ArticlePDF Available

Abstract and Figures

Zanclospora (Chaetosphaeriaceae) is a neglected, phialidic dematiaceous hyphomycete with striking phenotypic heterogeneity among its species. Little is known about its global biogeography due to its extreme scarcity and lack of records verified by molecular data. Phylogenetic analyses of six nuclear loci, supported by phenotypic data, revealed Zanclospora as highly polyphyletic, with species distributed among three distantly related lineages in Sordariomycetes. Zanclospora is a pleomorphic genus with multiple anamorphic stages, of which phaeostalagmus-like and stanjehughesia-like are newly discovered. The associated teleomorphs were previously classified in Chaetosphaeria. The generic concept is emended, and 17 species are accepted, 12 of which have been verified with DNA sequence data. Zanclospora thrives on decaying plant matter, but it also occurs in soil or as root endophytes. Its global diversity is inferred from metabarcoding data and published records based on field observations. Phylogenies of the environmental ITS1 and ITS2 sequences derived from soil, dead wood and root samples revealed seven and 15 phylotypes. The field records verified by DNA data indicate two main diversity centres in Australasia and Caribbean/Central America. In addition, environmental ITS data have shown that Southeast Asia represents a third hotspot of Zanclospora diversity. Our data confirm that Zanclospora is a rare genus.
Content may be subject to copyright.
Microorganisms2021,9,706.https://doi.org/10.3390/microorganisms9040706www.mdpi.com/journal/microorganisms
Article
Phylogeny,GlobalBiogeographyandPleomorphism
ofZanclospora
MartinaRéblová
1,
*,MiroslavKolařík
2
,JanaNekvindová
3
,AndrewN.Miller
4

andMargaritaHernándezRestrepo
5
1
DepartmentofTaxonomy,InstituteofBotany,TheCzechAcademyofSciences,
25243Průhonice,CzechRepublic
2
LaboratoryofFungalGeneticsandMetabolism,InstituteofMicrobiology,TheCzechAcademyofSciences,
14220Prague4,CzechRepublic;mkolarik@biomed.cas.cz
3
DepartmentofClinicalBiochemistryandDiagnostics,UniversityHospitalHradecKrálové,
50005HradecKrálové,CzechRepublic;nekvindova@fnhk.cz
4
IllinoisNaturalHistorySurvey,UniversityofIllinoisUrbanaChampaign,Champaign,IL61820,USA;
amiller7@illinois.edu
5
WesterdijkFungalBiodiversityInstitute,3508ADUtrecht,TheNetherlands;m.hernandez@wi.knaw.nl
*Correspondence:martina.reblova@ibot.cas.cz
Abstract:Zanclospora(Chaetosphaeriaceae)isaneglected,phialidicdematiaceoushyphomycete
withstrikingphenotypicheterogeneityamongitsspecies.Littleisknownaboutitsglobalbiogeog
raphyduetoitsextremescarcityandlackofrecordsverifiedbymoleculardata.Phylogeneticanal
ysesofsixnuclearloci,supportedbyphenotypicdata,revealedZanclosporaashighlypolyphyletic,
withspeciesdistributedamongthreedistantlyrelatedlineagesinSordariomycetes.Zanclosporaisa
pleomorphicgenuswithmultipleanamorphicstages,ofwhichphaeostalagmuslikeandstan
jehughesialikearenewlydiscovered.Theassociatedteleomorphswerepreviouslyclassifiedin
Chaetosphaeria.Thegenericconceptisemended,and17speciesareaccepted,12ofwhichhavebeen
verifiedwithDNAsequencedata.Zanclosporathrivesondecayingplantmatter,butitalsooccurs
insoilorasrootendophytes.Itsglobaldiversityisinferredfrommetabarcodingdataandpublished
recordsbasedonfieldobservations.PhylogeniesoftheenvironmentalITS1andITS2sequences
derivedfromsoil,deadwoodandrootsamplesrevealedsevenand15phylotypes.Thefieldrecords
verifiedbyDNAdataindicatetwomaindiversitycentresinAustralasiaandCaribbean/Central
America.Inaddition,environmentalITSdatahaveshownthatSoutheastAsiarepresentsathird
hotspotofZanclosporadiversity.OurdataconfirmthatZanclosporaisararegenus.
Keywords:Chaetosphaeriales;conidiogenesis;geographicdistribution;GlobalFungi;lifecycle;mo
lecularsystematics;taxonomicnovelties;newtypification
1.Introduction
Zanclospora[1],typifiedwithZ.novaezelandiae,wasestablishedfordematiaceoushy
phomycetesobservedonplantlitterordecayingwoodandbarkandcharacterisedby
setiformconidiophores,discretephialidesarrangedinwhorlsandhyaline,unicellular,
nonsetulateconidiainslimymassesenvelopingtheconidiophores[2–10].However,the
morphologicalcharactersofconidiophores,phialidesandconidiavaryamongspecies
andcontributetothephenotypicheterogeneityofthegenus.Conidiophoresaresimpleor
branched,occasionallyaccompaniedbysetae,branchesarefertile,resemblingthemain
stalkwithsecondaryandtertiarybranchesoftendeveloped,ortheyaresterileandseti
form,insertedintothemainstalk.Conidiogenouscellsareeithertightlyappressedtothe
conidiophoreinmultiplewhorlsformingacompactfertilezoneordivergentinseveral
loosewhorls.Phialidespossessindistinctorwelldefined,flaredtotubularcollarettes.The
Citation:Réblová,M.;Kolařík,M.;
Nekvindová,J.;Miller,A.N.;Her
nándezRestrepo,M.Phylogeny,
GlobalBiogeographyandPleo
morphismofZanclospora.Microor
g
anisms2021,9,706.https://doi.org/
10.3390/microorganisms9040706
AcademicEditor:
Dea
GarciaHermoso
Received:13February2021
Accepted:24March2021
Published:29March2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti
tutionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Microorganisms2021,9,7062of60
conidialshapevariesfromfalcate,obovoidtobacilliform.Theteleomorphanamorphcon
nectionhasbeenestablishedforonlytwospecies,bothwithateleomorphattributedto
Chaetosphaeria,namelytheZ.brevisporaanamorphofCh.brevispora[11]andZanclosporasp.
anamorphofCh.lateriphiala[12].
Todate,tenspeciesandtwovarietieswereintroducedinZanclospora[1–10],butlittle
isknownaboutthesystematicplacement,relationshipsandglobalgeographicaldistribu
tionofthesetaxa.Moreover,thegenusisunderrepresentedinculturecollections.Using
moleculardata,Fernándezetal.[13]andHernándezRestrepoetal.[9]confirmedthe
placementofZ.ibericaandCh.lateriphialaintheChaetosphaeriaceae.Zanclosporaissimilar
toCryptophiale[14,15],Cryptophialoidea[16],andKionochaeta[17]inhavingpigmentedco
nidiophoreswithasetiformextension,lateralphialidesusuallyarrangedinfertilezones
andhyalineconidia.Ourobservationsindicatethatconidialstructuressimilartotwo
dematiaceoushyphomycetegenera,Stanjehughesia[18]andPhaeostalagmus[19],canoccur
onanaturalsubstrateandinculture.
AlthoughthereareonlyafewpublishedrecordsofZanclospora,Z.novaezelandiae
seemstobeanexceptiontotherule.IntheprotologueofZ.novaezelandiae[1],conidia
werereportedwitharelativelylargerangeoflengths,18–35μmlong.Ontheotherhand,
thespecimenslistedbytheseauthors[1]sharedthesamemorphologicaldiagnosticchar
acterssuchascolourlessdisklikeexcrescencesontheuppersetiformpartofconidio
phoresandbranches,branchedconidiophoresandfalcateconidia.However,thelarge
rangeofconidiallengthsprovidedanopportunitytoexpandthespeciesconceptfurther,
andthepublishedmorphologicalprofilesofZ.novaezelandiaevaryconsiderably.Several
authors[8,20–23]reportedZ.novaezelandiaefromdifferentgeographicalregionswitha
variableconidiallengthandintroducedotherfeatures.Theconidiophorewalllackedor
namentation,andsomecollectionscontaineduniformlyunbranchedconidiophores.
ThesedifferencesmayindicatecrypticspecieswithinZ.novaezelandiaeorhighintraspe
cificvariability.Unfortunately,DNAsequencedataofZ.novaezelandiaearenotavailable
toprovideanswerstothesehypotheses.
OurknowledgeaboutthebiogeographyofZanclosporaisfragmentaryduetothelack
ofrecordsverifiedbymoleculardataanditsextremescarcity.Publisheddataofmembers
ofZanclosporasuggestaworldwidegeographicaldistribution.Specieswererecordedfrom
thetropicsofBrazil,Brunei,Cuba,India,Ecuador,IvoryCoast,Kenya,Nigeria,Sey
chelles,TaiwanandVietnam,butalsofromthetemperateandsubtropicalclimatezones
oftheSouthernandNorthernHemispheresinJapan,NewZealand,SouthAfrica,Spain
andtheUSA[1–12,20–28].Almostallpublishedrecordswerefromdecayingbarkand
wood,lessoftenfromfallenleaves,andwereobtainedbydirectobservationonnatural
substrates.Thus,itisunknownifthesefungialsooccurinrelatedsubstratessuchassoil
orhealthyplanttissues(asendophytes),wheretheyremainoverlookedduetotheirslow
growthincultureandrarity.
