ArticlePDF Available

Indian Pucciniales: taxonomic outline with important descriptive notes

Authors:
  • Patanjali Research Institute

Abstract and Figures

Rusts constitute a major group of the Kingdom Fungi and they are distributed all over the world on a wide range of wild and cultivated plants. It is the largest natural group of plant pathogens including 95% of the subphylum Pucciniomycotina and about 8% of all described Fungi. This article provides an overview and outline of rust fungi of India with important descriptive notes. After compilation of available literature on Indian rust fungi from various sources, it was observed that these fungi are distributed in 16 families, 69 genera and 640 species. They belong to Coleosporiaceae, Crossopsoraceae, Gymnosporangiaceae, Melampsoraceae, Milesinaceae, Ochropsoraceae, Phakopsoraceae, Phragmidiaceae, Pileolariaceae, Pucciniaceae, Pucciniastraceae, Raveneliaceae, Skierkaceae, Sphaerophragmiaceae, Tranzscheliaceae and Zaghouaniaceae. There are still many rust fungi with uncertain taxonomic position, and they have been referred to incertae sedis. The placement of all fungal genera is provided at the class, order and family-level along with number of species in a genus. Notes for each rust family along with total Indian records and other taxonomic information on transferred genera and species are also presented. A phylogenetic analysis from a combined LSU and ITS dataset for 25 rust genera is presented to provide a better understanding of their phylogeny and evolution.
Content may be subject to copyright.
A preview of the PDF is not available
Article
Full-text available
A new genus, Rostrupomyces is established to accommodate Xerocomus sisongkhramensis based on multiple protein-coding genes ( atp 6, cox 3, tef 1, and rpb 2) analyses of a wide taxon sampling of Boletaceae. In our phylogeny, the new genus was sister to Rubinosporus in subfamily Xerocomoideae, phylogenetically distant from Xerocomus , which was highly supported as sister to Phylloporus in the same subfamily Xerocomoideae. Rostrupomyces is different from other genera in Boletaceae by the following combination of characters: rugulose to subrugulose pileus surface, white pores when young becoming pale yellow in age, subscabrous stipe surface scattered with granulose squamules, white basal mycelium, unchanging color in any parts, yellowish brown spore print, and broadly ellipsoid to ellipsoid, smooth basidiospores. In addition, Hemileccinum inferius , also from subfamily Xerocomoideae, is newly described. Detailed descriptions and illustrations of the new genus and new species are presented.
Article
Full-text available
The family Boletaceae primarily represents ectomycorrhizal fungi, which play an essential ecological role in forest ecosystems. Although the Boletaceae family has been subject to a relatively global and comprehensive history of work, novel species and genera are continually described. During this investigation in northern China, many specimens of boletoid fungi were collected. Based on the study of their morphology and phylogeny, four new species, Butyriboletus pseudoroseoflavus, Butyriboletus subregius, Tengioboletus subglutinosus, and Suillellus lacrymibasidiatus, are introduced. Morphological evidence and phylogenetic analyses of the single or combined dataset (ITS or 28S, rpb1, rpb2, and tef1) confirmed these to be four new species. The evidence and analyses indicated the new species’ relationships with other species within their genera. Detailed descriptions, color photographs, and line drawings are provided. The species of Butyriboletus in China were compared in detail and the worldwide keys of Tengioboletus and Suillellus were given.
