity to
Calonectria malesiana (strain CSF11261, GenBank MT412818.1;
Idenes = 459/490 (94 %), four gaps (0 %)), Calonectria
montana (now Calonectria canadiana; strain HSP65, GenBank
MN356469.1; Idenes = 470/502 (94 %), eight gaps (1 %)), and
Calonectria lateralis (strain CMW 47414, GenBank MH119245.1;
Idenes = 467/499 (94 %), two gaps (0 %)). Closest hits
using the tub2 sequence had highest similarity to Calonectria
pseudoturangicola (now Calonectria kyotensis; strain CERC
7131, GenBank MF443082.1; Idenes = 294/320 (92 %), seven
gaps (2 %)), Calonectria turangicola (now Calonectria kyotensis;
strain CSF11435, GenBank MT413127.1; Idenes = 294/320
(92 %), seven gaps (2 %)), and Calonectria kyotensis (strain
CSF16440, GenBank MT413019.1; Idenes = 294/320 (92 %),
seven gaps (2 %)).
Authors: P.W. Crous, J.Z. Groenewald & C. Decock
Castanediella neomalaysiana Crous, sp. nov. MycoBank MB
839283. Fig. 17.
Etymology: Name refers to the fact that it is similar to
Castanediella malaysiana.
Mycelium consisng of smooth, brown, septate, branched, 2–3
µm diam hyphae. Conidiophores arising directly from supercial
hyphae, subcylindrical, erect, straight, branched below or not,
0–4-septate, commonly also reduced to conidiogenous cells,
pale brown, smooth, 17–60 × 2.5–3.5 µm. Conidiogenous
cells integrated, pale brown, smooth, subcylindrical, terminal
and intercalary, apex swollen with cluster of aggregated
subdenculate conidiogenous loci, 0.5 µm tall and wide, 17–22
× 2.5–3 µm. Conidia solitary, aseptate, fusoid, curved, widest
in middle, tapering to subobtuse apices, hyaline, smooth,
guulate, (15–)17–19(–21) × 2(–3) µm.
Culture characteriscs: Colonies at, spreading, with sparse to
moderate aerial mycelium and smooth, lobate margin, reaching
50 mm diam aer 2 wk at 25 °C, and brown, microscleroum-
like bodies immersed in agar, but these remain sterile. On MEA
and PDA surface and reverse brown vinaceous; on OA surface
dark brick.
Typus: Malaysia, on leaves of Eucalyptus sp. (Myrtaceae), Nov.
2010, M.J. Wingeld, HPC 3228 (holotype CBS H-24547, culture
ex-type CPC 39275 = CBS 147093).
Notes: Castanediella was established by Crous et al. (2015)
to accommodate several species of Amphisphaeriales, for
which Hernández-Restrepo et al. (2017) introduced the
family Castanediellaceae. Castanediella neomalaysiana is
phylogenecally closely related to C. malaysiana (conidia
0–1-septate, 18–30 × 2–3 µm; Hernandez-Restrepo et al. 2016),
but diers in having shorter conidia. A phylogenec species tree
is presented in Fig. 18.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Castanediella sp. (strain JHGB10_4A, GenBank
MH267851.1; Idenes = 542/558 (97 %), two gaps (0
%)), Castanediella malaysiana (strain CPC 24918, GenBank
NR_154810.1; Idenes = 545/564 (97 %), two gaps (0 %)),
and Castanediella couratarii (strain CBS 579.71, GenBank
MH860269.1; Idenes = 543/565 (96 %), four gaps (0 %)).
Closest hits using the LSU sequence are Castanediella malaysiana
(strain CPC 24918, GenBank NG_067312.1; Idenes = 846/850
(99 %), two gaps (0 %)), Castanediella brevis (as Castanediella
sp.; strain LCG 10-1, GenBank MH806358.1; Idenes = 755/759
(99 %), one gap (0 %)), and Castanediella ramosa (as Idriella
ramosa; strain MUCL 39857, GenBank KC775711.1; Idenes =
814/819 (99 %), ve gaps (0 %)) – also see Fig. 6.
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Colletotrichum kinghornii Damm et al., Stud. Mycol. 73: 73.
2012. Fig. 19.
Descripon and illustraon: Damm et al. (2012).
Material examined: New Zealand, Auckland, East Tamaki, on Phormium
cookianum (Asphodelaceae), 22 Aug. 2019, C. Inglis, culture CPC 38766
= T19_05774B.
Fig. 17. Castanediella neomalaysiana (CPC 39275). A. Colony sporulang on PDA. B–C. Conidiogenous cells giving rise to conidia. D. Conidia. Scale
bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
283
NR_148074.1
Castanediella eucalyptigena CBS 143178NR_156384.1
Castanediella meliponae URM<BRA> 7933MH992664.1
Castanediella acaciae CBS 139896NR_137985.1
Castanediella ambae NFCCI 4774MN660236.1
Castanediella tereticornis CBS 145068NR_161116.1
100
100
100
100
100
96
99
92
99
89
81
98 Castanediella hyalopenicillata CBS 141510NR_156309.1
CBS 542.96NR_156294.1
CBS 101043KP859051.1
MUCL 41095K C775732.1
Castanediella ramosa MUCL 39857K C775736.1
CBS 579.71NR_145250.1
JHGB24_6AMH267852.1
Edf-4KX960789.1
Castanediella monoseptata MRC 3-1MH806360.1
Castanediella sp. ICMP 22559MK039694.1
Castanediella communis CBS 142067NR_156315.1
LTL365MF663575.1
CBS 141317NR_145254.1
LTL33MH329678.1
CBS 139897NR_137981.1
Castanediella brevis HKAS 102198NR_171284.1
Castanediella malaysiana CBS 141509NR_154810.1
Castanediella sp. JHGB10_4AMH267851.1
Castanediella neomalaysiana sp. nov. CPC 39275
CNUFC-DLHBS5-2MF926621.1
CNUFC-DLHBS5-1MF926620.1
10
Castanediella cagnizarii
Castanediella couratarii
Castanediella eucalypticola
Castanediella eucalypti
Castanediella sp.
Fig. 18. The rst of 11 equally most parsimonious trees obtained from a phylogenec analysis of the Castanediella ITS sequence alignment. The tree
was rooted to Beltrania pseudorhombica (strain CBS 138003, GenBank NR_148074.1) and the scale bar indicates the number of changes. Parsimony
bootstrap support values higher than 79 % are shown at the nodes and the treated species is highlighted with a coloured box and bold text. GenBank
accession (superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. Branches
present in the strict consensus tree are thickened. Alignment stascs: 27 strains including the outgroup; 527 characters including alignment gaps
analysed: 352 constant, 57 variable and parsimony-uninformave and 118 parsimony-informave. Tree stascs: TL = 430, CI = 0.644, RI = 0.775, RC
= 0.499.
Fig. 19. Colletotrichum kinghornii (CPC 38766). A. Ascoma developing on PNA. B–D. Asci with ascospores. Scale bars: A = 250 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
284
100
100
100
99
92
84
94
84
100
99
96
99
99
88
100
100
95
100
100
95
97
100
96
85
100
100
100
92
85
97
100
100
100
99
100
100
98
98
Monilochaetes infuscans CBS 869.96
Colletotrichum nigrum CBS 169.49
Colletotrichum coccodes CBS 369.75
Colletotrichum pleopeltidis sp. nov. CPC 39342
Colletotrichum pisicola CBS 724.97
Colletotrichum tanaceti CBS 132693
Colletotrichum lentis CBS 127604
Colletotrichum tabacum CPC 18945
Colletotrichum americae-borealis CBS 136232
Colletotrichum lini CBS 172.51
Colletotrichum destructivum CBS 136228
Colletotrichum ocimi CBS 298.94
Colletotrichum panacicola C08087
Colletotrichum utrechtense CBS 130243
Colletotrichum higginsianum IMI 349061
Colletotrichum antirrhinicola CBS 102189
Colletotrichum vignae CBS 501.79
Colletotrichum bryoniicola CBS 109849
Colletotrichum fuscum CBS 133701
Colletotrichum rusci CBS 119206
Colletotrichum trichellum CBS 217.64
Colletotrichum pseudoacutatum CBS 436.77
Colletotrichum orchidophilum CBS 632.80
Colletotrichum godetiae CBS 133.44
Colletotrichum johnstonii CBS 128532
Colletotrichum pyricola CBS 128531
Colletotrichum salicis CBS 607.94
Colletotrichum acerbum CBS 128530
Colletotrichum rhombiforme CBS 129953
Colletotrichum australe CBS 116478
Colletotrichum phormii CBS 118194
CBS 198.35
CPC 38766
Colletotrichum acutatum CBS 112996
Colletotrichum fioriniae CBS 128517
Colletotrichum brisbanense CBS 292.67
Colletotrichum chrysanthemi CBS 126519
Colletotrichum abscissum COAD 1877
Colletotrichum cuscutae IMI 304802
Colletotrichum lupini CBS 109225
Colletotrichum tamarilloi CBS 129814
Colletotrichum melonis CBS 159.84
Colletotrichum paranaense CBS 134729
Colletotrichum costaricense CBS 330.75
Colletotrichum limetticola CBS 114.14
Colletotrichum indonesiense CBS 127551
Colletotrichum sloanei IMI 364297
Colletotrichum paxtonii IMI 165753
Colletotrichum simmondsii CBS 122122
Colletotrichum cosmi CBS 853.73
Colletotrichum walleri CBS 125472
Colletotrichum laticiphilum CBS 112989
Colletotrichum carthami SAPA100011
Colletotrichum guajavae IMI 350839
Colletotrichum scovillei CBS 126529
Colletotrichum cairnsense BRIP 63642
Colletotrichum citri ZJUC41
Colletotrichum nymphaeae CBS 515.78
0.1
Colletotrichum kinghornii
Fig. 20. Consensus phylogram (50 % majority rule) obtained from the maximum likelihood analysis with IQ-TREE of the Colletotrichum mulgene
(ITS / gapdh / chs-1 / actA / tub2) nucleode alignment. Bootstrap support values (> 79 %) from 5 000 ultrafast bootstrap replicates are shown at
the nodes. The alignment is derived from the combined alignment of Marin-Felix et al. (2017) and GenBank accession numbers can be obtained
from the same reference. Culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. The tree was
rooted to Monilochaetes infuscans (culture CBS 869.96) and the species treated in this study are highlighted with coloured blocks and bold face.
Alignment stascs: 58 strains including the outgroup; 1 972 characters including alignment gaps analysed: 973 disnct paerns, 596 parsimony-
informave, 261 singleton sites, 1 115 constant sites. The best models idened in IQ-TREE were: TIM3e+I+G4 (ITS), K3P+I+G4 (gapdh), TNe+I+G4
(chs-1), HKY+F+G4 (actA), TIM2e+I+G4 (tub2).
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
285
Notes: Colletotrichum kinghornii was described based on its
asexual morph from Phormium tenax collected in Great Britain
(Damm et al. 2012). The present collecon is the rst record of
its sexual morph. A phylogenec species tree is presented as Fig.
20.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Colletotrichum kinghornii (strain CBS 198.35,
GenBank NR_111751.1; Idenes = 538/538 (100 %), no
gaps), Colletotrichum phormii (strain CBS 198.35, GenBank
DQ286144.1; Idenes = 571/571 (100 %), no gaps), and
Colletotrichum salicis (strain CBS 129973, GenBank MH865705.1;
Idenes = 578/579 (99 %), no gaps). Closest hits using the LSU
sequence are Colletotrichum kinghornii (strain CBS 198.35,
GenBank NG_069631.1; Idenes = 668/668 (100 %), no
gaps), Colletotrichum arboricola (strain CBS 144795, GenBank
NG_070064.1; Idenes = 668/668 (100 %), no gaps), and
Colletotrichum salicis (strain CBS 607.94, GenBank NG_070038.1;
Idenes = 668/668 (100 %), no gaps) also see Fig. 5. Closest hits
using the actA sequence had highest similarity to Colletotrichum
kinghornii (strain CBS 198.35, GenBank JQ949775.1; Idenes =
247/247 (100 %), no gaps), Colletotrichum kniphoae (strain CBS
143496, GenBank MH107975.1; Idenes = 622/641 (97 %), no
gaps), and Colletotrichum destrucvum (GenBank AY157843.1;
Idenes = 596/657 (91 %), 14 gaps (2 %)). Closest hits using
the gapdh sequence had highest similarity to Colletotrichum
kinghornii (strain CBS 198.35, GenBank JQ948785.1; Idenes
= 260/260 (100 %), no gaps), Colletotrichum scovillei (strain
TJNH1, GenBank XM_035479122.1; Idenes = 310/316 (98
%), one gap (0 %)), and Colletotrichum orchidophilum (strain
IMI 309357, GenBank XM_022618742.1; Idenes = 309/316
(98 %), one gap (0 %)). Closest hits using the tub2 sequence
had highest similarity to Colletotrichum kinghornii (strain CBS
198.35, GenBank JQ950105.1; Idenes = 485/486 (99 %), no
gaps), Colletotrichum phormii (strain BRIP 62862, GenBank
KX069820.1; Idenes = 650/657 (99 %), two gaps (0 %)),
and Colletotrichum rhombiforme (strain HYPG-1, GenBank
KY581595.1; Idenes = 668/683 (98 %), two gaps (0 %)).
Authors: P.W. Crous, J.Z. Groenewald & R. Thangavel
Colletotrichum pleopeldis Crous & Jol. Roux, sp. nov. MycoBank
MB 839284. Fig. 21.
Etymology: Name refers to the host genus Pleopels from which
it was isolated.
Ascomatal inials develop on media (SNA, MEA, OA, PDA), but
these remain sterile. Asexual morph on SNA. Vegetave hyphae
3–5 µm diam, hyaline to pale brown, smooth-walled, septate,
branched. Conidiomata acervular, up to 350 µm diam, with
conidiophores and setae forming on a cushion of brown, thick-
walled cells. Setae dark brown, smooth-walled, 3–5-septate,
90–150 µm long, base conical to cylindrical, 5–6 µm diam, p
subacutely rounded. Conidiophores pale to medium brown,
septate, smooth, branched, up to 60 µm long. Conidiogenous
cells pale brown, smooth, short cylindrical to ampulliform,
17–25 × 4–6 µm, with periclinal thickening and non-aring
collaree. Conidia hyaline, smooth, aseptate, cylindrical, apex
obtuse, base rounded with prominent scar, guulate, (15–)19–
23(–25) × (5–)5.5(–6) µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, lobate margin, covering dish
aer 2 wk at 25 °C. On MEA surface olivaceous grey, reverse
olivaceous grey in centre, sienna in outer region; on PDA surface
pale olivaceous grey, reverse olivaceous grey in centre, ochreous
in outer region; on OA surface ochreous.
Typus: South Africa, Limpopo Province, Louis Trichardt, Hanglip
Forest Reserve, on leaves of Pleopels sp. (Polypodiaceae), 17
Dec. 2015, J. Roux, HPC 3238 (holotype CBS H-24550, culture
ex-type CPC 39342 = CBS 147082).
Notes: Colletotrichum pleopeldis belongs to the destrucvum
complex (Damm et al. 2014) and is closely related to C. pisicola
[conidia fusoid, curved, (11–)15–21(–29.5) × (3–)3.5–4 μm], and
C. tanace [conidia cylindrical to somewhat clavate, curved,
(13–)14.5–17.5(–19) × (3–)3.5–4(–4.5) μm]. It is disnguished
based on conidium morphology and phylogeny (see Fig. 20).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Colletotrichum hsienjenchang (strain MAFF
243051, GenBank AB738855.1; Idenes = 547/566 (97 %),
ve gaps (0 %)), Colletotrichum fuscum (strain DAOM216112,
GenBank EU400144.1; Idenes = 552/572 (97 %), 11 gaps (1
%)), and Colletotrichum spaethianum (strain AJ007, GenBank
KT122848.1; Idenes = 545/565 (96 %), ve gaps (0 %)). Closest
hits using the LSU sequence are Colletotrichum destrucvum
(strain 1212, GenBank KF181215.1; Idenes = 874/878 (99
%), three gaps (0 %)), Colletotrichum oriniae (strain CBS
126509, GenBank MH875593.1; Idenes = 866/870 (99 %),
three gaps (0 %)), and Colletotrichum tamarilloi (strain CBS
Fig. 21. Colletotrichum pleopeldis (CPC 39342). A. Conidioma developing on PNA. B. Setae. C–D. Conidiogenous cells. E. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
286
129954, GenBank MH877133.1; Idenes = 877/884 (99 %),
four gaps (0 %)) – also see Fig. 5. Closest hits using the actA
sequence had highest similarity to Colletotrichum destrucvum
(GenBank AY157843.1; Idenes = 594/639 (93 %), nine gaps
(1 %)), Colletotrichum kniphoae (strain CBS 143496, GenBank
MH107975.1; Idenes = 573/635 (90 %), 13 gaps (2 %)),
and Colletotrichum kahawae (strain CIFC Que2, GenBank
KU579251.1; Idenes = 574/642 (89 %), 19 gaps (2 %)).
Closest hits using the chs-1 sequence had highest similarity to
Colletotrichum panacicola (strain YL2-2, GenBank MN894862.1;
Idenes = 267/283 (94 %), no gaps), Colletotrichum lineola
(strain TYJ77301-7, GenBank MN894858.1; Idenes = 267/283
(94 %), no gaps), and Colletotrichum neorubicola (strain CCR144,
GenBank MK547526.1; Idenes = 266/283 (94 %), no gaps).
Authors: P.W. Crous, J.Z. Groenewald & J. Roux
Coniochaeta deborreae Hern.-Restr. sp. nov. MycoBank MB
838706. Fig. 22.
Etymology: Named aer the collector, Kirsten de Borre, a student
from the VISO Cor Mariae secondary school (Brakel, Belgium).
This sample was collected during a Cizen Science project of the
Westerdijk Fungal Biodiversity Instute.
Fig. 22. Coniochaeta deborreae (CBS 147215). A–B. Colony on MEA. C–D. Colony on OA. E–F. Colony on PDA. G–J. Conidiogenous cells and conidia. K.
Conidia. L–M. Chlamydospores. Scale bars G–M = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
287
Vegetave hyphae septate, branched, hyaline to subhyaline,
thin- and smooth-walled, 1–3 μm wide. Conidiophores reduced
to conidiogenous cells. Conidiogenous cells terminal, lateral
or intercalary, mono- or polyphialidic, cylindrical, ampulliform
or ventricose, nearly globose, 4–11 × 2–3.5 μm, hyaline, with
conspicuous periclinal thickening and disnguishable, usually
cylindrical collarees, 1–2 × 1–1.5 μm. Conidia aseptate, hyaline,
smooth-walled, ellipsoidal to oblong, with rounded apex and
truncate base, 2.5–4 × 1.5–2 μm. Chlamydospores solitary or in
short chains, subglobose, pale brown, 6.5–13 × 5–9 μm.
Culture characteriscs: Colonies aer 2 wk at 25 °C on OA
reaching 80 mm diam, glabrous, zonate centre vinaceous grey,
olivaceous to fawn with saron zones, margin euse; reverse
fawn to saron. On MEA reaching 45 mm diam, velvety, zonate
centre fulvous to saron, margin irregular, lobate to mbriate;
reverse fulvous to saron. On PDA reaching 40 mm diam, velvety,
zonate, concentric circles and radial folds, umbers, cinnamon,
ochreous to fulvous, margin lobate; reverse umber to fulvous;
diusible pigment ochreous.
Typus: Belgium, East Flanders, Brakel, from soil, 2019, K. De
Borre, BE19_001 (holotype CBS H-24732, culture ex-type CBS
147215 = BE19_001008).
Addional material examined: Norway, Móre og Romsdal, on Pinus
sylvestris wood, 31 Jul. 1974, K. Venn No. 74-55/7, culture CBS 551.75.
Notes: Coniochaeta deborreae is phylogenecally (Fig. 23)
related to C. boothii, C. pulveraceae, C. subcorcalis, and C.
rhopalochaeta. All these species were described as sexual
morphs, except for C. rhopalochaeta that was described with
both sexual and asexual morphs from decorcated wood
of Bulnesia retama from Argenna (Romero et al. 1999).
Coniochaeta deborreae diers from C. rhopalochaeta by having
smaller conidiogenous cells (4–11 × 2–3.5 vs. 10–18 × 3.5–5 µm)
and smaller conidia [2.5–4 × 1.5–2 μm vs. 5–8 × 3–5µm (Romero
et al. 1999)]. Also see the overview phylogeny (Fig. 5).
Coniochaeta deborrae is represented by two strains
respecvely isolated from soil in Belgium (CBS 147215) and
Pinus sylvestris wood in Norway (CBS 551.75). However, isolate
CBS 551.75 was inially idened as Phialophora mutabilis
(described from river water, the Netherlands). This isolate
was later found to be a species of Coniochaeta, and idened
as C. subcorcalis (known from Alnus glunosa, Germany) as
it occurred on Pinaceae. Morphologically, it is not possible to
compare the present strain CBS 147215, nor CBS 551.75 with C.
subcorcalis, as both species only form asexual structures, and
DNA data are not available for C. subcorcalis.
0.03
Coniochaeta pulveracea CBS 114628this study/GQ351560.1
Coniochaeta mutabilis CBS 157.44HE610334/AF353604
Coniochaeta decumbens CBS 153.42HE610337/HE610463
Phialemonium limoniforme CBS 139049NR_171813.1/MH877677.1
Coniochaeta rhopalochaeta CBS 109872this study/GQ351561.1
Coniochaeta hoffmannii CBS 245.38 HE610332/FR691982
Coniochaeta lignicola CBS 267.33HE610335/FR691986
Phialemonium obovatum CBS 279.76HE610365/FR691997
CBS 147215
Coniochaeta fasciculata CBS 205.38HE610336/FR691988
Coniochaeta boothii CBS 381.74NR_159776.1/AJ875226.1
Coniochaeta prunicola CBS 120875NR_137037.1/NG_066151.1
Coniochaeta luteoviridis CBS 206.38HE610333/FR691987
Coniochaeta cateniformis UTHSC 01-1644HE610331/HE610329
Coniochaeta luteorubra UTHSC 01-20 HE610330/HE610328
CBS 551.75
Coniochaeta deborrae sp. nov.
89
70
97
93
81
98
Fig. 23. Maximum composite likelihood tree obtained from the RAxML analysis of the combined ITS and LSU sequence alignment of selected
Coniochaeta species. Bootstrap support values above 70 % are shown at the nodes. The novel species is indicated in a coloured block and bold
face. The tree was rooted to Phialemonium limoniforme (CBS 139049) and Ph. obovatum (CBS 279.76). Alignment stascs: 16 strains including the
outgroup; 930 characters including alignment gaps analysed (ITS: 495, LSU: 435). Model: GTR+G, alignment paerns: 400.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
288
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had the most
similar idened species was Coniochaeta boothii (strain KoLRI_
EL005219, GenBank NR_159776.1; Idenes = 496/505 (98
%), two gaps (0 %)), C. cipronana (strain CBS 144016, GenBank
NR_157478.1; Idenes = 495/529 (94 %), 17 gaps (3 %)), and
C. arenariae (strain MFLUCC 18-0409, GenBank MN047126.1;
Idenes = 492/526 (94 %), 14 gaps (2 %)). Closest hits using
the LSU sequence are Coniochaeta taeniospora (strain LTA1,
GenBank KU762325.; Idenes = 792/814 (97 %), no gaps), C.
leucoplaca (strain Jong54, GenBank FJ167399.1; Idenes =
771/793 (97 %), no gaps), and C. marina (strain MFLUCC 18-0408,
GenBank MK458765.1; Idenes = 791/814 (97 %), no gaps)
also see Fig. 5. Closest hits using the tef1 are Coniochaeta rosae
(strain MFLUCC 17-0810, Genbank MG829197.1; Idenes =
827/894 (93 %), three gaps (0 %)), Coniochaeta endophyca
(strain AEA 9094, Genbank MK693159.1; Idenes = 806/872
(92 %), no gaps), and Coniochaeta baysunika (strain MFLUCC 17-
0830, Genbank MG829196.1; Idenes = 826/894 (92 %), three
gaps (0 %)).
Author: M. Hernández-Restrepo
Diaporthe durionigena L.D. Thao, L.T. Hien, N.V. Liem, H.M.
Thanh & T.N. Khanh, sp. nov. MycoBank MB 839285.
Synonym: Diaporthe durionigena L.D. Thao et al., Persoonia 44:
385. 2020, nom. inval. Art. 40.8 (Shenzhen).
Diagnosis: See Persoonia 44: 385. 2020 (Crous et al. 2020c).
Typus: Vietnam, Central Highlands, Dak Lak, on branches of
Durio zibethinus (Malvaceae), Dec. 2018, L.D. Thao (holotype
specimen VTCC 930005, preserved as metabolically inacve
culture, culture ex-type KCSR1812.8 = VTCC 930005).
Note: Diaporthe durionigena is herewith validated, as the original
descripon did not state that the holotype was preserved as a
metabolically inacve culture.
Authors: L.D. Thao, L.T. Hien, N.V. Liem, H.M. Thanh & T.N. Khanh
Endoconidioma euphorbiae Crous, Persoonia 45: 301. 2020. Fig.
24.
Descripon and illustraon: Crous et al. (2020a).
Material examined: South Africa, Western Cape Province,
Nieuwoudtville, p dieback on Euphorbia mauritanica (Euphorbiaceae),
2018, P.W. Crous, HPC 3069, culture CPC 38649.
Notes: Endoconidioma euphorbiae is a morphologically highly
variable fungus commonly associated with leaf spots and
dieback on Brunsvigia and Euphorbia (Crous et al. 2020a), and
easily confused with E. leucospermi on Proteaceae (Taylor &
Crous 2001, Crous et al. 2013a).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Endoconidioma euphorbiae (strain CPC 38551,
GenBank MW175350.1; Idenes = 590/590 (100 %), no gaps),
Endoconidioma leucospermi (as Coniozyma leucospermi; strain
CBS 111289, GenBank EU552113.1; Idenes = 577/590 (98 %),
four gaps (0 %)), and Hormonema carpetanum (strain 235J14,
GenBank KU516485.1; Idenes = 561/574 (98 %), four gaps
(0 %)). Closest hits using the LSU sequence are Endoconidioma
euphorbiae (strain CPC 38551, GenBank MW175390.1;
Idenes = 840/840 (100 %), no gaps), Endoconidioma
leucospermi (as Coniozyma leucospermi; strain CBS 111289,
GenBank EU552113.1; Idenes = 836/841 (99 %), no gaps),
and Hormonema carpetanum (strain ATCC 74360, GenBank
MF611880.1; Idenes = 835/841 (99 %), no gaps) – also
see Fig. 1. Closest hits using the rpb2 sequence had highest
similarity to Hormonema carpetanum (strain ATCC 74360,
GenBank MF611881.1; Idenes = 830/938 (88 %), three
gaps (0 %)), Dothidea sambuci (strain CBS 198.58, GenBank
KT216559.1; Idenes = 768/945 (81 %), 17 gaps (1 %)), and
Dothidea insculpta (strain CBS 189.58, GenBank AF107800.1;
Idenes = 761/944 (81 %), 15 gaps (1 %)). Closest hits
using the tef1 (second part) sequence had highest similarity
to Hormonema carpetanum (strain ATCC 74360, GenBank
MF611882.1; Idenes = 441/468 (94 %), no gaps), Alternaria
septospora (strain CBS 109.38, GenBank JQ672442.1; Idenes
= 436/469 (93 %), two gaps (0 %)), and Alternaria smyrnii (strain
EGS 37-093, GenBank JQ672454.1; Idenes = 435/469 (93 %),
two gaps (0 %)). No signicant hits were obtained when the
actA and tub2 sequences were used in blastn and megablast
searches.
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Flammocladiella anomiae Lechat & J. Fourn., Ascomycete.org
11(6): 239. 2019. Fig. 25.
Fig. 24. Endoconidioma euphorbiae (CPC 38649). A. Colony sporulang on OA. B–C. Conidiogenous cells. D. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
289
On SNA. Mycelium consisng of hyaline, smooth, branched,
septate, 2.5–3 µm diam hyphae. Conidiophores solitary or
aggregated into orange sporodochia. Conidiophores hyaline,
smooth, mulseptate, branched, subcylindrical, 30–130 ×
4–5 µm. Conidiogenous cells terminal and intercalary, 10–55
× 3–4 µm, proliferang sympodially, scars truncate, 2–3 µm
diam. Conidia solitary, hyaline, smooth, granular to guulate,
straight to slightly curved, subcylindrical to narrowly obclavate,
apex obtuse to subobtuse, base truncate, 1.5–2 µm diam,
(1–)3-septate, (20–)30–35(–45) × (3.5–)4–5 µm.
Culture characteriscs: Colonies erumpent, spreading, with
moderate aerial mycelium and smooth, lobate margin, reaching
10 mm diam (on MEA and PDA), 20 mm diam on OA aer 2 wk at
25 °C. On MEA surface salmon to dirty white, reverse ochreous;
on PDA surface salmon, reverse saron; on OA surface salmon.
Material examined: Ukraine, Okhtyrka district, NNP Hetmanskyi, Sumska
Dibrova, Klymentove village, dead branch of Robinia pseudoacacia
(Fabaceae), occurring on conidiomata of Diaporthe oncostoma, 5 Aug.
2019, A. Akulov, HPC 2529, CWU AS 6855 (CBS H-24358, culture CPC
36302 = CBS 146685).
Notes: According to Voglmayr & Jaklitsch (2011), Massaria
spp. are highly host-specic, with M. anomia being the only
species occurring on Fabaceae (on ascomata of Massaria
anomia on a branchlet of Robinia pseudoacacia). Lechat
et al. (2019) speculated that F. anomiae is host-specic on
Massaria anomia. In this regard, collecng M. anomiae
on conidiomata of Diaporthe oncostoma is unusual,
although the host plant was also a dead branch of Robinia
pseudoacacia, suggesng some associaon with the host.
The possibility exists that ascomata of M. anomia were poorly
developed, and therefore not seen at the me of isolaon.
On MEA cultures formed large orange sporodochia, with
conidia becoming longer and thinner, subcylindrical, apex
obtuse, base truncate, 1.5–2 µm, exuous, up to 8-septate,
(50–)65–75(–80) × 3–4 µm. Conidia of Flammocladiella
anomiae are reported to be smaller, namely 1–3-septate,
smooth, (30–) 37–45(–48) × 2–2.5 μm (Lechat et al. 2019).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Flammocladiella anomiae (as Flammocladiella sp.
CL-2019a; voucher JF17087, GenBank MN597423.1; Idenes
= 522/524 (99 %), no gaps), Ijuhya vitellina (strain DSM 104494,
GenBank NR_154100.1; Idenes = 522/584 (90 %), 19 gaps (3 %)),
and Ijuhya corynospora (strain CBS 342.77, GenBank KY607539.1;
Idenes = 525/588 (89 %), 27 gaps (4 %)). Closest hits using the
LSU sequence are Flammocladiella anomiae (as Flammocladiella
sp. CL-2019a; voucher CLL16017, GenBank MN597426.1;
Idenes = 846/846 (100 %), no gaps), Flammocladiella aceris
(strain CBS 138906, GenBank NG_058175.1; Idenes = 816/830
(98 %), no gaps), and Ijuhya parilis (strain CBS 136677, GenBank
KY607558.1; Idenes = 824/846 (97 %), no gaps) – also see Fig.
4. The tef1 sequence generated in this study is idencal to those
of Flammocladiella anomiae generated for CBS 144256 and CBS
142775 (464/464 and 342/342, respecvely). The tub2 sequence
generated in this study is also idencal to that of Flammocladiella
anomiae strain CBS 144256 (526/526).
Authors: P.W. Crous, J.Z. Groenewald & A. Akulov
Floricola juncicola Crous & R.K. Schumach., sp. nov. MycoBank
MB 839286. Fig. 26.
Etymology: Name refers to the host genus Juncus from which it
was isolated.
Conidiomata pycnidial, separate, globose, dark brown with
central osole, 180–200 µm diam. Peridium mul-layered, inner
layers hyaline, outer layers brownish. Conidiophores reduced
to conidiogenous cells lining the inner cavity, subcylindrical to
doliiform, hyaline to pale brown, smooth to nely roughened,
proliferang percurrently at apex, at mes bifurcate at apex,
with two loci, 5–15 × 3–4 µm. Conidia solitary, subcylindrical,
apex subobtuse, tapering in lower third to truncate, unthickened
hilum, 2–3 µm diam, olive to yellow-brown, with 1-2 dierent
sized guules per cell, with longitudinal striaons covering
the length of conidial body, ornamentaon parally branched,
(0–)3(–5)-septate in vitro, 7–10-septate, with septa golden, thick-
walled and constricted in vivo, (48–)55–65(–80) × (5–)6(–7) µm.
Culture characteriscs: Colonies erumpent, spreading, with
moderate aerial mycelium and smooth, lobate margin, reaching
25 mm diam aer 2 wk at 25 °C. On MEA surface dirty white,
reverse isabelline in centre, cinnamon in outer region; on PDA
Fig. 25. Flammocladiella anomiae (CPC 36302). A–C. Conidiogenous cells giving rise to conidia. D. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
290
surface dirty white, reverse olivaceous grey; on OA surface
olivaceous grey.
Typus: France, La-Chaise-Dieu, on dead culm of Juncus sp.
(Juncaceae), 24 Apr. 2019, A. Gardiennet, HPC 2970 = RKS 252
= AG19065 (holotype CBS H-24406, culture ex-type CPC 38197
= CBS 146811).
Notes: Jaklitsch et al. (2016) regarded several genera with
aposphaeria-, coniothyrium-, or phoma-like asexual morphs
as synonyms of Teichospora, presenng a new concept of
a large, morphologically diverse genus represenng the
Teichosporaceae. This approach was however rejected by
Boonmee et al. (2019), who recognised 14 genera in the family.
Floricola juncicola clusters in the Teichosporaceae, being allied
to Floricola clemadis (conidia 13–21 × 5–7 μm), from which it is
disnct based on its conidial morphology. This also disnguishes
it from other taxa in the genus (Phukhamsakda et al. 2020). A
phylogenec tree is presented as Fig. 27.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Teichospora mariae (strain C134m, GenBank
KU601580.1; Idenes = 530/591 (90 %), 19 gaps (3 %)),
Floricola clemadis (as Teichospora sp. CP-2020b; strain
MFLUCC 17-2182, GenBank MT310638.1; Idenes = 451/481
(94 %), ve gaps (1 %)), and Teichospora kingiae (strain CPC
29104, GenBank NR_154656.1; Idenes = 508/567 (90
%), 17 gaps (2 %)). Closest hits using the LSU sequence are
Paulkirkia arundinis (as Teichosporaceae sp. DW-2016a; strain
MFLUCC 12-0328, GenBank KU848206.1; Idenes = 872/894
(98 %), three gaps (0 %)), Floricola clemadis (as Teichospora
sp. CP-2020b; strain MFLUCC 17-2182, GenBank MT214594.1;
Idenes = 855/877 (97 %), two gaps (0 %)), and Teichospora
kingiae (strain CPC 29104, GenBank NG_059761.1; Idenes =
782/804 (97 %), two gaps (0 %)) – also see Fig. 1. No signicant
hits were obtained when the tef1 (rst part) sequence was used
in blastn and megablast searches. Closest hits using the tef1
(second part) sequence had highest similarity to Ramusculicola
thailandica (as Teichospora thailandica; strain MFLUCC 17-
2093, GenBank MT394653.1; Idenes = 840/908 (93 %), ve
gaps (0 %)), Rhydhysteron rufulum (voucher MFLU 18-2190,
GenBank MK360087.1; Idenes = 847/918 (92 %), six gaps
(0 %)), and Ramusculicola clemadis (strain MFLUCC 17-2146,
GenBank MT394652.1; Idenes = 830/905 (92 %), ve gaps (0
%)). Closest hits using the rpb2 sequence had highest similarity
to Teichospora mariae (strain C136, GenBank KU601595.1;
Idenes = 558/648 (86 %), two gaps (0 %)), Teichospora striata
(strain JK 5678I, GenBank GU371758.1; Idenes = 493/610
(81 %), four gaps (0 %)), and Cenococcum geophilum (strain
OS21018, GenBank LC095396.1; Idenes = 291/368 (79 %), six
gaps (1 %)).
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Harzia tenella (Berk. & M.A. Curs) D.W. Li & N.P. Schultes, Fung.
Biol. 121: 900. 2017. Fig. 28.
Basionym: Rhinotrichum tenellum Berk. & M.A. Curs, Grevillea
3 (27): 109. 1875.
Descripon and illustraon: Schultes et al. (2017).
Material examined: South Africa, Western Cape Province,
Nieuwoudtville, on stems of Grielum humifusum (Neuradaceae), 2018,
P.W. Crous, HPC 3043, culture CPC 38667.
Notes: In a study by Schultes et al. (2017), Harzia (1888)
was shown to have priority over Olpitrichum (1894) and
Chlamydomyces (1907), leading to the new combinaon H.
tenella, which is here reported from Grielum humifusum in
South Africa.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Harzia tenella (as Olpitrichum tenellum; strain
CBS 121.81, GenBank KY628696.1; Idenes = 605/607 (99
%), no gaps), Harzia verrucosa (strain CBS 113456, GenBank
KY628674.1; Idenes = 604/607 (99 %), one gap (0 %)), and
Harzia patula (strain CBS 379.88, GenBank NR_161009.1;
Idenes = 602/608 (99 %), one gap (0 %)). Closest hits using
the LSU sequence are Harzia macrospora (strain CBS 343.67,
GenBank MH870687.1; Idenes = 841/841 (100 %), no gaps),
Harzia verrucosa (strain CBS 113456, GenBank KY628675.1;
Idenes = 841/841 (100 %), no gaps), and Harzia acremonioides
(strain CBS 101.42, GenBank NG_067322.1; Idenes = 841/841
(100 %), no gaps) – also see Fig. 5.