Todate,researchofgeographicdistributionpatternsoffungihasreliedheavilyon
publicnucleotidesequencedatabasessuchasNCBIGenBank[29]andUNITE[30],which
enableblasting(BLASTnsearch)[31]againstfungalbarcodesgeneratedbySangertech
nology.DataminingofDNAbarcodesisespeciallyhelpfulforbiogeographyanddiver
sitystudiesofabundantandgloballydistributedtaxae.g.[32].However,mostofthebar
codesequencesgeneratedsofarcomefrommassivelyparallelsequencingtechnologies,
whosedatahavebeenstoredinvariouspublicrepositories,notallowingforeasydata
mininginmultiplestudies.Asaresult,anybiogeographicevaluationislaboriousand
limitedtoasmallnumberofsourcedatasets[33].Thisgaphasrecentlybeenfilledbythe
creationoftheGlobalFungidatabaseoffungalITSdata[34,35]collectedfromterrestrial
biomesofsoil,deadorliveplantmaterial.Suchatoolisparticularlyusefulforstudying
membersoftheChaetosphaeriaceae,whichareusuallylessabundantandinhabitsub
stratescoveredbyGlobalFungi.
ThisstudyaimstoassessthesystematicplacementofZanclosporaandinvestigatein
traspecificandinterspecificvariabilityofitsmembersbyusingcomparativemorphology
Microorganisms2021,9,7063of60
onnaturalsubstratesandinculturealongwithphylogeneticanalyses.Otherobjectives
includethedescriptionandexperimentalverificationofteleomorphanamorphconnec
tionsandanamorphicphenotypes,andthedeterminationofgeographicaldistribution
andecologyofspeciesofZanclospora.
2.MaterialsandMethods
2.1.FungalStrains
Duringourstudy,wegatheredseveralZanclosporainhabitingdecayingplantmate
rialinvariouslocalitiesfromthesouthtemperateclimatezoneofNewZealand,andnorth
temperateclimatezoneofEuropeinPortugalandSpain,andNorthAmericaintheUSA.
OtherspecimenswereobtainedfromtheFungariumoftheIllinoisNaturalHistorySurvey
(ILLS,Champaign,IL,USA)andNewZealandFungarium(PDD,Auckland,NewZea
land).HolotypesandspecimenscollectedinthisstudyweredepositedatCBS,ILLSand
PDD(asdriedvoucherspecimensordriedcultures).
Axeniccultureswerederivedfromfreshlycollectedmaterial(seeSection2.2).Addi
tionalcultureswereobtainedfromBCCM/MUCLAgrofoodandEnvironmentalFungal
Collection(MUCL,UniversitéCatholiquedeLouvain,Louvain,Belgium),theInterna
tionalCollectionofMicroorganismsfromPlants(ICMP,Auckland,NewZealand)and
WesterdijkFungalBiodiversityInstitute(CBS,Utrecht,TheNetherlands).Representative
strainsandextypestrainsisolatedfromourcollectionsweredepositedatCBSandICMP.
Isolates,theirsourcesandGenBankaccessionnumbersofsequencesgeneratedinthis
studyarelistedinTable1.FungalnoveltieswereregisteredinMycoBank.
2.2.MorphologicalAnalysis
Morphologicalcharacteristics,i.e.anamorphic,synanamorphicandteleomorphic,
wereacquiredfromfungigrowingonnaturalsubstratesandinculture.Ascomata,conid
iophoresandconidiafromthenaturalsubstrateswererehydratedwithtapwaterandex
aminedwithanOlympusSZX12dissectingmicroscope(OlympusAmerica,Inc.,Melville,
NY,USA,).Handsectionedascomata,asci,ascosporesandparaphyses,andconidio
phoresandconidiaweremountedin90%lacticacid,waterorMelzer’sreagent.Measure
mentsweretakeninMelzer’sreagent.Means±standarddeviation(SD)basedonamini
mumof20–25measurementsweregivenforsizesofasci,ascosporesandconidia.Micro
scopicstructureswereexaminedusinganOlympusBX51compoundmicroscopewith
differentialinterferencecontrast(DIC)andphasecontrast(PC)illumination.Imagesof
microscopicstructureswerecapturedwithanOlympusDP70cameraoperatedbyImag
ingSoftwareCell^D(Olympus).Macroscopicimagesofcoloniesweredocumentedusing
aCanonEOS77DdigitalcamerawithCanonEF100mmf/2.8LMacroISUSMobjective
(CanonEuropeLtd.,Middlesex,UK)withdaylightspectrum5500K16WLEDlights.All
imageswereprocessedwithAdobePhotoshopCS6(AdobeSystems,SanJose,CA,USA).
Singleandmultipleascosporeandconidialisolateswereobtainedfromfreshmate
rialwiththeaidofasinglesporeisolator(Meopta,Prague,Přerov,CzechRepublic)and
incubatedonwateragarorModifiedLeonian’sagar(MLA)[36]atatemperatureof20–
25°C.Strainswereinoculatedintriplicateoncornmealdextroseagar(CMD)(17gofcorn
mealagarOxoidLimited,UnitedKingdom,Hampshire,2gofdextrose,1Lofdistilled
water,sterilizedfor15minat121°C),MLA,oatmealagar(OA)[37]andpotatocarrotagar
(PCA)[38].Descriptionsofcolonieswerebasedon4–6weekoldculturesgrownindark
nessat22–23°C.Strainswerealsoinoculatedoncornmealagar(CMA)[38]andOAwith
sterilestemsofUrticadioicatoinducesporulation.
Microorganisms2021,9,7064of60
Table1.Taxa,isolateinformationandGenBankaccessionnumbersforsequences.Newsequencesdeterminedforthisstudyandtaxonomicnoveltiesaregivenbold.
TaxonStrainStatus CountryHostSubstrateGenBank
ITS28S18Stef1‐α tub2rpb2
Brachiampullaverticillata ICMP15065PNewZealandWeinmanniaracemosadeadleafMW144418MW144402MW151684MW147322MW147336
B.verticillataICMP15993NewZealandunidentifieddeadleafMW144419MW144403MW151685MW147323MW14733
7
ChaetosphaeriaminutaS.M.H.3396TPanamaunidentifieddecayingwoodMW144420AF466075
KionochaetaramiferaMUCL39164,CBS193.95Cubaunidentifiedlea
f
MW144421MW144404
SelenosporellacurvisporaCBS102623SpainunidentifieddecayingwoodMW144405MW151686MW147338
StephanophorellastellataCBS101301,FMR6481TNigeriaunidentifieddeadleavesMH862729MH874336MW151687MW147339
ZanclosporaaureaICMP23703,CBS147013TNewZealandunidentifieddecayingwoodMW144422MW144406MW147324MW147343
Z.clavulataCBS146967,FMR12186TPortugalunidentifieddecayingwoodKY853481KY853545MW147325MW147344
Z.falcataICMP23702,CBS147012TNewZealandunidentifieddecayingwoodMW144423MW144407MW151688MW147326MW147345MW147340
Z.ibericaCBS130426,FMR11584TSpainunidentifieddecayingwoodKY853480KY853544MW151689MW147327MW147346MW147341
Z.ibericaCBS130280,FMR11022SpainunidentifiedplantdebrisMW144424MW144408MW147328MW147347
Z.lateriphialaCBS147014USAunidentifieddecayingwoodMW144425MW144409MW147329MW147348
Z.lateriphialaILLS121427USAunidentifieddecayingwoodMW144426MW144410
Z.lateriphialaILLS121428USAunidentifieddecayingwoodJN673039JN673039MW147349
Z.lateriphialaS.M.H.26291TUSAunknowndecayingwoodAF466070AF466031
Z.lateriphialaS.M.H.3320USAunidentifieddecayingwoodMW144427AF466072AF466033
Z.lateriphialaS.M.H.3294USAunidentifieddecayingwoodMW144428AF466071AF466032
Z.novaezelandiaeICMP15781ENewZealandNothofagussolandri
var.cliffortioidesdecayingwoodMW144429MW144411MW151690MW147330MW147350MW147342
Z.novaezelandiaeICMP15112NewZealandNothofagussp.decayingwoodMW144430MW144412MW147331MW147351
Z.phaeostalactaICMP15137,CBS114554TNewZealandunidentifieddecayingwoodMW144431MW144413MW147332MW147352
Z.ramiferaICMP15127NewZealandNothofagussp.decayingwoodMW144432MW144414MW147333MW147353
Z.ramiferaICMP22738,CBS147101TNewZealandunidentifieddecayingwoodMW144433MW144415MW147334MW147354
Z.sylvaticaS.M.H.2893TPuertoRicounidentifieddecayingwoodMW144434AF279419AF466043
Z.tropicalisS.M.H.1267TPuertoRicounidentifieddecayingwoodMW144435MW144416AF466044
Z.tropicalisS.M.H.2250CostaRicaunidentifieddecayingwoodMW144436AF466080AF466045
Z.xylophilaICMP22737TNewZealandunidentifieddecayingwoodMW144437MW144417MW147335MW147355
Notes:T,E,Pdenoteextype,exepitypeandexparatypestrains.