Article
Full-text available
The boletoid genera Butyriboletus and Exsudoporus have recently been suggested by some researchers to constitute a single genus, and Exsudoporus was merged into Butyriboletus as a later synonym. However, no convincing arguments have yet provided significant evidence for this congeneric placement. In this study, we analyze material from Exsudoporus species and closely related taxa to assess taxonomic and phylogenetic boundaries between these genera and to clarify species delimitation within Exsudoporus. Outcomes from a multilocus phylogenetic analysis (ITS, nrLSU, tef1-α and rpb2) clearly resolve Exsudoporus as a monophyletic, homogenous and independent genus that is a sister to Butyriboletus. An accurate morphological description, comprehensive sampling, type studies, line drawings and a historical overview on the nomenclatural issues of the type species E. permagnificus are provided. Furthermore, this species is documented for the first time from Israel in association with Quercus calliprinos. The previously described North American species Exsudoporus frostii and E. floridanus are molecularly confirmed as representatives of Exsudoporus, and E. floridanus is epitypified. The eastern Asian species Leccinum rubrum is assigned here to Exsudoporus based on molecular evidence, and a new combination is proposed. Sequence data from the original material of the Japanese Boletus kermesinus were gen-erated, and its conspecificity with L. rubrum is inferred as formerly presumed based on morphology. Four additional cryptic species from North and Central America previously misdetermined as either B. frostii or B. floridanus are phylogenetically placed but remain undescribed due to the paucity of available material. Boletus weberi (syn. B. pseudofrostii) and Xerocomus cf. mcrobbii cluster outside of Exsudoporus and are herein assigned to the recently described genus Amoenoboletus. Biogeographic distribution patterns are elucidated, and a dichotomous key to all known species of Exsudoporus worldwide is presented.
Article
Full-text available
The rust fungi ( Pucciniales ) with 7000+ species comprise one of the largest orders of Fungi , and one for which taxonomy at all ranks remains problematic. Here we provide a taxonomic framework, based on 16 years of sampling that includes ca . 80 % of accepted genera including type species wherever possible, and three DNA loci used to resolve the deeper nodes of the rust fungus tree of life. Pucciniales are comprised of seven suborders – Araucariomycetineae subord. nov. , Melampsorineae , Mikronegeriineae , Raveneliineae subord. nov. , Rogerpetersoniineae subord. nov. , Skierkineae subord. nov. , and Uredinineae – and 18 families – Araucariomycetaceae fam. nov. , Coleosporiaceae , Crossopsoraceae fam. nov. , Gymnosporangiaceae , Melampsoraceae , Milesinaceae fam. nov. , Ochropsoraceae fam. & stat. nov. , Phakopsoraceae , Phragmidiaceae , Pileolariaceae , Pucciniaceae , Pucciniastraceae , Raveneliaceae , Rogerpetersoniaceae fam. nov. , Skierkaceae fam. & stat. nov. , Sphaerophragmiaceae , Tranzscheliaceae fam. & stat. nov. , and Zaghouaniaceae . The new genera Araucariomyces (for Aecidium fragiforme and Ae. balansae ), Neoolivea (for Olivea tectonae ), Rogerpetersonia (for Caeoma torreyae ), and Rossmanomyces (for Chrysomyxa monesis , Ch. pryrolae , and Ch. ramischiae ) are proposed. Twenty-one new combinations and one new name are introduced for: Angiopsora apoda , Angiopsora chusqueae , Angiopsora paspalicola , Araucariomyces balansae , Araucariomyces fragiformis , Cephalotelium evansii , Cephalotelium neocaledoniense , Cephalotelium xanthophloeae , Ceropsora weirii , Gymnotelium speciosum , Lipocystis acaciae-pennatulae , Neoolivea tectonae , Neophysopella kraunhiae , Phakopsora pipturi , Rogerpetersonia torreyae , Rossmanomyces monesis , Rossmanomyces pryrolae , Rossmanomyces ramischiae , Thekopsora americana , Thekopsora potentillae , Thekopsora pseudoagrimoniae , and Zaghouania notelaeae . Higher ranks are newly defined with consideration of morphology, host range and life cycle. Finally, we discuss the evolutionary and diversification trends within Pucciniales .
Article
Full-text available
This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.