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Fig. 26. Floricola juncicola (CPC 38197). A–D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
291
Sporormiaceae
Lophiostomataceae
Teichosporaceae
1
1
1
1
1
0.98
0.99
0.87
1
0.88
1
1
1
0.99
0.89
0.94
0.91
0.90
0.95
0.95
0.94
1
1
1
0.97
0.99
1
1
1
1
0.89
1
1
1
Melanomma pulvis-pyrius CBS 124080MH874873.1/MH863349.1/GU456265.1
Preussia lignicola CBS 264.69GU301872.1/MISSING/GU349027.1
Preussia funiculata CBS 659.74GU301864.1/MISSING/GU349032.1
Westerdykella dispersa CBS 508.75DQ384099.1/GQ203798.1/MISSING
Westerdykella ornata CBS 379.55GU301880.1/MH857522.1/MISSING
Lophiostoma caulium CBS 623.86GU301833.1/MISSING/MISSING
Lophiostoma compressum KT 534JN941379.1/JN942962.1/MISSING
Lophiostoma angustilabrum var. crenatum CBS 629.86DQ678069.1/MISSING/DQ677912.1
Lophiostoma macrostomum KT 508AB619010.1/JN942961.1/MISSING
Ramusculicola clematidis MFLUCC 17-2146MT214596.1/NR_170816.1/MT394652.1
Ramusculicola thailandica MFLUCC 13-0284KP888647.1/KP899141.1/KR075167.1
Ramusculicola thailandica MFLUCC 10-0126KP888644.1/KP899138.1/KR075170.1
Asymmetrispora tennesseensis ANM 911GU385207.1/MISSING/GU327769.1
Asymmetrispora mariae CBS 124079JN851819.1/MISSING/KR075166.1
Asymmetrispora mariae C139KU601582.1/KU601582.1/KU601615.1
Asymmetrispora mariae C136KU601581.1/KU601581.1/KU601611.1
Pseudomisturatosphaeria cruciformis SMH 5151GU385211.1/MISSING/MISSING
Floricola juncicola sp. nov. CPC 38197
Floricola clematidis MFLUCC 17-2182MT214594.1/MT310638.1/MT394651.1
Floricola viticola MFLUCC 15-0039KT305993.1/KT305997.1/MISSING
Floricola striata JK 5678IGU301813.1/MISSING/GU479852.1
Floricola striata JK 5603KGU479785.1/MISSING/MISSING
“Teichospora” kingiae CPC 29104NG_059761.1/NR_154656.1 /MISSING
Paulkirkia arundinis MFLUCC 12-0328KU848206.1/MISSING/MISSING
Pseudoaurantiascoma kenyense GKM L100NaGU385189.1/MISSING/GU327766.1
Pseudoaurantiascoma kenyense GKM 1195GU385194.1/MISSING/GU327767.1
“Teichospora” nephelii CPC 27539NG_059762.1/NR_154657.1/MISSING
Magnibotryascoma mali MFLUCC 17-0933MF173429.1/MF173433.1/MF173435.1
Macrodiplodiopsis desmazieri MFLUCC 12-0088KF531927.1/MISSING/MISSING
Misturatosphaeria aurantiacinotata GKM 1280GU385174.1/MISSING/GU327762.1
Misturatosphaeria aurantiacinotata GKM 1238NG_059927.1 /MISSING/GU327761.1
Misturatosphaeria radicans ATCC 42522U43479.1/MISSING/MISSING
Misturatosphaeria radicans SMH 4330GU385167.1/MISSING/GU327770.1
Misturatosphaeria viridibrunnea MFLUCC 10-0930MH940252.1/MH940251.1/MISSING
“Teichospora” quercus CBS 143396NG_067335.1/NR_159069.1/MISSING
Aurantiascoma minimum ANM 933GU385195.1/MISSING/MISSING
Aurantiascoma minimum ANM 60GU385182.1/MISSING/MISSING
Aurantiascoma minimum SMH 2448GU385166.1/MISSING/MISSING
Aurantiascoma minimum GKM 169NGU385165.1/MISSING/GU327768.1
Magnibotryascoma melanommoides CBS 140733KU601585.1/KU601585.1/KU601610.1
Magnibotryascoma acaciae CPC 24801KR611898.1/KR611877.1/MISSING
Magnibotryascoma uniseriatum ANM 909GU385206.1/MISSING/MISSING
Magnibotryascoma rubriostiolata CBS 140734KU601590.1/KU601590.1/KU601609.1
Magnibotryascoma rubriostiolata TR5KU601589.1/KU601589.1/KU601606.1
Magnibotryascoma rubriostiolata C158KU601587.1/KU601587.1/KU601607.1
Teichospora claviformis GKM 1210GU385212.1/MISSING/GU327763.1
Teichospora grandicipis CBS 111702JN712521.1/JN712457.1/MISSING
Teichospora grandicipis CBS 114272JN712520.1/JN712456.1/MISSING
Teichospora proteae CBS 122675EU552117.1/EU552117.1/MISSING
Teichospora austroafricana CBS 122674EU552116.1/EU552116.1/MISSING
Teichospora austroafricana CBS 119330EU552115.1/EU552115.1/MISSING
Teichospora pusilla CBS 140731KU601586.1/KU601586.1/KU601605.1
Teichospora trabicola CBS 140730KU601591.1/KU601591.1/KU601601.1
Teichospora trabicola C157KU601593.1/KU601593.1/KU601604.1
Teichospora trabicola C141KU601592.1/KU601592.1/KU601603.1
0.1
Fig. 27. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Teichosporaceae mulgene (LSU / ITS / tef1) nucleode
alignment. Bayesian posterior probabilies (> 0.79) are shown at the nodes and the scale bar represents the expected changes per site. Families are
indicated with coloured blocks to the right of the tree. GenBank accession (superscript) and / or culture collecon / voucher numbers (in bold face
when having a type status) are indicated for all species. The tree was rooted to Melanomma pulvis-pyrius (culture CBS 124080) and the novel species
treated in this study is indicated in a coloured block and bold face. Alignment stascs: 55 strains including the outgroup; 200, 315 and 359 unique
site paerns, respecvely. Tree stascs: 403 502 sampled trees from 1 345 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
292
Haudseptoria Crous & R.K. Schumach., gen. nov. MycoBank MB
839287.
Etymology: Name refers to the fact that it is morphologically
similar to Septoria.
Conidiomata pycnidial, erumpent to semi-supercial, dark
brown, globose, with central osole; wall in upper region of
brown textura angularis, in lower region of pale brown cells,
concolourous with host ssue. Conidiophores reduced to
conidiogenous cells, ampulliform to subcylindrical, smooth,
proliferang sympodially at apex. Conidia solitary, hyaline,
smooth, guulate, subcylindrical, apex subobtuse, base
truncate, transversely 1–7-septate.
Type species: Haudseptoria typhae Crous & R.K. Schumach.
Haudseptoria typhae Crous & R.K. Schumach., sp. nov.
MycoBank MB 839288. Fig. 29.
Etymology: Name refers to the host genus Typha from which it
was isolated.
Conidiomata erumpent to semi-supercial, dark brown, globose,
100–150 µm diam with central osole, 10–15 µm diam; wall
in upper region of brown textura angularis, in lower region of
pale brown cells, concolourous with host ssue. Conidiophores
reduced to conidiogenous cells, ampulliform to subcylindrical,
smooth, 5–12 × 2–3 µm, proliferang sympodially at apex.
Conidia solitary, hyaline, smooth, guulate, subcylindrical, apex
subobtuse, base truncate, liform, straight to slightly curved,
(1–)3-septate, septa thin-walled, (16–)20–23(–27) × 2(–2.5) µm
in vivo; 35–90 × 3 µm, 3–7-septate in vitro.
Culture characteriscs: Colonies erumpent, spreading, with
sparse aerial mycelium and smooth, even margin, reaching
12 mm diam aer 2 wk at 25 °C. On MEA surface bu, reverse
cinnamon; on PDA surface cinnamon, reverse honey with
patches of cinnamon; on OA surface bu.
Typus: Germany, near Berlin, moist meadow, on dead leaf
sheath of Typha sp. (Typhaceae), 17 Apr. 2019, R.K. Schumacher,
HPC 2978 = RKS 249 (holotype CBS H-24407, culture ex-type CPC
38203 = CBS 146790).
Notes: Haudseptoria represents a new septoria-like genus
(Verkley et al. 2013) related to Pseudopassalora gouriqua
(hyphomycete on Protea suzannae, South Africa; Crous et al.
2011), and Phellinocrescena guianensis (coelomycete with
aseptate conidia, on polypores in French Guiana; Crous et al.
2014).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Didymosphaeria fulis (strain CMW 22186,
GenBank EU552123.1; Idenes = 487/521 (93 %), 13 gaps
(2 %)), Italiofungus phillyreae (strain CPC 35566, GenBank
MT223804.1; Idenes = 446/499 (89 %), 16 gaps (3 %)), and
Funbolia dimorpha (strain CPC 14170, GenBank JF951136.1;
Fig. 28. Harzia tenella (CPC 38667). A–D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars = 10 µm.
Fig. 29. Haudseptoria typhae (CPC 38203). A. Conidioma on host ssue. B. Conidiomatal osole. C. Conidiogenous cells giving rise to conidia. D.
Conidia. Scale bars: A = 150 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
293
Idenes = 405/467 (87 %), 18 gaps (3 %)). Closest hits using the
LSU sequence are Pseudopassalora gouriqua (strain CBS 101954,
GenBank NG_067272.1; Idenes = 785/808 (97 %), no gaps),
Italiofungus phillyreae (strain CPC 35566, GenBank MT223899.1;
Idenes = 784/808 (97 %), no gaps), and Eriomyces heveae
(strain MFLUCC 17-2232, GenBank MH109524.1; Idenes =
779/810 (96 %), two gaps (0 %)) – also see Fig. 1. No signicant
hits were obtained when the tub2 sequence was used in blastn
and megablast searches.
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Heimiodora vercillata Nicot, Ann. Sci. Nat., Bot. Biol. Vég., sér.
12: 384. 1960. Fig. 30.
Descripon and illustraon: See Nicot & Parguey (1960).
Material examined: Namibia, Walvis Bay, on Salvadora persica
(Salvadoraceae), 20 Nov. 2019, P.W. Crous, HPC 3120, CBS H-24533,
cultures CPC 39015 = CBS 147089.
Notes: Heimiodora vercillata was originally isolated from sandy
coastal soil in Thailand (Nicot & Parguey 1960; ex-type CBS
201.60), and its ecology has remained rather obscure. Isolang
the same fungus from twig lier of a Salvadora persica growing
on the dry desert coast in Walvis Bay, Namibia, suggests that
this fungus could prefer a dry arid environment. A specimen
of this fungus has also been reported from fallen leaves of a
Salvadora sp. growing in Kasur, Pakistan (BPI 1100673). The
host, Salvadora, is known to occur in dry environments, which
could give a hint to the ecology of H. vercillata. The ITS and LSU
sequences of CPC 39015 are a perfect match to those of the ex-
type culture (CBS 201.60; GenBank MH857955.1; 554/554 (100
%), no gaps, and GenBank MH869505.1; 833/833 (100 %), no
gaps, respecvely) – also see Fig. 4.
Authors: P.W. Crous, D.A. Cowan, G. Maggs-Kölling, E. Marais, N.
Yilmaz & M.J. Wingeld
Hogelandia Hern.-Restr., gen. nov. MycoBank MB 838707.
Etymology: Named aer the school where the sample was
collected, Het Hogeland College (Warum, the Netherlands).
This sample was collected during a Cizen Science project of the
Westerdijk Fungal Biodiversity Instute.
Vegetave hyphae hyaline, septate, smooth. Conidiophores
micronematous, mostly reduced to conidiogenous cells.
Conidiogenous cells monoblasc, subcylindrical, smooth,
hyaline. Secession rhexolyc. Conidia hyaline, smooth, thick-
walled, globose to subglobose, somemes in short chains, base
with a cylindrical to cuneiform cell.
Type species: Hogelandia lambearum Hern.-Restr.
Hogelandia lambearum Hern.-Restr., sp. nov. MycoBank MB
838708. Fig. 31.
Etymology: Name includes the inials of the collectors Lara
Alssema and Meike van Berkel, students from Het Hogeland
College (Warum, the Netherlands). This sample was collected
during a Cizen Science project of the Westerdijk Fungal
Biodiversity Instute.
Vegetave hyphae hyaline, septate, smooth, 1.5–4 µm.
Conidiophores micronematous, mostly reduced to conidiogenous
cells. Conidiogenous cells monoblasc, subcylindrical, smooth,
hyaline, 5–10.5 × 2–3 µm. Secession rhexolyc. Conidia hyaline,
smooth, thick-walled, globose to subglobose, somemes in short
chains, 8–14 µm diam, base with a cylindrical to cuneiform cell.
Culture characteriscs: Aer 1 wk at 25 °C on OA reaching 52 mm
diam, zonate, coony, white, with moderate aerial mycelium
and glabrous zones at the centre, margin enre, regular. On MEA
reaching 53 mm diam, zonate, white, margin regular, reverse
ochreous.
Typus: Netherlands, Groningen Province, Warum, Het
Hogeland College, from soil, 6 Jun. 2019, L. Alssema & M. van
Berkel, NL19_027 (holotype CBS H-24733, culture ex-type CBS
147626 = NL19_27007).
Notes: Hogelandia is phylogenecally related to Ascodesmis,
Eleutherascus and Cephaliophora in Pezizomycetes (Fig. 3).
Species of these genera are also found in soil and dung samples
(Guarro et al. 2012). Members of Ascodesmis, Eleutherascus
Fig. 30. Heimiodora vercillata (CPC 39015). A. Sporulaon on SNA. B. Setae. C. Chlamydospores. D–E. Conidiogenous cells. F. Conidia. Scale bars =
10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
294
and Cephaliophora are all described as sexual morphs, except
for E. tuberculata that was described with a sporothrix- or
calcarisporium-like asexual morph, characterised by erect and
branched conidiophores with polyblasc conidiogenous cells
that produce ellipsoidal conidia, 8.5–12.5 × 5–7.5 µm (Samson
& Luiten 1975). Hogelandia is represented only by the asexual
morph, characterised by micronematous conidiophores,
monoblasc conidiogenous cells and subglobose conidia.
Aempts to induce the sexual morph in vitro were unsuccessful.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Cephaliophora sp. (strain TD4, GenBank KY814682.1;
Idenes = 476/508 (94 %), ve gaps (0 %)), Cephaliophora tropica
(strain GN-HA-1-3, GenBank MG554311.1; Idenes = 340/369 (92
%), six gaps (1 %)), and Cephaliophora tropica (strain JB-NW-1-1,
GenBank MG554299.1; Idenes = 333/365 (91 %), ve gaps (1
%)). Closest hits using the LSU sequence are Ascodesmis nigricans
(strain CBS 163.74, GenBank MH872582.1; Idenes = 810/825 (98
%), no gaps), Ascodesmis microscopica (strain CBS 275.80, GenBank
MH873032.1; Idenes = 809/825 (98 %), no gaps), and Ascodesmis
sphaerospora (strain CBS 125.61, GenBank MH869550.1; Idenes
= 809/825 (98 %), no gaps) – also see Fig. 3.
Fig. 31. Hogelandia lambearum (CBS 147626). A–B. Colony on MEA. C. Colony on OA. D–E. Mycelium and conidia. F–H. Conidiogenous cells and
conidia. I–L. Conidia. Scale bars D–E, L = 10 µm. L applies to F–L.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
295
Author: M. Hernández-Restrepo
Lomentospora valparaisensis E. Álvarez, sp. nov. MycoBank MB
839289.
Synonym: Lomentospora valparaisensis E. Álvarez, Persoonia 40:
299. 2018. Nom. inval., Art. 40.7 (Shenzhen).
Diagnosis: See Persoonia 40: 299. 2018 (Crous et al. 2018b).
Typus: Chile, Valparaiso, Italy Park, from soil, 2016, F. Salas
(holotype specimen ChFC 2018164, culture ex-type ChFC-164).
Note: Lomentospora valparaisensis is validated here because the
original descripon cited an incorrect acronym for the holotype
specimen.
Author: E. Álvarez Duarte
Muyocopron zamiae Hern.-Restr. & Crous, Persoonia 42: 219.
2019. Fig. 32.
Mycelium consisng of branched, septate, dark to pale brown,
verruculose, 2–3 µm diam hyphae. Conidiomata sporodochium-
like, supercial on agar, medium brown, consisng of a few
aggregated cells to large round aggregaons of conidiogenous
cells. Conidiogenous cells globose to ampulliform, 12–20 × 9–12
µm, with disnct ared collaree, 3–6 µm diam, medium to
dark brown, smooth. Conidia aseptate, lunate, fusoid, curved,
guulate, (17–)18–22(–25) × (4.5–)6(–6.5) µm, with a liform,
unbranched appendage at each end, (2–)7–11 mm long, hyaline,
smooth. Appressoria and sexual morph not observed.
Culture characteriscs: Colonies at, spreading, with sparse to
moderate aerial mycelium and feathery, lobate margin, covering
dish aer 2 wk at 25 °C. On MEA surface bu to honey, reverse
isabelline; on PDA surface honey, reverse isabelline; on OA
surface honey to isabelline.
Material examined: USA, Florida, Gainesville, on leaves of Zamia
integrifolia (Zamiaceae), 28 Feb. 2018, M.J. Wingeld, HPC 2794, CBS
H-24348, culture CPC 37461 = CBS 146636.
Notes: Muyocopron zamiae was described from leaves of
Zamia sheri collected in Florida, USA (Hernández-Restrepo et
al. 2019). The collecon in this study (on Zamia integrifolia),
was also made in Florida, and represents the second known
collecon for this species, which seems to be common on leaves
of Zamia spp.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Muyocopron zamiae (strain CBS 203.71, Present
study; Idenes = 520/522 (99 %), no gaps), Muyocopron
coloratum (strain CBS 720.95, GenBank NR_160197.1; Idenes
= 297/306 (97 %), one gap (0 %)), and Fimetariella rabenhorsi
(strain A27_ITS-1, GenBank MN447419.1; Idenes = 449/465
(97 %), two gaps (0 %)). Closest hits using the LSU sequence are
Muyocopron zamiae (strain CBS 203.71, GenBank NG_066338.1;
Idenes = 837/837 (100 %), no gaps), Muyocopron geniculatum
(strain CBS 721.95, GenBank NG_066266.1; Idenes = 834/838
(99 %), one gap (0 %)), and Muyocopron chromolaenae (strain
MFLUCC 17-1513, GenBank NG_068700.1; Idenes = 823/834
(99 %), two gaps (0 %)) – also see Fig. 1. Closest hits using the tef1
(second part) sequence had highest similarity to Muyocopron
zamiae (strain CBS 203.71, GenBank MK495973.1; Idenes =
460/460 (100 %), no gaps), Muyocopron atromaculans (strain
MUCL 34983, GenBank MK495957.1; Idenes = 441/460 (96
%), no gaps), and Mycoleptodiscus terrestris (strain IMI 159038,
GenBank MK495977.1; Idenes = 439/460 (95 %), no gaps).
Closest hits using the rpb2 sequence had highest similarity to
Muyocopron zamiae (strain CBS 203.71, GenBank MK492731.1;
Fig. 32. Muyocopron zamiae (CPC 37461). A. Colony sporulang on OA. B–F. Conidiogenous cells giving rise to conidia. G. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
296
Idenes = 846/846 (100 %), no gaps), Muyocopron geniculatum
(strain CBS 721.95, GenBank MK492715.1; Idenes = 761/822
(93 %), three gaps (0 %)), and Muyocopron chromolaenae (strain
MFLUCC 17-1513, GenBank MT136761.1; Idenes = 508/569
(89 %), no gaps).
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Neocamarosporium leipoldae Crous, Persoonia 45: 295. 2020.
Fig. 33.
Conidiomata globose, brown, 200–300 µm diam, immersed,
becoming erumpent with central osole; wall of 3–6 layers
of brown textura angularis. Conidiophores reduced to
conidiogenous cells lining the inner cavity. Conidiogenous cells
hyaline, smooth, ampulliform, proliferang percurrently at apex,
8–12 × 5–7 µm. Conidia solitary, medium brown, thick-walled,
muriformly septate, obovoid to ellipsoid, nely roughened,
thick-walled; with 3–4 horizontal septa, and 3–6 vercal or
oblique septa, (13–)16–18(–20) × (9–)10–11(–12) µm.
Culture characteriscs: Colonies erumpent, spreading, with
moderate aerial mycelium and smooth, even margin, covering
dish aer 2 wk at 25 °C. On MEA surface and reverse sepia; on
PDA surface isabelline, reverse hazel; on OA surface sepia.
Material examined: South Africa, Western Cape Province, Clanwilliam,
Rocklands camp grounds, on leaves of Cephalophyllum pilansii
(Aizoaceae), 2018, P.W. Crous, HPC 3055 (CBS H-24421, culture CPC
38543 = CBS 146812).
Notes: Neocamarosporium leipoldae was recently introduced
for a species occurring on leaves of Leipolda schultzii in South
Africa (Crous et al. 2020a). The collecon in this study originated
from the same region of the Western Cape Province, where it
was isolated from leaves of Cephalophyllum pilansii.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Neocamarosporium sp. (strain CF-288928, GenBank
MG065823.1; Idenes = 536/548 (98 %), one gap (0 %)),
Neocamarosporium salicornicola (strain ZMCS3, GenBank
MK809918.1; Idenes = 512/524 (98 %), two gaps (0 %)), and
Dimorphosporicola tragani (strain ZMCL7, GenBank MK809922.1;
Idenes = 510/523 (98 %), one gap (0 %)). Closest hits using
the LSU sequence are Neocamarosporium chichasanum (strain
IBRC-M 30126, GenBank KP004483.1; Idenes = 811/815 (99
%), no gaps), Neocamarosporium salicornicola (strain MFLUCC
15-0957, GenBank NG_070423.1; Idenes = 808/813 (99 %),
no gaps), and Neocamarosporium chersinae (strain CPC 27298,
GenBank KY929182.1; Idenes = 799/804 (99 %), no gaps) –
also see Fig. 1. Closest hits using the tef1 sequence had highest
similarity to Dimorphosporicola tragani (strain CBS 570.85,
GenBank KU728577.1; Idenes = 406/458 (89 %), ten gaps (2
%)), Ulocladium alternariae (strain P292, GenBank AY375370.1;
Idenes = 335/383 (87 %), seven gaps (1 %)), and Alternaria
japonica (strain P400, GenBank AY375367.1; Idenes =
332/384 (86 %), eight gaps (2 %)). Closest hits using the tub2
sequence had highest similarity to Dimorphosporicola tragani
(strain CBS 570.85, GenBank KU728616.1; Idenes = 305/329
(93 %), one gap (0 %)), Dothidohia robiniae (as Dothidohia
sp. CS-2019b; strain MFLUCC 18-0692, GenBank MK933790.1;
Idenes = 293/331 (89 %), ten gaps (3 %)), and Tamaricicola sp.
(strain IG114, GenBank MH001474.1; Idenes = 292/331 (88
%), six gaps (1 %)).
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Neofusicoccum mystacidii Crous, sp. nov. MycoBank MB
839290. Fig. 34.
Etymology: Name refers to the host genus Mystacidium from
which it was isolated.
On PNA. Conidiomata globose, erumpent, brown, pycnidial,
with central osole, puncform, 200–300 µm diam; wall of 6–8
layers of brown textura angularis. Macroconidiophores reduced
to conidiogenous cells, or at mes with a supporng cell, lining
the inner cavity of conidioma, hyaline, smooth, subcylindrical,
proliferang percurrently at apex, encased in mucoid sheath,
10–25 × 4–5 µm. Macroconidia aseptate, solitary, hyaline,
smooth, guulate, straight, broadly cylindrical, apex obtuse,
tapering in boom part to truncate hilum, 3–4 µm diam, with
Fig. 33. Neocamarosporium leipoldae (CPC 38543). A. Conidioma on SNA. B. Conidiogenous cell giving rise to conidia. C–D. Conidia. Scale bars: A =
300 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
297
minute marginal frill, encased in mucoid sheath, (26–)28–
30(–35) × (9–)10(–11) µm. Microconidiophores mixed among
macroconidiophores, subcylindrical, hyaline smooth, 5–12 × 3–4
µm, phialidic with periclinal thickening. Microconidia solitary,
aseptate, subcylindrical with obtuse ends, hyaline, smooth, 3–6
× 2.5–3 µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, lobate margin, reaching 50 mm
diam aer 2 wk at 25 °C. On MEA, PDA and OA surface and
reverse olivaceous grey.
Typus: South Africa, Northern Province, Nelspruit, Lowveld
Botanical Garden, on dead stems of Mystacidium capense
(Orchidaceae), 23 Nov. 2018, P.W. Crous, HPC 3141 (holotype
CBS H-24546, culture ex-type CPC 39221 = CBS 147079).
Notes: Conidiomata of N. mystacidii had slightly elongated necks
in vivo, and conidia were also encased in a mucoid sheath, both
characters that are not typically associated with members of
Neofusicoccum (Phillips et al. 2013, Zhang et al. 2021a), and not
observed in vitro. Neofusicoccum mystacidii is related to species
such as N. cryptoaustrale (conidia (18–)20.5–21(–26.5) × 5–6(–
6.5) μm; Crous et al. 2013b), N. nonquaesitum (conidia 17–29
× 5.5–10.5 μm; Phillips et al. 2013), N. mediterraneum (conidia
(19–)22–26(–27) × (5.5–)6(–6.5) μm; Phillips et al. 2013) and
N. vifusiforme (conidia (9–)9.5–13(–14.5) × (6.5–)8–10.5(–11)
μm; Phillips et al. 2013), species that are morphologically quite
disnct. A phylogenec species tree is presented as Fig. 35.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Neofusicoccum corcosae (now Neofusicoccum
vifusiforme; strain CBS 120081, GenBank MN161920.1;
Idenes = 542/556 (97 %), no gaps), Neofusicoccum
vifusiforme (strain CAP227, GenBank EF638785.1; Idenes =
542/556 (97 %), no gaps), and Neofusicoccum hellenicum (strain
CERC1959, GenBank KP217057.1; Idenes = 532/547 (97 %),
no gaps). Closest hits using the LSU sequence are Neofusicoccum
nonquaesitum (strain CBS 126655, GenBank MH875645.1;
Idenes = 877/886 (99 %), no gaps), Neofusicoccum arbu
(strain CBS 117090, GenBank DQ377919.1; Idenes = 877/886
(99 %), no gaps), and Neofusicoccum mangiferae (strain CBS
118532, GenBank NG_055730.1; Idenes = 876/886 (99 %), no
gaps) also see Fig. 1. Closest hits using the gapdh sequence
had highest similarity to Neofusicoccum mediterraneum (strain
PD312, GenBank GU251440.1; Idenes = 492/497 (99 %),
no gaps), Neofusicoccum parvum (strain JPZZP4, GenBank
KY009944.1; Idenes = 512/530 (97 %), one gap (0 %)), and
Neofusicoccum australe (strain PD253, GenBank GU251483.1;
Idenes = 485/497 (98 %), one gap (0 %)). Closest hits using
the his3 sequence had highest similarity to Neofusicoccum
mediterraneum (strain PD311, GenBank GU251571.1; Idenes
= 306/309 (99 %), no gaps), Neofusicoccum parvum (strain PD6,
GenBank GU251525.1; Idenes = 303/309 (98 %), no gaps), and
Neofusicoccum australe (strain PD253, GenBank GU251615.1;
Idenes = 302/309 (98 %), no gaps). Closest hits using the rpb2
sequence had highest similarity to Neofusicoccum terminaliae
(strain CBS 125263, GenBank KX464045.1; Idenes = 388/391
(99 %), no gaps), Neofusicoccum mediterraneum (strain CBS
121718, GenBank KY855815.1; Idenes = 387/391 (99 %), no
gaps), and Neofusicoccum ursorum (strain CBS 122811, GenBank
KX464047.1; Idenes = 386/391 (99 %), no gaps). Closest hits
using the tef1 sequence had highest similarity to Neofusicoccum
mediterraneum (strain BAL-17, GenBank KX029198.1; Idenes
= 383/390 (98 %), no gaps), Neofusicoccum vifusiforme (strain
CMW875, GenBank HM176519.1; Idenes = 385/393 (98 %),
two gaps (0 %)), and Neofusicoccum luteum (strain CMW42482,
GenBank KP860705.1; Idenes = 363/373 (97 %), two gaps (0
%)). Closest hits using the tub2 sequence had highest similarity
to Neofusicoccum parvum (strain CCF216, GenBank KC507808.1;
Idenes = 573/587 (98 %), no gaps), Neofusicoccum australe
(strain CUZF10AV1, GenBank KU836639.1; Idenes = 558/572
(98 %), one gap (0 %)), and Neofusicoccum mangiferae (strain
wbhs2, GenBank KY435929.1; Idenes = 567/587 (97 %), two
gaps (0 %)).
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Neomycosphaerella guibourae Crous & Jol. Roux, sp. nov.
MycoBank MB 839291. Fig. 36.
Etymology: Name refers to the host genus Guiboura from
which it was isolated.
Leaf spots amphigenous, irregular, brown with raised brown
border, up to 10 mm diam. Ascomata hypophyllous, immersed,
becoming erumpent, but remaining immersed under epidermis,
brown, globose, 70–90 µm diam, with central osole, slightly
papillate, up to 25 µm diam, periphysate; wall of 4–6 layers of
brown textura angularis. Asci spitate, fasciculate, obovoid,
hyaline, smooth, bitunicate, 8-spored, apical chamber 1
µm diam, 32–38 × 8–10 µm. Ascospores tri- to mulseriate,
Fig. 34. Neofusicoccum mystacidii (CPC 39221). A. Sporulaon on PDA. B–C. Conidiogenous cells. D. Macroconidia. E. Microconidia. Scale bars: A =
300 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
298
1
1
1
1
0.93
1
1
1
1
0.93
1
1
1
1
1
0.96
1
0.97
1
1
1
0.86
0.96
1
0.99
1
1
0.99
1
1
1
1
1
1
1
1
1
1
0.87
1
1
1
1
0.98
1
1
1
1
1
1
1
1
0.99
Botryosphaeria dothidea CBS 115476
Neofusicoccum buxi CBS 113714
Neofusicoccum buxi CBS 116.75
Neofusicoccum pennatisporum MUCC 510
Neofusicoccum eucalypticola CBS 115679
Neofusicoccum eucalypticola CBS 115770
Neofusicoccum eucalyptorum CBS 115791
Neofusicoccum eucalyptorum CBS 115768
Neofusicoccum mangiferae CBS 118531
Neofusicoccum mangiferae CBS 118532
Neofusicoccum microconidium CE RC 3497
Neofusicoccum microconidium CERC 3498
Neofusicoccum macroclavatum CBS 118223
Neofusicoccum nonquaesitum CBS 126655
Neofusicoccum nonquaesitum CBS 133501
Neofusicoccum arbuti CBS 117453
Neofusicoccum arbuti CBS 116131
Neofusicoccum arbuti CBS 117090
Neofusicoccum illicii CGMCC 3.18310
Neofusicoccum illicii CGMCC 3.18311
Neofusicoccum grevilleae CBS 129518
Neofusicoccum podocarpi CBS 131677
Neofusicoccum podocarpi CBS 115065
Neofusicoccum hongkongense CERC 2968
Neofusicoccum hongkongense CERC 2973
Neofusicoccum parvum CBS 137504
Neofusicoccum parvum MFLUCC 15-0900
Neofusicoccum parvum CMW 9081
Neofusicoccum parvum CMW 9080
Neofusicoccum parvum KUMCC 17-0184
Neofusicoccum sinense CGMCC 3.18315
Neofusicoccum brasiliense CMM 1285
Neofusicoccum brasiliense CMM 1338
Neofusicoccum kwambonambiense CBS 123641
Neofusicoccum kwambonambiense CBS 123639
Neofusicoccum cordaticola CBS 123634
Neofusicoccum cordaticola CBS 123635
Neofusicoccum occulatum CBS 128008
Neofusicoccum occulatum CPC 32162
Neofusicoccum sinoeucalypti CERC 2005
Neofusicoccum sinoeucalypti CERC 3415
Neofusicoccum ribis CBS 124924
Neofusicoccum ribis CBS 123645
Neofusicoccum ribis CBS 114306
Neofusicoccum ribis CBS 115475
Neofusicoccum mystacidii sp. nov. CPC 39221
Neofusicoccum protearum CBS 114176
Neofusicoccum protearum CBS 115177
Neofusicoccum viticlavatum CBS 112878
Neofusicoccum viticlavatum CBS 112977
Neofusicoccum pistaciae CBS 595.76
Neofusicoccum hellenicum CERC 1947
Neofusicoccum hellenicum CERC 1948
Neofusicoccum mediterraneum CBS 121718
Neofusicoccum mediterraneum CBS 113083
Neofusicoccum mediterraneum CBS 113089
Neofusicoccum terminaliae CBS 125263
Neofusicoccum terminaliae CBS 125264
Neofusicoccum ursorum CBS 122811
Neofusicoccum ursorum CBS 131679
Neofusicoccum vitifusiforme CBS 120081
Neofusicoccum vitifusiforme CBS 121112
Neofusicoccum vitifusiforme CBS 110887
Neofusicoccum vitifusiforme CBS 121113
Neofusicoccum cryptoaustrale CBS 122813
Neofusicoccum rapaneae CBS 145973
Neofusicoccum rapaneae CPC 35288
Neofusicoccum lumnitzerae CBS 139675
Neofusicoccum lumnitzerae CMW 41469
Neofusicoccum variabile CBS 143480
Neofusicoccum variabile CBS 143481
Neofusicoccum stellenboschiana CBS 110864
Neofusicoccum stellenboschiana CBS 139666
Neofusicoccum australe CMW 6837
Neofusicoccum australe CPC 29036
Neofusicoccum luteum CMW 41365
Neofusicoccum luteum CBS 562.92
Neofusicoccum luteum CBS 110862
0.01
Fig. 35. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Neofusicoccum mulgene (ITS / tef1 / tub2 / rpb2)
nucleode alignment. The alignment is derived from Zhang et al. (2021) and GenBank accession numbers and paron models can be found in that
study. Bayesian posterior probabilies (> 0.79) are shown at the nodes and the scale bar represents the expected changes per site. Culture collecon
numbers in bold face represent cultures with a type status. The tree was rooted to Botryosphaeria dothidea (culture CBS 115476) and the novel
species treated in this study is indicated in a coloured block and bold face. Alignment stascs: 78 strains including the outgroup; 119 / 159 / 110 /
146 unique site paerns, respecvely. Tree stascs: 49 502 sampled trees from 1 650 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
299
fusoid-ellipsoid, widest in middle of apical cell which can be
asymmetrical, basal cell obtusely rounded, medianly 1-septate,
not constricted at septum, guulate to granular, (14–)16–18(–
20) × (3–)3.5(–4) µm.
Culture characteriscs: Colonies erumpent, spreading, surface
folded, with sparse aerial mycelium and smooth, lobate margin,
reaching 5–7 mm diam aer 2 wk at 25 °C. On MEA and PDA
surface pale olivaceous grey, reverse olivaceous grey; on OA
surface ochreous in centre, pale olivaceous grey in outer region.
Typus: Angola, Cuanavale Source Lake, Fairy forest, on leaves
of Guiboura sp. (Fabaceae), 27 Nov. 2015, J. Roux, HPC 3242
(holotype CBS H-24551, culture ex-type CPC 39348 = CBS
147083.
Notes: Neomycosphaerella guibourae is closely related
to Neomycosphaerella pseudopentameridis [from
Pseudopentameris macrantha (Poaceae), South Africa; Crous et
al. 2013b, Videira et al. 2017]. Morphologically they are quire
disnct, however, in that ascospores of N. pseudopentameridis
[(15–)16–17(–18) × (3.5–)4(–5) μm] are shorter and wider than
those of N. guibourae. A phylogenec species tree is presented
as Fig. 37.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Hyalozasmidium aerohyalinosporum (strain CBS
125011, GenBank NR_156220.1; Idenes = 484/532 (91 %),
19 gaps (3 %)), Mycosphaerella medusae (strain BRIP 52586,
GenBank NR_137044.1; Idenes = 467/514 (91 %), 20 gaps
(3 %)), Madagascaromyces intermedius (strain CBS 124154,
GenBank MH863356.1; Idenes = 488/538 (91 %), 20
gaps (3 %)), and Paramycosphaerella dicranopteridis (strain
TNM 3953, GenBank NR_155639.1; Idenes = 479/535
(90 %), 19 gaps (3 %)). Closest hits using the LSU sequence
are Paramycosphaerella brachystegiae (strain CBS 136436,
GenBank NG_058048.1; Idenes = 850/860 (99 %), no gaps),
Paramycosphaerella marksii (strain CPC 11222, GenBank
GU214447.1; Idenes = 850/860 (99 %), no gaps), and
Paramycosphaerella watsoniae (strain CPC 37392, GenBank
NG_068339.1; Idenes = 831/841 (99 %), no gaps) – also
see Fig. 1. Closest hits using the actA sequence had highest
similarity to Paramycosphaerella watsoniae (strain CBS 146064,
GenBank MN556790.1; Idenes = 554/608 (91 %), 15 gaps (2
%)), Mycosphaerella musae (strain CIRADCOK 003, GenBank
MW070786.1; Idenes = 542/596 (91 %), seven gaps (1 %)),
and Hyalozasmidium aerohyalinosporum (strain CBS 125011,
GenBank KF903576.1; Idenes = 497/544 (91 %), 15 gaps (2
%)). Distant hits obtained using the cmdA sequence had highest
similarity to Nowamyces piperitae (strain CPC 32372, GenBank
MN162565.1; Idenes = 286/308 (93 %), no gaps), Zasmidium
pseudoparkii (strain CBS 111049, GenBank KF902695.1;
Idenes = 281/301 (93 %), no gaps), and Zasmidium corymbiae
(strain CBS 145049, GenBank MK047526.1; Idenes =
281/305 (92 %), no gaps). Distant hits obtained using the tef1
sequence had highest similarity to Microcyclosporella mali
(strain CPC 16177, GenBank HM177418.1; Idenes = 334/434
(77 %), 51 gaps (11 %)), Cercospora zeae-maydis (strain CBS
132678, GenBank JX143502.1; Idenes = 208/243 (86 %),
ve gaps (2 %)), and Pseudocercospora eucalyptorum (strain
CPC 35905, GenBank MN162363.1; Idenes = 219/266 (82
%), 18 gaps (6 %)). Closest hits using the tub2 sequence had
highest similarity to Paramycosphaerella intermedia (strain
CBS 114356, GenBank KF902845.1; Idenes = 290/342 (85
%), 12 gaps (3 %)), Paramycosphaerella marksii (strain CBS
110920, GenBank KF902848.1; Idenes = 292/345 (85 %), 18
gaps (5 %)), and Hyalozasmidium aerohyalinosporum (strain
CBS 125011, GenBank KF903073.1; Idenes = 289/345 (84
%), 16 gaps (4 %)).
Authors: P.W. Crous, J.Z. Groenewald & J. Roux
Neoscirrhia Crous & R.K. Schumach., gen. nov. MycoBank MB
839292.
Etymology: Name refers to its morphological similarity to
Scirrhia.
Ascomata pseudothecial, gregarious, stromac, immersed,
becoming erumpent, opening by longitudinal split of epidermis,
arranged parallel to the culm axis, black, thick- and smooth-
walled, mul-locular, loculi in one row and one level, globose,
black, so, osole central, indisnct. Peridium mul-layered, of
textura angularis-prismaca, inner layers hyaline, outer layers
dark brown. Pseudoparaphyses numerous, partly evanescent,
mul-celled, moniliform to cylindrical, branched, anastomosing.
Asci 8-spored, subclavate to cylindrical, apically rounded with
ocular chamber, pedicel short, broad and furcate, bitunicate,
ssitunicate. Ascospores straight to slightly curved, cells
cylindrical, ends rounded, upper cell enlarged towards median
Fig. 36. Neomycosphaerella guibourae (CPC 39348). A. Ascomata immersed on host ssue. B. Ascoma. C–D. Asci. E. Ascospores. Scale bars: A–B =
90 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
300
septum, at mes with lateral swelling just above the septum
hyaline, thin- and smooth-walled, constricted at septum,
cytoplasm aggregated in middle region, causing ends to appear
very thick-walled, apex more prominently so than basal end.
Conidiomata pycnidial, globose, brown, with central osole;
wall of 3–6 layers of brown textura angularis. Conidiophores
reduced to conidiogenous cells lining inner cavity, hyaline,
smooth, doliiform to ampulliform, phialidic. Conidia solitary,
hyaline, smooth, prominently guulate, medianly 1-septate,
subcylindrical to obovoid, ends obtuse.
Type species: Neoscirrhia osmundae (Peck & Clinton) Crous &
R.K. Schumach.
Neoscirrhia osmundae (Peck & Clinton) Crous & R.K. Schumach.,
comb. nov. MycoBank MB 839293. Fig. 38.
Basionym: Dothidea osmundae Peck & Clinton, Rep. (Annual)
New York State Mus. Nat. Hist. 30: 64. 1878. (1877)
Synonyms: Scirrhia osmundae (Peck & Clinton) Arx, in Müller &
von Arx, Beitr. Krypl. Schweiz 11(no. 2): 382. 1962.