Microorganisms2021,9,7065of60
2.3.DNAExtraction,AmplificationandSangerSequencing
ProtocolsfortheDNAextractionandamplificationofsampleswithILLSandS.M.H.
prefixesfollowed[39]and[40].ProcessingofsampleswithM.R.,ICMPandCBSprefixes
followed[41,42].Othersampleswereprocessedaccordingto[9].Automatedsequencing
wascarriedoutbyEurofinsGATCBiotechSequencingService(Cologne,Germany),the
WMKeckCenterattheUniversityofIllinoisUrbanaChampaign(Champaign,Illinois,
USA)andWesterdijkFungalBiodiversityInstitute(Utrecht,TheNetherlands).Rawse
quencedatawereanalysedusingSequencherv.5.4.6(GeneCodesCorp,AnnArbor,MI,
USA).
2.4.GeneMarkers,SequenceAlignmentsandPhylogeneticAnalysesofFungalStrains
Sequencesofsixgenemarkers:ITS15.8SITS2(ITS)ofthenuclearrRNAcistron,the
smallsubunit18SribosomalDNAgene(18S)andthelargesubunit28SribosomalDNA
gene(28S)(approximately1800basepairsatthe5′‐end),domains5–7ofthesecondlargest
subunitofRNApolymeraseII(rpb2),theintermediatesectionofthecodingregionofthe
translationelongationfactor1alpha(tef1‐α)andcodingandnoncodingregionsofbeta
tubulin(tub2)markedbyexons26,wereanalysedtoassessevolutionaryrelationshipsof
Zanclosporaandsimilarfungi.GenBankaccessionnumbersforsequencesretrievedfrom
GenBankandpublishedinotherstudies[9,39,41–75]arelistedinTableS1.
SequenceswerealignedmanuallyinBioeditv.7.1.8[76]andintronswereexcluded
fromthealignments.Thesequenceswerecombinedintofourdatasetsthatwereparti
tionedintoITS,18S,28S,rpb2,tef1‐αandcodingandnoncodingregionsoftub2subsets
ofnucleotidesitesforwhichweassumedrateheterogeneity.Singlelocusdatasetswere
evaluatedusingPartitionFinder2[77],implementedintheCIPRESScienceGatewayv.3.3
[78,79],tofindthebestpartitioningschemeforourdatasetsandtoselectbestfitmodels
undercorrectedAkaikeinformationcriteria.Conflictfreedatasetswereconcatenated,
andfouralignments(depositedinTreeBASE)weresubjectedtosubsequentphylogenetic
analyses.
SincetherearenopreviousphylogeneticstudiesonZanclosporaandthestandarduse
ofparticularnuclearlocivaryamongfungalgroups,weconductedfourphylogenetic
analysestoassessrelationshipsofthegenus,basedonthepreliminaryresultsofthe
BLASTnsearch.ThephylogeneticanalysisofZanclosporaandmembersoftheSordari
omyceteswerebasedon18S,28Sandrpb2markers.TherelationshipswithintheChaeto
sphaeriaceaewereassessedwiththeITSand28Ssequences.Theintraspecificrelation
shipsofZanclosporawereevaluatedwithITS,28S,tef1‐αandtub2genes,andthephyloge
neticanalysisoftwoZanclosporastrainswithaffinitytotheXylarialeswereassessedinthe
analysisofthecombinedITS,28S,tef1‐αandrpb2sequences.
PhylogeneticreconstructionswereperformedusingBayesianInference(BI)and
MaximumLikelihood(ML)analysesthroughtheCIPRESScienceGatewayv.3.3.MLanal
yseswereconductedwithRAXMLHPCv.8.2.12[80]withaGTRCATapproximation.
Nodalsupportwasdeterminedbynonparametricbootstrapping(BS)with1000repli
cates.BIanalyseswereperformedinalikelihoodframeworkasimplementedinMrBayes
v.3.2.6[81].TwoBayesiansearcheswereperformedusingdefaultparameters.TheB
MCMCMCanalyseslasteduntiltheaveragestandarddeviationofsplitfrequencieswas
below0.01withtreessavedevery1000generations.Thefirst25%ofsavedtrees,repre
sentingtheburninphaseoftheanalysis,werediscarded.Theremainingtreeswereused
forcalculatingposteriorprobabilities(PP)ofrecoveredbranches.TheBIandMLphylo
genetictreeswerecomparedvisuallyforatopologicalconflictamongsupportedclades.
HistogramsofintraspecificandinterspecificdistancesofZanclosporas.str.werecre
atedforeachofthefourmarkers(ITS,28S,tef1‐α,andtub2)usedinthephylogeneticanal
ysesinordertoillustratetheamountofoverlapforeachgene.Matrixofpairwisedistances
wascomputedwithMEGAX[82]usingtheKimuratwoparameters(K2P)model,andthe
Microorganisms2021,9,7066of60
histogramwasplottedinGraphPrism7.03software(GraphpadSoftwareInc.,USA,Cali
fornia,LaJolla)usingabinsizeof0.001.
2.5.PhylogenyofEnvironmentalSequencesandBiogeography
Initially,theinterspeciesgeneticdistance(pdist)wascalculatedforITS1andITS2
datasetsof12ZanclosporaspeciesusingMEGAX[82]toobtainsequencesimilaritythresh
oldsforspeciesdelimitationinZanclospora.Theobtainedvalueandthelimitoffullcov
eragewereusedforthesearchintheGlobalFungiv.0.9.6(releaseversion1.0)database
containingdatafrom20,000samplesoriginatingfrom207studies[34].Foreachtaxon,
dataaboutoccurrenceacrossenvironmentalsamplesandmetadatarelatedtothepartic
ularsamples(location,substrate,biome,climaticdata,pH)wereobtained(TableS2).Taxa
relatedtoZanclosporawereusedforcomparison,e.g.Chaetosphaeriaminuta,Cryptophiale,
CryptophialoideaandKionochaeta(TableS3).
InordertostudyZanclosporadiversityhiddenamongenvironmentalsequences,the
fulllengthITS1andITS2sequencesof12Zanclosporaspecieswereblastedagainstthe
GlobalFungidatabase.Thesequenceswithasimilarityof89–100%andfulllengthcover
ageweredownloaded.TheZanclosporagenusboundarieswereinferredfromMLtreesof
ITS1andITS2sequencescomputedinPhymlv.3.1[83]usingtheGTRmodeland500
bootstrapreplicates.Thesameprocedure,i.e.blasting,downloadingofrelatedsequences
andphylogeneticanalyses,wasperformedagainstsequencesdepositedinNCBIGenBank
andUNITEdatabase.Virtualtaxa,consistingofenvironmentalsequencesonly,werede
finedasarbitraryphylotypesintheMLphylogenetictrees.Metabarcodingdatacancon
tainpseudogenouscopies,whichmayleadtoanoverestimationofdiversity.Thus,GC
contentandITS2secondarystructurestabilityofobtainedsequenceswerecomparedas
recommendedin[84].
3.Results
3.1.PhylogeneticAnalyses
InordertoexaminetheevolutionaryrelationshipsofZanclosporawithintheSordari
omycetidae,phylogeneticanalysiswasbasedonthecombined18S,28Sandrpb2se
quencesof108representativesoftheSordariomycetes.Adelosphaeriacatenata,Mela
notrigonumovaleandPleurotheciellaerumpens(Pleurotheciales,Hypocreomycetidae)
servedastheoutgroup.Onehundredtwentynucleotides(nt)atthe5′‐endof18S,85ntat
the5′‐endand483ntatthe3′‐endof28Swereexcludedfromthealignmentbecauseofthe
incompletenessinthemajorityofsequences.Thefulldatasetconsistedof4139characters
includinggaps(18S=1634characters,28S=1342,rpb2=1163)and2213uniquecharacter
sites(RAxML).FortheBIanalysis,theGTR+I+Gmodelwasselectedforallpartitions.The
BIandMLtreeswerenotinconflict;theMLtreeisshowninFigure1.ThesubclassSor
dariomycetidaeincluded30wellsupportedclades(75%MLBS/1.0PP)representing
ordersandfamiliesandoneincertaesedislineage.Thissubclasswasresolvedwithfour
majorsubclades.Thefirstsubclade(96/1.0)includedtenordersandfamilieswithmostly
phialidicandtreticconidiogenesis,rarelyholoblastic,namelyBoliniales,Cephalothecales,
Chaetosphaeriales,Coniochaetales,Cordanales,Helminthosphaeriaceae,Leptosphaerel
laceae,Phyllachorales,Pseudodactylariales,SordarialesandTracyllales.Thesecondsub
cladeincludedVermiculariopsiellales(100/1.0)andanunsupportedcladewithMirannu
latasamuelsiiandTeracosphaeriapetroica(bothincertaesedis).Specieswithprevalentholo
blasticconidiogenesis,ifknown,attributedto13ordersandfamilies,formedastrongly
supportedsubclade(98/1.0),whichwasinferredassistertothefourthsubclade(99/1.0)
containingCalosphaeriales,Diaporthales,JobellisialesandTogninialeswithphialidicco
nidiogenesis.TheXylariomycetidaewereresolvedasastronglysupportedclade(100/1.0)
encompassingfiverepresentativesoftheXylariales.Zanclosporanovaezelandiaeclustered
intheChaetosphaeriales(100/1.0),whileZ.stellatanestedintheVermiculariopsiellales
andwastransferredtoanewgenusStephanophorella.Zanclosporaureweraewasinferredas
Microorganisms2021,9,7067of60
amemberoftheXylariales(100/1.0)andaccommodatedinthenewgenusBrachiampulla.