Article
Full-text available
The genus Ravenelia represents the third largest genus of rust fungi and parasitizes a great number of leguminous shrubs and trees, mainly in the subtropics and tropics. Molecular phylogenetic analyses of this genus using nc 28S rDNA and CO3 sequences are presented with a special focus on South African representatives of Ravenelia. Many of the specimens had been collected by us in recent years, mainly from acacia species of the genera Vachellia and Senegalia. Morphological characters were extensively studied using light microscopy and scanning electron microscopy. The analyses resolved several well-supported phylogenetic groups. By linking these groups to their morphology and life cycle characteristics, it was possible to interpret the outcomes in terms of their evolutionary ecology and biogeography. Several characters previously used to define subgeneric groups within Ravenelia were found to be misleading because of assumed convergent evolution. However, host associations, the ability to induce aecial galls as well as the development of two-layered probasidial cells emerged as useful criteria for inferring monophyletic groups. Six novel Ravenelia species were discovered and described. Furthermore, five species represent new reports for South Africa, species descriptions were emended for two taxa, and a new host report emerged for R. inornata.
Article
Full-text available
Gymnosporangium species ( Pucciniaceae , Pucciniales , Basidiomycota ) are the causal agents of cedar-apple rust diseases, which can lead to significant economic losses to apple cultivars. Currently, the genus contains 17 described species that alternate between spermogonial/aecial stages on Malus species and telial stages on Juniperus or Chamaecyparis species, although these have yet to receive a modern systematic treatment. Furthermore, prior studies have shown that Gymnosporangium does not belong to the Pucciniaceae sensu stricto (s.str.), nor is it allied to any currently defined rust family. In this study we examine the phylogenetic placement of the genus Gymnosporangium . We also delineate interspecific boundaries of the Gymnosporangium species on Malus based on phylogenies inferred from concatenated data of rDNA SSU, ITS and LSU and the holomorphic morphology of the entire life cycle. Based on these results, we propose a new family, Gymnosporangiaceae , to accommodate the genus Gymnosporangium , and recognize 22 Gymnosporangium species parasitic on Malus species, of which G. lachrymiforme , G. shennongjiaense , G. spinulosum , G. tiankengense and G. kanas are new. Typification of G. asiaticum , G. fenzelianum , G. juniperi-virginianae , G. libocedri , G. nelsonii , G. nidus-avis and G. yamadae are proposed to stabilize the use of names. Morphological and molecular data from type materials of 14 Gymnospor­angium species are provided. Finally, morphological characteristics, host alternation and geographical distribution data are provided for each Gymnosporangium species on Malus .
Article
Full-text available
The rusts of wheat, caused by three species of Puccinia, are very devastating diseases and are major biotic constraints in efforts to sustain wheat production worldwide. Their capacity to spread aerially over long distances, rapid production of infectious uredospores, and abilities to evolve new pathotypes, makes the management of wheat pathogens a very challenging task. The development and deployment of resistant wheat varieties has proven to be the most economic, effective and efficient means of managing rust diseases. Rust resistance used in wheat improvement has included sources from the primary gene pool as well as from species distantly related to wheat. The 1BL/1RS translocation from cereal rye was used widely in wheat breeding, and for some time provided resistance to the wheat leaf rust, stripe rust, and stem rust pathogens conferred by genes Lr26, Yr9, and Sr31, respectively. However, the emergence of virulence for all three genes, and stripe rust resistance gene Yr27, has posed major threats to the cultivation of wheat globally. To overcome this threat, efforts are going on worldwide to monitor rust diseases, identify rust pathotypes, and to evaluate wheat germplasm for rust resistance. Anticipatory breeding and the responsible deployment of rust resistant cultivars have proven to be effective strategies to manage wheat rusts. Efforts are still however being made to decipher the recurrence of wheat rusts, their epidemiologies, and new genomic approaches are being used to break the yield barriers and manage biotic stresses such as the rusts. Efficient monitoring of pathotypes of Puccinia species on wheat, identification of resistance sources, pre-emptive breeding, and strategic deployment of rust resistant wheat cultivars have been the key factors to effective management of wheat rusts in India. The success in containing wheat rusts in India can be gauged by the fact that we had no wheat rust epiphytotic for nearly last five decades. This publication provides a comprehensive overview of the wheat rust research conducted in India.
Article
The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.