Metameris osmundae (Peck & Clinton) Arx & E. Müll., Stud.
Mycol. 9: 80. 1975.
Scirrhia osmundae (Peck & Clinton) L. Holm & K. Holm, Bot.
Noser 131: 112. 1978, an isonym, see Art. 6.3 Note 2.
Ascomata pseudothecial, saprobic, gregarious, stromac, immersed,
becoming erumpent, opening by longitudinal split of epidermis,
1
0.99
1
1
1
0.83
0.99
1
1
1
1
0.85
1
1
1
0.87
0.86
1
Cladosporium cladosporioides CBS 112388KX286982.1/NR_119839.1 /KX288432.1
Paramycosphaerella wachendorfiae CBS 129579MH876909.1/NR_156547.1/MF951578.1
Paramycosphaerella watsoniae CBS 146064MN567653.1/NR_166341.1/MN556814.1
Paramycosphaerella brachystegiae CBS 136436MH877638.1/NR_137835.1/MF951567.1
Paramycosphaerella marksii CBS 110750DQ204757.1/DQ267596.1/MF951573.1
Paramycosphaerella marksii CBS 110963KF902054.1/KF901707.1/MF951570.1
Paramycosphaerella marksii CBS 110964KF902055.1/KF901708.1/MF951571.1
Paramycosphaerella marksii CBS 110920KF901842.1/GU269644.1/MF951572.1
Paramycosphaerella intermedia CBS 114356KF902026.1/KF901681.1/MF951569.1
Paramycosphaerella intermedia CBS 114415KF902027.1/KF901682.1/MF951568.1
Pseudopericoniella levispora CBS 873.73NG_057778.1/NR_137687.1/MF951633.1
Mycosphaerella” medusae BRIP 52586NG_067910.1 /NR_137044.1/MN239111.1
Hyalozasmidium aerohyalinosporum CBS 125011NG_059440.1/NR_156220.1/MF951504.1
Hyalozasmidium sideroxyli CBS 142191NG_058489.1/NR_156372.1 /MF951505.1
Brunneosphaerella protearum CBS 130597NG_058640.1/NR_156224.1 /MF951443.1
Brunneosphaerella jonkershoekensis CPC 13902NG_058654.1/NR_156244. 1/MF951441.1
Brunneosphaerella nitidae CBS 130595NG_058639.1/NR_156223.1/MF951442.1
Madagascaromyces intermedius CBS 124154NG_057816.1/NR_156215.1/MF951511.1
Neomycosphaerella pseudopentameridis CBS 136407NG_058044.1/NR_137832.1/MF951545.1
Neomycosphaerella guibourtiae sp. nov. CPC 39348
Pseudozasmidium vietnamense CBS 119974NG_070529.1/NR_156507.1/MF951639.1
Pseudozasmidium eucalypti CBS 121101NG_058063.1/NR_156510. 1/MF951637.1
Pseudozasmidium nabiacense CBS 125010NG_059438.1/KF901607.1/MF951638.1
Virosphaerella irregularis CBS 123242KF902126.1/KF901769.1/MF951685.1
Virosphaerella pseudomarksii CBS 123241NG_057802.1/NR_156519.1 /MF951686.1
Epicoleosporium ramularioides CBS 141103N G_059251.1/NR_153974.1 /KX288433.1
Epicoleosporium ramularioides CPC 10673KX286984.1/KX287289.1/KX288434.1
Microcyclosporella mali CBS 126132MF951171.1/MF951324.1/MF951513.1
Microcyclosporella mali CBS 126136MH875502.1/MH864045.1/KX288436.1
Mycosphaerelloides madeirae CBS 112895NG_058067.1/NR_154213.1 /KX348057.1
Mycosphaerelloides madeirae CBS 116066KX286989.1/AY853188.1/KX288444.1
0.1
2x
Fig. 37. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Mycosphaerellaceae mulgene (LSU / ITS / rpb2) nucleode
alignment. The alignment is derived from the alignment of Videira et al. (2017) and paron models can be found in that study. Bayesian posterior
probabilies (> 0.79) are shown at the nodes and the scale bar represents the expected changes per site. The most basal branch was halved to
facilitate layout. GenBank accession (superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated
for all species. The tree was rooted to Cladosporium cladosporioides (culture CBS 112388) and the novel species treated in this study is indicated in a
coloured block and bold face. Alignment stascs: 31 strains including the outgroup; 80 / 214 / 459 unique site paerns, respecvely. Tree stascs:
192 002 sampled trees from 640 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
301
arranged parallel to the culm axis, black, thick- and smooth-walled,
mul-locular, loculi in one row and one level, globose, black, so,
osole central, indisnct, up to 180 × 200 µm. Peridium mul-
layered, of textura angularis-prismaca, inner layers hyaline, outer
layers dark brown. Pseudoparaphyses numerous, partly evanescent,
mul-celled, moniliform to cylindrical, branched, anastomosing.
Asci 8-spored, subclavate to cylindrical, apically rounded with ocular
chamber, pedicel short, broad and furcate, bitunicate, ssitunicate,
71–82 × 8.5–11.5 µm, ascospores obliquely biseriate. Ascospores
straight to slightly curved, cells cylindrical, ends rounded, upper cell
enlarged towards median septum, at mes with lateral swelling just
above the septum hyaline, thin- and smooth-walled, constricted at
septum, cytoplasm aggregated in middle region, causing ends to
appear very thick-walled, apex more prominently so than basal
end, enclosed in mucilaginous sheath when immature (in water),
15.5–21.5 × 4–5 µm. Conidiomata pycnidial, globose, 250–300 µm
diam, brown, with central osole, 30–40 µm diam, solitary on SNA,
aggregated on OA; wall of 3–6 layers of brown textura angularis.
Conidiophores reduced to conidiogenous cells lining inner cavity,
hyaline, smooth, doliiform to ampulliform, phialidic, 5–7 × 5–6 µm.
Conidia solitary, hyaline, smooth, prominently guulate, medianly
1-septate, subcylindrical to obovoid, ends obtuse, (10–)12–14(–15)
× (4–)4.5(–5) µm.
Culture characteriscs: Colonies at, spreading, with abundant
aerial mycelium and smooth, even margin, covering dish aer 2
wk at 25 °C. On MEA, PDA and OA surface and reverse olivaceous
grey.
Material examined: Netherlands, Noord-Holland Province, Hoofddorp,
on culms of Sasa veitchii (Poaceae), 18 May 2019, L. van der Linde, HPC
2956 = RKS 1103 (CBS H-24397, culture CPC 38085 = CBS 146803).
Notes: Scirrhia is based on S. rimosa, a species known from stems
of Phragmites australis (Poaceae) collected in Europe. No culture
was available so far and therefore the phylogenec anies
were unresolved. Scirrhia brasiliensis is a morphologically similar
species, recently described (on fronds of Pteridium aquilinum)
in Brazil. It was shown to cluster in Mycosphaerellaceae (Crous
et al. 2011), a family which type, S. rimosa, is expected to also
belong to Schirrhia s.str. It is, however, quite disnct from S.
osmundae, which has a dierent ascospore morphology (see
below), and clusters in Didymellaceae.
Scirrhia osmundae was described from dead stems of
Osmunda collected in New York, USA. Ascospores are 2-celled,
but appear 3-celled due to the contracon of the protoplast
in the upper cell. This phenomenon was misinterpreted by
Theissen & Sydow (1915) as 3-celled ascospores. It is quite
characterisc in mature ascospores, and was also observed by
Holm & Holm (1978), and in the present study. Based on Holm &
Holm (1978) and Obrist (1959), stromata are larger in European
collecons, and ascospores are 15–18 × 4 µm (15.5–21.5 × 4–5
µm in the present specimen).
Metameris japonica (from Japan) represents another
possible synonym of S. osmundae. Scirrhia osmundae was rst
reported from Europe (Germany) by Theissen & Sydow (1915),
while Obrist (1959) reported it from Switzerland, and Holm &
Holm (1978) reported it from Sweden. The collecon in this
study appears to be the rst record from the Netherlands.
Phoma maeuccicola is commonly known as a pathogen
causing leaf blight and “gangrene” of fern species (De Gruyter
et al. 2002). Because it is allied to Neoscirrhia osmundae, it is
herewith placed in this genus.
Fig. 38. Neoscirrhia osmundae (CPC 38085). A. Conidioma on PNA. B. Conidioma with osole. C. Conidiogenous cells. D. Conidia. E–F. Ascomata on
host ssue. G. Asci. H. Ascospores (arrows indicate apical thickenings). Scale bars: A = 300 µm, B, F = 200 µm, E = 180 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
302
Neoscirrhia maeucciicola (Aderkas et al.) Crous, comb. nov.
MycoBank MB 839294.
Basionym: Phoma maeucciicola Aderkas et al., Canad. J. Pl.
Pathol. 14: 227. 1992.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence of CPC 38085
had highest similarity to Microsphaeropsis olivacea (strain
CBS 432.71, GenBank MH871969.1; Idenes = 526/540 (97
%), two gaps (0 %)), Coniothyrium euonymi-japonicae (strain
CBS 302.68, GenBank MH859134.1; Idenes = 526/540 (97
%), two gaps (0 %)), Coniothyrium glomerulatum (strain CBS
113.21, GenBank MH854688.1; Idenes = 526/540 (97 %),
two gaps (0 %)), and Neoscirrhia maeucciicola (as Phoma
maeucciicola; strain CBS 259.92, GenBank GU237812.1;
Idenes = 470/484 (97 %), one gap (0 %)). Closest hits using
the LSU sequence of CPC 38085 are Faurelina indica (strain
CBS 301.78, GenBank GU180654.1; Idenes = 903/910 (99
%), no gaps), Microsphaeropsis ononidicola (strain MFLUCC
15-0459, GenBank MG967668.1; Idenes = 895/906 (99 %),
no gaps), Coniothyrium hellebori (strain CBS 519.78, GenBank
MH872934.1; Idenes = 895/907 (99 %), no gaps), and
Neoscirrhia maeucciicola (as Phoma maeuciicola; strain CBS
259.92, GenBank GU238100.1; Idenes = 870/877 (99 %), no
gaps) – also see Fig. 1. Closest hits using the rpb2 sequence
of CPC 38085 had highest similarity to Neomicrosphaeropsis
juglandis (strain MFLUCC 18-0795, GenBank MN593307.1;
Idenes = 773/882 (88 %), no gaps), Paraboeremia selaginellae
(strain CBS 122.93, GenBank LT623255.1; Idenes = 783/896
(87 %), two gaps (0 %)), and Ascochyta herbicola (voucher MFLU
15-2126, GenBank MT432200.1; Idenes = 768/879 (87 %),
two gaps (0 %)). Closest hits using the tub2 sequence of CPC
38085 had highest similarity to Neoscirrhia maeucciicola (as
Phoma maeuciicola; strain CBS 259.92, GenBank GU237627.1;
Idenes = 264/289 (91 %), four gaps (1 %)), Didymella rabiei
(strain AR628, GenBank KM244529.1; Idenes = 488/547
(89 %), ten gaps (1 %)), Epicoccum sorghinum (strain HM19B,
GenBank MN562463.1; Idenes = 469/523 (90 %), nine gaps
(1 %)), and Boeremia exigua (strain Ph.ex.001NY17, GenBank
MK514090.1; Idenes = 484/546 (89 %), 11 gaps (2 %)).
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Neoscytalidium dimidiatum (Penz.) Crous & Slippers, Stud.
Mycol. 55: 244. 2006. Fig. 39.
Basionym: Torula dimidiata Penz., Michelia 2(no. 8): 466. 1887.
Conidiomata pycnidial, solitary, brown, erect, globose, 250–300
µm diam, with central osole and slightly papillate beak; wall of 4–8
layers of brown textura angularis. Conidiophores subcylindrical,
hyaline, smooth, lining inner cavity, 0–2-septate, unbranched,
10–22 × 3.5–4.5 µm. Conidiogenous cells integrated, hyaline,
smooth, subcylindrical, proliferang percurrently at apex, 8–12
× 3–3.5 µm. Conidia solitary, aseptate, hyaline, smooth, nely
guulate, subcylindrical to fusoid-ellipsoid, apex subobtuse,
base truncate, 2 µm diam, (12–)13–14(–15) × (3.5–)4(–5) µm.
Synasexual morph forming conidia via disarculaon of hyphal
fragments, pale to medium brown, smooth, subcylindrical with
truncate ends, 0(–1)-septate, 5–10(–12) × 3–5 µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, even margin, covering dish aer 2
wk at 25 °C. On MEA, PDA and OA surface and reverse iron-grey.
Material examined: South Africa, Western Cape Province,
Nieuwoudtville, epiphyte on stems of Aloidendron dichotomum
(Asphodeloideae), 2018, P.W. Crous, HPC 3038 (CBS H-24434, culture
CPC 38666 = CBS 146816).
Notes: Neoscytalidium dimidiatum is associated with
tree cankers (Polizzi et al. 2011) but also causes chronic
dermatomycosis and onychomycosis in humans, mainly
involving foot infecons (Dionne et al. 2015, Zhang et al.
2021a). Neoscytalidium dimidiatum is here newly reported from
Aloidendron dichotomum in South Africa. Zhang et al. (2021a)
recognised N. dimidiatum as the only species known from
molecular data in this genus and also reduced two other species
(N. novaehollandiae and N. orchidacearum) to synonyms of N.
dimidiatum.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to N. novaehollandiae (now N. dimidiatum; strain CBS
122071, GenBank KF766207.1; Idenes = 565/565 (100 %),
no gaps), N. hyalinum (now N. dimidiatum; strain CBS 125699,
GenBank MH863613.1; Idenes = 563/563 (100 %), no gaps),
and N. dimidiatum (voucher INBio 30A, GenBank KU204558.1;
Idenes = 555/557 (99 %), no gaps). Closest hits using the LSU
sequence are N. novaehollandiae (now N. dimidiatum; strain
CMW 26170, GenBank NG_059496.1; Idenes = 872/872
(100 %), no gaps), N. hyalinum (now N. dimidiatum; strain
CBS 125699, GenBank MH875087.1; Idenes = 881/882 (99
%), one gap (0 %)), and N. orchidacearum (as Neoscytalidium
sp. SKH-2016, now N. dimidiatum; strain MFLUCC 12-0533,
GenBank KU179864.1; Idenes = 869/871 (99 %), no gaps)
also see Fig. 1. Closest hits using the chs-1 sequence had highest
similarity to N. hyalinum (as Scytalidium hyalinum, now N.
dimidiatum; strain FMR 8342, GenBank FM211193.1; Idenes
= 284/284 (100 %), no gaps), N. dimidiatum (strain CBS 380.36,
GenBank FM211196.1; Idenes = 283/284 (99 %), no gaps),
and N. novaehollandiae (now N. dimidiatum; strain D16GHEI,
GenBank MH793720.1; Idenes = 249/250 (99 %), no gaps).
Closest hits using the tub2 sequence had highest similarity to
N. novaehollandiae (now N. dimidiatum; strain Mlty_Ma02,
GenBank MT362603.1; Idenes = 278/278 (100 %), no gaps),
N. dimidiatum (strain CBS 125695, GenBank KX464764.1;
Idenes = 426/427 (99 %), no gaps), and N. hyalinum (now
N. dimidiatum; strain IRNHM-KZN1, GenBank MG220380.1;
Idenes = 420/422 (99 %), no gaps).
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Niesslia neoexosporioides Crous & R.K. Schumach., sp. nov.
MycoBank MB 839295. Fig. 40.
Etymology: Name refers to the fact that it is similar to Niesslia
exosporioides.
Ascomata perithecial, saprobic, single, gregarious, supercial,
globose with a small, aened base, black-brown, so,
thin-walled, setose, up to 100 µm diam. Setae s, pointed,
unbranched, base enlarged or simple furcate, black, red-brown
under the lens, thick- and smooth-walled, lumen ght. Peridium
few-layered, of textura epidermoidea with red-brown, thick-
walled and smooth cells. Paraphyses absent. Asci 8-spored,
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
303
cigar-shaped to clavate, inoperculate, inamyloid (water plus
Lugol), ascospores obliquely biseriate, overlapping. Ascospores
narrowly ellipsoid, straight with conical ends, hyaline, thin-
walled, smooth, medianly 1-septate, thin-walled, slightly
constricted, eguulate, dimensions undetermined, specimen
overmature. Mycelium consisng of hyaline, smooth, septate,
branched, 1–2 µm diam hyphae. Conidiophores reduced to
conidiogenous cells, erect, exuous, solitary to aggregated,
subcylindrical, hyaline, smooth, thick-walled, 15–110 × 2–3
µm, phialidic with minute non-ared collaree, up to 1 µm
long, apex 1–1.5 µm diam. Spes terminang in clavate vesicles
intermingled among conidiogenous cells, hyaline, smooth, with
basal septum, up to 80 µm tall, vesicles 3–4 µm diam. Conidia
solitary, aseptate, hyaline, smooth, subcylindrical, straight to
slightly curved, apex subobtuse, base tapering to truncate
hilum, 0.5 µm diam, (7–)8–10(–14) × 2(–2.5) µm.
Culture characteriscs: Colonies at, spreading, with sparse
aerial mycelium and smooth, lobate margin, reaching 50 mm
diam aer 2 wk at 25 °C. On MEA surface rosy bu, reverse
cinnamon; on PDA surface bu, reverse honey; on OA surface
bu.
Fig. 39. Neoscytalidium dimidiatum (CPC 38666). A. Conidiomata on PNA. B. Conidiogenous cells. C. Fusicoccum-like condia. D–E. Phragmoconidia,
with a few fusicoccum-like conidia. Scale bars = 10 µm.
Fig. 40. Niesslia neoexosporioides (CPC 38177). A. Ascoma on host ssue. B–C. Ascomata with setae. D–F. Spes with clavate vesicles. G. Conidiogenous
cells. H. Conidia. Scale bars: A–B = 100 µm, C = 50 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
304
Typus: Germany, near Berlin, on dead leaves of Carex paniculata
(Cyperaceae), 17 Apr. 2019, R.K. Schumacher, HPC 2983 = RKS
250 (holotype CBS H-24405, culture ex-type CPC 38177 = CBS
146810).
Notes: The specimen considered in this study was inially
idened as Niesslia cf. exosporioides, which is common on Carex
spp. in Europe. The sexual morph was overmature resulng in
the idencaon relying on the asexual morph that developed
in culture. Conidia of N. neoexosporioides [(7–)8–10(–14) × 2(–
2.5) µm] are larger than those of N. exosporioides (5–6 × 1–1.5
μm; Gams et al. 2019). Phylogenecally, N. neoexosporioides is
closely related to N. aemula (conidia 4.5–6.5 × 1.2–2 µm; Gams
et al. 2019), but the laer has smaller conidia. A phylogenec
species tree is presented as Fig. 41.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to “Hypocreaceae sp. (strain MUT<ITA> 2463, GenBank
Trichoderma atroviride CBS 142.95
MH862505.1
Niesslia heterophora CBS 149.70MG826931.1
Niesslia heterophora CBS 150.70MG826932.1
Niesslia exigua CBS 152.68MG826933.1
Niesslia sphaeropedunculata CBS 123802MG826928. 1
Niesslia aterrima CBS 388.85MG826978.1
Niesslia aterrima CBS 390.85MG826983.1
Niesslia physacantha CBS 474.74MG826998.1
Niesslia leucoula CBS 101223MG826915.1
Niesslia leucoula CBS 101741MG826917.1
Niesslia pandani CBS 583.73MG827009.1
Niesslia cladii CBS 652.79MG827020.1
Niesslia bulbillosa CBS 344.70MF681488.1
Niesslia cf. gamsii CBS 389.85MG826981.1
Niesslia gamsii 13-1DPMF681483.1
Niesslia gamsii 25ADPMF681484.1
Niesslia gamsii 25DPMF681485.1
Niesslia gamsii 3A-1DPMF681481.1
Niesslia gamsii 27BDPMF681487.1
Niesslia gamsii 26ADPMF681486.1
Niesslia gamsii 12-1-1DPMF681482.1
Niesslia sp. CBS 126457MH864119.1
Niesslia arctiicola CBS 604.76NR_156405.1
Niesslia arctiicola CBS 476.80MG826999.1
Niesslia arctiicola CBS 430.80MG826993.1
Niesslia luzulae CBS 515.72MG827003.1
Niesslia luzulae CBS 700.79MG827029.1
CPC 38177
MUT<ITA> 2463MG813207.1
Niesslia aemula CBS 556.75MG827004.1
Niesslia aemula 00028AJ246149.1
Niesslia aemula 3874FN392297.1
Niesslia aemula AX-GC-5MK592746.1
Niesslia aemula CBS 261.70MG826957.1
Niesslia curvisetosa CBS 660.94NR 160195.1
Niesslia sp. TTI-00426MH997627.1
Niesslia fusiformis CBS 325.77MG826969.1
Niesslia indica UAMH 1499GQ169328.1
Niesslia indica r30KR063515.1
Niesslia indica CBS 182.65MH858535.1
Niesslia indica CBS 605.69MG827015.1
Niesslia indica CBS 313.74MG826967.1
Niesslia indica CBS 313.61MG826966.1
10
100
100
100
100
100
100
97
100
100
100
100
80
98
96
93
99
87
86
88
82
87
91
100
Niesslia neoexosporioides sp. nov.
98
Fig. 41. The single most parsimonious tree obtained from a phylogenec analysis of the Niesslia ITS nucleode alignment. The tree was rooted to
Trichoderma atroviride (strain CBS 142.95, GenBank MH862505.1) and the scale bar indicates the number of changes. Parsimony bootstrap support
values higher than 79 % are shown at the nodes and the treated species is highlighted with a coloured box and bold text. GenBank accession
(superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. Alignment stascs:
43 strains including the outgroup; 608 characters including alignment gaps analysed: 292 constant, 75 variable and parsimony-uninformave and 241
parsimony-informave. Tree stascs: TL = 788, CI = 0.688, RI = 0.900, RC = 0.619.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
305
MG813207.1; Idenes = 497/498 (99 %), no gaps), Niesslia aemula
(strain AX-GC-5, GenBank MK592746.1; Idenes = 561/568
(99 %), one gap (0 %)), and Niesslia curvisetosa (as Monocillium
curvisetosum; strain CBS 660.94, GenBank NR_160195.1;
Idenes = 529/540 (98 %), three gaps (0 %)). Closest hits using
the LSU sequence are Niesslia luzulae (as Niesslia exosporioides;
strain CBS 691.71, GenBank MH872060.1; Idenes = 815/816
(99 %), one gap (0 %)), “Hypocreaceae sp.” (strain MUT<ITA> 2463,
GenBank MG816499.1; Idenes = 810/812 (99 %), two gaps (0
%)), and Niesslia curvisetosa (as Monocillium curvisetosum; strain
CBS 660.94, GenBank MH874141.1; Idenes = 888/893 (99 %),
one gap (0 %)) – also see Fig. 4. No signicant hits were obtained
when the actA, tef1 and tub2 sequences were used in blastn and
megablast searches.
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Nothoanungitopsis Crous, gen. nov. MycoBank MB 839296.
Etymology: Name refers to its morphological similarity to
Anungitopsis.
Mycelium consisng of brown, nely verruculose, septate,
branched hyphae. Conidiophores dimorphic. Microconidiophores
erect, exuous, brown, thick-walled, septate.
Macroconidiophores erect, exuous, brown, nely verruculose,
unbranched, thick-walled, base swollen, with rhizoids, mul-
septate. Conidiogenous cells terminal, integrated, medium
brown, nely verruculose, with several sympodially arranged
at-pped dencles, scars unthickened. Conidia solitary or in
chains of two, fusoid, 3-septate, straight, apex subobtuse, base
subobtuse with truncate hilum; two central cells brown, thick-
walled, nely verruculose; end cells subhyaline, smooth, thin-
walled.
Type species: Nothoanungitopsis urophyllae Crous
Nothoanungitopsis urophyllae Crous, sp. nov. MycoBank MB
839297. Fig. 42.
Etymology: Name refers to the host species from which it was
isolated, Eucalyptus urophylla.
Mycelium consisng of brown, nely verruculose, septate,
branched, 2–3 µm diam hyphae. Conidiophores dimorphic.
Microconidiophores erect, exuous, brown, thick-walled,
50–80 × 4–6 µm, 2–3-septate. Macroconidiophores erect,
exuous, brown, nely verruculose, unbranched, thick-walled,
base swollen, 8–12 µm diam, with rhizoids, 5–18-septate,
100–350 × 5–8 µm. Conidiogenous cells terminal, integrated,
medium brown, nely verruculose, 15–35 × 4–5 µm, with
several sympodially arranged at-pped dencles, scars 2–3
µm diam, unthickened. Conidia solitary or in chains of two,
fusoid, 3-septate, straight, apex subobtuse, base subobtuse with
truncate hilum, 1–1.5 µm diam; two central cells brown, thick-
walled, nely verruculose; end cells subhyaline, smooth, thin-
walled, (15–)16–18(–20) × (4–)5(–6) µm.
Culture characteriscs: Colonies erumpent, spreading, with
sparse to moderate aerial mycelium and uneven margin,
reaching 5 mm diam aer 2 wk at 25 °C. On MEA, PDA and OA
surface and reverse isabelline.
Typus: South Africa, Kwazulu-Natal Province, Kwambonambi, on
seed capsules of Eucalyptus urophylla (Myrtaceae), Apr. 2017,
M.J. Wingeld, HPC 2868 (holotype CBS H-24395, culture ex-
type CPC 38059 = CBS 146799).
Notes: Neoanungitea was introduced to accommodate two
species occurring on eucalypt leaf lier in Australia, and
characterised by having a rachis with at-pped sympodial
loci, similar to but less conspicuous than those of Anungitea
(Crous et al. 2019d). Nothoanungitopsis adds a third genus to
this complex. Although it has unthickened conidiophore scars
and conidial hila as in Anungitopsis, it is disnguished by lacking
globose, brown swellings in its conidiophores, and having conidia
that are unevenly pigmented, with two brown central cells.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Anungitopsis speciosa (strain CBS 181.95, GenBank
EU035401.1; Idenes = 344/413 (83 %), 38 gaps (9 %)),
Anungitopsis lauri (strain CBS 145067, GenBank NR_161129.1;
Idenes = 331/399 (83 %), 37 gaps (9 %)), and Neoanungitea
eucalyp (strain CBS 143173, GenBank MG386031.2; Idenes
= 312/378 (83 %), 26 gaps (6 %)). Closest hits using the LSU
sequence are Neoanungitea eucalyp (strain CBS 143173,
GenBank MG386031.2; Idenes = 547/588 (93 %), one gap
(0 %)), Anungitopsis speciosa (strain CBS 181.95, GenBank
EU035401.1; Idenes = 542/588 (92 %), one gap (0 %)), and
Spirosphaera beverwijkiana (strain CBS 469.66, GenBank
Fig. 42. Nothoanungitopsis urophyllae (CPC 38059). A. Conidiophores on PNA. B–D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars:
A = 80 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
306
HQ696657.1; Idenes = 541/588 (92 %), one gap (0 %)) – also
see Fig. 1.
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Nothomicrosphaeropsis Crous, gen. nov. MycoBank MB 839298.
Etymology: Named aer its morphological similarity to
Microsphaeropsis.
Conidiomata pycnidial, solitary, erumpent, brown, papillate with
central osole; wall of 3–6 layers of brown textura angularis.
Conidiophores reduced to conidiogenous cells lining the inner
cavity, ampulliform to doliiform, hyaline, smooth. Conidia
solitary, hyaline, smooth, aseptate, granular, subcylindrical,
apex obtuse, base bluntly rounded, straight to slightly curved,
becoming pale brown with age.
Type species: Nothomicrosphaeropsis welwitschiae Crous
Nothomicrosphaeropsis welwitschiae Crous, sp. nov. MycoBank
MB 839299. Fig. 43.
Etymology: Named aer the host genus it was collected from,
Welwitschia.
Conidiomata pycnidial, solitary, erumpent, brown, 200–250 µm
diam, papillate with central osole; wall of 3–6 layers of brown
textura angularis. Conidiophores reduced to conidiogenous
cells lining the inner cavity, ampulliform to doliiform, hyaline,
smooth, 4–6 × 3–4 µm. Conidia solitary, hyaline, smooth,
aseptate, granular, subcylindrical, apex obtuse, base bluntly
rounded, straight to slightly curved, becoming pale brown with
age, (4–)5–6(–7) × 2–2.5 µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, even margin, covering dish aer 2
wk at 25 °C. On MEA, PDA and OA surface and reverse olivaceous
grey.
Typus: Namibia, Hope Mine, east of Gobabeb – Namib
Research Instute, on dead leaves of Welwitschia mirabilis
(Welwitschiaceae), 19 Nov. 2019, P.W. Crous, HPC 3126 (holotype
CBS H-24448, culture ex-type CPC 38879 = CBS 146829).
Notes: Based on ITS/LSU DNA sequence data, the present
collecon was inially idened as Macroventuria weni, which
is known from plant lier in the Nevada Death Valley, USA (van
der Aa 1971). However, by incorporang more informave genes
such as rpb2 and tub2 in the analysis (see phylogenec tree, Fig.
44), the present isolate proved allied to Paramicrosphaeropsis,
Neomicrosphaeropsis and Microsphaeropsis, a generic complex
in Didymellaceae (Hou et al. 2020a). Genera in this complex
are morphologically comparable in inially producing hyaline
conidia that turn pale brown at maturity.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to “A. Phoma sp.(strain mk175, GenBank KT150686.1;
Idenes = 530/530 (100 %), no gaps), Macroventuria weni
(strain CBS 526.71, GenBank MH860250.1; Idenes = 538/540
(99 %), no gaps), and Leptosphaerulina australis (strain CBS
234.58, GenBank MH857766.1; Idenes = 538/542 (99 %), one
gap (0 %)). Closest hits using the LSU sequence are Ascochyta
rabiei (strain CBS 237.37, GenBank NG_069312.1; Idenes =
858/858 (100 %), no gaps), Coniothyrium genistae (strain CBS
294.74, GenBank MH872596.1; Idenes = 860/861 (99 %), no
gaps), Ascochyta fabae (strain CBS 649.71, GenBank MH872045.1;
Idenes = 860/861 (99 %), no gaps), and Macroventuria weni
(strain CBS 526.71, GenBank NG_069040.1; Idenes = 856/858
(99 %), no gaps) – also see Fig. 1. Closest hits using the rpb2
sequence had highest similarity to Neomicrosphaeropsis italica
(strain IT_24211, GenBank KU714604.1; Idenes = 693/744
(93 %), no gaps), Neomicrosphaeropsis juglandis (strain MFLUCC
18-0795, GenBank MN593307.1; Idenes = 693/744 (93
%), no gaps), and Neomicrosphaeropsis cysi (strain MFLUCC
13-0396, GenBank KX572355.1; Idenes = 682/742 (92 %),
no gaps). A direct blast2 search against Macroventuria rpb2
sequences on GenBank had highest similarity to Macroventuria
anomochaeta (strain CBS 525.71, GenBank GU456346.1;
Idenes = 663/741 (89 %), no gaps), Macroventuria terrestris
(strain RMF CA 12, GenBank MT018194.1; Idenes = 531/596
(89 %), no gaps), and Macroventuria weni (strain CBS 527.71C,
GenBank MN983625.1; Idenes = 530/596 (89 %), no gaps).
Closest hits using the tub2 sequence had highest similarity to
Paramicrosphaeropsis ellipsoidea (strain CBS 197.97, GenBank
MT005680.1; Idenes = 314/333 (94 %), no gaps), Epicoccum
sorghinum (strain FDY-5, GenBank MT799852.1; Idenes
= 336/364 (92 %), no gaps), Epicoccum latusicollum (strain
HH12, GenBank MN623288.1; Idenes = 337/365 (92 %),
two gaps (0 %)), and Macroventuria weni (strain CBS 526.71,
Fig. 43. Nothomicrosphaeropsis welwitschiae (CPC 38879). A. Conidiomata on PNA. B. Pycnidial conidioma. C–D. Conidiogenous cells. E. Conidia.
Scale bars: A–B = 250 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
307
100
100
100
80
84
99
99
99
97
100
100
92
83
100
100
100
100
100
100
85
100
95
97
100
100
98
99
100
100
99
98
100
91
100
100
100
100
100
100
95
100
100
100
100
100
84
93
100
86
84
85
100
84
100
100
Neocucurbitaria aquatica CBS 297.74
Pleiochaeta setosa CBS 118.25
Pleiochaeta setosa CBS 496.63
Ascochyta pilosella CBS 583.97
Ascochyta astragalina CBS 113797
Ascochyta herbicola CBS 629.97
Ascochyta benningiorum CBS 144957
Ascochyta phacae CBS 184.55
Ascochyta coronillae-emeri MFLUCC 13-0820
Ascochyta rab iei CBS 237.37
Ascochyta medicaginicola CBS 112.53
Ascochyta nigripycnidia CBS 116.96
Ascochyta koolunga CBS 372.84
Ascochyta viciae-pannonicae CBS 254.92
Ascochyta lentis CBS 146.79
Ascochyta viciae-villosae CBS 255.92
Ascochyta syringae CBS 545.72
Ascochyta pisi CBS 122785
Ascochyta fabae CBS 524.77
Ascochyta viciae CBS 451.68
Calophoma petasitis MFLUCC 15-0076
Calophoma vincetoxici CBS 186.55
Calophoma sandfjordenica CBS 145571
Calophoma complanata CBS 100311
Calophoma parvula CBS 620.68
Calophoma aquilegiicola CBS 107.96
Calophoma glaucii CBS 112.96
Calophoma clematidina CBS 108.79
Calophoma rosae CGMCC 3.18347
Calophoma clematidis-rectae CBS 507.63
Calophoma vodakii CBS 173.53
Paramicrosphaeropsis ellipsoidea CBS 194.97
Neomicrosphaeropsis alhagi-pseudalhagi MFLUCC 17-0825
Neomicrosphaeropsis elaeagni MFLUCC 17-0740
Neomicrosphaeropsis italica MFLUCC 15-0485
Nothomicrosphaeropsis welwitschiae gen. et sp. nov. CPC 38879
Microsphaeropsis fusca CBS 116669
Microsphaeropsis proteae CBS 111320
Microsphaeropsis viridis CBS 763.73
Microsphaeropsis olivacea CBS 233.77
Microsphaeropsis taxicola CBS 469.80
Leptosphaerulina americana CBS 213.55
Leptosphaerulina arachidicola CBS 275.59
Leptosphaerulina sisyrinchiicola CBS 121688
Leptosphaerulina briosiana CBS 533.66
Leptosphaerulina trifolii CBS 128.22
Leptosphaerulina australis CBS 317.83
Leptosphaerulina chartarum CBS 329.86
Leptosphaerulina gaeumannii CBS 311.51
Leptosphaerulina saccharicola CBS 300.54
Leptosphaerulina lonicerae CBS 569.94
Leptosphaerulina obtusispora CBS 234.58
Juxtip homa eupyrena CBS 374.91
Juxtip homa kolkmaniarum CBS 146005
Macroventuria terrestris CBS 127771
Macroventuria wentii CBS 526.71
Macroventuria angustospora CBS 502.72
Macroventuria anomochaeta CBS 525.71
Epicoccum mackenziei MFLUCC 16-0335
Epicoccum oryzae CBS 173.34
Epicoccum italicum CGMCC 3.18361
Epicoccum mezzettii CBS 120.22
Epicoccum tobaicum CBS 384.36
Epicoccum dendrobii CGMCC 3.18359
Epicoccum purpurascens CBS 128906
Epicoccum nigrum CBS 173.73
Epicoccum poae CGMCC 3.18363
0.1
2x
Fig. 44. Consensus phylogram (50 % majority rule) obtained from the maximum likelihood analysis with IQ-TREE showing the phylogenec posion
of Nothomicrosphaeropsis welwitschiae gen. et sp. nov. based on the mulgene (ITS / LSU / rpb2 / tub2) nucleode alignment. The most basal
branch was halved to facilitate layout. Bootstrap support values (> 79 %) from 5 000 ultrafast bootstrap replicates are shown at the nodes. The
alignment is derived from the combined alignment of Hou et al. (2020a) and GenBank accession numbers can be obtained from the same reference.
Culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. The tree was rooted to Neocucurbitaria
aquaca (culture CBS 297.74) and the species treated in this study is highlighted with a coloured block and bold face. Alignment stascs: 67 strains
including the outgroup; 2 382 characters including alignment gaps analysed: 625 disnct paerns, 505 parsimony-informave, 94 singleton sites, 1
783 constant sites. The best models idened in IQ-TREE were: TIM2e+I+G4 (ITS), TNe+I+G4 (LSU), TNe+I+G4 (rpb2), TIM2e+I+G4 (tub2).
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
308
GenBank GU237546.1; Idenes = 302/333 (91 %), no gaps). A
direct blast2 search against Macroventuria tub2 sequences on
GenBank had highest similarity to Macroventuria weni (strain
CBS 877.70, GenBank MN984003.1; Idenes = 303/333 (91 %),
no gaps), Macroventuria terrestris (strain CBS 127771, GenBank
MT005653.1; Idenes = 300/331 (91 %), one gap (0 %)), and
Macroventuria anomochaeta (strain CBS 525.71, GenBank
GU237545.1; Idenes = 300/333 (90 %), no gaps).
Authors: P.W. Crous, D.A. Cowan, G. Maggs-Kölling, E. Marais, N.
Yilmaz & M.J. Wingeld
Ophioceras leptosporum (S.H. Iqbal) J. Walker, Mycotaxon 11:
62. 1980. Fig. 45.
Basionym: Gaeumannomyces leptosporus S.H. Iqbal, Trans. Brit.
Mycol. Soc. 58: 346. 1972.
Descripon and illustraon: See Walker (1980).
Material examined: South Africa, Northern Province, Nelspruit,
Buelskloof Nature Reserve, on twigs of Syzygium cordatum
(Myrtaceae), Nov. 2018, P.W. Crous, HPC 3149, CBS H-24542, cultures
CPC 39147 = CBS 147090.
Notes: Species of Ophioceras are commonly isolated from leaf
and twig lier in freshwater habitats worldwide (Shearer et al.
1999). This is apparently the rst record of this species from
South Africa.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Ophioceras leptosporum (strain CBS 894.70,
GenBank NR_111768.1; Idenes = 506/511 (99 %), no gaps),
Pestaloopsis mangifolia (voucher INBio 183C, GenBank
KU204541.1; Idenes = 499/543 (92 %), 17 gaps (3 %)), and
Myceliophthora sepedonium (voucher INBio 571C, GenBank
KU204432.1; Idenes = 499/543 (92 %), 17 gaps (3 %)). Closest
hits using the LSU sequence are Ophioceras leptosporum (strain
CBS 894.70, GenBank NG_057959.1; Idenes = 868/869 (99
%), no gaps), Ophioceras chiangdaoense (strain CMU 26633,
GenBank NG_066356.1; Idenes = 829/842 (98 %), no gaps),
and Ophioceras commune (strain M91, GenBank JX134687.1;
Idenes = 816/873 (93 %), eight gaps (0 %)) – also see Fig. 5.
Closest hits using the tef1 (second part) sequence had highest
similarity to Ophioceras leptosporum (strain CBS 894.70,
GenBank JX134704.1; Idenes = 474/475 (99 %), no gaps),
Ophioceras commune (strain M91, GenBank JX134701.1;
Idenes = 434/475 (91 %), no gaps), and Ophioceras aquacus
(voucher S-479, GenBank MN194063.1; Idenes = 404/447 (90
%), no gaps).