AnontypestrainofSelenosporellacurvisporaCBS102623,thegenerictype,clusteredinthe
Helminthosphaeriaceae.
RelationshipsofZanclosporawithfourChaetosphaeria,sofarknowntoproduceonly
aphaeostalagmuslikeanamorphortheiranamorphisunknown[12,85,86],andother
membersoftheChaetosphaeriaceaewereassessedinthephylogeneticanalysisofadata
setthatincludedITSand28Ssequencesof89representativespeciesofthefamily.Lepto
sporellaarengaeandL.bambusae(Leptosphaerellaceae),andTracyllaeucalyptiandT.aristata
(Tracyllaceae)servedasanoutgroup.Seventyonentatthe5′‐endand663ntatthe3′‐end
of28Swereexcludedfromthealignment.
Thealignmenthad1722charactersincludinggaps(ITS=605characters,28S=1117)
and861uniquecharactersites(RAxML).FortheBIanalysis,theGTR+I+Gmodelwas
selectedforbothpartitions.NoconflictsoccurredbetweenBIandMLtrees;theMLtree
isshowninFigure2.TheChaetosphaeriaceaeincluded47lineagesrepresentinggenera
ornaturalgroupsofspecies.Zanclosporawasresolvedasastronglysupportedmonophy
leticclade(99/1.0).FourChaetosphaeria,namelyCh.jonesii,Ch.phaeostalacta,Ch.sylvatica
andCh.tropicalis,clusteredintheZanclosporaclade.Kionochaetawasshownasparaphy
letic,anontypestrainofK.ramiferaMUCL39164[87],thetypespeciesofthegenus,clus
teredwithtwootherKionochaetaasamonophyleticlineage(100/1.0),whileK.ivoriensis
nestedonaseparatebranchclosetoCryptophialeandCryptophialoidea.Phaeostalagmus(as
P.cyclosporusCBS663.70,thegenerictype)andStanjehughesia(asS.hormiscioidesCBS
102664),twohyphomycetegenerawhosesimilarphenotypesappearinthelifecycleof
Zanclospora,wereresolvedasseparatelineages.
Inordertoevaluaterelationshipsamong16strainsofZanclosporaandfivestrainsof
Chaetosphaeria,someofwhichformaphaeostalagmuslikeanamorphinculture,weana
lysedadatasetofthecombinedITS,28S,tef1‐αandtub2sequences.ThreeDictyochaeta
wereusedasanoutgrouptorootthetree.Thealignmenthad4770charactersincluding
gaps(ITS=487,28S=1842,tef1‐α=992,tub2=1449)and729uniquecharactersites
(RAxML).FortheBIanalysis,theGTR+GmodelwasselectedforITSandtef1‐α,GTR+I+G
for28Sandtub2codingregion,andGTR+Iforthetub2noncodingpartition.TheMLtree
isshowninFigure3.Zanclosporawasresolvedwithtwosubcladescontaining12species.
MoleculardataconfirmedacloserelationshipamongspecieswiththetypicalZanclospora
conidiophoresandthoseexhibitingphaeostalagmus‐ andstanjehughesialikemor
photypes.Thefirstsubclade(–/1.0)comprisedninespeciesincludingZ.novaezelandiae
andfivenewspecies,namelyZ.aurea,Z.clavulata,Z.falcata,Z.ramiferaandZ.xylophila,
describedbelow.Thesecondsubclade(100/1.0)containedthreespeciesformerlyat
tributedtoChaetosphaeria.ThedifferencesbetweenBIandMLtreeswereintheposition
ofseveralspecies.IntheBItree,Z.aureawasshownonaseparatebranch,andZ.phae
ostalactaandZ.xylophilawereresolvedassisterspecies.
RelationshipsofZ.ureweraewereassessedinthephylogeneticanalysisofthecom
binedITS,28S,tef1‐αandrpb2sequencesof81representativesoftheXylariales.Bac
trodesmiumabruptumandB.diversum(Savoryellaceae),Helicoascotaiwanialacustrisand
Pleurotheciellaerumpens(Pleurotheciaceae)wereusedtorootthetree.Eightyfiventatthe
5′‐endand925ntatthe3′‐endof28Swereexcludedfromthealignment.Thealignment
had3964charactersincludinggaps(ITS=764characters,28S=857,tef1‐α=1148,rpb2=
1195)and2307uniquecharactersites(RAxML).FortheBIanalysis,theSYM+I+Gmodel
wasselectedforITS,whiletheGTR+I+Gmodelwasselectedfor28S,tef1‐αandrpb2par
titions.TherewerenoconflictsbetweenMLandBItrees;theMLtreeisshowninFigure
4.TheXylarialesincluded33wellsupportedcladesrepresentingfamiliesandoneincertae
sedislineage.ZanclosporaureweraewasclusteredasasistertoXyladictyochaetaofthe
Xyladictyochaetaceae(99/1.0).MorphologicallysimilargeneraandspeciessuchasSeleno
driella(Microdochiaceae)andCeratocladiumpolysetosum(incertaesedis)formedseparatelin
eages.
Microorganisms2021,9,7068of60
(A)
Microorganisms2021,9,7069of60
(B)
Figure1.(A)Phylogeneticanalysisof18S,28Sandrpb2oftheSordariomycetes.Speciesnamesgiveninboldaretaxonomic
novelties;T,EandPindicateextype,exepitypeandexparatypestrains.TaxahighlightedingreenrepresentSeleno
sporellaandselenosporellalikefungiintheHelminthosphaeriaceae.Thickenedbranchesindicatebranchsupportwith
maximumlikelihood(ML)bootstrapping(BS)=100%,posteriorprobabilities(PP)values=1.0.Branchsupportofnodes
75%MLBSand≥0.95PPisindicatedaboveorbelowbranches.(B)Phylogeneticanalysisof18S,28Sandrpb2ofthe
Sordariomycetes(continued).ForlegendrefertoFigure1A.
Microorganisms2021,9,70610of60
Figure2.CombinedphylogenyusingITSand28SofmembersoftheChaetosphaeriaceae.Speciesnamesgiveninboldare
taxonomicnovelties;T,E,IandPindicateextype,exepitype,exisotypeandexparatypestrains.Thickenedbranches
indicatebranchsupportwithMLBS=100%,PPvalues=1.0.Branchsupportofnodes≥75%MLBSand≥0.95PPisindi
catedaboveorbelowbranches.Abbreviation:p.p.afteragenusname(proparte).
Microorganisms2021,9,70611of60
Figure3.CombinedphylogenyofITS,28S,tef1‐αandtub2sequencesofZanclospora.Namesgiveninboldarenewspecies.
TandEindicateextypeandexepitypestrains.ThickenedbranchesindicatebranchsupportwithMLBS=100%,PP
values=1.0.Branchsupportofnodes≥75%MLBSand≥0.95PPisindicatedaboveorbelowbranches.
Microorganisms2021,9,70612of60
Figure4.CombinedphylogenyofITS,28S,tef1‐αandrpb2sequencesofselectedmembersoftheXylariales.Speciesnames
giveninboldaretaxonomicnovelties;T,E,NandPindicateextype,exepitype,exneotypeandexparatypestrains.
ThickenedbranchesindicatebranchsupportwithMLBS=100%,PPvalues=1.0.Branchsupportofnodes≥75%MLBS
and≥0.95PPisindicatedaboveorbelowbranches.Abbreviation:Pseud.(Pseudosporidesmiaceae).
Microorganisms2021,9,70613of60
3.2.BarcodeAnalysis
Althoughwelackedenoughrepresentativesforspeciestobeabletofullyexplorethe
barcodinggapofZanclosporas.str.,weusedthecurrentfourgenedatasettoexamine
pairwisegeneticdistances,visualizethemandevaluatethespeciesdelimitingabilityof
eachmarker(TableS4).Thebarcodinggapseparatingintraspecificandinterspecificvari
abilityofZanclosporawaspresentinallstudiedmarkers,withthebiggestgapfoundin
tef1‐α,followedbytub2,ITSand28S.InITS,theminimalinterspecificdivergenceoccurred
amongspeciesoftheZ.novaezelandiaespeciescomplex(0.64–1.3%),thenextminimum
andmaximumdistancesbetweenotherspeciesrangedbetweenvalues1.3–16.18%.Intef1
α,theminimumgeneticdistanceoccurredbetweenthesiblingspecies,Z.falcataandZ.
novaezelandiae(0.52%),butrangedfrom1.05to5.24%inotherspecies.Thesituationin
tub2genewascomplicatedbyvariouslengthsofthesequencedfragments.Nonetheless,
theperformanceofthegeneiscomparabletotef1‐αanddelimitscloselyrelatedspecies;
theminimumandmaximuminterspecificdistancesrangedbetweenvalues1.45–15.14%.
Thegenestef1‐α,tub2andITSarerecommendedasbarcodesforZanclospora.
3.3.AnalysisofZanclosporaDiversityinEnvironmentalSamples,BiogeographyandEcology
FortheITS1,thelowestinterspeciesdistancewas0.012(Z.clavulatavsZ.novaezelan
diae).FortheITS2,thelowestdistancerangedfrom0(Z.novaezelandiaevsZ.xylophila)
followedbyZ.novaezelandiaevsZ.ibericaandZ.xylophilavsZ.iberica,both0.012.The
obtainedvaluesshowedthatforITS1andITS2thereisnogenerallyvalidsequencesimi
laritythresholdforspeciesdelimitationinZanclospora.However,99–100%sequencesim
ilaritywasapplicableformostofthespeciesandwasusedforthesearchinGlobalFungi.
TheonlyexceptionswereZ.novaezelandiaeandZ.xylophila,wherethecriterionoffull
sequencesimilarityinITS2wasused.
TheBLASTsearchresultedin559uniqueITS1sequences(similarity89–100%toZan
closporaqueries,seeSection2.5).Thedereplicateddatasethad33sequences,185charac
ters,fromwhich82werevariableand16singletons.TheMLtree(Phyml)wasrootedina
branchleadingtotheDictyochaetacladeandisshowninFigure5.Theenvironmentalse
quenceswereclusteredintosevenphylotypes.Amongthem,onecanbelinkedwithZ.
jonesii.FortheITS2,108uniquesequenceswerefound,whichresultedin79sequences
attributabletoZanclospora.Thedereplicateddatasethad48sequences,166characters,
fromwhich87werevariableand20singletons.TheMLtree(Phyml)wasrootedina
branchleadingtotheDictyochaetacladeandisshowninFigure6.Theenvironmentalse
quencesclusteredinto15phylotypes.OnewaslinkedwithZ.clavulata,whiletheother
threecontainedsequencesofthewholeITSregion,andthusmaybelinkedwithphylo
typesdefinedbytheITS1marker.ThesameprocedurewasappliedtodatafromtheNCBI
GenBankandUNITEdatabasesandresultedinthesinglesequence(Ascomycetesp.,
DQ124120,unpublished),whichwaslinkedwithphylotypeITS1ENV5(Figure5).The
sequencesimilarityintheITS2regionhaslittledifferentiationpowerintheZ.novaezelan
diaeclade.Interestingly,Z.novaezelandiaeandZ.xylophilashareidenticalITS2,whilethey
aredistinctinITS1andotherstudiedgenes.ThebesthitofZ.novaezelandiae/Z.xylophila
was99.32%andisconsideredasITS2ENV2phylotype(Figure6,TableS3).
Concerningthediversitypresentedinenvironmentalsequences,onlyZ.clavulataand
Z.jonesiiweretracedintheGlobalFungidatabaseatthedefinedsimilaritylevel.Another
sixand11phylotypes,respectively,roughlycorrespondingtothelevelofspecies,were
identifiedinITS1andITS2.Biogeographyandecologyofnewlyidentifiedphylotypes
inferredfromtheGlobalFungidatabase(TablesS2,S3andS5)andknownspecies(Table
S6)aresummarisedinFigures5–7.
Microorganisms2021,9,70614of60
Figure5.PhylogeneticrelationshipsamongZanclosporaspeciesandrelatedITS1environmentalsequencesdepositedin
theGlobalFungidatabase.ThetitlesofsequencescontainthesequenceandsamplecodestakenfromGlobalFungi.Branch
support(ML)isretainedatthenodes.EnvironmentalsamplesinboldindicatethosesequencedforthewholeITSregion.
Habitatoftheenvironmentalsequencesisindicatedbybrown,greyandgreenboxescorrespondingtodeadwood,soilor
roots.
Microorganisms2021,9,70615of60
Figure6.PhylogeneticrelationshipsamongZanclosporaspeciesandrelatedITS2environmentalsequencesdepositedin
theGlobalFungidatabase.ThetitlesofsequencescontainthesequenceandsamplecodestakenfromGlobalFungi.Branch
support(ML)isretainedatthenodes.EnvironmentalsamplesinboldindicatethosesequencedforthewholeITSregion.
Habitatoftheenvironmentalsequencesisindicatedbybrown,greyandgreenboxescorrespondingtodeadwood,soilor
roots.Asterisk(*)indicatesphylotypesthatcanbelinkedwithphylotypesdefinedbytheITS1marker.
Microorganisms2021,9,70616of60
Figure7.GeographicaldistributionandsubstrateaffinityofZanclosporaspecieswithknownITSsequencedata.ThemapsummarizesdatafromtheGlobalFungidatabase
(shownbycircles)andfieldcollectionsverifiedbysequencing(species1–12)orbasedonlyonpublisheddata(species13–20)(shownbysquares).SeeTablesS2andS6for
primarydata.Eachsymbol(circleorsquare)representsauniquesample.Thesubstratesaredifferentiatedbycolours.NotethatenvironmentaltaxadefinedbyITS1
sequencescanoverlapwiththosefromtheITS2dataset.
Microorganisms2021,9,70617of60
BasedonthefieldrecordsverifiedorunverifiedbyDNAdata,twocentresofZanclo
sporadiversitycanbeidentified:South,CentralAmericaandCaribbean(Z.sylvatica,Z.
tropicalis,Z.austroamericana,Z.bicolorata,Z.bonfinensis,Z.brevisporavar.brevispora,Z.in
dica,Z.cf.novaezelandiae)andAustralasia(Z.aurea,Z.falcata,Z.novaezelandiae,Z.phae
ostalacta,Z.ramifera,Z.xylophila,Z.brevisporavar.brevispora),whicharefollowedbyre
gionswithlesserdiversitysuchasAfrica(Z.brevisporavar.brevispora,Z.brevisporavar.
transvaalensis,Z.mystica),SoutheastAsia(Z.jonesii,Z.cf.novaezelandiae),Europe(Z.clavu
lata,Z.iberica)andNorthAmerica(Z.lateriphiala).
Interestingly,theobservedgeographicaldistributioncorrespondsroughlywiththe
phylogeneticrelatedness(Figures3,5and6).Inthefourgeneanalysis,Zanclosporaformed
twomainclades.AcladecontainingZ.novaezelandiaeandrelatedspecies(Figure3,node
–/1.0)hasAustralasiandistribution,withtwospecies(Z.clavulata,Z.iberica)knownfrom
Europeandone(Z.lateriphiala)fromtheUSA.Inthesecondclade,thereareclusteredtwo
strainsfromCentralAmericaandtheCaribbean(Z.sylvatica,Z.tropicalis)togetherwitha
strainfromSoutheastAsia(Z.jonesii).Analysesoftheenvironmentalsequencesidentified
anotherdiversitycentreinSoutheastAsia(China,Malaysia:ITS1ENV1–5,ITS2ENV6–8,
11),followedbyAustralasia(NewCaledonia,NewZealand,PapuaNewGuineaandTas
mania:ITS2ENV15),SouthAmerica(Brazil,ColombiaandFrenchGuiana:ITS2ENV9,
10)andHawaii(ITS1ENV6).TherestofthelineagesintheITS2tree(Figure6)aredis
tributedeitherinCentralorSouthAmericaorSoutheastAsia.Zanclosporaspecies/phylo
typeswererepresentedbyonly296sequencereadsoutofatotalof6.5×108reads(ITS1
64%,ITS236%)depositedintheGlobalFungidatabase.Allhitsoriginatedfromsamples
collectedbelowthelatitudeof23°N.InEurope(44%ofallsamplesinGlobalFungi)and
NorthAmerica(20%),whicharethebestsampledcontinentsintheGlobalFungidatabase,
thesefungiwerecompletelymissing.Thefieldcollectionsoriginatedmostlyfromdecay
ingbarkandwoodorleaflitterinterrestrial,lessofteninfreshwaterhabitats(Figure7,
TableS6).Inthecaseoftheenvironmentalsequences,themostfrequentlyinhabitedsub
strateappearedtobebulksoil,followedbydeadwoodandrootsintheforestandrarely
shrublandbiome.Themedianvaluesofmeanannualtemperatureandmeanannualpre
cipitationwere16°Cand2223mm.Thesamplingsitesbelongedtothebiomesoftemper
ateortropicalrainforests(TableS2).
3.4.Taxonomy
ZanclosporaS.Hughes&W.B.Kendr.,N.Z.J.Bot.3:151.1965.
Typespecies:ZanclosporanovaezelandiaeS.HughesandW.B.Kendr.,N.Z.J.Bot.3:152.
1965.