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Paracremonium bendijkiorum Hern.-Restr., sp. nov. MycoBank
MB838709. Fig. 46.
Etymology: Named for the collectors Yvan Bentem and Jack van
Dijken students from the Het Hogeland College (Warum, the
Netherlands). This sample was collected during a Cizen Science
project of the Westerdijk Fungal Biodiversity Instute.
Vegetave hyphae septate, hyaline, smooth and thin-walled,
1–4 µm wide. Conidiophores semi-macronematous, straight or
slightly bent, simple or irregularly branched, hyaline, smooth-
walled. Conidiogenous cells 13–33 × 1.5–3 µm, 1–1.5 µm wide
at the apex, monophialidic, subcylindrical, straight or exuous,
hyaline, thin- and smooth-walled, with subcylindrical collaree.
Conidia solitary, aseptate, subglobose, with apiculate base, 3–6
µm diam, hyaline, smooth-walled. Chlamydospores solitary,
terminal or intercalary, hyaline, subglobose 6–7 µm diam. Sexual
morph not observed.
Culture characteriscs: Colonies aer 2 wk at 25 °C on OA
reaching 20 mm diam, at, with sparse aerial mycelium,
concolourous with the agar. On MEA reaching 18 mm diam,
elevated, funiculose, wet, pale esh, white, margin enre,
regular. On PDA reaching 20 mm diam, elevated in the centre,
funiculose to coony, white to salmon, membranous to the
periphery, margin enre.
Typus: Netherlands, Groningen Province, Warum, Wibrand
Geertstraat, from soil, 6 Jun. 2019, Y. Bentem & J. van Dijken,
NL19_024 (holotype CBS H-24734, culture ex-type CBS 147228
= NL19_24005).
Notes: Paracremonium species are known from soil close to
streams, caves, alkaline mud, air, beetles, and humans (Lombard
Fig. 45. Ophioceras leptosporum (CPC 39147). A. Ascomata developing on OA. B–E. Asci with ascospores. Scale bars: A = 250 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
309
et al. 2015, Lynch et al. 2016, Crous et al. 2017, Zhang et al.
2017, Al-Bedak et al. 2019, Zhang et al. 2021b). Paracremonium
bendijkiorum is disnguished from its phylogenecally
closest species, P. inatum, in having subglobose conidia and
chlamydospores. Another species in the genus with similar
subglobose conidia is P. apiculatum (Zhang et al. 2020), which
is phylogenecally distant (Fig. 47). Also see the overview
phylogeny (Fig. 4).
Based on a megablast search of NCBI nucleode database,
the closest hits using the ITS sequence had the highest
similarity to Paracremonium inatum (strain CBS 485.77
GenBank NR_154312.1; Idenes = 434/451 (96 %), three gaps
(0 %)), Paracremonium variiforme strain LC5837 (GenBank
KU746694.1; Idenes = 426/444 (96 %), two gaps (0 %)) and
Paracremonium binnewijzendii (strain CBS 143277, GenBank
NR_157491.1; Idenes = 431/454 (95 %), four gaps (0 %)). The
closest hits using the LSU sequence had the highest similarity
to Paracremonium variiforme (strain LC5832, GenBank
KU746739.1; Idenes = 825/842 (98 %), two gaps (0 %)),
Paracremonium sp. (strain FZ2855-2, GenBank MK329029.1;
Idenes = 825/843 (98 %), two gaps (0 %)) and Paracremonium
sp. (strain FZ3546-2, GenBank MK329031.1; Idenes =
823/843 (98 %), two gaps (0 %)) – also see Fig. 4. The closest
hits using the rpb2 sequence are Paracremonium variiforme
(strain CGMCC 3.17934 (GenBank KY883249.1; Idenes =
583/654 (89 %), no gaps), Paracremonium pembeum (strain
UCR2995, GenBank KT936355.1; Idenes = 574/655 (88 %),
two gaps (0 %)) and Paracremonium contagium (strain CBS
110348, GenBank KM232396.1; Idenes = 573/655 (87 %),
two gaps (0 %)). The closest hits using the tef1 sequence had
the highest similarity to Paracremonium sp. (strain LC12502,
GenBank MK336059.1; Idenes = 825/858 (96 %), no gaps),
Paracremonium variiforme (strain LC5837, GenBank KX855240.1;
Idenes = 824/858 (96 %), no gaps) and Paracremonium sp.
(strain LC12552, GenBank MK336061.1; Idenes = 807/858 (94
%), no gaps). The closest hits using the tub2 sequence had the
highest similarity to Paracremonium variiforme (strain LC5837,
GenBank KU746786.1; Idenes = 232/243 (95 %), no gaps),
Paracremonium sp. (strain LC12502 (GenBank MK336137.1;
Idenes = 228/239 (95 %), no gaps) and Paracremonium sp.
(strain LC12552, GenBank MK336139.1; Idenes = 225/240 (94
%), no gaps).
Author: M. Hernández-Restrepo
Paraphoma ledniceana Spek, Eichmeier & Berraf-Tebbal, sp.
nov. MycoBank MB835802. Fig. 48.
Etymology: Name refers to Lednice, where the specimen was
collected.
Conidiomata pycnidial, osolate, uni- or bilocular, submerged,
obpyriform, semi-pilose, dark brown, 250–450 µm diameter.
Conidiophores lining the inner cavity, pale brown, smooth,
densely aggregated. Conidia solitary, hyaline, straight,
subcylindrical, apex obtuse, base truncate, (3.7–)4.5–4.9(–5.7) ×
(1.2–)1.5–1.7(–2.4) µm (av. 4.7 ± 0.5 × 1.6 ± 0.3 µm).
Culture characteriscs: Colonies on PDA reaching 38 mm diam
aer 10 d at 25 °C, margin regular, occose, erumpent, pale grey;
reverse grey. On MEA reaching 27 mm diam aer 10 d, margin
regular, occose, white to dirty white; reverse pale brown. On
OA reaching 42 mm diam aer 10 d, margin regular, occose,
white in outer ring, olivaceous grey; reverse olivaceous. No
growth at 10 °C and 37 °C was observed.
Typus: Czech Republic, Breclav, Lednice, isolated as saprobe on
dead wood of Buxus sempervirens (Buxaceae), Sep. 2018, M.
Spek (holotype BRNU 673830, isotype BRNU 673831, culture
ex-type CBS 146533 = MEND-F-82).
Notes: Based on mulgene (ITS, tef1 and tub2) phylogenec
analyses, P. ledniceana diers from P. rhaphiolepisis by 29
nucleodes posions in the concatenated alignment, in which
Fig. 46. Paracremonium bendijkiorum (CBS 147288). A. Colony on PDA. B. Colony on MEA. C. Conidiophores. D. Chlamydospore. E. Conidia and
conidiogenous cell. F–G. Conidia. Scale bars C–F =10 µm, G = 5 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
310
10 were disnct in the ITS region, six in the tef1 region and 13
in tub2. Morphologically, the conidia length of P. ledniceana are
smaller [(3.7–)4.5–4.9(–5.7) × (1.2–)1.5–1.7(–2.4) µm] compared
to those of P. rhaphiolepisis [(4.5–)5–6(–6.5) × 2(–2.5) μm]. The
obtained phylogeny (Fig. 49) placed the isolate CBS 146533 as a
lineage sister to Paraphoma rhaphiolepisis. However, it is clearly
disnct from the other known species of Paraphoma and it is
therefore considered as a taxonomic novelty.
Based on a megablast search of NCBI nucleode database,
the closest hits using the ITS sequence had the highest similarity
to Paraphoma chrysanthemicola (GenBank MK647980.1;
Idenes = 509/510 (99 %), one gap (0 %)), Uncultured fungus
0.008
99
93
70
100
100
93
Paracremonium ellipsoideum MK329125.1/MK329030.1
Paracremonium pembeum UCRCFU254KP012604.1/KP012624.1
Paracremonium variiforme LC5806KU746691.1/KU746737.1
Paracremonium inflatum CBS 485.77NR_154312.1/NG_058129.1
Paracremonium apiculatum FZ2855MK329123.1/MK329028.1
Cosmospora stegonsporii CBS 122305NR_159868.1/MH874734.1
Cosmospora arxii CBS 748.69NR_145062.1/NG_058892.1
Paracremonium moubasheri AUMC 11030KX384655.1/-
CBS 147228 Paracremonium bendijkiorum sp. nov.
Xenoacremonium recifei CBS 137.35MH855606.1/NG_057890.1
Paracremonium binnewijzendii CBS 143277NR_157491.1/MG250174.1
Paracremonium contagium CBS 110348NR_154313.1/NG_058130.1
Fig. 47. Maximum composite likelihood tree obtained from the RAxML analysis of the combined ITS and LSU sequence alignment of Paracremonium
species. Bootstrap support values above 70 % are shown at the nodes. The novel species is indicated in a coloured block and bold face. The tree was
rooted to Cosmospora arxii (CBS 748.69), C. stegonsporii (CBS 122305) and Xenoacremonium recifei (CBS 137.35). Alignment stascs: 12 strains
including the outgroup; 1 469 characters including alignment gaps analysed (ITS: 583, LSU: 886). Model: GTR+G, alignment paerns: 213.
ABCD
Fig. 48. Paraphoma ledniceana (CBS 146533). A. Conidiomatal pycnidia on SNA. B–C. Squash of conidiomata. D. Conidia. Scale bars: A = 100 µm, all
others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
311
clone (GenBank MT236451.1; Idenes = 509/510 (99 %), one
gap (0 %)) and Paraphoma sp. (GenBank MK304128.1; Idenes
= 506/506 (100 %), no gaps). The closest hits using the LSU
sequence had the highest similarity to Paraphoma sp. (GenBank
LC126021.2; Idenes = 1 043/1 045 (99 %), no gaps), Paraphoma
radicina (GenBank NG_070446.1; Idenes = 1 043/1 045
(99 %), no gaps) and Paraphoma chrysanthemicola (GenBank
GQ387582.1; Idenes = 1 043/1 045 (99 %), no gaps) – also
see Fig. 1; closest hits using the rpb2 sequence are Paraphoma
rhaphiolepidis (GenBank KY979851.1; Idenes = 815/844
(97 %), no gaps), Paraphoma radicina (GenBank LT796995.1;
Idenes = 783/861 (91 %), no gaps) and Paraphoma sp.
(GenBank MG779463.1; Idenes = 625/733 (85 %), eight gaps
(1 %)). The closest hits using the tef1 sequence had the highest
similarity to Paraphoma rhaphiolepidis (GenBank KY979896.1;
Idenes = 269/283 (95 %), three gaps (0 %)), Paraphoma
99
100
100
95
96
93
100
80
97
100
91
100
93
100
99
100
98
86
100
99
Neosetophoma samarorum CBS 138.96NR_156263.1/KF252655.1/KF253119.1
Paraphoma fimeti CBS 368.91KF251171.1/KF252666.1/KF253129.1
Paraphoma fimeti CBS 164.31KY559063.1/KY559077.1/KY559070.1
Paraphoma fimeti CBS 170.70KF251170.1/KF252665.1/KF253128.1
Paraphoma dioscoreae CPC 11355KF251168.1/KF252663.1/KF253126.1
Paraphoma dioscoreae CBS 135100KF251167.1/KF252662.1/KF253125.1
Paraphoma dioscoreae CPC 11361KF251169.1/KF252664.1/KF253127.1
Paraphoma salicis sp. nov. CPC 38651
Paraphoma convolvuli MF 9.222MG764055.1/MISSING/MISSIN G
Paraphoma convolvuli 01-634HQ677906.1/MISSING/MISSING
Paraphoma convolvuli 12-039KC634206.1/MISSING/MISSING
Paraphoma melnikiae MF 9.88MG764063.1/MG779456. 1/MISSING
Paraphoma melnikiae MF 9.182.1MG764058.1/MG779454.1 /MISSING
Paraphoma melnikiae MF 9.296.1MG764056.1/MG779458.1 /MISSING
Paraphoma radicina ICMP 6623KT309964.1/KT309546.1 /MISSING
Paraphoma radicina CBS 102875KF251173.1/KF252668.1/KF253131.1
Paraphoma radicina CBS 111.79NR_156556.1/KF252667.1/KF253130.1
Paraphoma chlamydocopiosa UMPc01NR_154343.1/KU999084.1/KU999080.1
Paraphoma chlamydocopiosa UMPc03KU999074.1/KU999086.1/KU999082.1
Paraphoma “chlamydocopiosa” UTAS06KX376286.1/KX376294.1/KX376302.1
Paraphoma chrysanthemicola ICMP 10745KT309795.1/KT309386.1/MISSING
Paraphoma chrysanthemicola CBS 172.70FJ426984.1/KF252660.1/KF253123.1
Paraphoma chrysanthemicola CBS 522.66FJ426985.1/KF252661.1/KF253124.1
Paraphoma “chrysanthemicola” IRAN So9MG701146.1/MG701147.1/MISSING
Paraphoma sp. ICMP 6619KT309961.1/KT309543.1/MISSING
Paraphoma ledniceana sp. nov. CBS 146533
Paraphoma rhaphiolepidis CBS 142524NR_154373.1/KY979924.1/KY979896.1
Paraphoma pye UMPp02NR_154344.1/KU999085.1 /KU999081.1
Paraphoma pye UMPp04KU999075.1 /KU999087.1/KU999083.1
Paraphoma vinacea UMPV001KU176884.1/KU176892.1/KU176896.1
Paraphoma vinacea UMPV003KU176886.1 /KU176894.1/KU176898.1
Paraphoma vinacea UMPV004KU176887.1 /KU176895.1/KU176899.1
0.1
Fig. 49. Consensus phylogram (50 % majority rule) obtained from the maximum likelihood analysis with IQ-TREE of the Paraphoma mulgene (ITS
/ tef1 / tub2) nucleode alignment. Bootstrap support values (> 79 %) from 5 000 ultrafast bootstrap replicates are shown at the nodes. GenBank
accession (superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. The tree
was rooted to Neosetophoma samarorum (culture CBS 138.96) and the species treated in this study are highlighted with coloured blocks and bold
face. Alignment stascs: 32 strains including the outgroup; 1 227 characters including alignment gaps analysed: 477 disnct paerns, 299 parsimony-
informave, 100 singleton sites, 828 constant sites. The best models idened in IQ-TREE were: HKY+F+G4 (ITS), TNe+G4 (tef1), TNe+I+G4 (tub2).
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
312
chlamydocopiosa (GenBank KX376304.1; Idenes = 192/226
(85 %), no gaps) and Paraphoma chlamydocopiosa (GenBank
KX376299.1; Idenes = 192/226 (85 %), no gaps). The closest
hits using the tub2 sequence had the highest similarity to
Paraphoma rhaphiolepidis (GenBank KY979924.1; Idenes
= 460/470 (98 %), three gaps (0 %)), Paraphoma sp. (GenBank
MG779453.1; Idenes = 433/473(99 %), no gaps) and
Paraphoma cf. “convolvuli” (GenBank MG779461.1; Idenes =
431/473 (91 %), three gaps (0 %)).
Authors: M. Spek, A. Eichmeier & A. Berraf-Tebbal
Paraphoma salicis Crous & Akulov, sp. nov. MycoBank MB
839300. Fig. 50.
Etymology: Name refers to the host genus Salix from which it
was isolated.
Conidiomata erumpent, solitary or aggregated, brown, globose,
glabrous, 180–200 µm diam, with central osole, exuding creamy
conidial mass. Conidiophores reduced to conidiogenous cells
lining inner cavity, doliiform to ampulliform, hyaline, smooth,
phialidic, 5–6 × 3–4 µm. Conidia solitary, aseptate, hyaline,
smooth, ellipsoid to subcylindrical, apex obtuse, base bluntly
rounded to somewhat truncate, (4–)5(–6) × (2–)2.5(–3) µm.
Culture characteriscs: Colonies at, spreading, with sparse to
moderate aerial mycelium and smooth, lobate margin, reaching
35 mm diam aer 2 wk at 25 °C. On MEA, PDA and OA surface
and reverse olivaceous grey.
Typus: Ukraine, Volyn region, Liubeshiv district, Liubìaz village,
on leaves of Salix cf. alba (Salicaceae), co-ocurring with Septoria
salicis Westend., 29 Jul. 2019, A. Akulov, CWU AS 7121, HPC
3011 (holotype CBS H-24431, culture ex-type CPC 38651 = CBS
146797).
Notes: Paraphoma (Phaeosphaeriaceae) was resurrected
as a disnct genus by de Gruyter et al. (2010), and shown to
accommodate several species of saprobic, endophyc or
phytopathogenic fungi aecng agricultural crops worldwide
(Moslemi et al. 2016). Paraphoma salicis is phylogenecally
disnct from Paraphoma species presently known from their
DNA, and represents a new taxon occurring on leaves of Salix in
Ukraine (Fig. 49).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Paraphoma radicina (as Phoma radicina; strain VB1-
2, GenBank MK764998.1; Idenes = 520/587 (89 %), 23 gaps (3
%)), Plenodomus biglobosus (as Leptosphaeria biglobosa; strain
CM-02, GenBank KY221834.1; Idenes = 518/586 (88 %), 21 gaps
(3 %)), and Paraphoma chrysanthemicola (strain DSM100401_
C29_RLCS22, GenBank MT453289.1; Idenes = 519/588 (88 %),
24 gaps (4 %)). Closest hits using the LSU sequence are Paraphoma
dioscoreae (strain CBS 135100, GenBank KF251671.1; Idenes
= 806/809 (99 %), no gaps), Paraphoma radicina (strain UTHSC
DI16-209, GenBank LN907352.1; Idenes = 826/830 (99 %),
no gaps), and Plectosphaerella cucumerina (strain 17chu05-05,
GenBank MT102906.1; Idenes = 810/814 (99 %), no gaps)
also see Fig. 1. Closest hits using the actA sequence had highest
similarity to Parastagonosporella fallopiae (strain CBS 135981,
GenBank MH460537.1; Idenes = 217/241 (90 %), four gaps (1
%)), Paraphoma chrysanthemicola (strain ICMP 10745, GenBank
KT309135.2; Idenes = 206/242 (85 %), eight gaps (3 %)), and
Paraphoma radicina (strain ICMP 6623, GenBank KT309298.2;
Idenes = 200/243 (82 %), ten gaps (4 %)). Closest hits using
the rpb2 sequence had highest similarity to Paraphoma melnikii
(as Paraphoma sp. MG-2018a; voucher MF-9.240, GenBank
MG779464.1; Idenes = 668/735 (91 %), no gaps), Paraphoma
cf. convolvuli” (voucher MF-9.298.1, GenBank MG779468.1;
Idenes = 660/735 (90 %), no gaps), and Paraphoma me
(strain UTHSC DI16-296, GenBank LT797032.1; Idenes =
817/944 (87 %), ve gaps (0 %)). Closest hits using the tub2
sequence had highest similarity to Paraphoma cf. “convolvuli”
(voucher MF-9.300.1, GenBank MG779460.1; Idenes =
409/439 (93 %), no gaps), Paraphoma melnikiae (voucher MF-
9.240, GenBank MG779453.1; Idenes = 409/440 (93 %), two
gaps (0 %)), and Paraphoma rhaphiolepidis (strain CBS 142524,
GenBank KY979924.1; Idenes = 413/462 (89 %), eight gaps (1
%)).
Authors: P.W. Crous & A. Akulov
Parasarocladium wereldwijsianum Hern.-Restr., sp. nov.
MycoBank MB 838710. Fig. 51.
Etymology: Named aer the school “Wereldwijs” (Bilthoven,
the Netherlands) where the sample was collected. This sample
was collected during a Cizen Science project of the Westerdijk
Fungal Biodiversity Instute.
Fig. 50. Paraphoma salicis (CPC 38651). A. Conidiomata on OA. B. Conidioma with osole. C–D. Conidiogenous cells. E. Conidia. Scale bars: A–B = 200
µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
313
Vegetave hyphae septate, hyaline, smooth and thin-walled, 1.5–
2.5 µm wide. Conidiophores erect, arising directly from vegetave
hyphae or ropes of hyphae, straight or slightly bent, simple
or branched, somemes vercillate, hyaline, smooth-walled.
Phialides subulate, 11.5–45 µm long, 1.5–3.5 µm wide at the base,
1–1.5 µm wide at the apex, straight or exuous, hyaline, thin-
and smooth-walled. Conidia arranged in slimy heads, unicellular,
ellipsoidal to obovoid, base truncated, 4–10 × 2–3 µm, hyaline,
smooth-walled. Chlamydospores and sexual morph not observed.
Culture characteriscs: Aer 7 d at 25 °C on OA aaining 30–35
mm diam, at, sparse aerial mycelium, bu to white salmon,
wet with exudate (hyaline and salmon), margin euse; reverse
no change. On MEA aaining 30 mm at, velvety, radially folded,
peach to rosy bu; reverse saron. On PDA aaining 30–45
mm diam, at, velvety, sparse aerial mycelium, olivaceous bu,
margin irregular; reverse greenish olivaceous.
Fig. 51. Parasarocladium wereldwijsianum (CBS 147223). A–G. Conidiophores and conidia. H. Conidia. I. Colony on MEA. J. Colony on PDA. K. Colony
on OA. Scale bars A–H = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
314
0.03
97
100
99
82
99
96 Parasarocladium breve CBS 150.62 MH424706.1/NG_056979.1/-
Parasarocladium aestuarinum CMG30 MK986713.1/-/MK984313.1
Parasarocladium radiatum CBS 142.62 NR_161112.1/ NG_070520.1/-
Parasarocladium debruynii CBS 144942 NR_163316.1/NG_066301.1/MK069413.1
Parasarocladium gamsii CBS 726.71NR_159615.1/NG_056985.1/-
Parasarocladium fusiforme CMG36 MK986719 .1/-/MK984319.1
Parasarocladium tasmanniae CPC 38162MW175340.1/MW175380.1/MW173094.1
Leucosphaerina arxii CBS 737.84 NR_145040.1/NG_057892.1/HE608627.1
Xenoacremonium recifei CBS 137.35 MH855606.1/NG_057890.1/KM231241.1
Parasarocladium alavariense CMG34 MK986718.1/-/MK984318.1
CBS 147224
CBS 147223
CBS 147226TParasarocladium wereldwijsianum sp. nov.
Fig. 52. Maximum composite likelihood tree obtained from the RAxML analysis of the combined ITS, LSU and acn sequence alignment of
Parasarocladium species. Bootstrap support values above 70 % are shown at the nodes. The novel species is indicated in a coloured block and bold
face. The tree was rooted to Leucosphaerina arxii (CBS 737.84) and Xenoacremonium recifei (CBS 137.35). Alignment stascs: 15 strains including
the outgroup; 1 739 characters including alignment gaps analysed (ITS: 600, LSU: 851, act: 288). Model GTR+I+G, 395 disnct paerns.
Fig. 53. Peziza ligni (CPC 39110). A. Conidiophores on OA. B–E. Conidiogenous cells giving rise to conidia. F. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
315
Typus: Netherlands, Utrecht Province, Bilthoven, from soil, 6 Jun.
2019, S. Frederikze, J. Mes & S. Maghnouji, NL19_095 (holotype
CBS H-24735, culture ex-type CBS 147226 = NL19095011).
Other specimens examined: Netherlands, Utrecht, Bilthoven, from soil,
6 Jun. 2019, S. Frederikze, J. Mes, & S. Maghnouji, NL19_094 (culture
CBS 147223 = NL1994001), ibid. (culture CBS 147224 = NL19094011).
Notes: Parasarocladium wereldwijsianum is represented by three
strains collected in two soil samples from Bilthoven (Utrecht
Province, the Netherlands). Parasarocladium wereldwijsianum
can be disnguished from the phylogenecally closest species
P. aestuarinum and P. alavariense by having olivaceous bu
colonies on PDA, conidiophores that are irregularly branched,
and a disnct conidial morphology [colonies bu orange,
conidia globose, 3.5–4.5 × 2.5–3.5 µm in P. aestuarinum;
colonies dark ochre yellow, conidia subglobose, 4.5–5.5 × 3–4
µm in P. alavariense; Gonçalves et al. (2019)]. Furthermore, P.
aestuarinum and P. alavariense are known from marine habitats
(Gonçalves et al. 2019) while P. wereldwijsianum was isolated
from soil. Also see the overview phylogeny (Fig. 4) and species
phylogeny (Fig. 52).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Hypocreales sp. (strain HWJ2(1) , GenBank
KM268693.1; Idenes = 578/579 (99 %), no gaps), Fungal sp.
(strain PH30517, GenBank KR363031.1; Idenes = 496/497
(99 %), no gaps), and Acremonium sp. (GenBank MK651581.1;
Idenes = 480/481 (99 %) no gaps). Closest hits using the LSU
sequence are Acremonium sp. (strain 39 OA-2013, GenBank
JX535073.1; Idenes = 490/490 (100 %), no gaps), Acremonium
sp. (strain 38 OA-2013, GenBank JX535071.1; Idenes =
490/490 (100 %), no gaps), and Acremonium sp. (strain 31 OA-
2013, GenBank JX535057.1; Idenes = 490/490 (100 %), no
gaps) – also see Fig. 4.
Author: M. Hernández-Restrepo
Peziza ligni Crous & Decock, sp. nov. MycoBank MB 839301. Fig.
53.
Etymology: Name refers to the woody substrate (L. = lignum)
from which it was isolated.
Mycelium consisng of hyaline, smooth, septate, branched, 4–6
µm diam. Conidiophores solitary, subcylindrical, erect, exuous,
hyaline, smooth, 3–5-septate, 100–200 × 7–8 µm. Conidiogenous
cells integrated, terminal, globose to sphaeropedunculate, 22–35
µm diam, covered in numerous dencles, 1–2 × 1 µm, apex with
minute marginal frill. Conidia solitary, aseptate, fusoid-ellipsoid,
pale brown, smooth to nely roughened, apex subobtuse, base
truncate, 1–2 µm diam, with marginal frill, (11–)13–14(–16) ×
6(–7) µm.
Culture characteriscs: Colonies spreading, with moderate aerial
mycelium and smooth, lobate margin, covering dish aer 2 wk
at 25 °C. On MEA, PDA and OA surface and reverse bu.
Typus: France, Normandie, Seine Marime, on masonry and
plastering, near a wooden staircase, Nov. 2019, C. Decock
(holotype CBS H-24559, culture ex-type MUCL 57889 = CPC
39110 = CBS 146637).
Notes: Peziza, the largest genus in the Pezizales, has been linked
to Ostracoderma and Oedocephalum asexual morphs (Hanlin
1997). However, Peziza is paraphylec (Hansen et al. 2001,
2002, 2005). The type of Oedocephalum, O. elegans, has been
linked to Peziza anthracophila. The type of Peziza, P. vesiculosa,
has however been linked to Oedocephalum pallidum, a species
that normally occurs on dung of various animals (Stalpers 1974).
Oedocephalum is characterised by erect, hyaline conidiophores
with a terminal swelling or vesicle that gives rise to hyaline,
aseptate conidia aached to the vesicle via a layer of dencles.
Species of Oedocephalum are common on dung, wood, soil, and
plant lier.
Using the key of Stalpers (1974), P. ligni was similar to
O. argillaceum (decayed branch, Morocco; conidia hyaline,
narrowly ellipsoidal, 12.5–15(–16) × 5.3–6.3(–6.5) µm, covered
in brownish granules, disnctly larger at the ends, up to 2
µm long). Peziza ligni can, however, be disnguished from
O. argillaceum by having conidia that are smooth to nely
roughened, and in having smaller conidiogenous vesicles (22–35
µm diam), vs. 35–52 µm diam in O. argillaceum. A phylogenec
tree is presented as Fig. 54.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Peziza pseudoviolacea (voucher 16504, GenBank
JF908564.1; Idenes = 507/561 (90 %), 11 gaps (1 %)), Peziza
emileia (voucher L 0833270, GenBank KJ728716.1; Idenes =
333/385 (86 %), 14 gaps (3 %)), and Peziza me (voucher TAAM
171114, GenBank JQ654494.1; Idenes = 327/385 (85 %),
14 gaps (3 %)). Closest hits using the LSU sequence are Peziza
exogelanosa (voucher KH 00.029 (C), GenBank AY500545.1;
Idenes = 874/893 (98 %), no gaps), Peziza violacea f. terricola
(voucher MPU JCD 466-77, GenBank MT273610.1; Idenes =
804/823 (98 %), no gaps), and Peziza proteana f. sparassoides
(voucher OSC 100024, GenBank AY544659.1; Idenes =
880/902 (98 %), two gaps (0 %)) – also see Fig. 3. Closest hits
using the rpb2 sequence had highest similarity to Peziza
exogelanosa (voucher KH 00.029 (C), GenBank AY500501.1;
Idenes = 620/681 (91 %), no gaps), Peziza petersii (voucher
OSC 27373, GenBank MN816680.1; Idenes = 556/649 (86 %),
three gaps (0 %)), and Peziza proteana f. campbellii (voucher
Wu-1937, GenBank MN816673.1; Idenes = 582/683 (85 %),
eight gaps (1 %)).
Authors: P.W. Crous & C. Decock
Phylloscta phoenicis Crous, sp. nov. MycoBank MB 839302.
Fig. 55.
Etymology: Name refers to the host genus Phoenix from which
it was isolated.
Conidiomata (on PNA) pycnidial, solitary, black, erumpent,
globose, exuding colourless conidial masses; pycnidia 200–
300 μm diam; pycnidial wall of several layers of textura angularis;
inner wall of hyaline textura angularis. Osole central, to 20 μm
diam. Conidiophores reduced to conidiogenous cells, or with a
supporng cell, that can be branched at the base; Conidiogenous
cells subcylindrical to ampulliform, terminal, hyaline, smooth,
coated in a mucoid layer, 9–15 × 3–4 μm; proliferang several
mes percurrently near apex. Conidia (9–)10–13(–15) × (7–)
8(–9) μm, solitary, hyaline, aseptate, thin and smooth-walled,
granular, or with a single large central guule, fusoid-ellipsoid,
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
316
1 0.87
0.85
0.80
1
1
0.91
1
0.94
0.83
0.81
1
1
1
0.99
1
0.93
1
1
0.98
1
0.80
1
0.91
Stouffera gilkeyae KIPD_04MN857199.1
Peziza arvernensis KS-95-13 (C)AF491585.1
Peziza echinispora TL-6404 (C)AF491573.1
Peziza varia KH-98-38 (C)AF491564.1
Peziza pseudoammophila var. bonii LIP 79112906KX271740.1
Peziza lohjaoensis H 30.V.1982NR_148063.1
Peziza nordica FH 00304781NR_148104.1
Peziza montirivicola M 0274465NR_148194.1
Peziza oliviae OSC 148300NR_148069.1
Peziza vesiculosa JV 95.652 (C)AF491626.1
Peziza hellenica AMB 17117KX271723.1
Peziza ammophila AMB 17106KX271736.1
Peziza ammophila f. megaspora L 920528KX271724.1
Peziza granularis 16441JF908558.1
Peziza domiciliana GM 2KC832907.1
Peziza domiciliana 16472JF908561.1
Peziza alcis s.n. (H)AF491612.1
Peziza nivalis KH-97-44 (C)AF491620.1
Peziza ninguis 11883JF908536.1
Peziza fimeti C no. 52151 (C)AF491606.1
Peziza ampliata JHC 92-386 (C)AF491590.1
Peziza udicola 15446JF908549.1
Peziza perdicina 10745JF908529.1
Peziza fruticosa AMB 17135NR_158836.1
Peziza subcitrina KH-97-133 (C)AF491628.1
Peziza subcitrina KH 00.023 (C)AF491627.1
Peziza buxea 15012JF908547.1
Peziza flavida 14994JF908546.1
Peziza lividula 14802JF908545.1
Peziza moseri 11664JF908534.1
Peziza lobulata 16641JF908567.1
Peziza ampelina KH 00.011 (C)AF491629.1
Peziza ampelina 15909JF908554.1
Peziza badioconfusa KA13-0110KR673653.1
Peziza cf. badioconfusa RH52806E U571229.1
Peziza emileia L 0833270KJ728716.1
Peziza emileia GM 03091006KJ728717.1
Peziza emileia L 0833260KJ728715.1
Peziza pseudoviolacea 16504JF908564.1
Peziza ligni sp. nov. CPC 39110
Peziza halophila ML71162P1MG262328.1
Peziza petersii 3836JF908527.1
Peziza proteana AFTOL-ID 71DQ491497.1
Peziza proteana 16618JF908566.1
0.1
Fig. 54. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Peziza ITS nucleode alignment. Bayesian posterior
probabilies (> 0.79) are shown at the nodes and the scale bar represents the expected changes per site. Families are indicated with coloured blocks
to the right of the tree. GenBank accession (superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are
indicated for all species. The tree was rooted to Stouera gilkeyae (voucher KIPD_04; GenBank MN857199.1) and the novel species treated in this
study is indicated in a coloured block and in bold face. Alignment stascs: 44 strains including the outgroup; 486 unique site paerns. Tree stascs:
19 502 sampled trees from 65 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
317
tapering towards a narrow truncate base, 3 μm diam, enclosed
in a persistent mucoid sheath, 1–2 μm thick, and bearing a
hyaline, apical mucoid appendage, 10–30 μm long, 2.5–3.5 µm
diam at base, exible, unbranched, tapering towards an acutely
rounded p.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, even margin, covering dish aer 2
wk at 25 °C. On MEA, PDA and OA surface and reverse olivaceous
grey.
Typus: South Africa, Eastern Cape Province, Haga Haga, on
leaves of Phoenix reclinata (Arecaceae), 2018, M.J. Wingeld,
HPC 3190 (holotype CBS H-24544, culture ex-type CPC 39164 =
CBS 147091).
Notes: Species of Phylloscta are commonly encountered as
endophytes, plant pathogens or saprobes (Glienke et al. 2011,
Guarnaccia et al. 2017, 2019). Several species have been
reported from palms. Van der Aa & Vanev (2002) refer to P.
cocoina var. phoenicis as having conidia that are 8–9 × 3 µm,
being more suggesve of Phoma or Diaporthe; P. palmarum to
be representave of an undescribed ascomycetous fungus; P.
palmicola to be a Phoma; P. palmigena to be a Coniothyrium,
and P. sabalicola to be Apiosphaeria marnii. Phylloscta
cocoicola (Guignardia cocogena) was seen as indisnguishable
from P. arecae (Guignardia calami) by Van der Aa & Vanev
(2002), but there are no cultures to conrm this synonymy. Van
der Aa (1973) cited conidia of P. arecae (on Areca, Calamus,
Caryota) as 7–15 × 5–9 µm, thus somewhat smaller than
those of P. phoenicis, with shorter appendages, 3–10 µm long.
Punithalingam (1974) cited conidia of P. cocoicola (on Cocos) to
be 10–16 × 5–6 µm, with appendages 6–9(–10) µm long, thus
with narrower conidia and shorter appendages than observed in
P. phoenicis. A phylogenec species tree is presented as Fig. 56.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Phylloscta aristolochiicola (strain BRIP 53316a,
GenBank NR_111791.1; Idenes = 569/579 (98 %), no gaps),
Phylloscta cordylinophila (strain MFUCC 12-0014, GenBank
KC686599.1; Idenes = 582/599 (97 %), ve gaps (0 %)), and
Phylloscta capitalensis (strain MFE29, GenBank MT186150.1;
Idenes = 575/602 (96 %), seven gaps (2 %)). Closest hits using
the LSU sequence are Phylloscta aristolochiicola (strain BRIP
53316a, GenBank JX486128.1; Idenes = 850/860 (99 %), no
gaps), Phylloscta capitalensis (strain MUCC 2916, GenBank
LC543421.1; Idenes = 825/835 (99 %), no gaps), and Phylloscta
paracapitalensis (strain CPC 28123, GenBank KY855805.1;
Idenes = 805/815 (99 %), no gaps) – also see Fig. 1. Closest
hits using the actA sequence had highest similarity to Phylloscta
lauridiae (strain CBS 145559, GenBank MK876460.1; Idenes =
582/604 (96 %), ve gaps (0 %)), Phylloscta acaciigena (strain
CPC 28295, GenBank KY173570.1; Idenes = 512/534 (96 %), one
gap (0 %)), and Phylloscta encephalarcola (strain CBS 146014,
GenBank MN556783.1; Idenes = 563/600 (94 %), one gap (0
%)). Closest hits using the gapdh sequence had highest similarity
to Phylloscta capitalensis (strain VIC30428, GenBank JF343743.1;
Idenes = 307/310 (99 %), no gaps), Phylloscta musarum
(strain GZAAS6.1228, GenBank KM816632.1; Idenes = 458/471
(97 %), one gap (0 %)), and Phylloscta rhizophorae (strain
NCYUCC 19-0358, GenBank MT363251.1; Idenes = 390/404
(97 %), two gaps (0 %)). Closest hits using the tef1 sequence had
highest similarity to Phylloscta capitalensis (strain GZAAS6.1201,
GenBank KM816635.1; Idenes = 376/384 (98 %), no gaps),
Phylloscta ericarum (strain GZAAS6.1250, GenBank KR025451.1;
Idenes = 376/384 (98 %), no gaps), and Phylloscta carochlae
(strain SM52, GenBank MT118271.1; Idenes = 367/384 (96 %),
one gap (0 %)).
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Plectosphaerella slobbergiarum Hern.-Restr., sp. nov. MycoBank
MB 838711. Fig. 57.
Etymology: Named for the collectors Julia Slob and Maaike
Berghui, students from Het Hogeland College (Warum, the
Netherlands). This sample was collected during a Cizen Science
project of the Westerdijk Fungal Biodiversity Instute.
Vegetave hyphae hyaline, septate, smooth, 1.5–4 µm.
Conidiophores semi-micronematous, hyaline, smooth, irregularly
branched. Conidiogenous cells monophialidic, terminal or
intercalary, subcylindrical to subulate, smooth, hyaline, 10–40
× 2–3 µm, with conspicuous cylindrical collaree and periclinal
thickening at the conidiogenous locus, 1–3.5 × 1–2 µm. Conidia
cylindrical to ellipsoidal with rounded apex and slightly truncate
base, inequilateral, with inner plane at and outer plane convex,
guulate, hyaline, 0–1-septate; septate conidia 6–12.5 × 2–3.5
μm; aseptate conidia 4–8.5 × 2–3 μm. Chlamydospores and
sexual morph absent.