Emendeddescription:Colonieseffuse,hairy,goldenyellow,yellowbrown,tawny,
reddishbrownordarkbrownwithwhitetolightstrawconidialmasses,sometimesac
companiedbyascomata.Teleomorph:Ascomataperithecial,nonstromatic,glabrous,pa
pillate.Ostioleperiphysate.Ascomatalwall2–3layered.Paraphysesdisintegratingwith
age,hyaline,branched,septate.Asciunitunicate,8spored,shortstipitate,ascalapexwith
anonamyloid,refractiveapicalannulus.Ascosporestransverselyseptate,hyaline.Ana
morph:Conidiophoresmacronematous,mononematous,erect,setiform,cylindricaltocy
lindricalfusiform,septate,brown,palertowardstheapex,occasionallydarkbrownand
opaque,apexacute,subacuteorobtuse,sterileordevelopedintoaphialide,conidio
phoressimpleorbranched;branchessetiform,fertile,resemblethemainstalkorshorter,
sterileinsertedintotheconidiophore.Conidiogenouscellsmonophialidic,determinate,
sessile,discrete,lateral,appressedtotheconidiophore,arisejustbelowthesepta,ar
rangedinwhorlsformingoneortwocompactfertileregions,occasionallyintegrated,ter
minal,attheconidiophoreapex,ovoidtolageniform,subhyalinetolightbrown,smooth,
collarettesinconspicuoustoshortflared.Macroconidiafalcate,almosthorseshoeshaped,
obovoid,occasionallybacilliform,straight,gentlyorstronglycurved,aseptate,hyaline,
smooth,withoutsetulaeorsheaths,accumulatinginaslimymass.Microconidia(formed
Microorganisms2021,9,70618of60
onlyinculture)clavatetooblongclavate,ellipsoidaltofusiform,aseptate,hyaline,
smooth.Synanamorphs:phaeostalagmuslike(formedonlyinculture).Conidiophores
semimacronematousormacronematous,mononematous,erect,simpleorbranched,sep
tate,pigmented,apexfertile.Conidiogenouscellsphialidicwithasingleapicalopening,
integrated,terminalordiscrete,lateral,solitaryorinwhorls.Conidiaellipsoidaltooblong,
aseptate,hyaline,smooth.stanjehughesialike.Conidiophoresmacronematous,mo
nonematous,erect,unbranched,occasionallybranched,septate,pigmented,straightor
sinuous,sterile,taperingtowardsthebase,graduallytaperingtowardstheapex,sterile,
rarelywithafewlateral,subhyaline,lageniformphialides.
Habitatandgeographicaldistribution:Membersofthegenusaresaprobesondecay
ingplantmaterialwithaworldwidedistributioninNorthernandSoutherntemperate,
subtropicalandtropicalclimatezones(Figure7).Althoughmostofthefieldobservations
includespecimensondecayingwoodorfallenleaves,environmentalITS1andITS2se
quencesattributabletoZanclosporaoriginatedalsofromsoilandroots(TablesS2andS5).
Moreover,environmentaldatasuggestedseveralnew,likelyundescribedspecieslineages
fromSoutheastAsia,AustralasiaandSouthAmerica.
Notes:OurZanclosporastrainsderivedfromconidiaandascosporeisolatesexhibitan
undescribedmorphologicalvariabilityinanamorphiccharacteristicsthatareassociated
withthreeanamorphicstages.Sterileorrarelyfertileconidiophoresresemblingeuseptate,
cylindricalconidiaofanotherhyphomyceteStanjehughesia[18]wereoftenassociatedwith
ascomataandthetypicalZanclosporaconidiophores.Onnaturalsubstratesandinculture,
Zanclosporaandstanjehughesialikeconidiophoresoccurirregularlyandindependently
ofeachother.TheZanclosporaconidiophoresthatariseonagarareusuallylesscomplex
andsignificantlyreducedinsizebecomingremarkablysimilartoPhaeostalagmus[19],or
theyarereducedtosingleconidiogenouscells.Thesereducedformsproducemicro
conidiaexclusively,comparedtothecomplexZanclosporaconidiophoresonnaturalsub
stratesorsterilestemsofU.dioicainvitroproducingmacroconidia.Thereisverylittle
differencebetweenthemorphologyofareducedZanclosporaconidiophoreandwhatcan
becalledthephaeostalagmuslikemorphotype.Inthelatter,thephialidesarelateral,ses
sile,arrangedinverticilliandalsodisposedterminally,sometimesonshortbranches,re
semblingP.cyclosporus,thetypespeciesofthegenus.Thephaeostalagmuslikemor
photypeoccursprimarilyinspecieswhoseaxenicculturewasderivedfromascospores
andtheZanclosporaanamorphisunknown,i.e.Z.phaeostalacta([85],Figures55–61)Z.syl
vatica([12],Figures203,205,206)andZ.tropicalis([12],Figures221,222,224).
SeventeenspeciesandtwovarietiesareacceptedinZanclospora,12ofwhichhave
beenverifiedusingmoleculardataandarepresentedbelow.Theircoloniesonthefour
growthmediaarecomparedinFigures8and9.Newteleomorphanamorphconnections
havebeenexperimentallyconfirmedforZ.aurea,Z.falcata,Z.novaezelandiae,Z.ramifera
andZ.xylophila.Fiveotherspecies,whosemoleculardataareunavailable,areprovision
allyacceptedinZanclosporabasedonmorphologicalsimilarities,namelyZ.austroameri
cana[3],Z.bicolorata[10],Z.bonfinensis[8],Z.brevispora[1]andZ.mystica[4].Zanclospora
indica[2],Z.stellata[6]andZ.urewerae[7]areexcludedfromthegenus.
Zanclosporabonfinensis,Z.bicolorataandZ.mysticadeviatefromotherZanclosporain
conidiophoresthataredarkerandopaqueintheuppersetiformpart.Moreover,thetwo
formerspeciespossesstubulartonarrowlywedgeshapedcollarettesandbacilliformto
suballantoidconidiathatareuniqueinZanclosporaandbettercorrespondtoZ.stellata,
transferredtothenewgenusStephanophorellainthisstudy.Theconidiophoresofother
Zanclosporaarepalertowardstheapex,theapexandtherestoftheconidiophorehave
moreorlessthesamecolour,conidiaarefalcatetoalmosthorseshoeshaped,obovoid,
clavateandcollarettesareinconspicuoustoshortflared.
Preparationoftheidentificationkeyhasprovenchallenging,mainlyduetoincon
sistenciesintheoccurrenceofteleomorphs,anamorphsandsynanamorphsonnatural
materialandinculture.Therefore,asynopsistablewithdiagnosticfeaturesofaccepted
speciesofZanclosporaiscompiledtoshowtheinterspecificvariability(Table2).
Microorganisms2021,9,70619of60
Figure8.ColonymorphologyofZanclosporanovaezelandiaespeciescomplexoncornmealdextroseagar(CMD),Modified
Leonian’sagar(MLA),oatmealagar(OA)andpotatocarrotagar(PCA)after4weeks.(A)Z.clavulataCBS146967.(B)Z.
falcataICMP23702.(C)Z.ibericaCBS130426.(D)Z.ibericaCBS130280.(E)Z.novaezelandiaeICMP15781.Bar:(AE)=1
cm.
Microorganisms2021,9,70620of60
Figure9.ColonymorphologyofZanclosporaonCMD,MLA,OAandPCAafter4(–6)weeks.(A)Z.aureaICMP23703(6
weeks).(B)Z.lateriphialaCBS147014(4weeks).(C)Z.phaeostalactaICMP15137extype(4weeks).(D)Z.ramiferaICMP
15127(4weeks).(E)Z.xylophilaICMP22737.Bar:(AE)=1cm.
Microorganisms2021,9,70621of60
Table2.AsynopsistableofZanclospora.
TeleomorphicCharacters: 
TaxonSubstrateCountry Teleomorph
AsciAscospores
    Size(μm)Size(μm)SeptationShape
Z.aurea decayingwoodNewZealandpresent142–185(–192)×16.5–20.5 28.5–35.5×7–8.5(–9)3septatefusiform
Z.austroamericanabarkBrazilunknownn/an/an/an/a
Z.bicoloratadecayingleafEcuadorunknownn/an/an/an/a
Z.bonfinensisdecayingleavesBrazilunknownn/an/an/an/a
Z.brevisporavar.brevisporabark NewZealandpresent63–75×5–7,stipe10–14×3–58–10×3–41septatebroadlyellipsoidal
Z.brevisporavar.trans
vaalensisdecayingwoodSouthAfricaunknownn/an/an/an/a
Z.clavulataplantdebrisPortugalunknownn/an/an/an/a
Z.
f
alcatadecayingwoodNewZealandpresent(104–)112–125(
132)×11
13.523.5–28.5(
30)×4.5–5.53septatefusiform
Z.ibericaplantdebrisSpainunknownn/an/an/an/a
Z.jonesiidecorticatedwoodThailandpresent69–90×8.5–1116.2–17.7×2.8–3.6 3septatefusiform,bent
Z.lateriphialadecayingwoodUSApresent95
113×10
12.518
24×4.5–6(1
)3septatefusiform
Z.mysticadeadleavesIvoryCoastunknownn/an/an/an/a
Z.novaezelandiaedecayingwoodNewZealandunknown(120–)126–139(–148)×11–12(–13)25–29.5(–31)×4–5 3septatefusiform
Z.phaeostalacta decayingwoodNewZealandpresent96
127p.sp.×12
15(
16)(28–)30
38(
40)×5–6(
8)5
7septatefusiform
Z.ramiferadecayingwoodNewZealandpresent98–125×(10.5–)11–12.5 17–24(–25.5)×5.5–73septatefusiform
Z.sylvaticadecayingwoodUSApresent95–115×8.7–10.713–20×4–5.53septatefusiform
Z.tropicalisdecayingwoodUSApresent100–138×10–12.519–26×3.2–6.3 3septatefusiform,bent
Z.xylophiladecayingwoodNewZealandpresent107–130(–141)×12.5–14(–14.5)23–28(–31)×(4–)4.5–5.5(–6) 3–5septatefusiform
AnamorphicCharacters:
TaxonZanclosporaAnamorph
ConidiophoresMacroconidia
 OnNaturalSubstrate(μm)BranchesApex InCulture(μm)Size(μm)Shape
Z.aurea 478–568×4.5–6,5–6.5atFZpresent,similartomainstalksmoothabsent15–23(–24)×3–4.5 falcate/horseshoe
shaped
Z.austroamericanaupto260×6absentsmoothn/a12–19×2–3falcate
Z.bicoloratanotobservedabsentsmooth≤300×10
172
4×1–1.5suballantoid
Z.bonfinensis110–210×3.5–6absentverrucosen/a3–5.5×1–2bacilliform
Z.brevisporavar.brevispora100–175(–220)×5.4–7absentsmoothn/a5.4–8(–9.4)×1.4–2narrowlyobovoid
Z.brevisporavar.trans
vaalensisupto140×10,5–6atFZabsentsmoothn/a8–10×2.5narrowlyobovoidtocla
vate
Z.clavulatanotobservedabsent*smooth*33–68×3–4,3–4atFZnotobservedn/a
Z.falcata210–350(–520)×5–7.5,6–8atFZpresent,similartomainstalkwithexcrescences80120×56(7.5),78atFZ18–24.5×2.5–3falcate
Z.ibericanotobservedpresent,similartomainstalk*smooth*128–318×4.5–6,6.5–9atFZ(12.5–)15.5–25×2–3*falcate
Z.jonesiinotobservedn/an/an/an/an/a
Z.lateriphiala240–284×5–6.5present,similartomainstalksmooth56–120×2.5–315–25×2.5–4falcate
Z.mystica135–175×4.5present,setiformsmoothn/a12.5–16.5×1.5–2.5falcate
Z.novaezelandiae360–450×5.5–7,5.5–6.5atFZpresent,similartomainstalkwithexcrescences277–380×4.5–5.5(–6),6.5–8atFZ24–28.5×(2–)2.5–316–24×(1.5–
)2–3*falcate
Microorganisms2021,9,70622of60
Z.phaeostalacta notobservedn/an/an/an/an/a
Z.ramiferanotobservedpresent,similartomainstalksmooth(30–)55
235×2
3.5,3.5–6atFZn/an/a
Z.sylvaticanotobservedn/an/an/an/an/a
Z.tropicalisnotobservedn/an/an/an/an/a
Z.xylophilanotobservedn/asmoothn/an/an/a
SynanamorphicCharacters:
TaxonstanjehughesialikeSynanamorphZanclosporaConidiophoresorphaeostalagmuslikeSynanamorphInVitro**
ConidiophoresConidiophores Microconidia
 OnNaturalSubstrate(μm)InCulture(μm)Size(μm)ShapeReference
Z.aurea notobservednotobservedpresent5–6×1.5–2.5clavateThisstudy
Z.austroamericananotobservedn/an/an/an/a[3]
Z.bicoloratanotobservedn/an/an/an/a[10]
Z.bonfinensisnotobservedn/an/an/an/a[8]
Z.brevisporavar.brevisporanotobservedn/an/an/an/a[1]
Z.brevisporavar.trans
vaalensisnotobservedn/an/an/an/a[5]
Z.clavulatanotobserved135–155×3
3.5,6–7atMSpresent3.5
7×0.7–1 clavatetofusiformThisstudy
Z.falcata155–270×(4–)5–6.5,(9–)11–13at
MS210–310×4.5–6.5,8.5–11atMSpresent56×1(–1.5) clavatetooblongclavateThisstudy
Z.iberica83–180×9–11 340–660(–920)×(3.5)4.5–6,9–14at
MSpresent(5–)6–10.5×1.5–2clavatetooblongclavate[9]
Z.jonesiipresent,describedassetae n/an/an/an/a[86]
Z.lateriphialanotobservednotobservedpresentnotobservednotobserved[12]
Z.mysticanotobservedn/an/an/an/a[4]
Z.novaezelandiae364–675×4.5–5,8–10.5atMS605–800×5–5.5,6.5–7.5atMSpresent5–8×1.5–2 clavatetooblongclavateThisstudy
Z.phaeostalacta notobservednotobservedpresent3–7×2–2.5ellipsoidal,apiculate[85]
Z.ramifera155–195×4
5,10.5
12(
15)atMS53
154×3–3.5,3.5
7.5atMSpresent5
6×1.5clavatetooblongclavateThisstudy
Z.sylvaticanotobservednotobservedpresent5–8×1.2–1.5cylindricalclavate[12]
Z.tropicalisnotobservednotobservedpresent5–8×1.2–1.5narrowlyoblong[12]
Z.xylophila180–382×5
6,7.5–10atMSnotobservedpresent(5
)6
8×1.5–2 clavatetooblongclavateThisstudy
Notes:*Macroconidiaandconidiophoresinculture;**StronglyreducedZanclosporaconidiophoresorconidiophoresreminiscentofphaeostalagmuslikeformedin
vitro;MS—Midsectionofthestanjehughesialikeconidiophores;FZ—FertilezoneoftheZanclosporaconidiophores.
Microorganisms2021,9,70623of60
3.4.1.AcceptedSpecies
ZanclosporaaureaRéblová&Hern.Restr.,sp.nov.MycoBankMB837797.(Figure10).
Figure10.Zanclosporaaurea(ICMP23703extype).(A,B)Colonies.(C)AscomataassociatedwithZanclosporaanamorph.
(D,E)Verticalsectionsoftheascomalwall.(F,G)Asci.(H)Ascalapiceswithanapicalannulus.(I)Paraphyses.(J)Asco
spores.(K,L,U,V)Conidiophores.(MQ)Conidiophoreswithphialides,indetail(arrowindicatesconnectivesthrough
withtheconidiophoresanastomose).(RT)Macroconidia.Images:(AT)onthenaturalsubstrate;(U,V)onPCAafter4
months.Bars:(AC)=500μm;(D,L)=50μm;(E)=20μm;(FK,MT)=10μm;(U,V)=5μm.
Microorganisms2021,9,70624of60
Typus:NEWZEALAND,WestCoast,Bullerdistrict,VictoriaForestPark,Rough
CreekRoad,ca.4kmSofInangahua,ondecayingwoodofabranch,22April2005,M.
RéblováM.R.3515/NZ808(holotypePDD118750,cultureextypeICMP23703=CBS
147013).
Etymology:Aureus(L)golden,fromaurum(gold),referringtothecolourofgolden
yellowcoloniesoftheanamorph.
Descriptiononthenaturalsubstrate:Colonieseffusetocushionlike,goldenyellow,
consistingofZanclosporaconidiophoresandascomata.Teleomorph:Ascomata220–320
μmdiam,250–300μmhigh,superficial,aggregated,subglobosetoconical,papillate,dark
browntoblack,glabrous,roughened.Ostioleperiphysate.Ascomatalwallfragile,three
layered,48–73μmthick;outerlayer(18–34.5μmthick)composedofbroadlypolyhedral
toglobose,browntogoldenbrowncells,amiddlelayercomposedofdarkbrown,thick
walled,polyhedralcells,aninnerlayercomposedofsubhyalinetohyaline,thinwalled,
elongatedcells.Paraphyses3–6μmwide,taperingto2–2.5μm,hyaline,branching,sep
tate.Asci142–185(–192)×16.5–20.5μm(mean±SD=165.3±16.8×18.5±1.1μm),cylin
dricalfusiform,shortstipitate,apicallybroadlyroundedtoobtuse,withanonamyloid
apicalannulus4.5–5μmwide,2–2.5μmhigh.Ascospores28.5–35.5×7–8.5(–9)μm(mean
±SD=31.9±1.6×8.1±0.5μm),fusiform,3septate,notconstrictedatthesepta,hyaline,
finelyverrucose,2seriateorobliquely1seriatewithintheascus.Anamorph:Conidio
phores478–568μmlong,4.5–6μmwideabovethebulbosebase,5–6.5μmwideatthe
fertileregion,erect,setiform,taperinggraduallyupwards,straightorgentlybent,simple
orbranched,themainstalkoftenwithonetoseveralprimarybranchescurvedupwards,
secondaryandtertiarybranchesalsodevelop,septate,lightbrowntogoldenbrownto
darkyellow,thickwalledtowardsthebase,palerandthinnerwalledtowardstheapex,
smooth,apexsterile,narrowlyrounded.Theupperpartwithseveralclavate,ovaltoir
regularlyshapedoutgrowths,3–4.5×5–6μm,functioningasconnectingelementsthrough
whichtheconidiophoresanastomosetoformanetwork.Conidiogenouscellsmono
phialidic,12.5–15.5(–17.5)×4.5–6.5(–7)μm,taperingto1–2μmjustbelowthecollarette,
discrete,lateral,arrangedingroupsof2–5in1–3whorls,ovoidtolageniform,lightbrown,
smooth;collarettesflaring,1.5–2.5μmwide,0.5–1μmdeep.Macroconidia15–23(–24)×3–
4.5μm(mean±SD=19.1±2.0×3.6±0.6μm),falcateandstronglycurvedtoalmosthorse
shoeshaped,narrowlyroundedatbothends,aseptate,hyaline,smooth,accumulatingin
whitetolightyellowmassenvelopingthewholefertileregion.Synanamorph:Notob
served.