Fig. 55. Phylloscta phoenicis (CPC 39164). A. Colony sporulang on OA. B–C. Conidiogenous cells. D. Conidia. Scale bars: A = 250 µm, all others = 10
µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
318
100
97
100
100
100
90
100
93
98
100
91
98
99
90
99
95
91
88
87
100
98
100
100
97
99
97
100
100
100
98
98
100
100
90
100
98
97
92
94
99
99
94
97
Melanops tulasnei CBS 116805NR_138372.1/NG_058039.1/KF766423.1/MISSING
Phyllosticta encephalarticola CPC 35970NR_166311.1/NG_068314.1/MN556818.1/MN556783.1
Phyllosticta owaniana CBS 776.97FJ538368.2/KF206293.1/FJ538426.1KF289254.1
Phyllosticta pseudotsugae CBS 111649KF154277.1/KF206321.1/KF289231.1/KF289236.1
Phyllosticta vacciniicola CPC 18590KF170312.1/KF206257.1/KF289229.1/KF289287.1
Phyllosticta elongata CBS 126.22FJ538353.1/MISSING/FJ538411.1/FJ538469.1
Phyllosticta hostae MUCC 2913LC542603.1/LC543429.1/LC543450.1/LC543470.1
Phyllosticta bifrenariae CBS 128855JF343565.1/KF206209.1/JF343586.1/JF343649
Phyllosticta hymenocallidicola CBS 131309JQ044423.1/JQ044443.1/KF289211.1/KF289242.1
Phyllosticta citricarpa CBS 127454JF343583.1/KF206306.1/JF343604.1/JF343667.1
Phyllosticta paracitricarpa CBS 141357KY855635.1/KY855809.1/KY855964.1/KY855690.1
Phyllosticta citriasiana CBS 120486FJ538360.1/KF206314.1/FJ538418.1/FJ538476.1
Phyllosticta citrimaxima CBS 136059KF170304.1/KF206229.1/KF289222.1/KF289300.1
Phyllosticta citrichinaensis CBS 130529JN791620.1/JN791620.1/JN791459.1/JN791533.1
Phyllosticta hypoglossi CBS 434.92FJ538367.1/KF206299.1/FJ538425.1/FJ538483.1
Phyllosticta cussonia CPC 14875JF343579.1/KF206278.1/JF343600.1/JF343663.1
Phyllosticta pilospora MUCC 2912LC542600.1/LC543426.1/LC543448.1/LC543468.1
Phyllosticta spinarum CBS 292.90JF343585.1/KF206301.1/JF343606.1/JF343669.1
Phyllosticta concentrica CBS 937.70FJ538350.1/KF206291.1/FJ538408.1/KF289257.1
Phyllosticta citribraziliensis CBS 100098FJ538352.1/KF206221.1/FJ538410.1/FJ538468.1
Phyllosticta ericarum CPC 19744KF206170.1/KF206253.1/KF289227.1/KF289291.1
Phyllosticta philoprina CBS 901.69KF206174.1/KF206292.1/KF289230.1/KF289256.1
Phyllosticta hubeiensis CGMCC 3.14986JX025037.1/MISSING/JX025042.1/JX025032.1
Phyllosticta foliorum CBS 447.68KF170309.1/KF206287.1/KF289201.1/KF289247.1
Phyllosticta cryptomeriae MUCC 0028AB454271.1/AB454271.1/MISSING/AB704213.1
Phyllosticta lauridiae CBS 145559NR_165574.1/NG_067892.1/MK876498.1/MK876460.1
Phyllosticta telopeae CBS 777.97KF206205.1/KF206285.1/KF289210.1/ KF289255.1
Phyllosticta sphaeropsoidea CBS 756.70AY042934.1/KF206294.1/KF289202.1/KF289253.1
Phyllosticta minima CBS 585.84KF206176.1/KF206286.1/KF289204.1/KF289249.1
Phyllosticta hamamelidis MUCC 0149KF170289.1/MISSING/MISSING/KF289309.1
Phyllosticta podocarpicola CBS 728.79KF206173.1/KF206295.1/KF289203.1/KF289252.1
Phyllosticta paxistimae CBS 112527KF206172.1/KF206320.1/KF289209. 1/KF289239.1
Phyllosticta yuccae CBS 112065KF206175.1/MISSING/MISSING/KF289237.1
Phyllosticta pachysandricola MUCC 0124AB454317.1/AB454317.1/MISSING/AB704232.1
Phyllosticta leucothoicola CBS 136073AB454370.1/AB454370.1/MISSING/KF289310.1
Phyllosticta rubella CBS 111635KF206171.1/EU754194.1/KF289198.1/KF289233.1
Guignardia gaultheriae CBS 447.70JN692543.1/KF206298.1/JN692531.1/KF289248.1
Phyllosticta neopyrolae CPC 21879AB454318.1/AB454318.1/MISSING/AB704233.1
Phyllosticta philoprina CBS 587.69KF154278.1/KF206297.1/KF289206.1/KF289250.1
Phyllosticta ilicis-aquifolii CGMCC 3.14358JN692538.1/MISSING/JN692526.1/JN692514.1
Phyllosticta mangiferae-indicae MFLUCC 10-0029KF170305.1/KF206240.1/KF289190.1/KF289296.1
Phyllosticta brazilianiae CBS 129060JF343572.1/KF206217.1/JF343593.1/JF343656.1
Phyllosticta acaciigena CPC 28295NR_153297.1/KY173523.1/MISSING/KY173570.1
Phyllosticta beaumarisii CBS 535.87NR_145235. 1/NG_058040.1/KF766429.1/KF306232.1
Phyllosticta styracicola CGMCC 3.14985JX025040.1/MISSING/JX025045.1/JX025035.1
Phyllosticta aloeicola CBS 136058KF154280.1/KF206214.1/KF289193.1/KF289311.1
Phyllosticta eugeniae CBS 445.82AY042926.1/KF206288.1/KF289208.1/KF289246.1
Guignardia mangiferae IMI 260576JF261459.1/KF206222.1/JF261501.1/JF343641.1
Phyllosticta sp. SM52MN652666.1/MISSING/MT118271.1/MISSING
Phyllosticta carochlae CGMCC 3.17317NR_147354.1/MISSING/KJ847444.1/KJ847430.1
Phyllosticta carochlae CGMCC 3.17318KJ847423.1/MISSING/KJ847445.1 /KJ847431.1
Phyllosticta cordylinophila CPC 20261KF170287.1/KF206242.1/KF289172.1/KF289295.1
Phyllosticta phoenicis sp. nov. CPC 39164
Phyllosticta aristolochiicola BRIP 53316aNR_111791.1/JX486128. 1/MISSING/MISSING
Phyllosticta musarum GZAAS6.1228KF955293.1/KF955299.1/KM816638.1 /KM816626.1
Phyllosticta paracapitalensis CBS 141353KY855622.1/KY855796.1/KY855951.1/KY855677. 1
Phyllosticta capitalensis CBS 128856JF261465.1/KF206304.1/JF261507.1/JF343647.1
Phyllosticta rhizophorae NCYUCC 19-0352MT360030.1/MT360039.1/MISSING/MT363248.1
Phyllosticta rhizophorae NCYUCC 19-0358MT360031.1/MT360040.1/MISSING/MT363249.1
0.1
Fig. 56. Consensus phylogram (50 % majority rule) obtained from the maximum likelihood analysis with IQ-TREE of the Phylloscta mulgene (ITS /
LSU / tef1 / actA) nucleode alignment of the novel Phylloscta species treated in this study. The alignment is based on Norphanphoun et al. (2020).
Bootstrap support values (> 79 %) from 5 000 ultrafast bootstrap replicates are shown at the nodes. GenBank accession (superscript) and / or culture
collecon / voucher numbers (in bold face when having a type status) are indicated for all species. The tree was rooted to Melanops tulasnei (culture
CBS 116805) and the novel species treated in this study is highlighted with a coloured block and bold face. Alignment stascs: 59 strains including
the outgroup; 1 592 characters including alignment gaps analysed: 732 disnct paerns, 376 parsimony-informave, 227 singleton sites, 988 constant
sites. The best models idened in IQ-TREE were: TIM2e+I+G4 (ITS), TNe+I+G4 (LSU), HKY+F+G4 (tef1), TPM2+F+G4 (actA).
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
319
Culture characteriscs: Aer 2 wk at 24 °C on PDA reaching
68 mm diam, bu white, in the centre coony, elevated, with
moderate aerial mycelium, becoming less towards the periphery,
mbriate, margin regular, enre, reverse bu. On OA reaching 60
mm diam, zonate with concentric rings, bu and honey; centre
with moderate aerial mycelium, glabrous towards the periphery,
margin enre, regular; reverse honey bu. On MEA reaching 48
mm diam, bu, sparse aerial mycelium, wet appearance, with
radial disposion of the wrinkles, margin slightly lobate; reverse
ochreous with bu radial lines.
Typus: Netherlands, Groningen Province, Warum, Juer
Martha street, from soil, 6 Jun. 2019, J. Slob & M. Berghuis,
NL19_030 (holotype CBS H-24736, culture ex-type CBS 147227
= NL1930002).
Notes: Plectosphaerella comprises several plant pathogenic
and soil-born species (Carlucci et al. 2012, Giraldo & Crous
2019, Giraldo et al. 2019, Zhang et al. 2019). Plectosphaerella
slobbergiarum is phylogenecally disnct (Fig. 58), and
disnguished from other species mainly based on tef1
sequences.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to P. nauculispora (strain CBS 144924 as pauciseptata”,
GenBank LR590240.1; Idenes = 545/549 (99 %), no gaps), P.
plurivora (strain GBC-Fungus 109 as niemeijerarum, GenBank
MN077480.1; Idenes = 541/545 (99 %), no gaps), and P.
cucumerina (strain IIIZ1-2, GenBank MN915127.1; Idenes
= 544/549 (99 %), one gap (0 %)). Closest hits using the LSU
sequence are P. cucumerina (strain BCC86515, GenBank
MH398573.1; Idenes = 817/817 (100 %), no gaps); strain
CBS 137.37, GenBank MH867359.1; Idenes = 817/817 (100
%), no gaps), and strain CBS 355.36, GenBank MH867324.1;
Idenes = 817/817 (100 %), no gaps) – also see Fig. 5. Closest
hits using the tef1 sequence are P. citrulli (strain CBS 131741 as
citrullae, GenBank LR026491.1; Idenes = 774/787 (98 %),
no gaps); strain CBS 131740, GenBank LR026490.1; Idenes =
774/787 (98 %), no gaps) and P. humicola (strain CBS 423.66 as
plurivora, GenBank LR026506.1; Idenes = 772/787 (98 %),
no gaps).
Author: M. Hernández-Restrepo
Populomyces Hern.-Restr., gen. nov. MycoBank MB 838712.
Etymology: From Lan Populus, meaning civilians, and referring
to the fact that the fungus was collected during a Cizen Science
project of the Westerdijk Fungal Biodiversity Instute.
Vegetave hyphae hyaline, septate, smooth. Conidiophores
micronematous, mostly reduced to conidiogenous cells.
Fig. 57. Plectosphaerella slobbergiarum (CBS 147227). A–C. Conidiophores and conidia. D. Conidia. E. Colony on OA. F. Colony on PDA. G. Colony on
MEA. Scale bars A–D = 10 μm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
320
0.007
95
77
96
82
84
89
97
99
98
Plectosphaerella cucumerina CBS 137.37MH855856.1/MH867359.1/LR026493.1
Plectosphaerella oratosquilla NJM 0662 IFM 56765NR_132793.1/-/-
Brunneochlamydosporium nepalense CBS 277.89LR026683.1/LR025812.1/LR026385.1
Plectosphaerella melonis CBS 489.96NR_155614.1/NG_067323.1/LR026507.1
Plectosphaerella guishouensis CGMCC3 19658MK880439.1/MK880424.1/MK930451.1
Plectosphaerella pauciseptata CBS 131745LR026816.1/KY662250.1/LR026511.1
Plectosphaerella populi CBS 139623KR476750.1/NG_068249.1/LR026527.1
Plectosphaerella ramiseptata CBS 131861NR_161020.1/NG_069433.1/LR026529.1
Plectosphaerella sinensis ACCC 39145NR_158920.1/NG_067539.1/-
Plectosphaerella oligotrophica CBS 440.90LR026814.1/LR025952.1/LR026509.1
Brunneochlamydosporium nepalense CBS 971.72MH860634.1/MH872330.1/LR026386.1
Plectosphaerella plurivora CBS 131742 LR026829.1/KY662248.1/LR026524.1
CBS 147227 Plectosphaerella slobbergiarum sp. nov.
Plectosphaerella kunmingensis KUMCC 180181MK993014.1/MK993015.1/MK993017.1
Plectosphaerella hanneae CBS 144925LR590201.1/LR590378.1/LR594767.1
Plectosphaerella citrullae CBS 131741LR026796.1/KY662255.1/LR026490.1
Plectosphaerella nauculispora CGMCC3 19656MK880441.1/MK880431.1/MK930453.1
Plectosphaerella alismatis CBS 113362JF780523.1/KY662261.1/LR026489
Plectosphaerella humicola CBS 423.66LR026811.1/MH870486.1/LR026506.1
Plectosphaerella delsorboi CBS 116708NR_155694.1/NG_067331.1/LR026505.1
Plectosphaerella verschoorii CBS 144924LR590240.1/LR590476.1/LR594774.1
Fig. 58. Maximum composite likelihood tree obtained from the RAxML analysis of the combined ITS, LSU and tef1 sequence alignment of
Plectosphaerella species. Bootstrap support values above 70 % are shown at the nodes. The novel species is indicated in a coloured block and
bold face. The tree was rooted to Brunneochlamydosporium nepalense (CBS 277.89 and CBS 971.72). Alignment stascs: 12 strains including the
outgroup; 2 851 characters including alignment gaps analysed (ITS: 582, LSU: 1391, tef1: 878). Model: GTR+G, alignment paerns: 213.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
321
Conidiogenous cells monophialidic, aggregated in groups,
hyaline, smooth, cylindrical to lageniform. Conidia aseptate,
cylindrical, solitary, hyaline.
Type species: Populomyces zwinianus Hern.-Restr.
Populomyces zwinianus Hern.-Restr., sp. nov. MycoBank MB
838713. Fig. 59.
Etymology: Name refers to the school from where the sample
was collected “Zwin College” (Oostburg, the Netherlands). This
sample was collected during a Cizen Science project of the
Westerdijk Fungal Biodiversity Instute.
Vegetave hyphae hyaline, septate, smooth, 1–2 µm wide.
Conidiophores micronematous, mostly reduced to conidiogenous
cells. Conidiogenous cells monophialidic, aggregated in groups,
hyaline, smooth, cylindrical to lageniform, 5–16 × 2–3.5 µm,
with a cylindrical collaree, 0.5–1.5 µm deep, 1–1.5 µm wide.
Conidia aseptate, cylindrical, solitary, hyaline, guulate, 9–12 ×
2–2.5 µm.
Culture characteriscs: Aer 2 wk at 24 °C on OA reaching 15
mm diam, membranous, saron; sparse aerial mycelium, margin
regular; reverse pale luteous. On MEA reaching 10 mm diam,
elevated, with radial disposion of the wrinkles, velvety, peach
to esh, margin slightly lobate; reverse saron to apricot.
Typus: Netherlands, Zeeland Province, Yerseke, from soil, 11 Jun.
2019, W. Vercouteren, S. Meas & R. Verhije, NL19_076 (holotype
CBS H-24737, ex-type strain CBS 147307 =NL1976004).
Notes: Populomyces is phylogenecally close to Calloria and
Tricellula (Fig. 2). The cylindrical, aseptate conidia of Populomyces
are easily disnguished from the stauroconidia of Tricellula
(Seifert et al. 2011). Furthermore, Calloria is a polyphylec genus
with apothecial ascomata including species that are related
to Cylindrocolla asexual morphs, characterised by polyblasc
conidiogenous cells producing conidia in chains, thus disnct
from the solitary conidia of Populomyces (Muntañola-Cvetkovic
et al. 1997, Seifert et al. 2011).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Chalara sp. (GenBank KX034388.1; Idenes =
463/510 (91 %), one gap (0 %)), Dothideomycetes sp. (strain
CK1374, GenBank MH474014.1; Idenes = 444/493 (90
%), 16 gaps (3 %)), and Fungal sp. (strain LEG-103, GenBank
MW201484.1; Idenes = 446/496 (90 %), 15 gaps (3 %). Closest
hits using the LSU sequence are Calloria urcae (strain G.M. 2016-
03-12.3, GenBank MT509570.1; Idenes = 630/669 (94 %), four
gaps (0 %)), Calloria urcae (strain MFLU 18-0697, GenBank
MK591969.1; Idenes = 824/824 (100 %), four gaps (0 %)), and
Calloria urcae (strain MFLU 18-0696, GenBank MK591968.1;
Idenes = 630/669 (94 %), four gaps (0 %)) – also see Fig. 2.
Author: M. Hernández-Restrepo
Fig. 59. Populomyces zwinianus (CBS 147307). A–B. Conidiophores and conidia. C. Conidia. D. Colony on OA. E. Colony on MEA. F. Reverse colony on
MEA. Scale bars A–C = 10 μm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
322
Porodiplodia vis Crous & R.K. Schumach., Fung. Syst. Evol. 3:
110. 2019. Fig. 60.
Conidiomata eustromac, uni- to mullocular, brown, globose,
150–300 µm, aggregated on PNA, osolate. Conidiophores
lining inner cavity, subcylindrical, hyaline, smooth, branched,
1–3-septate, 15–20 × 2.5–4 µm, proliferang percurrently
near apex. Paraphyses intermingled among conidiophores,
hyaline, smooth, septate, subcylindrical with obtuse ends, up
to 25 µm long. Conidia in short chains (–3), fusoid-ellipsoid to
subcylindrical, medium brown, nely verruculose, guulate,
thick-walled, medianly 1-septate, apex obtuse, base truncate
with central pore, (11–)12–14(–17) × (4–)6(–7) µm.
Culture characteriscs: Colonies at, spreading, surface folded,
with moderate aerial mycelium and smooth, lobate margin,
reaching 35 mm diam aer 2 wk at 25 °C. On MEA surface
rosy bu, reverse cinnamon; on PDA surface honey, reverse
isabelline; on OA surface cinnamon.
Material examined: South Africa, Western Cape Province, Kirstenbosch,
on seed pods of Virgilia oroboides (Fabaceae), 2018, M.J. Wingeld,
HPC 3070 (CBS H-24436, culture CPC 38692 = CBS 146818).
Notes: Porodiplodia was recently established as a new genus for
a species occurring on leaves of Livistona australia in Australia
(Crous et al. 2018b). A second species, P. vis, was described
from canes of Vis vinifera in the USA (Crous et al. 2019a).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Porodiplodia sp. (strain EAB-24-17, GenBank
MT777297.1; Idenes = 459/460 (99 %), no gaps), Porodiplodia
livistonae (strain CPC 32154, GenBank NR_160355.1; Idenes =
536/538 (99 %), no gaps), and Porodiplodia vis (strain CBS 144634,
GenBank NR_163376.1; Idenes = 543/546 (99 %), no gaps).
Closest hits using the LSU sequence are Porodiplodia vis (strain
CBS 144634, GenBank NG_070080.1; Idenes = 824/824 (100
%), no gaps), Porodiplodia livistonae (strain CPC 32154, GenBank
NG_069575.1; Idenes = 824/824 (100 %), no gaps), and Chalara
clidemiae (strain CPC 26423, GenBank KX228321.1; Idenes =
817/824 (99 %), no gaps) – also see Fig. 2. Closest hits using the
tef1 sequence had highest similarity to Porodiplodia vis (strain
CBS 144634, GenBank MK442707.1; Idenes = 463/473 (98 %),
single indel of ten nucleodes (2 % gap)), Davidhawksworthia
ilicicola (strain CBS 261.95, GenBank KU728592.1; Idenes =
205/233 (88 %), seven gaps (3 %)), and Hymenoscyphus menthae
(strain HB_5846, GenBank KM114512.1; Idenes = 204/232
(88 %), six gaps (2 %)). A comparison with the tef1 sequence
we generated of Porodiplodia livistonae in this study revealed
a similarity of 426/439 (97 %, including a single indel of ten
nucleodes (2 % gap) also present for Porodiplodia vis).
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Pseudoacrospermum Crous, gen. nov. MycoBank MB 839303.
Etymology: Name refers to the fact that it is phylogenecally
closely related to Acrospermum.
Mycelium consisng of septate, branched, smooth, pale brown,
hyphae. Conidiophores solitary, erect, exuous, subcylindrical,
mulseptate, unbranched with basal T-cell, arising from
supercial mycelium, thick-walled, pale olivaceous, smooth,
lacking rhizoids, terminang in a slightly swollen conidiogenous
cell. Conidiogenous cells integrated, terminal, subclavate, with
numerous sympodial loci aggregated in a rachis, darkened,
thickened, but not refracve, pimple-like, protruding. Conidia
solitary, smooth, pale olivaceous to granular, subclavate, curved,
apex obtuse, tapering to truncate hilum, darkened, thickened,
and refracve, somewhat thick-walled, transversely septate.
Type species: Pseudoacrospermum goniomae Crous
Pseudoacrospermum goniomae Crous, sp. nov. MycoBank MB
839304. Fig. 61.
Etymology: Name refers to the host genus Gonioma from which
it was isolated.
Mycelium consisng of septate, branched, smooth, pale brown,
2–2.5 µm diam hyphae. Conidiophores solitary, erect, exuous,
subcylindrical, mulseptate, unbranched with basal T-cell,
arising from supercial mycelium, thick-walled, pale olivaceous,
smooth, lacking rhizoids, 100–180 × 2.5–3.5 µm, terminang
in a slightly swollen conidiogenous cell. Conidiogenous cells
integrated, terminal, subclavate, 15–20 × 4–6 µm, with numerous
sympodial loci aggregated in a rachis, darkened, thickened, but
not refracve, pimple-like, protruding (0.5 µm), 1–2 µm diam.
Conidia solitary, smooth, pale olivaceous to granular, subclavate,
curved, apex obtuse, tapering to truncate hilum, 2 µm diam,
darkened, thickened, and refracve, somewhat thick-walled,
3(–6)-septate, (17–)21–23(–25) × (5–)6 µm.
Fig. 60. Porodiplodia vis (CPC 38692). A. Conidiomata on PNA. B–C. Conidiogenous cells. D. Conidia. Scale bars: A = 300 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
323
Culture characteriscs: Colonies at, spreading, surface folded,
with moderate aerial mycelium and smooth, even margin,
reaching 5 mm diam aer 2 wk at 25 °C. On MEA surface bu to
honey, reverse isabelline; on PDA surface straw in centre, outer
margin bu to cinnamon, reverse cinnamon; on OA surface
cinnamon.
Typus: South Africa, Western Cape Province, Knysna, on leaves
of Gonioma kamassi (Apocynaceae), 22 Nov. 2018, F. Roets, HPC
2733 (holotype CBS H-24393, culture ex-type CPC 37030 = CBS
146732).
Notes: Pseudoacrospermum is phylogenecally closely related
to Acrospermum, which is known only by a sexual morph.
Based on its phylogeny, Acrospermum has been shown to be
closely related to such as Gonatophragmium, Radulidium or
Pseudovirgaria (Hudson et al. 2019), that are presently known
by their asexual morphs. Pseudoacrospermum is disnguished
based on its mulseptate conidia. There is no evidence to suggest
that Pseudoacrospermum can be linked to Acrospermum. A
phylogenec tree is presented as Fig. 62.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Acrospermum maxonii (as Acrospermum sp. VD-
2019c; voucher 2711, GenBank MK562001.1; Idenes =
344/421 (82 %), 23 gaps (5 %)), Radulidium epichloes (strain CBS
115704, GenBank MH862990.1; Idenes = 217/236 (92 %), ve
gaps (2 %)), and Acrospermum leucocephalum (as Acrospermum
sp. VD-2019b; voucher 764, GenBank MK562008.1; Idenes
= 334/413 (81 %), 22 gaps (5 %)). Closest hits using the LSU
sequence are Acrospermum gorditum (as Acrospermum sp.
VD-2019a; voucher 1774, GenBank MK561981.1; Idenes
= 803/867 (93 %), seven gaps (0 %)), Acrospermum maxonii
(as Acrospermum sp. VD-2019c; voucher 3114, GenBank
MK561987.1; Idenes = 804/870 (92 %), 11 gaps (1 %)), and
Gonatophragmium triuniae (strain CBS 138901, GenBank
NG_058117.1; Idenes = 764/827 (92 %), nine gaps (1 %)) –
also see Fig. 1. The best hit using the rpb2 sequence had highest
similarity to Pseudovirgaria hyperparasica (strain CBS 121739,
GenBank XM_033741841.1; Idenes = 573/769 (75 %), ten
gaps (1 %)). Only very distant hits with taxa in Dothideomycetes
were obtained using the tef1 (rst and second part) sequences.
However, both these sequences were manually compared
with blast2 searches against Acrospermum tef1 sequences
labelled as unveried in the GenBank nucleode database:
Closest hits using the tef1 (rst part) sequence had highest
similarity to Acrospermum maxonii (strain 75017, GenBank
MK604769.1; Idenes = 198/234 (85 %), seven gaps (2 %)),
Acrospermum gorditum (strain 1774, GenBank MK604778.1;
Idenes = 196/232 (84 %), two gaps (0 %)), and Acrospermum
leucocephalum (strain 3342, GenBank MK604780.1; Idenes
= 213/256 (83 %), nine gaps (3 %)). Closest hits using the tef1
(second part) sequence had highest similarity to Acrospermum
maxonii (strain 44, GenBank MK604767.1; Idenes = 426/473
(90 %), no gaps), and Acrospermum leucocephalum (strain 764,
GenBank MK604781.1; Idenes = 412/474 (87 %), one gap (0
%)).
Authors: P.W. Crous, J.Z. Groenewald & F. Roets
Pseudopyricularia festucae Crous, sp. nov. MycoBank MB
839305. Fig. 63.
Etymology: Name refers to the host genus Festuca from which
it was isolated.
Mycelium consisng of branched, septate, hyaline, smooth, 2.5–
3.5 µm diam hyphae. Conidiophores solitary, erect, subcylindrical,
unbranched, exuous, medium brown, smooth, up to 150 µm
tall, 5–6 µm diam, with 1–2 basal septa. Conidiogenous cells
terminal, integrated, medium brown, smooth, 70–100 µm tall,
with a rachis of protruding dencles, 1.5–2 × 1–1.5 µm. Conidia
solitary, pale brown, fusoid, nely roughened, 2-septate,
apex subobtuse, base truncate, 1.5 µm diam, apex somewhat
thickened, (25–)30–38(–40) × (6–)7 µm.
Culture characteriscs: Colonies at, spreading, with moderate
aerial mycelium and smooth, lobate margin, reaching 50 mm
diam aer 2 wk at 25 °C. On MEA surface dirty white to smoke
grey, reverse honey; on PDA surface and reverse olivaceous
grey; on OA surface olivaceous grey.
Typus: USA, California, UC Davis, on leaves of Festuca californica
(Poaceae), 3 Apr. 2019, P.W. Crous, HPC 2915 (holotype CBS
H-24352, culture ex-type CPC 37915 = CBS 146629).
Notes: Pseudopyricularia is characterised by having short,
determinate, brown conidiophores with an apical rachis with
at-pped dencles (Klaubauf et al. 2014, Marin-Felix et al.
2017). The present isolate is phylogenecally closely related to
Fig. 61. Pseudoacrospermum goniomae (CPC 37030). A. Conidiophores on SNA. B–D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars:
A = 180 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
324
P. iraniana (conidia (20–)22–30 × 5–8 µm, on Juncus sp. in Iran;
Pordel et al. 2017) but has longer conidia, (25–)30–38(–40) ×
(6–)7 µm. A phylogenec species tree is presented as Fig. 64.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Pseudopyricularia iraniana (strain IRAN 2761C,
GenBank NR_158928.1; Idenes = 500/504 (99 %), no gaps),
Dactylaria higginsii (strain CBS 121934, GenBank KM009164.1;
Idenes = 482/509 (95 %), 7 gaps (1 %)), and Pseudopyricularia
bothriochloae (strain CBS 136427, GenBank NR_137838.1;
Idenes = 519/552 (94 %), 11 gaps (1 %)). Closest hits using
the LSU sequence are Pseudopyricularia iraniana (strain 17d,
GenBank KY457268.1; Idenes = 863/863 (100 %), no gaps),
Pyricularia caricis (strain JAC12652, GenBank MK431456.1;
1
1
0.97
0.88
1
1
0.94
1
0.99
1
0.99
1
0.97
0.99
1
1
0.97
1
0.98
0.83
1
0.82
1
1
1
0.97
1
1
1
0.87
0.85
1
1
1
0.89
0.88
Nectria cinnabarina CBS 713.97
AF193237.1/AF543785.1/AB237663.1
Acanthostigma perpusillum UAMH 7237AY856892.1/MISSING/MISSING
Tubeufia cerea CBS 254.75DQ470982.1/DQ471105.1/MISSING
Tubeufia helicomyces CBS 245.49DQ767654.1/DQ767638.1/MISSING
Helicomyces roseus CBS 283.51DQ678083.1/DQ677928.2/MISSING
Tubeufia paludosa CBS 120503GU301877.1/GU349024.1/MISSING
Patellaria atrata CBS 958.97GU301855.1/GU349038.1/MISSING
Hysterium pulicare CBS 239.34DQ678055.1/DQ677896.2/MISSING
Hysteropatella clavispora CBS 247.34AY541493.1/DQ677901.2/MISSING
Hysteropatella elliptica CBS 935.97DQ767657.1/DQ767640.1/MISSING
Monascostroma innumerosum CBS 345.50GU301850.1/GU349033.1/MISSING
Hysterium angustatum CBS 123334FJ161207.2/FJ161111.1/MISSING
Hysterium barrianum ANM1442GQ221884.1/MISSING/MISSING
Monascostroma sphagnophilum M23EU940094.1/MISSING/EU940171.1
Trypetheliopsis kalbii MPN243JN887406.1/JN887435.1/MISSING
Kirschsteiniothelia lignicola MFLUCC 10-0036HQ441568.1/MISSING/MISSING
Kirschsteiniothelia aethiops CBS 109.53AY016361.1/DQ471084.2/MISSING
Kirschsteiniothelia aethiops DAOM 231155DQ678046.1/DQ677884.1/MISSING
Dyfrolomyces thamplaensis MFLUCC 15-0635KX925435.1/KY814763.1/MISSING
Dyfrolomyces phetchaburiensis MFLUCC 15-0951MF615402.1/MISSING/MISSING
Dyfrolomyces tiomanensis NTOU3636KC692156.1/KC692157.1/MISSING
Dyfrolomyces maolanensis GZCC 16-0102KY111905.1/KY814762.1/MISSING
Dyfrolomyces rhizophorae JK 5456AGU479799.1/GU479860.1/MISSING
Pleurotrema thailandica MFLUCC 15-0945KX611366.1/MISSING/MISSING
Acrospermum compressum M151EU940084.1/MISSING/EU940161.1
Phaeodactylium stadleri FMR 12185HF678536.1/MISSING/HF678526.1
Pseudoacrospermum goniomae gen. et sp. nov. CPC 37030
Acrospermum graminum M152EU940084.1/MISSING/EU940161.1
Radulidium subulatum CBS 912.96EU041846.1/MISSING/EU041789.1
Radulidium epichloes CBS 361.63NG_057779.1/MISSING/NR_155709.1
Radulidium subulatum CBS 405.76NG_057780.1/MISSING/NR_145355.1
Pseudovirgaria hyperparasitica CBS 121738EU041823.1/MISSING/EU041766.1
Pseudovirgaria hyperparasitica CBS 121739EU041824.1/MISSING/EU041767.1
Pseudovirgaria grisea CPC 19134JF957614.1/MISSING/JF957609.1
Pseudovirgaria grisea CBS 129279JF957613.1/MISSING/JF957608.1
Acrospermum adeanum M133EU940104.1/MISSING/EU940180.1
Acrospermum longisporium MFLU 17-2849NG_064506.1/MISSING/MISSING
Acrospermum leucocephalum 3342MK561988.1/MK604780.1/MK562005.1
Acrospermum leucocephalum 764MK561990.1/MK604781.1/MK562008.1
Acrospermum gorditum 1774MK561981.1/MISSING/MK561995.1
Acrospermum gorditum 2549MISSING/MISSING/MK561996.1
Acrospermum maxonii 3381MK561989.1/MK604779.1/MK562006.1
Acrospermum maxonii 1154MK561980.1/MISSING/MK561994.1
Acrospermum maxonii 44MK603831.1/MK604767.1/MK562007.1
Gonatophragmium triuniae CBS 138901KP004479.1/MISSING/NR_137932.1
Gonatophragmium epilobii CBS 122271MH874728.1/MISSING/MH863183.1
Gonatophragmium epilobii CPC 34889MT223893.1/MISSING/MT223798.1
0.1
Fig. 62. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Acrospermum and related genera mulgene (LSU / tef1 /
ITS) nucleode alignment. The alignment is derived from Hudson et al. (2019). Bayesian posterior probabilies (> 0.79) are shown at the nodes and
the scale bar represents the expected changes per site. GenBank accession (superscript) and / or culture collecon / voucher numbers (in bold face
when having a type status) are indicated for all species. The tree was rooted to Nectria cinnabarina (culture CBS 713.97) and the novel species treated
in this study is indicated in a coloured block and bold face. Alignment stascs: 47 strains including the outgroup; 595 / 418 / 284 unique site paerns,
respecvely. Tree stascs: 184 502 sampled trees from 1 230 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
325
Idenes = 874/880 (99 %), no gaps), and Pseudopyricularia
hyrcaniana (strain Ck3, GenBank KY457267.1; Idenes =
850/863 (98 %), no gaps) – also see Fig. 5. Closest hits using
the cmdA sequence had highest similarity to Pseudopyricularia
iraniana (strain 16d, GenBank KY457263.1; Idenes =
400/414 (97 %), 11 gaps (2 %)), Pseudopyricularia kyllingae
(strain CB8959, GenBank KM485251.1; Idenes = 429/511
(84 %), 17 gaps (3 %)), Macgarvieomyces borealis (strain CBS
461.65, GenBank KM485239.1; Idenes = 156/163 (96 %),
no gaps), and Macgarvieomyces luzulae (strain CPC 31571,
Fig. 63. Pseudopyricularia festucae (CPC 37915). A–D. Conidiophores with conidiogenous cells giving rise to conidia. Scale bars = 10 µm.
1
1
1
1
1
1
1
1
0.84
0.99
0.90
0.80
1
Macgarvieomyces juncicola CBS 610.82KM485240.1/KM484855.1/KM009189.1
Pseudopyricularia cyperi CBS 665.79KM485248.1/KM484873.1/KM485093.1
Pseudopyricularia cyperi CBS 133595AB274485.1/NR_137920.1/AB818013.1
Pseudopyricularia kyllingae CBS 133597MISSING/NR_155645.1/KM485096.1
Pseudopyricularia kyllingae CB8959KM485251.1/KM484877.1/KM485097.1
Pseudopyricularia festucae sp. nov. CPC 37915
Pseudopyricularia iraniana UTFC-PO12KY457263.1/KM207210.1/MISSING
Pseudopyricularia iraniana IRAN 2762CKY457265.1/KY465726.1/KY457274.1
Pseudopyricularia iraniana IRAN 2761CKY457264.1/KY457258.1/KY457273.1
Pseudopyricularia hagahagae CPC 25635MISSING/NR_155666.1/KT950877.1
Pseudopyricularia persiana UTFC-PO20MH699978.1/MH780926.1/MH699975.1
Pseudopyricularia higginsii CBS 121934KM485250.1/KM484875.1/KM485095.1
Pseudopyricularia javanii UTFC-PJ01MT472593.1/MT472570.1/MT472595.1
Pseudopyricularia javanii UTFC-PJ02MT472594.1/MT472569.1/MT472596.1
Pseudopyricularia sp. UTFC-PH02MISSING/MT226735.1/MISSING
Pseudopyricularia sp. UTFC-PH01MISSING/MT226734.1/MISSING
Pseudopyricularia bothriochloae CBS 136427MISSING/NR_137838.1/KY905701.1
Pseudopyricularia hyrcaniana IRAN 2758CKY457260.1/KP144447.1/KY457270.1
Pseudopyricularia hyrcaniana IRAN 2760CKY457262.1/KM207211.1/KY457272.1
Pseudopyricularia hyrcaniana IRAN 2759CKY457261.1/KP144448.1/KY457271.1
0.1
Fig. 64. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Pseudopyricularia mulgene (cmdA / ITS / rpb1) nucleode
alignment. The alignment is derived from Klaubauf et al. (2014). Bayesian posterior probabilies (> 0.79) are shown at the nodes and the scale bar
represents the expected changes per site. GenBank accession (superscript) and / or culture collecon / voucher numbers (in bold face when having
a type status) are indicated for all species. The tree was rooted to Macgarvieomyces juncicola (culture CBS 610.82) and the novel species treated in
this study is indicated in a coloured block and bold face. Alignment stascs: 20 strains including the outgroup; 248 / 123 / 254 unique site paerns,
respecvely. Tree stascs: 39 002 sampled trees from 130 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
326
GenBank MG934521.1; Idenes = 153/160 (96 %), no gaps).
Closest hits using the rpb1 sequence had highest similarity to
Pseudopyricularia iraniana (strain 17d, GenBank KY457273.1;
Idenes = 961/981 (98 %), no gaps), Pseudopyricularia
bothriochloae (strain CBS 136427, GenBank KY905701.1;
Idenes = 614/669 (92 %), no gaps), and Pseudopyricularia
hagahagae (strain CPC 25635, GenBank KT950877.1; Idenes
= 926/1 013 (91 %), no gaps).
Authors: P.W. Crous, J.Z. Groenewald & L. Lombard
Sarocladium sasijaorum Hern.-Restr., sp. nov. MycoBank MB
838714. Fig. 65.
Etymology: Name reects the names of the collectors Sami
Maghnouji, Simon Frederikze, and Jason Mes, students from
Wereldwijs (Bilthoven, the Netherlands). This sample was
collected during a Cizen Science project of the Westerdijk
Fungal Biodiversity Instute.
Vegetave hyphae septate, hyaline, smooth and thin-walled,
1–2 µm wide. Conidiophores erect, arising directly from
vegetave hyphae or ropes of hyphae, straight or slightly bent,
simple, hyaline, smooth-walled. Phialides subulate to acicular,
16–32 µm long, 1.5–2 µm wide at the base, 1–1.5 µm wide at
the apex, straight or exuous, hyaline, thin- and smooth-walled.
Conidia arranged in long chains, unicellular, fusoid, with pointed
ends, becoming limoniform to obovoid with age, 4–6 × 1.5–2
µm, hyaline, smooth-walled. Chlamydospores and sexual morph
not observed.
Culture characteriscs: Aer 7 d at 25 °C on OA aaining 13 mm
diam, coony, at, with sparse aerial mycelium, bu to white,
dry, margin euse; reverse similar. On MEA aaining 14 mm
diam, coony, elevated, bu to pale luteous; reverse apricot.
On PDA aaining 13 mm diam, coony to hairy, with sparse
aerial mycelium towards the periphery, olivaceous bu to white;
reverse pale luteous in centre, white towards the periphery.
Typus: Netherlands, Utrecht Province, Bilthoven, Planetenplein,
from soil, 31 Jul. 2019, S. Frederikze, J. Mes & S. Maghnouji,
NL19_100 (holotype CBS H-24738, culture ex-type CBS 147213
= NL19100007).
Notes: Sarocladium sasijaorum is phylogenecally close to S.
dejongiae, S. liguanense, and S. clemadis (Fig. 66). Sarocladium
clemadis was described from Belgium on dead stems of
Clemas patens (Phukhamsakda et al. 2020) and resembles
Phaeoisaria clemadis based on morphology. Sarocladium
dejongiae was recently described form Dutch soil (Crous et al.
Fig. 65. Sarocladium sasijaorum (CBS 147213). A–C. Conidiophores and conidia. D. Conidia. E. Colony on MEA. F. Colony on OA. G. Colony on PDA.
Scale bars A–D = 10 μm
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
327
0.05
98
100
95
96
99
87
100
99
84
78
97
99
86
99
99
76
90
81
80
99
Sarocladium subulatum CBS 217.35NR_145047.1/NG_070566.1
Sarocladium dejongiae CBS 144929NR_161153.1/NG_067854.1
Sarocladium brachiariae CGMCC 2192EU880834.1/KP715271.1
Sarocladium bacillisporum CBS 425.67NR_145039.1/HQ231992.1
Parasarocladium alavariense CMG34 MK986718.1/-
Parasarocladium breve CBS 150.62MK986713.1/-
Sarocladium summerbellii CBS 430.70NR_145048.1/NG_067387.1
Sarocladium spirale BCRC FU31123LC461491.1/LC464181.1
Sarocladium mali ACCC 39308MF987662.1/MF987653.1
CBS 147213 Sarocladium sasijaorum sp. nov.
Sarocladium spinificis BCRC 34941-/JQ954463
CBS 147224
Sarocladium hominis UTHSC 04-1034NR_155779.1/HG965060.1
CBS 147226T
Xenoacremonium recifei CBS 137.35MH855606.1/NG_057890.1
Sarocladium gamsii CBS 707.73NR_155780.1/HG965063.1
Sarocladium martinicensis CBS 129746MH865378.1/MH876842.1
Sarocladium graminicola CML 4052MK017855.1/MK017871.1
Sarocladium RT1MH367052.1/MH367070.1
Sarocladium terricola CBS 243.59FN706553.1/HE608659.1
Sarocladium kiliense CBS 122.29NR_130684.1/NG_057887.1
Parasarocladium radiatum CBS 142.62NR_161112.1/NG_070520.1
CBS 147223
Sarocladium ochraceum CBS 428.67NR_155781.1/NG_057888.1
Sarocladium attenuatum CBS 399.73MH860715.1/MH872426.1
Sarocladium summerbellii NL19 22004
Sarocladium oryzae CBS 180.74HG965026.1/NG_057866.1
Sarocladium glaucum CBS 796.69NR_130686.1/NG_057886.1
Sarocladium implicatum CBS 959.72HG965023.1/MH878470.1
Parasarocladium aestuarinum CMG30MK986713.1/-
Sarocladium liguanense ACCC 39306MF987659.1/MF987651.1
Parasarocladium tasmanniae CPC 38162
Sarocladium strictum CBS 346.70NR_111145.1/NG_055736.1
Sarocladium pseudostrictum CBS 137660NR_145046.1/MH877650.1
Sarocladium clematidis MFLUCC 172150MN629287.1/MN629285.1
Sarocladium bactrocephalum CBS 749.69NR_145044.1/NG_057884.1
Parasarocladium fusiforme CMG36MK986719 .1/-
Sarocladium bifurcatum CBS 137658NR_155778.1/NG_067482.1
Parasarocladium debruynii CBS 144942 NR_163316.1/
Parasarocladium gamsii CBS 726.71NR_159615.1/NG_056985.1
Sarocladium zeae CBS 800.69NR_130685.1/NG_067385.1
Sarocladium sparsum BCRC FU31121LC461524.1/LC464185.1
Parasarocladium wereldwijsianum sp. nov.
MW175340.1/MW175380.1
NG_066301.1
Fig. 66. Maximum composite likelihood tree obtained from the RAxML analysis of the combined ITS and LSU sequence alignment of Sarocladiaceae
members. Bootstrap support values above 70 % are shown at the nodes. The novel species are indicated in bold face and the two genera are indicated
with coloured blocks. The tree was rooted to Xenoacremonium recifei (CBS 137.35). Alignment stascs: 43 strains including the outgroup; 1 571
characters including alignment gaps analysed (ITS: 642, LSU: 929). Model GTR+I+G, 620 disnct paerns.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
328
2018a) and S. liguanense from China on Malus × domesca (Hou
et al. 2019). However, S. sasijaorum is disnguishable based
on its conidial arrangement and morphology. In S. sasijaorum
conidia are ellipsoidal with pointed ends, 4–6 × 1.5–2 µm
and arranged in chains; in S. dejongiae conidia are ellipsoidal
to cylindrical, 3–5 × 1–2 µm (av. 3 × 1.5 µm) and disposed in
slimy heads (Crous et al. 2018a), and in S. liguanense conidia
are ellipsoidal to cylindrical, 3–6.5 × 1.5–3 μm, and arranged in
slimy heads (Hou et al. 2019). Furthermore, in S. dejongiae and
S. liguanense chlamydospores are present (Crous et al. 2018a,
Hou et al. 2019), while they were not observed in S. sasijaorum.
Also see the overview phylogeny (Fig. 4).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Ascomycota sp. (strain j17, GenBank EU167596.1;
Idenes = 488/491 (99 %), one gap (0 %)), Hypocreales sp.
(strain f10, GenBank MN982323.1; Idenes = 481/484
(99 %), one gap (0 %)), and Fungal sp (strain acwVHT103_8,
GenBank JQ070513.1; Idenes = 427/442 (97 %), three gaps
(0 %)). Closest hits using the LSU sequence are Sarocladium
sp. (strain ACCC 39306, GenBank MF987651.1; Idenes
= 773/779 (99 %), no gaps), Sarocladium dejongiae (strain
CBS 144929, GenBank NG_069161.1; Idenes = 773/779
(99 %), no gaps), and Sarocladium sp. (strain MFLUCC 17-
2150, GenBank MN629285.1; Idenes = 767/779 (98 %), no
gaps) also see Fig. 4. Closest hits using the rpb2 sequence
had highest similarity to Sarocladium sp. (strain MFLUCC 17-
2150, GenBank MN628627.1; Idenes = 683/761 (90 %),
no gaps), Acremonium sp. DLW-2010 (strain 11665, GenBank
GQ867809.1; Idenes = 650/811 (80 %), four gaps (0 %)), and
Sarocladium sp. (strain A131, GenBank KC999025.1; Idenes
= 650/811 (80 %), four gaps (0 %)). Closest hits using the tef1
sequence had highest similarity to Sarocladium implicatum
(strain 04035, GenBank KT878359.1; Idenes = 601/630 (95
%), no gaps), Sarocladium kiliense (GenBank MK512750.1;
Idenes = 591/630 (94 %), no gaps), and Sarocladium kiliense
(strain MB20A1, GenBank LT615314.1; Idenes = 591/630 (94
%), no gaps).
Author: M. Hernández-Restrepo
Septoria protearum Viljoen & Crous, S. African J. Bot. 64: 144.
1998. Fig. 67.
Descripon and illustraon: Verkley et al. (2013).
Material examined: New Zealand, Tuaranga Port, on Kniphoa
uvaria (Asphodelaceae), 22 Aug. 2019, D. Burnt, culture CPC 38736 =
T19_05709B.
Notes: Septoria protearum is a plurivorous species known from
various hosts in South Africa, Europe and New Zealand (Verkley
et al. 2013). Septoria citri is considered to belong to the Septoria
protearum species complex which sll needs to be resolved
(Verkley et al. 2013).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Septoria coprosmae (as Mycosphaerella coacervata;
strain CBS 113391, GenBank EU167596.1; Idenes = 540/540
(100 %), no gaps), Mycosphaerella linorum (strain CBS 261.39,
GenBank EU167590.1; Idenes = 540/540 (100 %), no
gaps), and Septoria protearum (strain CBS 778.97, GenBank
NR_163551.1; Idenes = 539/539 (100 %), no gaps). Closest
hits using the LSU sequence are Septoria protearum (strain CBS
778.97, GenBank NG_069851.1; Idenes = 751/752 (99 %),
one gap (0 %)), Septoria malagui (strain CBS 106.80, GenBank
NG_069161.1; Idenes = 751/752 (99 %), one gap (0 %)), and
Septoria citricola (strain CBS 356.36, GenBank NG_069158.1;
Idenes = 751/752 (99 %), one gap (0 %)) – also see Fig. 1.
Closest hits using the actA sequence had highest similarity to
Septoria protearum (strain CBS 778.97, GenBank KF253827.1;
Idenes = 214/214 (100 %), no gaps), Septoria citri (strain CBS
315.37, GenBank JX902161.1; Idenes = 543/543 (100 %),
no gaps), Septoria eucalyptorum (strain CBS 118505, GenBank
KF903501.1; Idenes = 500/528 (95 %), three gaps (0 %)), and
Septoria carvi (strain KML1860, GenBank KX822110.1; Idenes
= 495/531 (93 %), no gaps). Closest hits using the tef1 sequence
had highest similarity to Septoria protearum (strain CBS 778.97,
GenBank KF253472.1; Idenes = 387/387 (100 %), no gaps),
Septoria citri (strain CBS 315.37, GenBank JX901706.1; Idenes
396/396 (100 %), no gaps), Septoria chamaecis (strain CBS
350.58, GenBank KF253318.1; Idenes = 387/387 (100 %),
no gaps), and Septoria citricola (strain CBS 356.36, GenBank
KF253329.1; Idenes = 387/388 (99 %), one gap (0 %)).
Authors: P.W. Crous, J.Z. Groenewald & R. Thangavel
Sporothrix hypoxyli W.J. Nel, Z.W. De Beer & T.A. Duong, sp. nov.
MycoBank MB 837458. Fig. 68.
Etymology: Lan, hypoxyli, refers to the genus of the fungus
fruing body from which this species was isolated, Hypoxylon.
Fig. 67. Septoria protearum (CPC 38736). A. Conidiomata on OA. B–D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
329
Fig. 68. Sporothrix hypoxyli (CBS 141569). A, H. Ascomata on Fraxinus wood embedded in fruing body of Hypoxylon petriniae. B. Ascospores. C.
Osole containing osolar hyphae. D. Ascoma. E. One-month-old culture on MEA. F. Conidia. G. Conidiophore. Scale bars: A, H = 1 mm, B–C, F–G =
10 μm, D = 100 μm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
330
Ascomatal bases black, globose, (140–)170–279(–392) µm diam,
ornamented with brown hyphal hairs, (10–)18–47(–74) µm long,
(1.5–)1.8–2.4(–2.6) µm diam. Ascomatal necks, black, mostly
straight, occasionally slightly curved or kinked tapering toward
apex, vary greatly in length, (429–)580–1125(–1504) µm long,
(25–)35–49(–58) µm wide at base, (11–)14–23(–28) µm wide
at apex. Osolar hyphae present, slightly divergent, hyaline,
tapering toward p, (24–)30–47(–59) µm long. Asci dehiscent.
Ascospores produced in slimy droplet at apex of ascomatal
neck, hyaline, aseptate, reniform to bean-shaped, no sheath,
(2.6–)3.2–3.7(–3.8) µm long, (1.2–)1.4–1.7(–1.9) µm wide at
centre. Sporothrix-like asexual morph. Conidiophores hyaline
somemes becoming light brown with age, smooth, arising
singly from mycelia, micronematous, (14–)16–44(–88) µm
long. Conidiogenous cells (4–)10–26(–40) µm long, denculate.
Conidia hyaline can become light brown with age, aseptate,
round to obovoid, produced directly on dencles, arising either
from hyphae or on conidiophores, (2.5–)3.4–4.6(–5.9) µm long,
(2.2–)2.4–3(–3.5) µm wide at thickest part.
Culture characteriscs (25 °C, 10 d, MEA): Colonies produce
aerial mycelium inially white somemes becoming pigmented
with age, supercial mycelium in media inially white, becoming
light to dark brown with age, slow growing, growing 14 mm in 10
d. Ascomata form in culture aer 2–3 mo at low temperatures
(5–15 °C).
Typus: Netherlands, Utrecht Province, Utrecht, ascomata
embedded in sporocarp of Hypoxylon petriniae on Fraxinus
wood, 19 Apr. 2015, E. Osieck & W.J. Nel (holotype PREM 63086,
ex-type culture CMW 47441 = CBS 141569).
Addional materials examined: Netherlands, Utrecht Province, Utrecht,
ascomata embedded in sporocarp of Hypoxylon petriniae on Fraxinus
wood, 19 Apr. 2015, E. Osieck & W.J. Nel (PREM 63083, culture CMW
47436 = CBS 141568); Utrecht Province, Utrecht, ascomata embedded
in sporocarp of Hypoxylon petriniae on Fraxinus wood, 19 Apr. 2015, E.
Osieck & W.J. Nel (PREM 63085, culture CMW 47439 = CBS 141567).
Notes: A mulgene phylogeny (Fig. 69) of combined sequences
for the LSU, ITS and tub2 gene regions resolved Sporothrix
hypoxyli in a clade distant from all other Sporothrix spp. Few
other species in the genus have previously been described
in associaon with the sporocarps of other fungi (Guerrero
1971, Samuels & Müller 1979, Constannescu & Ryman 1989).
This represents the rst report of a species of Sporothrix with
ascomata embedded in the sporocarp of a Hypoxylon sp. Also
see the overview phylogeny (Fig. 5).
Authors: W.J. Nel, Z.W. de Beer, T.A. Duong & M.J. Wingeld
Stemphylium eturmiunum E.G. Simmons, Harvard Pap. Bot. 6:
204. 2001. Fig. 70.
Ascomata on PNA pseudothecial, subconical to subglobose,
erumpent, brown with central osole, 250–350 µm diam; wall of
6–8 layers of brown textura angularis. Asci 2–8-spored, spitate,
bitunicate, fasciculate, subclavate, 120–150 × 27–35 µm, with
clearly dened apical chamber, 3–5 µm diam. Pseudoparaphyses
intermingled among asci, hyaline, smooth, hyphae-like, septate,
anastomosing, 2.5–5 µm diam. Ascospores golden brown,
smooth, ellipsoid, constricted at medium septum, ends obtuse,
muriformly septate, 5–7 transverse septa, and 1–4 oblique or
vercal septa per row, (28–)30–31(–34) × (10–)11–12(–13)
µm. Mycelium consisng of medium brown, smooth, septate,
branched, 3–4 µm diam hyphae. Conidiophores arising from
supercial hyphae, subcylindrical, medium brown, smooth,
straight to geniculate-sinuous, unbranched, 1–4-septate, 20–50
× 3–5 µm. Conidiogenous cells integrated, terminal, clavate,
medium to dark brown, 7–15 × 6–7 µm, with terminal pore,
1.5–2 µm diam. Conidia solitary or in short chains (2–3), dark
brown, verruculose, narrowly ellipsoid to subcylindrical, (14–)
17–20(–22) × (8–)12–13(–14) µm, muriformly septate, at mes
constricted at median septum, 1–3 horizontal and 1–3 vercal
or oblique septa per row.
Culture characteriscs: Colonies at, spreading, with moderate
to abundant aerial mycelium and smooth, even margin, covering
dish aer 2 wk at 25 °C. On MEA, PDA and OA surface olivaceous
grey, reverse iron-grey.
Material examined: South Africa, Western Cape Province,
Nieuwoudtville, on leaves of Bulbinella lafolia (Asphodelaceae), 2018,
P.W. Crous, HPC 3061 (CBS H-24445, culture ex-type CPC 38613 = CBS
146783).
Notes: Stemphylium eturmiunum was described as a pathogen
of Allium savum in France and India (Woudenberg et al. 2017),
and recently as postharvest pathogen of Allium in China (Fu et
al. 2019). This is the rst report of this pathogen occurring on
leaves of Bulbinella lafolia in South Africa.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Stemphylium eturmiunum (strain FXA6, GenBank
MT898507.1; Idenes = 575/575 (100 %), no gaps), Stemphylium
vesicarium (strain UKKo1, GenBank MN328401.1; Idenes =
588/589 (99 %), one gap (0 %)), and Stemphylium botryosum (strain
CBS 714.68, GenBank NR_163547.1; Idenes = 585/587 (99 %),
no gaps). Closest hits using the LSU sequence are Stemphylium
eturmiunum (strain CBS 109845, GenBank NG_069866.1; Idenes
= 826/826 (100 %), no gaps), Stemphylium paludiscirpi (strain
CBS 109842, GenBank NG_069865.1; Idenes = 826/826 (100
%), no gaps), and Stemphylium triglochinicola (strain CBS 718.68,
GenBank NG_069740.1; Idenes = 826/826 (100 %), no gaps)
also see Fig. 1. Closest hits using the actA sequence had highest
similarity to Stemphylium vesicarium (as Pleospora herbarum;
strain ATCC 11681, GenBank JQ671595.1; Idenes = 575/585 (98
%), no gaps), Stemphylium botryosum (as Pleospora tarda; strain
ATCC 42170, GenBank JQ671593.1; Idenes = 575/585 (98 %),
no gaps), and Stemphylium callistephi (strain EEB 1055, GenBank
JQ671592.1; Idenes = 572/585 (98 %), three gaps (0 %)). Closest
hits using the cmdA sequence had highest similarity to Stemphylium
eturmiunum (strain CBS 668.80, GenBank KU850830.1; Idenes
= 562/562 (100 %), no gaps), Stemphylium botryosum (strain
M-14, GenBank MH206180.1; Idenes = 553/562 (98 %), no
gaps), and Stemphylium truncatulae (strain UMSe004, GenBank
MK336838.1; Idenes = 551/560 (98 %), no gaps). Closest hits
using the gapdh sequence had highest similarity to Stemphylium
eturmiunum (strain CBS 109845, GenBank KU850689.1; Idenes =
581/581 (100 %), no gaps), Stemphylium mali (as Stemphylium sp.
XGZ-2010b; strain CBS 124652, GenBank GQ395376.1; Idenes =
554/558 (99 %), no gaps), and Stemphylium armeriae (strain CBS
338.73, GenBank KU850658.1; Idenes = 573/581 (99 %), no
gaps). Closest hits using the rpb2 sequence had highest similarity to
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
331
S. fusiformis CMW 9968 T DQ294354/AY280481/AY280461
S. prolifera CBS 251.88 TKX590869/KX590829/KX590770
S. lunata CMW 10563 TKX590859/AY280485/AY280466
S. cantabriensis CMW 39766 TMISSING/KF951554/KF951544
S. euskadiensis CMW 27318 TMISSING/DQ674369/EF396344
S. gossypina ATCC 18999 TKX590856/KX590819/KX590761
S. abietina CBS 125.89 TKX590845/AF484453/KX590755
S. variecibatus CMW 23051 TDQ821537/DQ821568/DQ821573
S. uta CMW 40316 P MISSING/KU595577/KU639616
S. eucastanea CBS 424.77 TKX590843/KX590814/KX590753
S. aurorae CMW 19362 TKX590848/DQ396796/DQ396800
S. splendens CMW 20675 AF221013/DQ316205/DQ316167
S. zambiensis CMW 28604 T KX590874/EU660453/EU660473
S. protearum CMW 1107 DQ316145/DQ316201/DQ316165
S. aemulophila CMW 40381 TMISSING/KT192603/KT192607
S. rossii CBS 116.75 TKX590844/KX590815/KX590754
S. narcissi CMW 22311 TKX590861/AF194510/KX590765
S. stenoceras CBS 237.32 TDQ294350/AF484462/DQ296074
S. rapaneae CMW 40369 TMISSING/MISSING/KU63 9624
S. candida CMW 26484 TKX590850/HM051409/HM041874
S. africana CMW 823 DQ316147/DQ316199/DQ296073
S. itsvo CBS 141063 T MISSING/KX590840/KU639625
S. cabrallii CIEFAP 456 TKT362229/KT362256/KT381295
S. gemella CMW 23057 TDQ821531/DQ821560/DQ821554
S. palmiculminata CMW 20677 TDQ316143/DQ316191/DQ316153
S. proteasedis CMW 28601 TKX590870/EU660449/EU660463
S. mexicana CBS 120341 TKX590887/KX590841/AM498344
S. chilensis SS 469 TMH878671/KP711811/KP711813
S. humicola CMW 7618 TEF139114/AF484472/EF139100
S. stylites CMW 14543 EF139115/EF127883/EF139096
S. pallida CBS 131.56 TEF139121/EF127880/EF139110
S. polyporicola CBS 669.88 TKX590866/KX590827/KX590768
S. dimorphospora CMW 12529 TMISSING/AY495428/AY495439
S. dentifunda CMW 13016 TKX590853/AY495434/AY495445
S. inflata CMW 12527 TDQ294351/AY495426/AY495437
S. guttiliformis CBS 437.76 TKX590855/KX590839/KX590778
S. phasma CMW 20676 TDQ316151/DQ316219/DQ316181
S. globosa CBS 120340 TKX590884/KX590838/AM116966
S. schenckii CBS 359.36 I KX590890/KX590842/AM116911
S. brasiliensis CBS 120339 TKX590877/KX590832/AM116946
S. luriei CMW 17210 TKX590886/AB128012/AM747289
CMW 47436
CMW 47441 T
CMW 47439
S. eucalyptigena CPC 24638 TKR476756/KR476721/KX273395
S. nebularis CBS 122135 TMISSING/KX590824/KX590766
S. curviconia CBS 959.73 TKX590880/KX590835/KX590776
S. thermara CMW 38930 TKR051127/KR051115/KR051103
S. epigloea CBS 573.63 T *
S. bragantina CBS 474.91 TKX590849/FN546965/FN547387
S. dombeyi CBS 455.83 TKX590865/KX590826/KX590767
S. fumea CMW 26813 TMISSING/HM051412/HM041878
S. brunneoviolacea FMR 9338 TKX590878/FN546959/FN547385
Cop. manitobensis UM 237 T DQ294358/EU913714/EU913753
Cop. ranaculosa CBS 216.88 TDQ294357/EU913713/EU913752
Cop. minima UM85 DQ294361/EU913701/EU913740
76/0.99
91/1
77/0.99
83/1
84/0.99
95/1
99/1
99/1
99/0.99
93/1
76/0.99
97/1
81/1
79/0.99
98/1
92/1
84/1
100/1
100/1
97/1
99/1
81/1
75/-
100/1
78/-
0.05
-/0.99
-/0.99
-/0.99
-/1
-/0.98
-/1
-/-
-/0.98
-/0.99
-/0.99
-/1
-/0.99
\\
\\
x3
x3
Sporothrix hypoxyli sp. nov.
Fig. 69. Combined phylogeny of Sporothrix based on sequences for the LSU, ITS, and tub2 gene regions. Datasets for the individual gene regions
were prepared (MEGA v. 7) using sequences available on GenBank, aligned (MAFFT v. 7.454) and then combined manually before being analysed
using Maximum Likelihood (ML; RAxML GUI v.2) and Bayesian Inference (BI; MrBayes v. 3.2.5), with the former being the tree presented. GenBank
accession (superscript) and culture collecon numbers are indicated for all species. The tree was rooted using isolates of the genus Ceratocysopsis
(Cop.) and basal branches were shortened to facilitate layout. Bootstrap support values (≥ 75 %; ML) and Posterior probability values (≥ 0.95; BI) are
given at nodes as ML / BI. Dashes indicate low or unsupported branches. The new species is indicated in a coloured block and bold face. The scale bar
indicates the number of changes. Alignment stascs: 56 strains including the outgroup taxa, 697 / 499 / 249 unique site paerns. Tree stascs: 205
738 trees sampled from 10 M generaons. T = ex-type; P = Paratype; I = Isotype; * = KX590854 / KX590817 / KX590760.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
332
Stemphylium vesicarium (strain BRIP 65181, GenBank KY009907.1;
Idenes = 800/812 (99 %), no gaps), Stemphylium vesicarium (as
Pleospora herbarum; strain N131, GenBank KU738709.1; Idenes
= 794/806 (99 %), one gap (0 %)), and Stemphylium botryosum
(strain ATCC 42170, GenBank JQ905202.1; Idenes = 685/697 (98
%), no gaps). No rpb2 sequences of Stemphylium eturmiunum are
available for comparison. Closest hits using the tef1 sequence had
highest similarity to Stemphylium sp. (strain EGS48-074, GenBank
AY324686.1; Idenes = 421/421 (100 %), no gaps), Stemphylium
vesicarium (strain P66, GenBank MK497791.1; Idenes = 211/211
(100 %), no gaps), and Stemphylium majusculum (strain EGS16-
068, GenBank AY324710.1; Idenes = 414/421 (98 %), one gap (0
%)). No tef1 sequences of Stemphylium eturmiunum are available
for comparison; however, the gapdh sequence of strain EGS48-
074 (GenBank AY316986.1) diers with only one nucleode from
sequences of Stemphylium eturmiunum and could therefore belong
to this species.
Authors: P.W. Crous, J.Z. Groenewald & M.J. Wingeld
Superstratomycetales van Nieuwenh., Miądl., Houbraken, Adan,
Lutzoni & Samson, ord. nov. MycoBank MB 839306.
Synonym: Superstratomycetales van Nieuwenh. et al., Stud.
Mycol. 85: 115. 2016. Nom. inval., Arts 40.1, 40.3, see Arts 6.3,
12.1 (Shenzhen).
Etymology: From Lan super” = above/on the top, and
stratum” = layer of material and from Greek “myces” = organisms,
referring to fungal stains forming a top layer or covering the
surface of a material.
Conidiomata pycnidial, supercial, solitary or conuent, brown
to black, glabrous, globose, exuding a white mass of slimy
conidia; pycnidial wall pseudoparenchymatous, of textura
angularis, composed of 3–5 layers of pale brown to brown cells.
Setae present or absent, erect to recurved, hyaline to subhyaline
at apex and turning brown towards base, septate, verrucose to
tuberculate. Conidiophores reduced to conidiogenous cells or
branched, hyaline, smooth-walled, with terminal and intercalary
conidiogenous cells. Conidiogenous cells phialidic, hyaline,
smooth-walled, cylindrical to doliiform or ampulliform. Conidia
hyaline, aseptate, smooth- and thin-walled, guulate, cylindrical
to navicular or ovoid.
Type genus: Superstratomyces van Nieuwenh., Miadl. & Samson
Superstratomycetaceae van Nieuwenh., Miądl., Houbraken,
Adan, Lutzoni & Samson, fam. nov. MycoBank MB 839307.
Synonym: Superstratomycetaceae van Nieuwenh. et al., Stud.
Mycol. 85: 115. 2016. Nom. inval., Arts 40.1, 40.3, see Arts 6.3,
12.1 (Shenzhen).
Etymology: From Lan super” = above/on the top, and
stratum” = layer of material and from Greek “myces” = organisms,
referring to fungal stains forming a top layer or covering the
surface of a material.
Conidiomata pycnidial, supercial, solitary or conuent, brown
to black, glabrous, globose, exuding a white mass of slimy
conidia; pycnidial wall pseudoparenchymatous, of textura
angularis, composed of 3–5 layers of pale brown to brown cells.
Fig. 70. Stemphylium eturmiunum (CPC 38613). A. Ascomata developing on PNA. B–E. Conidiophores with conidiogenous cells giving rise to conidia.
F. Ascus and pseudoparaphyses. G–I. Asci and ascospores. Scale bars: A = 200 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
333
Setae present or absent, erect to recurved, hyaline to subhyaline
at apex and turning brown towards base, septate, verrucose to
tuberculate. Conidiophores reduced to conidiogenous cells or
branched, hyaline, smooth-walled, with terminal and intercalary
conidiogenous cells. Conidiogenous cells phialidic, hyaline,
smooth-walled, cylindrical to doliiform or ampulliform. Conidia
hyaline, aseptate, smooth- and thin-walled, guulate, cylindrical
to navicular or ovoid.
Type genus: Superstratomyces van Nieuwenh., Miadl. & Samson
Superstratomyces van Nieuwenh., Miądl. & Samson, gen. nov.
MycoBank MB 839308.
Synonym: Superstratomyces van Nieuwenh. et al., Stud. Mycol.
85: 115. 2016. Nom. inval., Arts 40.1, 40.3, see Arts 6.3, 12.1
(Shenzhen).
Etymology: From Lan super” = above/on the top, and
stratum” = layer of material and from Greek “myces” = organisms,
referring to fungal stains forming a top layer or covering the
surface of a material.
Conidiomata pycnidial, supercial, solitary or conuent, brown
to black, glabrous, globose, exuding a white mass of slimy
conidia; pycnidial wall pseudoparenchymatous, of textura
angularis, composed of 3–5 layers of pale brown to brown cells.
Setae present or absent, erect to recurved, hyaline to subhyaline
at apex and turning brown towards base, septate, verrucose to
tuberculate. Conidiophores reduced to conidiogenous cells or
branched, hyaline, smooth-walled, with terminal and intercalary
conidiogenous cells. Conidiogenous cells phialidic, hyaline,
smooth-walled, cylindrical to doliiform or ampulliform. Conidia
hyaline, aseptate, smooth- and thin-walled, guulate, cylindrical
to navicular or ovoid.
Type species: Superstratomyces albomucosus van Nieuwenh. &
Samson
Superstratomyces albomucosus van Nieuwenh. & Samson, sp.
no v. MycoBank MB 839309.
Synonym: Superstratomyces albomucosus van Nieuwenhuijzen
& Samson, Stud. Mycol. 85: 115. 2016. Nom. inval., Art. 35.1
(Shenzhen).
Etymology: From Lan albus” = white, “mucosus” = slimy;
referring to the conidia in white slimy masses.
Slow growing grey/olive to dark green colonies, with pycnidia
forming aggregated masses (MEA and OA) and lile or no slimy
masses up to 5 wk (OA). On OA: 25 °C, 2–5 wk: pycnidia forming
brown to black aggregated masses, individual conidiomata not
present; dark pigmented hyphae; conidia smooth-walled, oval
typically with blunt ends, length 2.8–6 μm, width 1.5–3 μm;
aerial mycelium hyaline. On nele stem OA, 25 °C, 4–5 wk:
conidiomata brown/black, spherical to subspherical, 80–300 μm
diam; conidiogenous cells phialidic.
Descripon and illustraon: See van Nieuwenhuijzen et al.
(2016).
Typus: Netherlands, Utrecht Province, Utrecht, outdoor exposed
Pycnanthus angolensis impregnated with olive oil, E.J. van
Nieuwenhuijzen, 9 Sep. 2013 (holotype CBS H-22668, culture
ex-type CBS 140270 = DTO 277-D2).
Superstratomyces atroviridis van Nieuwenh. & Samson, sp. nov.
MycoBank MB 839310.
Synonym: Superstratomyces atroviridis van Nieuwenh. &
Samson, Stud. Mycol. 85: 118. 2016. Nom. inval., Art. 35.1
(Shenzhen).
Etymology: From Lan ater” = dark, black, “viride” = green;
referring to colonies coloured dark green/ black on agar plates.
Slow growing grey/olive to dark green colonies, with pycnidia
forming aggregated masses (MEA and OA) and lile or no slimy
masses up to 5 wk (OA). On OA, 25 °C, 2–5 wk: aggregated mass
of dark brown to black pycnidia, individual conidiomata not
visible; dark pigmented hyphae; conidia smooth-walled, oval
typically with blunt ends, length (2 wk) 2.6–6.5 μm, width 1.6–
2.8 μm; aerial mycelium hyaline. On nele stem OA, 25 °C, 4–5
wk: individual conidiomata inconspicuous; conidiogenous cells
phialidic.
Descripon and illustraon: See van Nieuwenhuijzen et al.
(2016).
Typus: Netherlands, Utrecht Province, Utrecht, outdoor exposed
Pinus sylvestris impregnated with raw linseed oil, E.J. van
Nieuwenhuijzen, 1 May 2014 (holotype CBS H-22669, culture
ex-type CBS 140272).
Superstratomyces avomucosus van Nieuwenh. & Samson, sp.
no v. MycoBank MB 839311.
Synonym: Superstratomyces avomucosus van Nieuwenh. &
Samson, Stud. Mycol. 85: 118. 2016. Nom. inval., Art. 35.1
(Shenzhen).
Etymology: From Lan “avus” = yellow, “mucosus” = slimy;
refers to conidia in yellow slimy masses.
Slow growing olive to grey green colonies with pycnidia forming
aggregated masses and yellow-coloured slimy masses (MEA and
OA). On OA, 25 °C, 2 wk: pycnidia forming yellow to dark brown
aggregated masses, individual conidiomata not visible; dark
pigmented hyphae; conidia smooth-walled and oval; conidia
length 3.4–6.1 μm, width 2–3.4 μm; aerial mycelium hyaline. On
nele stem OA, 25 °C, 4–5 wk: pycnidia brown/yellow, spherical
to subspherical, 80–170 μm diam; conidiogenous cells phialidic.
Descripon and illustraon: See van Nieuwenhuijzen et al.
(2016).
Typus: Australia, Western Australia, Perth, leaf of Hakea
mullinearis, W. Gams, 1 Aug. 1983 (holotype CBS H-22667,
culture ex-type CBS 353.84).
Authors: E.J. van Nieuwenhuijzen, J.M. Miadlikowska, J.A.M.P.
Houbraken, O.C.G. Adan, F.M. Lutzoni & R.A. Samson
Superstratomyces tardicrescens Valenz.-Lopez, Rodr.-Andr.,
Cano, Guarro & Stchigel, sp. nov. MycoBank MB 839312.
Synonym: Superstratomyces tardicrescens Valenz.-Lopez et al.,
Persoonia 41: 405. 2018. Nom. inval., Art. 35.1 (Shenzhen).
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
334
Etymology: From Lan tarde-, slowly, and -crescens, growing,
due to the slow growing rates of the colonies on culture media.
Conidiomata pycnidial, supercial, solitary or conuent,
brown to black, glabrous, globose, 110–125 mm diam. Setae
erect to recurved, hyaline to subhyaline at apex and turning
brown towards the base, 1–2-septate, 10–70 mm in length,
3–5 mm wide at the base, strongly verrucose to tuberculate.
Conidiophores branched, hyaline, smooth-walled, up to 30–40
μm long, bearing lateral conidiogenous cells. Conidiogenous cells
phialidic, hyaline, cylindrical to barrel-shaped or ampulliform,
5–8.5 × 1.5–2 μm, smooth-walled, solitary or laterally disposed
on the conidiophores. Conidia hyaline, aseptate, smooth- and
thin-walled, guulate, cylindrical to navicular, 4–5 × 1.5–2 μm.
Descripon and illustraon: Crous et al. (2018a).
Typus: USA, South Carolina, from a human eye specimen, 2010,
D.A. Suon (holotype FMR H-13786, culture ex-type FMR
13786).
Notes: Superstratomyces was invalidly described (van
Nieuwenhuijzen et al. 2016) as it lacked a proper descripon
with disnguishing features. This by default invalidated all its
species, the family as well as order based on the genus. These
taxa are therefore validated here. See Fig. 1 for a single-locus
phylogeny, and van Nieuwenhuijzen et al. (2016) for a mul-
locus phylogenec placement of this group of fungi.
Author: P.W. Crous
Taeniolella platani Crous & R.K. Schumach., sp. nov. MycoBank
MB 839313. Fig. 71.
Etymology: Name refers to the host genus Platanus from which
it was isolated.
Mycelium consisng of brown, smooth, septate, branched,
3–4 µm diam hyphae. Conidiophores solitary, arising from
supercial hyphae, subcylindrical, dark brown, thick-walled,
verruculose to warty, mostly unbranched, mulseptate, 100–
250 µm tall, 8–12 µm diam. Conidiogenous cells integrated,
terminal, holoblasc, subcylindrical, 7–15 × 8–10 µm, giving
rise to chains of conidia, occasionally solitary lateral conidia.
Conidia subcylindrical, guulate, brown, thick-walled,
1–6-septate, septa frequently darker brown, apex obtuse, base
tapering to truncate hilum, 3–5 µm diam, dark brown, 35–100
× 10–11 µm.
Culture characteriscs: Colonies erumpent, spreading, with
moderate aerial mycelium and feathery, even margin, reaching
15 mm diam aer 2 wk at 25 °C. On MEA, PDA and OA surface
and reverse greenish black.
Typus: Germany, near Berlin, on twig of Platanus hispanica
(Platanaceae), 11 Mar. 2017, R.K. Schumacher, HPC 2004-2 =
RKS 63B (holotype CBS H-24378, culture ex-type CPC 33568 =
CBS 146733).
Notes: The genus Kirschsteiniothelia has been linked to
Dendryphiopsis, for which only an asexual morph is known,
and which is common in the tropics and subtropics, and
usually found on dead wood in terrestrial as well as freshwater
habitats (Bao et al. 2018). Taeniolella exilis, the type of
Taeniolella, also clusters in the Kirschsteiniotheliaceae (Ertz
et al. 2016, Heuchert et al. 2018), although it appears disnct
from Kirschsteiniothelia based on K. aethiops. Taeniolella
platani represents a morphologically disnct species (see
key to saprobic species in Heuchert et al. 2018), closely
related to the sexual species K. thujina, which has also been
reported from Europe (Zhang & Fournier 2015), suggesng
that Taeniolella has sexual morphs that are kirschsteiniothelia-
like in morphology. Both K. thujina and T. platani cluster with
T. exilis, appearing congeneric. A phylogenec species tree is
presented as Fig. 72.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Brachysporiella navarrica (strain CBS 142296,
GenBank NR_153650.1; Idenes = 429/464 (92 %), nine gaps
(1 %)), Kirschsteiniothelia thujina (voucher JF13210, GenBank
KM982716.1; Idenes = 420/460 (91 %), seven gaps (1 %)), and
Kirschsteiniothelia rostrata (voucher MFLU 15-1154, GenBank
NR_156318.1; Idenes = 415/462 (90 %), 11 gaps (2 %)). Closest
hits using the LSU sequence are Kirschsteiniothelia thujina
(voucher JF13210, GenBank KM982718.1; Idenes = 803/810
(99 %), four gaps (0 %)), Taeniolella exilis (strain CBS 122902,
GenBank KX244968.1; Idenes = 840/851 (99 %), two gaps (0
%)), and Kirschsteiniothelia rostrata (voucher MFLU 15-1154,
GenBank NG_059790.1; Idenes = 847/883 (96 %), four gaps
(0 %)) – also see Fig. 1. Closest hits using the tef1 (second part)
sequence had highest similarity to Parafenestella parasalicum
(strain C318, GenBank MK357578.1; Idenes = 434/465 (93
Fig. 71. Taeniolella platani (CPC 33568). A. Sporulaon on PDA. B–E. Conidiogenous cells giving rise to conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
335
%), two gaps (0 %)), Coniosporium apollinis (strain CBS 100218,
GenBank XM_007780668.1; Idenes = 433/465 (93 %), no
gaps), and Parafenestella vindobonensis (strain C302, GenBank
MK357592.1; Idenes = 433/465 (93 %), two gaps (0 %)).
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Tricellula auranaca (Haskins) Arx, The genera of fungi
sporulang in pure culture: 216. 1970. Fig. 73.
Basionym: Volucrispora auranaca Haskins, Canad. J. Microbiol.
4: 278. 1958.
0.96
1
1
0.92
1
1
1
1
1
1
0.97
1
1
1
0.82
1
1
0.95
0.95
1
0.99
0.85
1
0.97
0.88
Valsaria spartii PDD 95996JQ694114.1
Kirschsteiniothelia sp. CSN604MT813881.1
Kirschsteiniothelia sp. CSN602MT813880.1
Kirschsteiniothelia sp. ONH001MH251866.1
Kirschsteiniothelia sp. IFM 65111LC413232.1
Kirschsteiniothelia sp. IFM 64978LC413231.1
Kirschsteiniothelia lignicola MFLUCC 10-0036HQ441567.1
Kirschsteiniothelia aethiops FMR 11023HF677175.1
Kirschsteiniothelia emarceis MFLUCC 10-0037NR_138375.1
Kirschsteiniothelia atra DENMG602687.1
Kirschsteiniothelia aethiops CBS 448.77MH861088.1
Kirschsteiniothelia aethiops S-783MH182586.1
Kirschsteiniothelia aethiops MFLUCC 16-1104MH182583.1
Kirschsteiniothelia aethiops S-1406MH793540.1
Kirschsteiniothelia aethiops S-1322MH793539.1
Kirschsteiniothelia aethiops CBS 111.61MH857990.1
Kirschsteiniothelia aethiops ATCC 18007AF377283.1
Scolecostigmina chibaensis CBS 122976MH863260.1
Kirschsteiniothelia arasbaranica IRAN 2508CKX621983.1
Kirschsteiniothelia arasbaranica IRAN 2509CKX621986.1
Kirschsteiniothelia fluminicola MFLUCC 16-1263MH182582.1
Kirschsteiniothelia phoenicis MFLU 18-0153NR_158532.1
Helminthosporium asterinum A241HM222966.1
Kirschsteiniothelia cangshanensis MFLUCC 16-1350MH182584.1
Helminthosporium asterinum CBS 203.35MH855647.1
Kirschsteiniothelia aquatica MFLUCC 16-1685MH182587.1
Kirschsteiniothelia sp. E38MN912317.1
Bispora betulina 60R3KY950238.1
Bispora betulina 70R3KY950239.1
Solicorynespora insolita CBS 131273NR_164215.1
Kirschsteiniothelia submersa S-601MH182585.1
Clypeosphaeria phillyreae CBS 165.51MH856797.1
Clypeosphaeria phillyreae CBS 179.52NR_159769.1
Kirschsteiniothelia sp. PNB24_8BMH267980.1
Kirschsteiniothelia thailandica MFLU 20-0263MT985633.1
Kirschsteiniothelia rostrata MFLU 15-1154NR_156318.1
Kirschsteiniothelia sp. AHGB13_8BMH267979.1
Kirschsteiniothelia tectonae MFLUCC 13-0470KU144924.1
Kirschsteiniothelia tectonae MFLUCC 12-0050NR_148089.1
Kirschsteiniothelia thujina JF13210KM982716.1
Brachysporiella navarrica CBS 142296NR_153650.1
Taeniolella platani sp. nov. CPC 33568
Taeniolella exilis CBS 122902
0.1
Fig. 72. Consensus phylogram (50 % majority rule) resulng from a Bayesian analysis of the Kirschsteiniothelia s. lat. ITS nucleode alignment.
Bayesian posterior probabilies (> 0.79) are shown at the nodes and the scale bar represents the expected changes per site. GenBank accession
(superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. The tree was rooted
to Valsaria spari (voucher PDD 95996; GenBank JQ694114.1) and the novel species treated in this study is indicated in a coloured box and bold face.
GTR + I + gamma and dirichlet frequencies were used as substuon model. Alignment stascs: 43 strains including the outgroup. Tree stascs:
382 unique site paerns; 4 502 sampled trees from 15 000 generaons.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
336
Mycelium consisng of hyaline, smooth, septate, branched, 1.5–
2 µm diam hyphae. Conidiophores solitary to aggregated, up to
50 µm tall, or reduced to conidiogenous loci or a supporng cell
on hyphae. Conidiogenous cells arising directly from hyphae,
or terminal and lateral on conidiophores, hyaline, smooth,
subcylindrical, 5–10 × 2–3 µm, proliferang sympodially at apex.
Conidia hyaline, smooth, granular, Y-shaped, 3-celled, 12–18
× 7–10 µm; basal cell subcylindrical to clavate (occasionally
medianly septate), 5–7 × 2–3 µm, the two upper cells separated
from the basal cell by a constricon (occasionally septate),
obclavate, tapering towards apex, 5–7 × 2–3 µm.
Culture characteriscs: Colonies erumpent, spreading, surface
folded, with sparse aerial mycelium and irregular, lobate margin,
reaching 10 mm diam aer 2 wk at 25 °C. On MEA, PDA and OA
surface and reverse orange.
Material examined: Russia, Rostov region, Shakhty city district, shrubs
near Atukhta river, on old leaves of Lonicera tatarica (Caprifoliaceae),
21 Sep. 2018 T.S. Bulgakov, HPC 2618 = Myc-24 (CBS H-24350, culture
CPC 36629 = CBS 146627).
Notes: Tricellula auranaca was originally isolated from a water
culture containing soil in Canada (Haskins 1958), and is a known
aquac hyphomycete. Isolang the same fungus from leaves
of Lonicera tatarica in Russia, suggests that its ecology may be
more complex than previously assumed.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Tricellula auranaca (strain CBS 399.58, GenBank
MH857822.1; Idenes = 487/491 (99 %), one gap (0 %)),
Tricellula aquaca (strain CBS 383.58, GenBank MH857818.1;
Idenes = 512/548 (93 %), 9 gaps (1 %)) and Tricellula
inaequalis (strain CBS 359.53, GenBank MH857245.1; Idenes
= 513/550 (93 %), 13 gaps (2 %)). Closest hits using the LSU
sequence are Tricellula auranaca (strain CBS 399.58, GenBank
MH869354.1; Idenes = 796/796 (100 %), no gaps), Tricellula
inaequalis (strain CBS 359.53, GenBank MH868778.1; Idenes
= 878/882 (99 %), no gaps), and Tricellula curvata (strain CBS
429.54, GenBank MH868922.1; Idenes = 853/858 (99 %), no
gaps) – also see Fig. 2.
Authors: P.W. Crous, J.Z. Groenewald & T.S. Bulgakov
Tryssglobulus B. Suon & Pascoe, Trans. Brit. Mycol. Soc. 88:
44. 1987.
Saprobic. Mycelium supercial, brown, branched, euseptate.
Stromata absent. Conidiophores arising from vegetave
mycelium, mononematous, determinate or indeterminate, erect,
dark brown, smooth, euseptate, producing an apical, globose,
mulcellular conidiogenous region, somemes proliferang
through the conidiogenous head to form an addional shorter
conidiophore, each with an apical conidiogenous region.
Conidiogenous cells integrated, restricted to and comprising the
peripheral cells of the conidiogenous head, non-protuberant,
brown, smooth, each with protuberant unthickened denculate
conidiogenous loci; dencles cylindrical. Conidia holoblasc,
dry, brown, smooth, subglobose to lencular, upper wall thicker
and aer than lower wall; dencles somemes persisng (from
Suon & Pascoe 1987).
Type species: Tryssglobulus aspergilloides B. Suon & Pascoe
Tryssglobulus aspergilloides B. Suon & Pascoe, Trans. Brit.
Mycol. Soc. 88: 45. 1987. Figs 74, 75.
Colonies hypophyllous, sparse, emerging from depressions in
the leaf hair layer which is associated with insect damage; rarely
extending beyond such disturbed areas, consisng of 3–10
conidiophores. Mycelium supercial, medium to dark brown,
irregularly branched, euseptate, smooth, associated with leaf
hairs, 10–12 µm diam. Stromata absent. Conidiophores arising
as vercal branches from vegetave mycelium, mononematous,
determinate, or indeterminate, erect, straight or gently and
irregularly curved, dark brown, becoming paler brown towards
apices, smooth, 8–13-euseptate, (125–)300–360(–675) µm
long, (6–)8–10(–12) µm wide at the base, tapering to (3–)4–
6(–7) µm wide at the apex, producing a globose, mulcellular,
inially hyaline, but becoming brown conidiogenous region, 17–
50(–80) µm diam. Conidiophores occasionally proliferate once
or twice through the conidiogenous region to form 2–5-septate
branches, 75–175 µm long at 30–90° to the main axis. Each
branch terminates in a conidiogenous head. Conidiogenous cells
integrated, restricted to the conidiogenous head, ampulliform
to cuneiform, non-protuberant, pale brown, smooth, 2–4.5 ×
2–4 µm, each with 1–3 protuberant, unthickened, denculate
conidiogenous loci situated on outer wall; dencles cylindrical,
up to 2 × 1 µm. Conidia holoblasc, dry, pale brown, smooth,
subglobose to almost lencular, with upper wall slightly aened
and thicker or more melanised than lower wall, (3–)3.5–4 ×
(2.5–)3–3.5 µm, somemes with part of the dencle remaining
aached (from Suon & Pascoe 1987).
Fig. 73. Tricellula auranaca (CPC 36629). A. Colony on SNA. B–D. Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
337
Typus: Australia, Victoria, Brisbane Ranges, 5.3 km from Switch
Rd., on living leaves of Banksia marginata, 13 Nov. 1985, I.G.
Pascoe (holotype VPRI 13072, isotype DAR 56184); The Gurdies,
The Gurdies Nature Reserve, Lat. 38°23’-6.4”, Long. 145°33’05.8”,
on B. marginata, 12 Oct. 2020, I.G. Pascoe & B.J. Brentwood
(epitype designated here, dried specimen VPRI 43962 MBT
10000789, culture ex-epitype VPRI 43962 = CBS 147556 = CPC
40369); isoepitype CBS H-24730, culture ex-isoepitype CBS
147388 = CPC 40100).
Notes: Tryssglobulus is a member of Readerielliopsidaceae
(Capnodiales), which includes four genera, namely
Phaeoxyphiella, Readerielliopsis, Scolecoxyphium and Scorias
(Abdollahzadeh et al. 2020).
Tryssglobulus is disnguished from morphologically similar
genera in having a mulcellular globose head, that gives rise
to a single layer of conidiogenous cells. Suon & Pascoe (1987)
interpreted the conidiogenesis as holoblasc and solitary,
menoning that it was uncertain if the conidiogenous cells
proliferated percurrently or not, as some variaon was observed
in the thickness of the collarees, which could be indicave of
percurrent proliferaon. In the present study we were fortunate
to culture this species, which made it possible to study its
conidiogenesis in more detail. In doing so, we could resolve that
the conidiogenous cells are holoblasc as originally reported,
and do not proliferate percurrently.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence of CPC 40369
had highest similarity to Readerielliopsis fuscoporiae (strain CBS
139900, GenBank NR_137978.1; Idenes = 402/459 (88 %),
16 gaps (3 %)), Scorias spongiosa (voucher Ss0901, GenBank
HM480490.1; Idenes = 426/487 (87 %), 24 gaps (4 %)), and
Readerielliopsis guyanensis (as Readeriella guyanensis; strain
CBS 117550, GenBank EU707900.1; Idenes = 404/462 (87 %),
15 gaps (3 %)). The ITS sequences of CPC 40369 and 40100 are
idencal (382/382 (100 %)). Closest hits using the LSU sequence
of CPC 40369 are Readerielliopsis guyanensis (as Readeriella
guyanensis; strain CBS 117550, GenBank FJ493211.1; Idenes
= 830/850 (98 %), no gaps), Readerielliopsis fuscoporiae (strain
CBS 139900, GenBank NG_058161.1; Idenes = 816/838 (97
%), no gaps), and Fumagospora capnodioides (strain CBS 131.34,
GenBank EU019269.1; Idenes = 827/856 (97 %), two gaps (0
%)). The LSU sequences of CPC 40369 and 40100 are idencal
(813/813 (100 %)). Distant hits obtained using the rpb2 sequence
of CPC 40100 had highest similarity to Ragnhildiana gnaphaliaceae
(strain CBS 142181, GenBank MF951646.1; Idenes = 373/544
(69 %), ten gaps (1 %)), Rachicladosporium pini (strain CPC 16770,
GenBank LT799764.1; Idenes = 373/548 (68 %), 22 gaps (4 %)),
and Ragnhildiana pseudothoniae (strain 2019-100655, GenBank
MT663950.1; Idenes = 375/545 (69 %), 12 gaps (2 %)). The rpb2
sequences of CPC 40100 and 40369 are idencal (536/536).
Authors: P.W. Crous, J.Z. Groenewald, J. Dijksterhuis & I.G. Pascoe
Fig. 74. Tryssglobulus aspergilloides (CPC 40100). A. Conidiophores in vivo. B. Base of conidiophore. C–E. Developing conidiophores with proliferaon.
F, G. Conidiogenous apparatus showing conidiogenesis. H. Conidiophore head with mature conidia. I. Conidia. Scale bars: A = 80 µm, all others = 10
µm.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
338
Tympanis pini Crous & R.K. Schumach., sp. nov. MycoBank MB
839314. Fig. 76.
Etymology: Name refers to the host genus Pinus from which it
was isolated.
Conidiomata supercial on OA, brown, globose, 200–250
µm diam, opening via irregular rupture, exuding creamy
conidial mass; wall of 3–6 layers of brown textura angularis.
Conidiophores lining the inner cavity, hyaline, smooth,
subcylindrical, 30–80 × 2–2.5 µm, exuous, branched below,
mulseptate with conidiogenous loci distributed along the
length of the conidiophore, developing as lateral phialidic nodes
below septa. Conidia hyaline, smooth, aseptate, subcylindrical
with obtuse ends, straight, 3–4 × 1–1.5 µm.
Culture characteriscs: Colonies at, spreading, with sparse
aerial mycelium and smooth, even margin, covering dish aer 2
wk at 25 °C. On MEA surface and reverse honey; on PDA surface
and reverse cinnamon; on OA surface cinnamon.
Typus: Spain, Teruel, Orihuela del Tremedal, on twigs of Pinus
sylvestris (Pinaceae), 25 May 2019, R. Blasco, HPC 2963 = RKS
1110 (holotype CBS H-24404, culture ex-type CPC 38169 = CBS
146809).
Notes: Suon & Funk (1975) concluded that Sirodothis was an
earlier name for Pleurophomella, and should be used as the
asexual morph of Tympanis. The present collecon is asexual,
and has a typical Sirodothis morphology, clustering among
species of Tympanis, thereby supporng its descripon in
the laer genus. Several species of Tympanis are known from
Pinaceae (Ouellee & Pirozynski 1974), but as these are known
only by their sexual morphs, a morphological comparison with
T. pini is presently not possible. A phylogenec species tree is
presented as Fig. 77.
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to “Ascomycota sp.” (strain F45, GenBank GU067747.1;
Idenes = 487/488 (99 %), no gaps), Tympanis truncatula (strain
CBS 368.55, GenBank MK314572.1; Idenes = 466/474 (98 %),
one gap (0 %)), and Tympanis spermaospora (strain CBS 367.55,
GenBank MK314571.1; Idenes = 491/502 (98 %), three gaps (0
%)). Closest hits using the LSU sequence are Tympanis truncatula
(strain CBS 368.55, GenBank MK314622.1; Idenes = 853/854
(99 %), no gaps), Tympanis spermaospora (strain CBS 367.55,
GenBank MK314624.1; Idenes = 855/857 (99 %), one gap (0 %)),
and Tympanis abiena (strain CBS 350.55, GenBank MK314617.1;
Idenes = 842/845 (99 %), no gaps) – also see Fig. 2.
Authors: P.W. Crous, J.Z. Groenewald & R.K. Schumacher
Fig. 75. Tryssglobulus (Cryo Scanning Electron Microscope images of CPC 40100). A–C. Conidiophore stalk, developing with apical conidiogenous
apparatus. D. Conidiogenous cells giving rise to conidia. E. Conidiogenous cells and conidia. Scale bars: A–C = 5 µm, D, E = 2 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
339
Fig. 76. Tympanis pini (CPC 38169). A. Conidiomata on OA. B–C. Conidiophores, conidiogenous cells and conidia. D. Conidia. Scale bars: A = 200 µm,
all others = 10 µm.
Vexillomyces xylophilus CBS 133220MH866059.1
Tympanis tsugae CBS 369.55MH857515.1
Tympanis saligna CBS 366.55MK314567.1
Tympanis truncatula CBS 368.55MK314572.1
Tympanis spermatiospora CBS 367.55MK314571.1
Tympanis amelanchieris CBS 353.55MH857508.1
Tympanis piceina CBS 362.55 (authentic)MH857512.1
Tympanis diospyri CBS 356.55MH857509.1
Tympanis conspersa CBS 355.55MK314573.1
Tympanis pitya CBS 363.55MK314569.1
Tympanis confusa CBS 354.55MK314568.1
Tympanis sp. LQH-8MH810146.1
CPC 38169 Pinus sylvestris, twigs - Spain
F45GU067747.1 Picea abies, stump - Finland
AM17JN596350.1 Actinidia macrosperma - China
yuk36aMW248455.1 Snow - Finland
P35MK801330.1 Pinus sylvestris, wood - Latvia
Tympanis abietina CBS 350.55 (authentic)MK314563.1
Tympanis laricina CBS 360.55MK314570.1
Tympanis sp. AA-1MH810147.1
Tympanis fasciculata CBS 357.55MK314565.1
Tympanis hansbroughiana CBS 358.55MH857510.1
Tympanis acericola CBS 351.55 (authentic)MK314564.1
Tympanis piceae CBS 361.55MH857511.1
Tympanis inflata CBS 144844NR_165225.1
Tympanis prunicola CBS 364.55 (authentic)MH857513.1
Tympanis sp. CSN1093MT813933.1
10
100
Tympanis pini sp. nov.
100
100
100
99
100
Fig. 77. The rst of 46 equally most parsimonious trees obtained from a phylogenec analysis of the Tympanis ITS alignment. The tree was rooted
to Vexillomyces xylophilus (strain CBS 133220, GenBank MH866059.1) and the scale bar indicates the number of changes. Parsimony bootstrap
support values higher than 79 % are shown at the nodes and the novel species is highlighted with a coloured box and bold text. GenBank accession
(superscript) and / or culture collecon / voucher numbers (in bold face when having a type status) are indicated for all species. Branches present
in the strict consensus tree are thickened. Alignment stascs: 27 strains including the outgroup; 449 characters including alignment gaps analysed:
335 constant, 63 variable and parsimony-uninformave and 51 parsimony-informave. Tree stascs: TL = 200, CI = 0.735, RI = 0.738, RC = 0.542.
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
340
Venturia cerasi Aderh., Landw. Jahrb. 29: 544. 1900.
Synonyms: Fusicladium cerasi (Rabenh.) Erikss., Meddeland.
Kongl. Lantbruksakad. Exp.-fält 1: 73. 1885.
Acrosporium cerasi Rabenh., in Braun, Verh. Vereins Beförd.
Gartenbaues Königl. Preuss. Staaten, ser. 2, 1: 176. 1853.
Descripon and illustraon: Schubert et al. (2003), Shen et al.
(2020).
Typus: Germany, Borussia, on fruits of Prunus cerasus (Rosaceae)
[lectotype designated here, Aderhold (1900), plate 9, gs 6, 7,
MTB 10000791]; Aschersleben, on Prunus cerasus, 17 Sep. 1954,
H. Schweizer (epitype specimen designated here CBS 444.54,
MBT 10000792, preserved as metabolically inacve culture, ex-
epitype culture CBS 444.54).
Notes: Original fungarium material of Aderhold for Venturia
cerasi could not be traced and is very likely not preserved. Shen
et al. (2020) cited the lectotype designated in Schubert et al.
(2003), but this was in error, because the lectotype pertained
to Acrosporium cerasi Rabenh., which is the basionym of the
Fusicladium morph. Furthermore, Schubert et al. (2003) cited
only an “iconotype” so that this “lectotypicaon” has not been
eected, which is introduced here:
Acrosporium cerasi Rabenh., in Braun, Verh. Vereins Beförd.
Gartenbaues Königl. Preuss. Staaten, ser. 2, 1: 176. 1853.
Typus: Germany, Borussia, on fruits of Prunus cerasus (Rosaceae)
[lectotype, designated here, Braun (1853: plate 1, B, 1, 2), MTB
10000793].
Authors: M. Shen, J.Q. Zhang, L.L. Zhao, J.Z. Groenewald, P.W.
Crous & Y. Zhang
Zelosatchmopsis sacciformis (R.F. Castañeda) Nag Raj & R.F.
Castañeda, Canad. J. Bot. 69: 633. 1991. Fig. 78.
Basionym: Satchmopsis sacciformis R.F. Castañeda, Fungi
Cubenses II: 18. 1987.
Conidiomata cupulate, with dark brown border, exuding conidia
in crystalline mucoid mass. Nag Raj (1993) described the basal
appendage as excentric, unbranched, but did not comment on
the apical cell, which also terminated in a central aenuated
appendage, 3–5 µm long. In culture it also forms chains of
hyaline chlamydospores. An interesng phenomenon is the
conidiogenous cells that develop as phialidic pores on the inner
surface of the cupulate conidiomatal wall.
Colony characteriscs: Colonies erumpent, spreading, with
sparse aerial mycelium on OA and PDA, moderate aerial
mycelium and folded surface on MEA, margin smooth, lobate,
up to 50 mm diam aer 2 wk at 25 °C.
Typus: Cuba, Prov. Matanzas, San Miguel de los Baños, fallen
leaf of Guazuma ulmifolia, (Malvaceae), 23 Jan. 1987, R.F.
Castañeda, isotypes CBS H-10357, CBS H-7737, culture ex-
isotype CBS 116.88 = INIFAT C87/53.1 = MW i 1640.
Notes: In the present study we resolve the higher-level phylogeny
of Zelosatchmopsis. Zelosatchmopsis (Muyocopronaceae,
Dothideomycetes) clusters apart from Satchmopsis
(Cochlearomycetaceae, Leoomycetes), supporng the generic
dierences observed by Nag Raj (1993).
Based on a megablast search of NCBI’s GenBank nucleode
database, the closest hits using the ITS sequence had highest
similarity to Mycoleptodiscus terrestris (strain CBS 231.53,
GenBank NR_145373.1; Idenes = 435/512 (85 %), 28 gaps
(5 %)), Mycoleptodiscus suonii (strain CBS 276.72, GenBank
NR_164056.1; Idenes = 403/471 (86 %), 15 gaps (3 %)), and
Mycoleptodiscus endophyca (strain MFLUCC 17-0545, GenBank
NR_158860.1; Idenes = 325/358 (91 %), seven gaps (1 %)). Closest
hits using the LSU sequence are Mycoleptodiscus endophyca
(strain MFLUCC 17-0545, GenBank NG_064487.1; Idenes =
790/844 (94 %), 11 gaps (1 %)), Arxiella dolichandrae (strain CBS
138853, GenBank MH878643.1; Idenes = 730/783 (93 %), nine
gaps (1 %)), and Mycoleptodiscus suonii (as Mycoleptodiscus
terrestris; strain CBS 276.72, GenBank MH872193.1; Idenes =
767/824 (93 %), 14 gaps (1 %)) – also see Fig. 1.
Authors: J.Z. Groenewald & P.W. Crous
ACKNOWLEDGEMENTS
We are grateful to Arien van Iperen (cultures), Mieke Starink-Willemse
(DNA isolaon, amplicaon, and sequencing), and Marjan Vermaas
(photographic plates) for their technical assistance. Research of Wilma
J. Nel and colleagues was supported by the University of Pretoria,
members of the Tree-Protecon Co-operave Programme (TPCP), the
DSI-NRF Centre of Excellence in Plant Health Biotechnology (CPHB),
Fig. 78. Zelosatchmopsis sacciformis (CBS 116.88). A–B. Cup-shaped conidiomata. C. Conidiogenous loci (arrows) in conidiomatal wall. D. Conidia.
Scale bars: A–B = 60 µm, all others = 10 µm.
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
341
and the Naonal Research Foundaon (NRF), South Africa. Cony
Decock gratefully acknowledges the nancial support received from
the Belgian State – Belgian Federal Science Policy. Strains isolated from
plant material originang from Singapore were kindly provided by O.
Laurence, Mycosphere ltd. Jolanda Roux acknowledges the Naonal
Geographic Okavango Wilderness Project for funding collecon trips in
Angola.
Conict of interest: The authors declare that there is no conict
of interest.
REFERENCES
Al-Bedak OA, Ismail MA, Mohamed RA (2019). Paracremonium
moubasheri, a new species from an alkaline sediment of Lake
Hamra in Wadi-El-Natron, Egypt with a key to the accepted species.
Studies in Fungi 4: 216–222.
Abdollahzadeh J, Groenewald JZ, Coetzee MPA, et al. 2020. Evoluon of
lifestyles in Capnodiales. Studies in Mycology 95: 381–414.
Bao DF, Luo ZL, Liu JK, et al. (2018). Lignicolous freshwater fungi in
China III: Three new species and a new record of Kirschsteiniothelia
from northwestern Yunnan Province. Mycosphere 9: 755–768.
Bensch K, Groenewald JZ, Meijer M, et al. (2018). Cladosporium species
in indoor environments. Studies in Mycology 89: 177–301.
Boonmee S, Wijayawardene NN, Bhat DJ, et al. (2019). Misturatosphaeria
viridibrunnea sp. nov. (Teichosporaceae, Pleosporales) from
Thailand. Phytotaxa 388: 123–134.
Braun A (1853). Über einige neue oder weniger bekannte
Panzenkrankheiten, welche durch Pilze erzeugt werden.
Verhandlungen des Vereins zur Beförderung des Gartenbaues in den
Königlich Preussischen Staaten 1: 165–191.
Braun U, Nakashima C, Crous PW, et al. (2018). Phylogeny and taxonomy
of the genus Tubakia s. lat. Fungal Systemacs and Evoluon 1:
41–99.
Carlucci A, Raimondo ML, Santos J, et al. (2012). Plectosphaerella
species associated with root and collar rots of horcultural crops in
southern Italy. Persoonia 28: 34–48.
Cheewangkoon R, Groenewald JZ, Summerell BA, et al. (2009).
Myrtaceae, a cache of fungal biodiversity. Persoonia 23: 55–85.
Constannescu O, Ryman S (1989). New Ophiostoma on polypores.
Mycotaxon 34: 637–342.
Crous PW (1998). Mycosphaerella spp. and their anamorphs associated
with leaf spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170.
APS Press, MN, USA.
Crous PW, Cowan DA, Maggs-Kölling G, et al. (2020a). Fungal Planet
descripon sheets: 1112–1181. Persoonia 45: 251–409.
Crous PW, Denman S, Taylor JE, et al. (2013a). Culvaon and diseases
of Proteaceae: Leucadendron, Leucospermum and Protea. 2nd edn.
CBS Biodiversity Series 13: 1–360. CBS-KNAW Fungal Biodiversity
Centre, Utrecht, The Netherlands.
Crous PW, Gams W, Stalpers JA, et al. (2004). MycoBank: an online
iniave to launch mycology into the 21st century. Studies in
Mycology 50: 19–22.
Crous PW, Groenewald JZ (2013). A phylogenec re-evaluaon of
Arthrinium. IMA Fungus 4: 133–154.
Crous PW, Luangsa-Ard JJ, Wingeld MJ, et al. (2018a). Fungal Planet
descripon sheets: 785–867. Persoonia 41: 238–417.
Crous PW, Minnis AM, Pereira OL, et al. (2011). What is Scirrhia? IMA
Fungus 2: 127–133.
Crous PW, Schumacher RK, Akulov A, et al. (2019a). New and Interesng
Fungi. 2. Fungal Systemacs and Evoluon 3: 57–134.
Crous PW, Schumacher RK, Wood AR, et al. (2020b). The Genera of Fungi
– G5: Arthrinium, Ceratosphaeria, Dimerosporiopsis, Hormodochis,
Lecanosctopsis, Lembosina, Neomelanconium, Phragmotrichum,
Pseudomelanconium, Rutola, and Trullula. Fungal Systemacs and
Evoluon 5: 77–98.
Crous PW, Summerell BA, Swart L, et al. (2011). Fungal pathogens of
Proteaceae. Persoonia 27: 20–45.
Crous PW, Verkley GJM, Groenewald JZ, et al. (eds) (2019b). Fungal
Biodiversity. [Westerdijk Laboratory Manual Series no.1.] Utrecht:
Westerdijk Fungal Biodiversity Instute, Utrecht, the Netherlands.
Crous PW, Wingeld MJ, Burgess TI, et al. (2017). Fungal Planet
descripon sheets: 625–715. Persoonia 39: 270–467.
Crous PW, Wingeld MJ, Burgess TI, et al. (2018b). Fungal Planet
descripon sheets: 716–784. Persoonia 40: 240–393.
Crous PW, Wingeld MJ, Cheewangkoon R, et al. (2019c). Foliar
pathogens of eucalypts. Studies in Mycology 94: 125–298.
Crous PW, Wingeld MJ, Chooi Y-H, et al. (2020c). Fungal Planet
descripon sheets: 1042–1111. Persoonia 44: 301–459.
Crous PW, Wingeld MJ, Guarro J, et al. (2013b). Fungal Planet
descripon sheets: 154–213. Persoonia 31: 188–296.
Crous PW, Wingeld MJ, Guarro J, et al. (2015). Fungal Planet descripon
sheets: 320–370. Persoonia 34: 167–266.
Crous PW, Wingeld MJ, Lombard L, et al. (2019d). Fungal Planet
descripon sheets: 951–1041. Persoonia 43: 223–425.
Crous PW, Wingeld MJ, Park RF (1991). Mycosphaerella nubilosa a
synonym of M. molleriana. Mycological Research 95: 628–632.
Crous PW, Wingeld MJ, Schumacher RK, et al. (2014). Fungal Planet
descripon Sheets 281–319. Persoonia 33: 212–289.
Dai DQ, Phookamsak R, Wijayawardene NN, et al. (2017). Bambusicolous
fungi. Fungal Diversity 82: 1–105.
Damm U, Cannon PF, Woudenberg JHC, et al. (2012). The Colletotrichum
acutatum species complex. Studies in Mycology 73: 37–113.
Damm U, O’Connell RJ, Groenewald JZ, et al. (2014). The Colletotrichum
destrucvum species complex – hemibiotrophic pathogens of
forage and eld crops. Studies in Mycology 79: 1–47.
Damm U, Sato T, Alizadeh A, et al. (2019). The Colletotrichum
dracaenophilum, C. magnum and C. orchidearum species
complexes. Studies in Mycology 92: 1–46.
de Gruyter J, Woudenberg JHC, Aveskamp MM, et al. (2010). Systemac
reappraisal of species in Phoma secon Paraphoma, Pyrenochaeta
and Pleurophoma. Mycologia 102: 1066–1081.
Dionne B, Ne L, Lee SA, et al. (2015). Pulmonary fungal infecon caused
by Neoscytalidium dimidiatum. Journal of Clinical Microbiology 53:
2381–2384.
Ertz D, Heuchert B, Braun U, et al. (2016). Contribuon to the phylogeny
and taxonomy of the genus Taeniolella, with a focus on lichenicolous
taxa. Fungal Biology 120: 1416–1447.
Fan XL, Bezerra JDP, Tian CM, et al. (2018). Families and genera of
diaporthalean fungi associated with canker and dieback of tree
hosts. Persoonia 40: 119–134.
Fu L, Jin Y, Zhang GF, et al. (2019). First report of Stemphylium
eturmiunum causing postharvest rot of garlic sprout in China. Plant
Disease 103: 1041.
Gams W, Selow B, Gräfenhan, T. et al. (2019). The ascomycete genus
Niesslia and associated monocillium-like anamorphs. Mycological
Progress 18: 5–76.
Giraldo A, Crous PW (2019). Inside Plectosphaerellaceae. Studies in
Mycology 92: 227–286.
Giraldo A, Hernández-Restrepo M, Crous PW (2019). New
plectosphaerellaceous species from Dutch garden soil. Mycological
Progress 18: 1135–1154.
Glienke C, Pereira OL, Stringari D, et al. (2011). Endophyc and
© 2021 Westerdijk Fungal Biodiversity Instute
Crous et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
342
pathogenic Phylloscta species, with reference to those associated
with Citrus Black Spot. Persoonia 26: 47–56.
Gonçalves MFM, Vicente TFL, Esteves AC, et al. (2019). Novel halotolerant
species of Emericellopsis and Parasarocladium associated with
macroalgae in an estuarine environment. Mycologia 112: 154–171.
Guarnaccia V, Gehrmann T, Silva GJ, et al. (2019). Phylloscta citricarpa
and sister species of global importance to Citrus. Molecular Plant
Pathology 20: 1619–1635.
Guarnaccia V, Groenewald JZ, Li H, et al. (2017). First report of Phylloscta
citricarpa and descripon of two new species, P. paracapitalensis
and P. paracitricarpa, from citrus in Europe. Studies in Mycology
87: 161–185.
Guarro J, Gené J, Stchigel AM, et al. (2012). Atlas of Soil Ascomycetes.
CBS Biodiversity series 10. Westerdijk Fungal Biodiversity Instute,
Utrecht, the Netherlands.
Guerrero RT (1971). On the real nature of the ‘setae’ in Tremella
fuciformis. Mycologia 63: 920–924.
Hanlin RT (1997). Illustrated Genera of Ascomycetes. Vol. 1. St. Paul,
APS Press, MN, USA.
Hansen K, Laessoe T, Pster DH (2001). Phylogenecs of the Pezizaceae,
with an emphasis on Peziza. Mycologia 93: 958–990.
Hansen K, Laessoe T, Pster DH (2002). Phylogenec diversity in the
core group of Peziza inferred from ITS sequences and morphology.
Mycological Research 106: 879–902.
Hansen K, Lobuglio KF, Pster DH (2005). Evoluonary relaonships of
the cup-fungus genus Peziza and Pezizaceae inferred from mulple
nuclear genes: RPB2, beta-tubulin and LSU rDNA. Molecular
Phylogenecs and Evoluon 36: 1–23.
Haskins RH (1958). Hyphomycetous fungi: Volucrispora auranaca
n. gen., n. sp.; V. ornithomorpha (Troer) n. comb.; and Tricellula
curvas n. sp.; with the genus Tricellula emended. Canadian Journal
of Microbiology 4: 273–285.
Hernández-Restrepo M, Bezerra JDP, Tan YP, et al. (2019). Re-evaluaon
of Mycoleptodiscus species and morphologically similar fungi.
Persoonia 42: 205–227.
Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, et al. (2017).
Phylogeny of saprobic microfungi from Southern Europe. Studies in
Mycology 86: 53–97.
Hernández-Restrepo M, Groenewald JZ, Lombard L, et al. (2016). Fungal
Systemacs and Evoluon: FUSE 2. Sydowia 68: 193–230.
Heuchert B, Braun U, Diederich P (2018). Taxonomic monograph of
the genus Taeniolella s. lat. (Ascomycota). Fungal Systemacs and
Evoluon 2: 69–261.
Hoang DT, Chernomor O, von Haeseler A, et al. (2018). UFBoot2:
Improving the ultrafast bootstrap approximaon. Molecular Biology
and Evoluon 35: 518–522.
Holm L, Holm K (1978). Some pteridicolous ascomycetes. Botaniska
Noser 131: 97–115.
Hou LW, Groenewald JZ, Pfenning LH, et al. (2020a). The phoma-like
dilemma. Studies in Mycology 96: 309–396.
Hou LW, Hernández-Restrepo M, Groenewald JZ, et al. (2020b).
Cizen science project reveals high diversity in Didymellaceae
(Pleosporales, Dothideomycetes). MycoKeys 65: 49–99.
Hou YM, Zhang X, Zhang NN, et al. (2019). Genera Acremonium and
Sarocladium cause brown spot on bagged apple fruit in China. Plant
Disease 103: 1889–1901.
Hudson O, Buchholz M, Doyle V, et al. (2019). Mullocus phylogeny
of Acrospermaceae: New epibioc species and placement
of Gonatophragmium, Pseudovirgaria, and Phaeodactylium
anamorphs. Mycologia 111: 1041–1055.
Jaklitsch WM, Olariaga I, Voglmayr H (2016). Teichospora and the
Teichosporaceae. Mycological Progress 15: 31.
Johnston PR, Park D (2019). Blastacervulus metrosideri sp. nov. leaf
spot on Metrosideros excelsa in New Zealand. Fungal Systemacs
and Evoluon 3: 165–169.
Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. (2017). ModelFinder:
Fast model selecon for accurate phylogenec esmates. Nature
Methods 14: 587–589.
Kearse M, Moir R, Wilson A, et al. (2012). Geneious Basic: an integrated
and extendable desktop soware plaorm for the organizaon and
analysis of sequence data. Bioinformacs 28: 1647–1649.
Klaubauf S, Tharreau D, Fournier E, et al. (2014). Resolving the
polyphylec nature of Pyricularia (Pyriculariaceae). Studies in
Mycology 79: 85–120.
Kumar S, Stecher G, Tamura K (2016). MEGA7: Molecular Evoluonary
Genecs Analysis version 7.0 for bigger datasets. Molecular Biology
and Evoluon 33: 1870–1874.
Lechat C, Fournier J, Stoykov D (2019). Flammocladiella anomiae, a
new hypocrealean species from France and Bulgaria. Ascomycete.
org 11: 239–243.
Liu Q, Li JQ , Wingeld MJ, et al. (2020). Reconsideraon of species
boundaries and proposed DNA barcodes for Calonectria. Studies in
Mycology 97: 100106.
Lombard L, van der Merwe NA, Groenewald JZ, et al. (2015). Generic
concepts in Nectriaceae. Studies in Mycology 80: 189–245.
Lynch SC, Twizeyimana M, Mayorquin JS, et al. (2016) Idencaon,
pathogenicity and abundance of Paracremonium pembeum sp.
no v. and Graphium euwallaceae sp. nov. – two newly discovered
mycangial associates of the polyphagous shot hole borer
(Euwallacea sp.) in California. Mycologia 108: 313–329.
Magina S, Lisboa C, Santos P, et al. (2000). Cutaneous alternariosis by
Alternaria chartarum in a renal transplanted paent. Brish Journal
of Dermatology 142: 1261–1262.
Marin-Felix Y, Groenewald JZ, Cai L, et al. (2017). Genera of
phytopathogenic fungi: GOPHY 1. Studies in Mycology 86: 99–216.
Moslemi A, Ades PK, Groom T, et al. (2016). Paraphoma crown rot of
pyrethrum (Tanacetum cinerariifolium). Plant Disease 100: 2363–
2369.
Muntañola-Cvetkoviç M, Hoyo P, Llimona X (1997). Fongs mitòsporics
dels estatges montà, subalpí i alpí de Catalunya. Revista Catalana
de Micologia 20: 199–212.
Nag Raj TR (1993). Coelomycetous anamorphs with appendage-bearing
conidia. Mycologue Publicaons, Waterloo, Ontario.
Nguyen L-T, Schmidt HA von Haeseler A, et al. (2015). IQ-TREE: A fast and
eecve stochasc algorithm for esmang maximum likelihood
phylogenies. Molecular Biology and Evoluon 32: 268–274.
Nicot J, Parguey A (1960). Une moisissure nouvelle du sol en extrême-
Orient: Heimiodora vercillata nov. gen., nov. sp. Annales des
Sciences Naturelles Botanique 1: 365–385.
Obrist W (1959). Untersuchungen über einige “Dothideale” Gaungen.
Phytopathologische Zeitschri 35: 357–388.
Ouellee GB, Pirozynski KA (1974). Reassessment of Tympanis based
on types of ascospore germinaon within asci. Canadian Journal of
Botany 52: 1889–1911.
Phillips AJL, Alves A, Abdollahzadeh J, et al. (2013). The
Botryosphaeriaceae: genera and species known from culture.
Studies in Mycology 76: 51–167.
Phukhamsakda C, McKenzie EHC, Phillips AJL, et al. (2020). Microfungi
associated with Clemas (Ranunculaceae) with an integrated
approach to deliming species boundaries. Fungal Diversity 102:
1–203.
Pintos Á, Alvarado P (2021). Phylogenec delimitaon of Apiospora and
Arthrinium. Fungal Systemacs and Evoluon 7: 197–221.
Pintos Á, Alvarado P, Planas J, et al. (2019). Six new species of Arthrinium
© 2021 Westerdijk Fungal Biodiversity Instute
New and interesting fungi. 4.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
343
from Europe and notes about A. caricicola and other species found
in Carex spp. hosts. MycoKeys 49: 15–48.
Polizzi G, Aiello D, Castello I, et al. (2011). Occurrence, molecular
characterisaon, and pathogenicity of Neoscytalidium dimidiatum
on Citrus in Italy. Acta Horculturae 892: 237–243.
Pordel A, Khodaparast S, Mckenzie E, et al. (2017). Two new species
of Pseudopyricularia from Iran. Mycological Progress 16: 729–736.
Punithalingam E (1974). Studies on Spheropsidales in culture II.
Mycological Papers 136: 1–63.
Rayner RW (1970). A mycological colour chart. Commonwealth
Mycological Instute and Brish Mycological Society. Kew, Surrey,
UK.
Réblová M, Hernández-Restrepo M, Fournier J, et al. (2020). New
insights into the systemacs of Bactrodesmium and its allies and
introducing new genera, species and morphological paerns in
the Pleurotheciales and Savoryellales (Sordariomycetes). Studies in
Mycology 95: 415–466.
Romero AI, Carmarán CC, Lorenzo LE (1999). A new species of
Coniochaeta with a key to the species known in Argenna.
Mycological Research 6: 689–695.
Ronquist F, Teslenko M, Van der Mark P, et al. (2012). MrBayes 3.2:
Ecient Bayesian phylogenec inference and model choice across
a large model space. Systemac Biology 61: 539–542.
Samson RA, Houbraken J, Thrane U, et al. (2019). Food and Indoor Fungi.
[Westerdijk Laboratory Manual Series Vol. 2] Utrecht: Westerdijk
Fungal Biodiversity Instute, Utrecht, the Netherlands.
Samson RA, Luiten B (1975). Eleutherascus tuberculatus, a new heat
resistant ascomycete. Transacons of the Brish Mycological
Society 64: 338–340.
Samuels GJ, Müller E (1979). Life-history study of Brazilian ascomycetes
5: Two new species of Ophiostoma and their Sporothrix anamorphs.
Sydowia 31: 169–179.
Schubert K, Ritschel A, Braun U (2003). A monograph of Fusicladium s.
lat. (Hyphomycetes). Schlechtendalia 9: 1–132.
Schultes NP, Murshi B, Li DW (2017). Phylogenec relaonships
of Chlamydomyces, Harzia, Olpitrichum, and their sexual allies,
Melanospora and Sphaerodes. Fungal Biology 121: 890–904.
Seifert K, Morgan-Jones G, Gams W, et al. (2011). The Genera of
Hyphomycetes. CBS Biodiversity Series no. 9: 1–997. Westerdijk
Fungal Biodiversity Instute, Utrecht, Netherlands.
Shearer CA, Crane JL, Chen W (1999). Freshwater ascomycetes:
Ophioceras species. Mycologia 91: 145–156.
Shen M, Zhang JQ, Zhao LL, et al. (2020). Venturiales. Studies in
Mycology 96: 185–308.
Smith H, Wingeld MJ, Crous PW, et al. (1996). Sphaeropsis sapinea and
Botryosphaeria dothidea endophyc in Pinus spp. and Eucalyptus
spp. in South Africa. South African Journal of Botany 62: 86–88.
Stalpers JA (1974). Revision of the genus Oedocephalum (Fungi
Imperfec). Proceedings van de Koninklijke Nederlandse Akademie
van Wetenschappen Secon C 77: 383–401.
Selow JB, Lévesque CA, Seifert KA, et al. (2015). One fungus, which
genes? Development and assessment of universal primers for
potenal secondary fungal DNA barcodes. Persoonia 35: 242–263.
Suon BC, Funk A (1975). Conidial states of some Pragmopora and
Tympanis species. Canadian Journal of Botany 53: 521–526.
Suon BC, Pascoe IG (1987). Argopericonia and Tryssglobulus, new
hyphomycete genera from Banksia leaves. Transacons of the
Brish Mycological Society 88: 41–46.
Swoord DL (2003). PAUP*: phylogenec analysis using parsimony
(*and other methods). Version 4.0b10. Sinauer Associates,
Sunderland.
Taylor JE, Crous PW (2001). Morphological variaon and cultural
characteriscs of Coniothyrium leucospermi associated with leaf
spots of Proteaceae. Mycoscience 42: 265–271.
Theissen F, Sydow H (1915). Die Dothideales. Annales Mycologici 13:
149–746.
Van der Aa HA (1971). Macroventuria, a new genus in the Venturiaceae.
Persoonia 6: 359–363.
Van der Aa HA, Vanev S (2002). A revision of the species described in
Phylloscta. Centraalbureau voor Schimmelcultures, Utrecht, The
Netherlands.
Van Nieuwenhuijzen EJ, Miadlikowska JM, Houbraken JAMP, et al.
(2016). Wood staining fungi revealed taxonomic noveles in
Pezizomycona: New order Superstratomycetales and new species
Cyanodermella oleoligni. Studies in Mycology 85: 107–124.
Verkley GJM, Quaedvlieg W, Shin HD, et al. (2013). A new approach to
species delimitaon in Septoria. Studies in Mycology 75: 213–305.
Videira SIR, Groenewald JZ, Braun U, et al. (2016). All that gliers is not
Ramularia. Studies in Mycology 83: 49–163.
Videira SIR, Groenewald JZ, Nakashima C, et al. (2017).
Mycosphaerellaceaechaos or clarity? Studies in Mycology 87:
257–421.
Voglmayr H, Jaklitsch WM (2011). Molecular data reveal high host-
specicity in the phylogenecally isolated genus Massaria
(Ascomycota, Massariaceae). Fungal Diversity 46: 133–170.
Vu D, Groenewald M, de Vries M, et al. (2019). Large-scale generaon
and analysis of lamentous fungal DNA barcodes boosts coverage
for kingdom fungi and reveals thresholds for fungal species and
higher taxon delimitaon. Studies in Mycology 92: 135–154.
Walker J (1980). Gaeumannomyces, Linocarpon, Ophiobolus and several
genera of scolecospored ascomycetes and Phialophora conidial
states, with a note on hyphopodia. Mycotaxon 11: 1–129.
Wang M, Tan XM, Liu F, et al. (2018). Eight new Arthrinium species from
China. MycoKeys 34: 1–24.
Wang Y, Pei YF, Zhang K, et al. (2009). Molecular and morphological
descripon of a new species of Ulocladium from Southern China.
Mycological Progress 8: 207.
Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013).
Alternaria redened. Studies in Mycology 75: 171–212.
Woudenberg JHC, Hanse B, van Leeuwen GCM, et al. (2017).
Stemphylium revisited. Studies in Mycology 87: 77–103.
Zhang W, Groenewald JZ, Lombard L, et al. (2021a). Evaluang species
in Botryosphaeriales. Persoonia 46: 63–115.
Zhang Y, Fournier J (2015). Kirschsteiniothelia thujina (Peck) D. Hawksw.
(Kirschsteiniotheliaceae), reported from Europe for the rst me.
Ascomycete.org 7: 31–37.
Zhang Z, Schwartz S, Wagner L, et al. (2000). A greedy algorithm for
aligning DNA sequences. Journal of Computaonal Biology 7: 203–
214.
Zhang ZF, Liu F, Zhou X, et al. (2017). Culturable mycobiota from Karst
caves in China, with descripons of 20 new species. Persoonia 39:
1–31.
Zhang ZF, Zhou SY, Eurwilaichitr L, et al. (2021b). Culturable mycobiota
from Karst caves in China II, with descripons of 33 new species.
Fungal Diversity: doi.org/10.1007/s13225-020-00453-7
Zhang ZY, Chen WH, Zou X, et al. (2019). Phylogeny and taxonomy of
two new Plectosphaerella (Plectosphaerellaceae, Glomerellales)
species from China. MycoKeys 57: 47–60.
... The other anamorphic genera, such as Phaeodactylium, Pseudovirgaria, and Radulidium, had an unclear taxonomic position for a long time (Arzanlou et al. 2007;Castañeda-Ruiz et al. 2013), but recently Hudson et al. (2019) and Hongsanan et al. (2020) confirm their placement within Acrospermales. Finally, there is also a recently described monotypic genus, Pseudoacrospermum, based on Pseudoacrospermum goniomae isolated from leaves of Gonioma kamassi, that was proven to be nested within Acrospermales (Crous et al. 2021). ...
... character state analyses were conducted to study the evolutionary history of lifestyles in the order Acrospermales (Joy et al. 2016). Each specimen included in the analysis was coded according to its lifestyle based on literature review (Arzanlou et al. 2007;Crous et al. 2014Crous et al. , 2021Crous et al. , 2022Döbbeler 1979;Stenroos et al. 2010) or on the data obtained in this study. Information about the substrate or source of isolation was used for lifestyle annotation. ...
... They also confirm the sister relationship between Acrospermales and Dyfrolomycetales previously suggested by Pang et al. (2013). However, Crous et al. (2021) proposed Muyocopronales as a sister group to the Acrospermales based on 28S rDNA alignment. In our analysis, we found strong support (PP = 1, BS = 100) for the position of Acrospermales as a sister to the order Dyfrolomycetales, consistent with the findings of Hudson et al. (2019). ...
Article
Acrospermales represent one of the least studied lineages of Dothideomycetes and are characterized by diverse ecological strategies, including saprotrophic, epiphytic, fungicolous, lichenicolous, and bryophilous lifestyles. The order is composed of two teleomorphic genera, Acrospermum and Oomyces, and five anamorphic genera of unclear relationships. The objectives of the study were to establish the phylogenetic position of Acrospermum species collected from lichens in the tropical forest of Bolivia and to infer the evolution of the lichenicolous lifestyle in Acrospermales. Our results reveal that the examined specimens from Bolivia represent a new species, A. bolivianum, which is well characterized by its phylogenetic distinctness, morphological characteristics, and host selection. The new species is the first lichenicolous member of Acrospermum and forms a well-supported clade sister to the bryophilous Acrospermum adeanum. The evolution of lifestyles, concluded by phylogenetic analyses and ancestral state reconstructions, indicated that the saprotrophic lifestyle is ancestral to Acrospermales. This corresponds to their close relationship to other saprotrophic lineages of Dothideomycetes and indicates that the wide spectrum of nutritional strategies, currently observed in Acrospermales, may be a result of more recent shifts in their ecology. Our results also suggest that the lichenicolous lifestyle in Acrospermales appeared independently at least two times. Lichenicolous species are represented in our data set by Acrospermum bolivianum and Gonatophragmium physciae, which evolved from lichenicolous and plant-parasite ancestors, respectively. The genus Oomyces, represented by O. carneoalbus, was included for the first time in the phylogenetic analysis and showed a sister relationship to the remaining taxa of Acrospermales.
... Earlier, the Apiospora genus was phylogenetically placed in the same phylogenetic clade as Arthrinium (Crous and Groenewald 2013;Wang et al. 2018). Recently, studies have shown a phylogenetic delimitation of the Apiospora genus and the Arthrinium genus (Crous et al. 2021;Alvarado 2021, 2022;Tian et al. 2021;Sørensen et al. 2022). The genus Apiospora comprises species that occur in a wide variety of geographic and ecological environments. ...
... The phylogenetic tree was divided into two overall branches, one consisting of Apiospora species and the other of Arthrinium species. The topology of the resulting tree was consistent with the findings observed by others (Crous et al. 2021;Pintos and Alvarado 2021;Tian et al. 2021), which showed a delimitation of these two groups. The isolated fungus was identified as belonging to the Apiospora genus and was found to be closely related to A. arundinis, which formed a phylogenetic clade, implying that it is also an A. arundinis species, and was thus named Apiospora arundinis AAU 773. ...
Article
Full-text available
The Apiospora genus comprises filamentous fungi with promising potential, though its full capabilities remain undiscovered. In this study, we present the first genome assembly of an Apiospora arundinis isolate, demonstrating a highly complete and contiguous assembly estimated to 48.8 Mb, with an N99 of 3.0 Mb. Our analysis predicted a total of 15,725 genes, with functional annotations for 13,619 of them, revealing a fungus capable of producing very high amounts of carbohydrate-active enzymes (CAZymes) and secondary metabolites. Through transcriptomic analysis, we observed differential gene expression in response to varying growth media, with several genes related to carbohydrate metabolism showing significant upregulation when the fungus was cultivated on a hay-based medium. Finally, our metabolomic analysis unveiled a fungus capable of producing a diverse array of metabolites.
... Some Phyllosticta species exhibit a wide range of hosts, while others do not. To overcome the limitations associated with morphological characteristics and host combinations, the integration of homologous gene DNA sequencing and comparative methods has significantly advanced our comprehension of the phylogeny of Phyllosticta species [5,8,[11][12][13][14][15]. Based on ITS, LSU, TEF1 alpha, ACT, and GPDH, five loci of phylogenetic analysis, Phyllosticta genetic system development can be divided into six species of composite groups: viz P. capitalensis species complex, P. concentrica species complex, P. cruenta species complex, P. owaniana species complex, P. rhodorae species complex, and P. vaccinii species complex [5,8]. ...
... The newly obtained sequencing data were processed using MEGA v.7.0 to ensure sequence consistency. Reference sequences were downloaded based on the GenBank numbers provided in the latest articles [8,13,[22][23][24]. For phylogenetic inference, the sequence utilized by Zhang et al. [7] served as the foundation, considering the ITS-LSU-TEF1α-ACT-GAPDH sequence. ...
Article
Full-text available
The genus Phyllosticta has been reported worldwide and contains many pathogenic and endophytic species isolated from a wide range of plant hosts. A multipoint phylogeny based on gene coding combinatorial data sets for the internal transcribed spacer (ITS), large subunit of ribosomal RNA (LSU rDNA), translation elongation factor 1α (TEF1α), actin (ACT), and glycerol-3-phosphate dehydrogenase (GPDH), combined with morphological characteristics, was performed. We describe three new species, P. fujianensis sp. nov., P. saprophytica sp. nov., and P. turpiniae sp. nov., and annotate and discusse their similarities and differences in morphological relationships and phylogenetic phases with closely related species.
Article
Full-text available
Apiospora species are widely distributed fungi with diverse lifestyles, primarily functioning as plant pathogens, as well as exhibiting saprophytic and endophytic behaviors. This study reports the discovery of three new species of Apiospora, namely A. gongcheniae, A. paragongcheniae, and A. neogongcheniae, isolated from healthy Poaceae plants in China. These novel species were identified through a multi-gene phylogenetic analysis. The phylogenetic analysis of the combined ITS, LSU, tef1, and tub2 sequence data revealed that the three new species formed a robustly supported clade with A. garethjonesii, A. neogarethjonesii, A. setostroma, A. subrosea, A. mytilomorpha, and A. neobambusae. Detailed descriptions of the newly discovered species are provided and compared with closely related species to enhance our understanding of the genus Apiospora.
Article
Full-text available
As the continuation of Fungal Diversity Notes series, the current paper is the 16th contribution to this series. A total of 103 taxa from seven classes in Ascomycota and Basidiomycota are included here. Of these 101 taxa, four new genera, 89 new species, one new combination, one new name and six new records are described in detail along with information of hosts and geographic distributions. The four genera newly introduced are Ascoglobospora, Atheliella, Rufoboletus and Tenuimyces. Newly described species are Akanthomyces xixiuensis, Agaricus agharkarii, A. albostipitatus, Amphisphaeria guttulata, Ascoglobospora marina, Astrothelium peudostraminicolor, Athelia naviculispora, Atheliella conifericola, Athelopsis subglaucina, Aureoboletus minimus, A. nanlingensis, Autophagomyces incertus, Beltrania liliiferae, Beltraniella jiangxiensis, Botryobasidium coniferarum, Calocybella sribuabanensis, Calonarius caesiofulvus, C. nobilis, C. pacificus, C. pulcher, C. subcorrosus, Cortinarius flaureifolius, C. floridaensis, C. subiodes, Crustomyces juniperi, C. scytinostromoides, Cystostereum subsirmaurense, Dimorphomyces seemanii, Fulvoderma microporum, Ginnsia laricicola, Gomphus zamorinorum, Halobyssothecium sichuanense, Hemileccinum duriusculum, Henningsomyces hengduanensis, Hygronarius californicus, Kneiffiella pseudoabdita, K. pseudoalutacea, Laboulbenia bifida, L. tschirnhausii, L. tuberculata, Lambertella dipterocarpacearum, Laxitextum subrubrum, Lyomyces austro-occidentalis, L. crystallina, L. guttulatus, L. niveus, L. tasmanicus, Marasmius centrocinnamomeus, M. ferrugineodiscus, Megasporoporia tamilnaduensis, Meruliopsis crystallina, Metuloidea imbricata, Moniliophthora atlantica, Mystinarius ochrobrunneus, Neomycoleptodiscus alishanense, Nigrograna kunmingensis, Paracremonium aquaticum, Parahelicomyces dictyosporus, Peniophorella sidera, P. subreticulata, Phlegmacium fennicum, P. pallidocaeruleum, Pholiota betulicola, P. subcaespitosa, Pleurotheciella hyalospora, Pleurothecium aseptatum, Resupinatus porrigens, Russula chlorina, R. chrysea, R. cruenta, R. haematina, R. luteocarpa, R. sanguinolenta, Synnemellisia punensis, Tenuimyces bambusicola, Thaxterogaster americanoporphyropus, T. obscurovibratilis, Thermoascus endophyticus, Trechispora alba, T. perminispora, T. subfarinacea, T. tuberculata, Tremella sairandhriana, Tropicoporus natarajaniae, T. subramaniae, Usnea kriegeriana, Wolfiporiella macrospora and Xylodon muchuanensis. Rufoboletus hainanensis is newly transferred from Butyriboletus, while a new name Russula albocarpa is proposed for Russula leucocarpa G.J. Li & Chun Y. Deng an illegitimate later homonym of Russula leucocarpa (T. Lebel) T. Lebel. The new geographic distribution regions are recorded for Agaricus bambusetorum, Bipolaris heliconiae, Crinipellis trichialis, Leucocoprinus cretaceus, Halobyssothecium cangshanense and Parasola setulosa. Corresponding to morphological characters, phylogenetic evidence is also utilized to place the above-mentioned taxa in appropriate taxonomic positions. The current morphological and phylogenetic data is helpful for further clarification of species diversity and exploration of evolutionary relationships in the related fungal groups.
Article
Full-text available
Apiospora is widely distributed throughout the world, and most of its hosts are Poaceae. In this study, Arthrinium-like strains were isolated from non-Poaceae in the Hainan and Fujian provinces of China. Based on the combined DNA sequence data of the internal transcriptional spacer (ITS), partial large subunit nuclear rDNA (LSU), translation extension factor 1-α gene (TEF1-α) and β-tubulin (TUB2), the collected Apiospora specimens were compared with known species, and three new species were identified. Based on morphological and molecular phylogenetic analyses, Apiospora adinandrae sp. nov., A. bawanglingensis sp. nov. and A. machili sp. nov. are described and illustrated.
Article
Full-text available
Leaf spot disease is a serious constraint on ginger cultivation in Indonesia. The disease is primarily caused by certain fungal species. Another species of fungus that has never been reported before in Indonesia was consistently isolated from the collected samples of whitish spot symptom from Bogor and Sukabumi, West Java. The present study is aimed to determine the fungal identity and confirmed its pathogenicity as well as exploring its characteristics. Leaf tissue isolation, morphological characteristic observation and molecular analysis for determining the fungal identity, a pathogenicity test, disease occurrence observation on red- and white-ginger, colony characteristic on four different media and its response on PDA medium amanded with 0 – 500 ppm of mancozeb or copper hydroxide had been carried out in the plant pathology laboratory of ISMCRI in Bogor. The fungus was identified as a group of Phoma based on morphological characteristic, homology and phylogeny analysis. The carrot agar medium is the best medium for growing and sporulation of the fungus. The disease incidence and severity occurrence were more severe on white-ginger than the red-one. Mancozeb inhibited the fungus growth more effectively than copper hydroxide, but 500 ppm is not inhibiting the fungal growth.
Article
Codonopsis pilosula (known as ‘dangshen’) is experiencing a serious replant disease caused by continuous monoculture in its main and endemic cultivation region in Dingxi, China. In this study, changes in physicochemical properties, fungal microbiomes, and isolated strains were investigated in the rhizosphere soil of 1-, 2-, 3-, and 5-year continuous monoculture natural fields. It was observed that wilted seedlings and a variety of root rot diseases occurred after the third year of continuous monoculture in the field. The soil available potassium (AK) content and the pH value decreased significantly in the 3- and 5-year fields. Using Illumina sequencing, it was demonstrated that the 3- and 5-year fields had a higher diversity of fungal communities than that in the 1- and 2-year fields. At the genus level, abundance of some potentially pathogenic fungal taxa also increased. A total of 33 isolated strains that belonged to Fusarium species complexes, Plectosphaerella cucumerina, Paraphoma ledniceana, Alternaria alstroemeriae, Mucor hiemalis, and Clonostachys rosea were obtained from the roots in 3-year and 5-year fields. The correlation analysis revealed that the abundance of fungal community at the genus level was positively correlated with the available phosphorus (AP), total nitrogen (TN), and soil organic matter (SOM). The results revealed that continuous monoculture has a negative impact on the fungal community and enriched the potential pathogenic fungi in the rhizosphere of C. pilosula.
Article
Full-text available
Over the past three decades, a wealth of studies has shown that palm trees (Arecaceae) are a diverse habitat with intense fungal colonisation, making them an important substratum to explore fungal diversity. Palm trees are perennial, monocotyledonous plants mainly restricted to the tropics that include economically important crops and highly valued ornamental plants worldwide. The extensive research conducted in Southeast Asia and Australasia indicates that palm fungi are undoubtedly a taxonomically diverse assemblage from which a remarkable number of new species is continuously being reported. Despite this wealth of data, no recent comprehensive review on palm fungi exists to date. In this regard, we present here a historical account and discussion of the research on the palm fungi to reflect on their importance as a diverse and understudied assemblage. The taxonomic structure of palm fungi is also outlined, along with comments on the need for further studies to place them within modern DNA sequence-based classifications. Palm trees can be considered model plants for studying fungal biodiversity and, therefore, the key role of palm fungi in biodiversity surveys is discussed. The close association and intrinsic relationship between palm hosts and palm fungi, coupled with a high fungal diversity, suggest that the diversity of palm fungi is still far from being fully understood. The figures suggested in the literature for the diversity of palm fungi have been revisited and updated here. As a result, it is estimated that there are about 76,000 species of palm fungi worldwide, of which more than 2500 are currently known. This review emphasises that research on palm fungi may provide answers to a number of current fungal biodiversity challenges.
Article
Full-text available
Populus deltoides is one of the most favored cash crops in northern India. Thus, accurate identification of pathogens affecting P. deltoides is a critical step in finding or developing effective control measures. In June 2020, symptoms of a leaf blight disease were observed on P. deltoides trees planted at Forest Research Institute, Dehradun, India. Calonectria-like fungal isolates were consistently isolated from the infected leaf samples. Morphological features coupled with phylogenetic analysis of combined partial actin (act), calmodulin (cmdA), histone (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) gene regions of two fungal isolates confirmed a novel species, which is described and illustrated here as Calonectria populi sp. nov. Symptoms similar to those observed in natural conditions were caused by both the isolates on P. deltoides clone AM109 in detached leaf assays and glasshouse inoculation experiments. Finally, Koch’s postulates were established by re-isolation and re-identification of the pathogen from the inoculated leaves. This work is the first to confirm a new leaf blight disease of P. deltoides caused by C. populi sp. nov. in India and worldwide. Graphical abstract
Article
Full-text available
In the present study six species of Arthrinium (including a new taxon, Ar. crenatum) are described and subjected to phylogenetic analysis. The analysis of ITS and 28S rDNA, as well as sequences of tef1 and tub2 exons suggests that Arthrinium s. str. and Apiospora represent independent lineages within Apiosporaceae. Morphologically, Arthrinium and Apiospora do not seem to have clear diagnostic features, although species of Arthrinium often produce variously shaped conidia (navicular, fusoid, curved, polygonal, rounded), while most species of Apiospora have rounded (face view) / lenticular (side view) conidia. Ecologically, most sequenced collections of Arthrinium were found on Cyperaceae or Juncaceae in temperate, cold or alpine habitats, while those of Apiospora were collected mainly on Poaceae (but also many other plant host families) in a wide range of habitats, including tropical and subtropical regions. A lectotype for Sphaeria apiospora (syn.: Ap. montagnei, type species of Apiospora) is selected among the original collections preserved at the PC fungarium, and the putative identity of this taxon, found on Poaceae in Mediterranean lowland habitats, is discussed. Fifty-five species of Arthrinium are combined to Apiospora, and a key to species of Arthrinium s. str. is provided. Citation: Pintos Á, Alvarado P (2021). Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Systematics and Evolution 7: 197–221. doi: 10.3114/fuse.2021.07.10
Article
Full-text available
The Botryosphaeriales (Dothideomycetes) includes numerous endophytic, saprobic, and plant pathogenic species associated with a wide range of symptoms, most commonly on woody plants. In a recent phylogenetic treatment of 499 isolates in the culture collection (CBS) of the Westerdijk Institute, we evaluated the families and genera accommodated in this order of important fungi. The present study presents multigene phylogenetic analyses for an additional 230 isolates, using ITS, tef1, tub2, LSU and rpb2 loci, in combination with morphological data. Based on these data, 58 species are reduced to synonymy, and eight novel species are described. They include Diplodia afrocarpi (Afrocarpus, South Africa), Dothiorella diospyricola (Diospyros, South Africa), Lasiodiplodia acaciae (Acacia, Indonesia), Neofusicoccum podocarpi (Podocarpus, South Africa), N. rapaneae (Rapanea, South Africa), Phaeobotryon ulmi (Ulmus, Germany), Saccharata grevilleae (Grevillea, Australia) and S. hakeiphila (Hakea, Australia). The results have clarified the identity of numerous isolates that lacked Latin binomials or had been deposited under incorrect names in the CBS collection in the past. They also provide a solid foundation for more in-depth future studies on taxa in the order. Sequences of the tef1, tub2 and rpb2 genes proved to be the most reliable markers. At the species level, results showed that the most informative genes were inconsistent, but that a combination of four candidate barcodes (ITS, tef1, tub2 and rpb2) provided reliable resolution. Furthermore, given the large number of additional isolates included in this study, and newly generated multigene DNA datasets, several species could also be reduced to synonymy. The study illustrates the value of reassessing the identity of older collections in culture collections utilising modern taxonomic frameworks and methods. Citation: Zhang W, Groenewald JZ, Lombard L, et al. 2021. Evaluating species in Botryosphaeriales. Persoonia 46: 63–115. https://doi.org/10.3767/persoonia.2021.46.03.
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Australia, Austroboletus asper on soil, Cylindromonium alloxyli on leaves of Alloxylon pinnatum, Davidhawksworthia quintiniae on leaves of Quintinia sieberi, Exophiala prostantherae on leaves of Prostanthera sp., Lactifluus lactiglaucus on soil, Linteromyces quintiniae (incl. Linteromyces gen. nov.) on leaves of Quintinia sieberi, Lophotrichus medusoides from stem tissue of Citrus garrawayi, Mycena pulchra on soil, Neocalonectria tristaniopsidis (incl. Neocalonectria gen. nov.) and Xyladictyochaeta tristaniopsidis on leaves of Tristaniopsis collina, Parasarocladium tasmanniae on leaves of Tasmannia insipida, Phytophthora aquae-cooljarloo from pond water, Serendipita whamiae as endophyte from roots of Eriochilus cucullatus, Veloboletus limbatus (incl. Veloboletus gen. nov.) on soil. Austria, Cortinarius glaucoelotus on soil. Bulgaria, Suhomyces rilaensis from the gut of Bolitophagus interruptus found on a Polyporus sp. Canada, Cantharellus betularum among leaf litter of Betula, Penicillium saanichii from house dust. Chile, Circinella lampensis on soil, Exophiala embothrii from rhizosphere of Embothrium coccineum. China, Colletotrichum cycadis on leaves of Cycas revoluta. Croatia, Phialocephala melitaea on fallen branch of Pinus halepensis. Czech Republic, Geoglossum jirinae on soil, Pyrenochaetopsis rajhradensis from dead wood of Buxus sempervirens. Dominican Republic, Amanita domingensis on litter of deciduous wood, Melanoleuca dominicana on forest litter. France, Crinipellis nigrolamellata (Martinique) on leaves of Pisonia fragrans, Talaromyces pulveris from bore dust of Xestobium rufovillosum infesting floorboards. French Guiana, Hypoxylon hepaticolor on dead corticated branch. Great Britain, Inocybe ionolepis on soil. India, Cortinarius indopurpurascens among leaf litter of Quercus leucotrichophora. Iran, Pseudopyricularia javanii on infected leaves of Cyperus sp., Xenomonodictys iranica (incl. Xenomonodictys gen. nov.) on wood of Fagus orientalis. Italy, Penicillium vallebormidaense from compost. Namibia, Alternaria mirabibensis on plant litter, Curvularia moringae and Moringomyces phantasmae (incl. Moringomyces gen. nov.) on leaves and flowers of Moringa ovalifolia, Gobabebomyces vachelliae (incl. Gobabebomyces gen. nov.) on leaves of Vachellia erioloba, Preussia procaviae on dung of Procavia capensis. Pakistan, Russula shawarensis from soil on forest floor. Russia, Cyberlindnera dauci from Daucus carota. South Africa, Acremonium behniae on leaves of Behnia reticulata, Dothiora aloidendri and Hantamomyces aloidendri (incl. Hantamomyces gen. nov.) on leaves of Aloidendron dichotomum, Endoconidioma euphorbiae on leaves of Euphorbia mauritanica, Eucasphaeria proteae on leaves of Protea neriifolia, Exophiala mali from inner fruit tissue of Malus sp., Graminopassalora geissorhizae on leaves of Geissorhiza splendidissima, Neocamarosporium leipoldtiae on leaves of Leipoldtia schultzii, Neocladosporium osteospermi on leaf spots of Osteospermum moniliferum, Neometulocladosporiella seifertii on leaves of Combretum caffrum, Paramyrothecium pituitipietianum on stems of Grielum humifusum, Phytopythium paucipapillatum from roots of Vitis sp., Stemphylium carpobroti and Verrucocladosporium carpobroti on leaves of Carpobrotus quadrifolius, Suttonomyces cephalophylli on leaves of Cephalophyllum pilansii. Sweden, Coprinopsis rubra on cow dung, Elaphomyces nemoreus from deciduous woodlands. Spain, Polyscytalum pini-canariensis on needles of Pinus canariensis, Pseudosubramaniomyces septatus from stream sediment, Tuber lusitanicum on soil under Quercus suber. Thailand, Tolypocladium flavonigrum on Elaphomyces sp. USA, Chaetothyrina spondiadis on fruits of Spondias mombin, Gymnascella minnisii from bat guano, Juncomyces patwiniorum on culms of Juncus effusus, Moelleriella puertoricoensis on scale insect, Neodothiora populina (incl. Neodothiora gen. nov.) on stem cankers of Populus tremuloides, Pseudogymnoascus palmeri from cave sediment. Vietnam, Cyphellophora vietnamensis on leaf litter, Tylopilus subotsuensis on soil in montane evergreen broadleaf forest. Morphological and culture characteristics are supported by DNA barcodes.
Article
Full-text available
Calonectria represents a genus of phytopathogenic ascomycetous fungi with a worldwide distribution. In recent years, there has been an increase in the number of taxonomic studies on these fungi. Currently, there are 169 described species of Calonectria based on comparisons of DNA sequence data, combined with morphological characteristics. However, for some of these species, the sequence data utilised at the time of their description were relatively limited. This has justified an urgent need to reconsider the species boundaries for Calonectria based on robust genus-wide phylogenetic analyses. In this study, we utilised 240 available isolates including the ex-types of 128 Calonectria species, and re-sequenced eight gene regions (act, cmdA, his3, ITS, LSU, rpb2, tef1 and tub2) for them. Sequences for 44 Calonectria species, for which cultures could not be obtained, were downloaded from GenBank. DNA sequence data of all the 169 Calonectria species were then used to determine their phylogenetic relationships. As a consequence, 51 species were reduced to synonymy, two new species were identified, and the name Ca. lauri was validated. This resulted in the acceptance of 120 clearly defined Calonectria spp. The overall data revealed that the genus includes 11 species complexes, distributed across the Prolate and Sphaero-Naviculate Groups known to divide Calonectria. The results also made it possible to develop a robust set of DNA barcodes for Calonectria spp. To accomplish this goal, we evaluated the outcomes of each of the eight candidate DNA barcodes for the genus, as well as for each of the 11 species complexes. No single gene region provided a clear identity for all Calonectria species. Sequences of the tef1 and tub2 genes were the most reliable markers; those for the cmdA, his3, rpb2 and act gene regions also provided a relatively effective resolution for Calonectria spp., while the ITS and LSU failed to produce useful barcodes for species discrimination. At the species complex level, results showed that the most informative barcodes were inconsistent, but that a combination of six candidate barcodes (tef1, tub2, cmdA, his3, rpb2 and act) provided stable and reliable resolution for all 11 species complexes. A six-gene combined phylogeny resolved all 120 Calonectria species, and revealed that tef1, tub2, cmdA, his3, rpb2 and act gene regions are effective DNA barcodes for Calonectria.
Article
Full-text available
Karst caves are characterized by darkness, low temperature, high humidity, and oligotrophic organisms due to its relatively closed and strongly zonal environments. Up to now, 1626 species in 644 genera of fungi have been reported from caves and mines worldwide. In this study, we investigated the culturable mycobiota in karst caves in southwest China. In total, 251 samples from thirteen caves were collected and 2344 fungal strains were isolated using dilution plate method. Preliminary ITS analyses showed that these strains belonged to 610 species in 253 genera. Among these species, 88.0% belonged to Ascomycota, 8.0% Basidiomycota, 1.9% Mortierellomycota, 1.9% Mucoromycota, and 0.2% Glomeromycota. The majority of these species have been previously known from other environments, and some of them are known as mycorrhizal or pathogenic fungi. About 52.8% of these species were discovered for the first time in karst caves. Based on morphological and phylogenetic distinctions, 33 new species were identified and described in this paper. Meanwhile, one new genus of Cordycipitaceae, Gamszarea, and five new combinations are established. This work further demonstrated that Karst caves encompass a high fungal diversity, including a number of previously unknown species. Taxonomic novelties: New genus: Gamszarea Z.F. Zhang & L. Cai; Novel species: Amphichorda cavernicola, Aspergillus limoniformis, Aspergillus phialiformis, Aspergillus phialosimplex, Auxarthron chinense, Auxarthron guangxiense, Auxarthronopsis globiasca, Auxarthronopsis pedicellaris, Auxarthronopsis pulverea, Auxarthronopsis stercicola, Chrysosporium pallidum, Gamszarea humicola, Gamszarea lunata, Gamszarea microspora, Gymnoascus flavus, Jattaea reniformis, Lecanicillium magnisporum, Microascus collaris, Microascus levis, Microascus sparsimycelialis, Microascus superficialis, Microascus trigonus, Nigrospora globosa, Paracremonium apiculatum, Paracremonium ellipsoideum, Paraphaeosphaeria hydei, Pseudoscopulariopsis asperispora, Setophaeosphaeria microspora, Simplicillium album, Simplicillium humicola, Wardomycopsis dolichi, Wardomycopsis ellipsoconidiophora, Wardomycopsis fusca; New combinations: Gamszarea indonesiaca (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea kalimantanensis (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea restricta (Hubka, Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, Gamszarea testudinea (Hubka, Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, Gamszarea wallacei (H.C. Evans) Z.F. Zhang & L. Cai.
Article
Full-text available
The cosmopolitan plant genus Clematis contains many climbing species that can be found worldwide. The genus occurs in the wild and is grown commercially for horticulture. Microfungi on Clematis were collected from Belgium, China, Italy, Thailand and the UK. They are characterized by morphology and analyses of gene sequence data using an integrated species concept to validate identifications. The study revealed two new families, 12 new genera, 50 new species, 26 new host records with one dimorphic character report, and ten species are transferred to other genera. The new families revealed by multigene phylogeny are Longiostiolaceae and Pseudomassarinaceae in Pleosporales (Dothideomycetes). New genera are Anthodidymella (Didymellaceae), Anthosulcatispora and Parasulcatispora (Sulcatisporaceae), Fusiformispora (Amniculicolaceae), Longispora (Phaeosphaeriaceae), Neobyssosphaeria (Melanommataceae), Neoleptosporella (Chaetosphaeriales, genera incertae sedis), Neostictis (Stictidaceae), Pseudohelminthosporium (Neomassarinaceae), Pseudomassarina (Pseudomassarinaceae), Sclerenchymomyces (Leptosphaeriaceae) and Xenoplectosphaerella (Plectosphaerellaceae). The newly described species are Alloleptosphaeria clematidis, Anthodidymella ranunculacearum, Anthosulcatispora subglobosa, Aquadictyospora clematidis, Brunneofusispora clematidis, Chaetosphaeronema clematidicola, C. clematidis, Chromolaenicola clematidis, Diaporthe clematidina, Dictyocheirospora clematidis, Distoseptispora clematidis, Floricola clematidis, Fusiformispora clematidis, Hermatomyces clematidis, Leptospora clematidis, Longispora clematidis, Massariosphaeria clematidis, Melomastia clematidis, M. fulvicomae, Neobyssosphaeria clematidis, Neoleptosporella clematidis, Neoroussoella clematidis, N. fulvicomae, Neostictis nigricans, Neovaginatispora clematidis, Parasulcatispora clematidis, Parathyridaria clematidis, P. serratifoliae, P. virginianae, Periconia verrucose, Phomatospora uniseriata, Pleopunctum clematidis, Pseudocapulatispora clematidis, Pseudocoleophoma clematidis, Pseudohelminthosporium clematidis, Pseudolophiostoma chiangraiense, P. clematidis, Pseudomassarina clematidis, Ramusculicola clematidis, Sarocladium clematidis, Sclerenchymomyces clematidis, Sigarispora clematidicola, S. clematidis, S. montanae, Sordaria clematidis, Stemphylium clematidis, Wojnowiciella clematidis, Xenodidymella clematidis, Xenomassariosphaeria clematidis and Xenoplectosphaerella clematidis. The following fungi are recorded on Clematis species for the first time: Angustimassarina rosarum, Dendryphion europaeum, Dermatiopleospora mariae, Diaporthe ravennica, D. rudis, Dichotomopilus ramosissimum, Dictyocheirospora xishuangbannaensis, Didymosphaeria rubi-ulmifolii, Fitzroyomyces cyperacearum, Fusarium celtidicola, Leptospora thailandica, Memnoniella oblongispora, Neodidymelliopsis longicolla, Neoeutypella baoshanensis, Neoroussoella heveae, Nigrograna chromolaenae, N. obliqua, Pestalotiopsis verruculosa, Pseudoberkleasmium chiangmaiense, Pseudoophiobolus rosae, Pseudoroussoella chromolaenae, P. elaeicola, Ramusculicola thailandica, Stemphylium vesicarium and Torula chromolaenae. The new combinations are Anthodidymella clematidis (≡ Didymella clematidis), A. vitalbina (≡ Didymella vitalbina), Anthosulcatispora brunnea (≡ Neobambusicola brunnea), Fuscohypha kunmingensis (≡ Plectosphaerella kunmingensis), Magnibotryascoma rubriostiolata (≡ Teichospora rubriostiolata), Pararoussoella mangrovei (≡ Roussoella mangrovei), Pseudoneoconiothyrium euonymi (≡ Roussoella euonymi), Sclerenchymomyces jonesii (≡ Neoleptosphaeria jonesii), Stemphylium rosae (≡ Pleospora rosae), and S. rosae-caninae (≡ Pleospora rosae-caninae). The microfungi on Clematis is distributed in several classes of Ascomycota. The analyses are based on morphological examination of specimens, coupled with phylogenetic sequence data. To the best of our knowledge, the consolidated species concept approach is recommended in validating species.
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Betula sp. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Article
Full-text available
We present the latest version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, MEGA has been optimized for use on 64-bit computing systems for analyzing bigger datasets. Researchers can now explore and analyze tens of thousands of sequences in MEGA. The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit MEGA is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OSX. The command line MEGA is available as native applications for Windows, Linux, and Mac OSX. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.