Culturecharacteristics:OnCMDcolonies6–7mmdiam,circular,slightlyconvex,
marginentire,velvety,finelyfurrowed,browntobeigebrownoccasionallywithadark
brownouterzoneofsubmergedgrowth,reversedarkbrown.OnMLAcolonies5–9mm
diam,circulartoirregular,pulvinate,marginentire,velvety,furrowed,brown,reverse
darkbrown.OnOAcolonies7–8mmdiam,circular,convex,marginentire,velvety,light
grey,olivaceousgreyatthemargin,lightolivaceouspigmentdiffusingintoagar,reverse
darkolivaceousgrey.OnPCAcolonies5–7mmdiam,circular,slightlyconvex,margin
entiretofinelylobate,velvety,furrowed,beigebrownwithadarkbrownouterzoneof
submergedgrowth,reversedarkbrown.SporulationwassparseonMLAandPCA,ab
sentonCMDandOA.
DescriptiononPCA:Colonieseffuse,vegetativehyphaesubhyalinetolightbrown,
septate,branched,becomingencrustedwithage,2–3.5μmwide.Conidiophores52–107×
3–3.5μm,semimacronematous,erect,straight,unbranched,brown,sometimesreduced
tosingleconidiogenouscells.Conidiogenouscellsmonophialidic,12–15(–17)×3–5μm,
taperingto1.5(–2)μmjustbelowthecollarette,discrete,lateralorintegrated,terminal,
arisesinglyoringroupsof2–3inasinglewhorljustbelowtheseptum,lageniform,brown;
collarettes2–2.5×1μm.Macroconidiaabsent.Microconidia5–6×1.5–2.5μm(mean±SD
=5.8±0.5×2.0±0.4μm),clavate,truncateatthebasalend,roundedattheapicalend,
aseptate,hyaline,smooth.Synanamorph:Notobserved.Teleomorph:Notobserved.
Microorganisms2021,9,70625of60
Habitatandgeographicaldistribution:Saprobeondecayingwood,knownfromNew
Zealand.
Notes:Zanclosporaaureaiswelldistinguishablefromothermembersofthegenusin
thegoldenyellowcoloniesformedonthenaturalsubstrate,presenceofconnectiveele
mentsonconidiophores,andfalcate,stronglycurvedtoalmosthorseshoeshapedconidia.
Invitro,colonieswereveryslowgrowing;onMLAtheyappearedpulvinateofsomewhat
crustoseconsistency,whileonothermediacolonieswereeffusewithaspreadingedge.
Thestanjehughesialikesynanamorphwasnotobservedonthenaturalsubstrateorany
ofthegrowthmedia.
ZanclosporaclavulataRéblová&Hern.Rest.,sp.nov.MycoBankMB837798.(Figure11).
Figure11.Zanclosporaclavulata(CBS146967extype).(A)stanjehughesialikeconidiophores.(BE)Zanclosporaconidio
phores.(F)Microconidia.Images:(AF)onCMAwithU.dioicastemsafter4weeks.Bars:(A)=10μm;(BF)=5μm.
Typus:PORTUGAL,MinhoProvince,LagoasdoBertiandosprotectedarea,ondead
woodofunidentifiedplant,November2011,R.F.CastañedaRuíz,M.HernándezRe
strepo,J.GenéandJ.MarinéGené(holotypeCBSH24519asdriedculture,cultureex
typeCBS146967=FMR12186).
Etymology:Clavulate(Latin)clubshaped,alternativeformofclavatefromclava(club),
referringtotheshapeofmicroconidia.
Culturecharacteristics:OnCMDcolonies15–17mmdiam,circular,slightlyraised,
marginentiretofinelyfimbriate,lanose,floccose,greybrownwithanouterdarkoliva
ceousbrownzoneofsubmergedgrowth,reversedarkbrown.OnMLAcolonies24–27
mmdiam,circular,slightlyconvex,marginentire,lanose,beigegreywithanouterdark
greybrownzoneofsubmergedgrowth,reversedarkbrown.OnOAcolonies17–18mm
diam,circular,flattoslightlyconvex,marginentiretofinelyfimbriate,sparselylanose,
Microorganisms2021,9,70626of60
floccose,greywithanouterolivaceousgreyzoneofsubmergedgrowth,reversedarkoli
vaceousgrey.OnPCAcolonies19–20mmdiam,circular,flattoslightlyraised,margin
finelyfimbriate,lanose,lightgreybrownwithanouterolivaceousbrownzoneofsub
merged,reversebrowngrey.SporulationwasmoderateonCMAwithU.dioicastems,
absentonCMD,MLA,OAandPCA.
DescriptiononCMAwithU.dioicastems:Colonieseffuse,vegetativehyphaesubhy
alinetobrown,septate,branched,1–2μmwide.Anamorph:Conidiophores33–68μm
long,3–4μmwideabovethebase,3–4μmwideatthefertileregion,erect,setiform,un
branched,septate,cylindrical,graduallytaperingupwards,browntoreddishbrown,
smooth,apicalcellsterile,subacuteordevelopingintoaphialide.Someconidiophores
reduced,bearingonetoseverallateralphialidesorreducedtosingleconidiogenouscells.
Conidiogenouscellsmonophialidic,7–10×2–3μm,taperingto0.7–1μmbelowthecol
larette,discrete,lateral,appressedtotheconidiophore,arrangedingroupsof2–4in1–4
whorls,lageniform,palebrowntosubhyaline,smooth,collarettesindistinct.Macro
conidiaabsent.Microconidia3.5–7×0.7–1μm(mean±SD=4.0±0.41×0.96±0.1μm),
clavatetofusiform,taperingtowardsthebasalend,roundedattheapicalend,hyaline,
smooth.Synanamorph:stanjehughesialike.Conidiophores135–155μmlong,3–3.5μm
wideabovethebase,6–7μmwideatthemidsection,erect,unbranched,septate,cylindri
cal,taperingtowardsthebase,brown,apicalcellrounded.Conidiogenouscellsandco
nidiawerenotobserved.Teleomorph:Notobserved.
Habitatandgeographicaldistribution:Saprobeondecayingwood,knownfromPor
tugal.EnvironmentaldataindicateanotheroccurrenceinthesoilinTasmaniainthe
mixedforestbiomewithEucalyptussp.asadominantplantspecies(Figures6and7)(Ta
bleS2).
Notes:ZanclosporaclavulataiscloselyrelatedtoZ.falcata,Z.ibericaandZ.novaezea
landiae.Initially,itwaslistedunderZ.iberica[9],butthepresentfourgenephylogeny
revealeditisaseparatespecies(Figure3).Itswildtypeisunknown,socomparisonwith
otherspeciesissomewhatlimited.Theherbariummaterial,whichisnolongeravailable,
containedonlythestanjehughesialikesynanamorph,butZanclosporaandthestan
jehughesialikesynanamorphswereformedonCMAwithU.dioicastems.Invitro,conid
iophoresofZ.clavulataproducedonlymicroconidiathatarenarrower(0.7–1μm)thanin
otherspecies(1–2.5μm).WhencomparedtootherZanclosporathatexistinculture,itis
thefastestgrowingspecies.
ZanclosporafalcataRéblová&Hern.Restr.,sp.nov.MycoBankMB837799.(Figures12
and13).
Typus:NEWZEALAND,WestCoast,Westlanddistrict,MountAspiringNational
Park,Haast,RoaringBillyFallsWalk,ondecayingwood,22March2005,M.RéblováM.R.
3297/NZ567(holotypePDD118746,cultureextypeICMP23702=CBS147012).
Etymology:Falcate(Latin)fromfalx(sickle)meaningshapedlikeasickle,and‐ate
(resembling),referringtotheshapeofconidia.
Microorganisms2021,9,70627of60
Figure12.Zanclosporafalcata(ICMP23702extype).(A)AscomataassociatedwithZanclosporaanamorphandstan
jehughesialikesynanamorph.(B,C)Stanjehughesialikeconidiophores.(D)Verticalsectionoftheascomalwall.(EG)
Asci.(H)Paraphyses.(I)Ascalapexwithanapicalring.(J)Emptyasciwithapicalrings.(K,L)Ascospores.(MP)Conid
iophores.(QS)Conidiogenouscells.(T,U)Macroconidia.(V)Conidiophoreapicescoveredwithexcrescences.Images:
(AV)onthenaturalsubstrate.Bars:(A,B)=250μm;(C,D,MP)=20μm;(EL,QV)=10μm.
Microorganisms2021,9,70628of60
Figure13.Zanclosporafalcata(ICMP23702extype).(AC)Stanjehughesialikeconidiophores(arrowindicatesphialides).
(DF)ReducedZanclosporaconidiophores.(G)Microconidia.Images:(AG)onMLAafter4–8weeks.Bars:(AF)=10μm;
(G)=5μm.
Descriptiononthenaturalsubstrate:Colonieseffuse,hairy,ochrebrowntobrown,
consistingofstanjehughesialikeandZanclosporaconidiophoresandascomata.Teleo
morph:Ascomata210–250μmdiam,230–290μmhigh,semiimmersedtosuperficial,sol
itaryorinsmallgroups,conical,papillate,darkbrowntoblack,glabrous.Ostioleperiph
ysate.Ascomatalwallfragile,twolayered,31–41μmthick;anouterlayercomposedof
darkbrown,thickwalled,polyhedralcells,aninnerlayercomposedofsubhyalinetohy
aline,thinwalled,elongated,compressedcells.Paraphyses3–5μmwide,taperingto2–
2.5μm,hyaline,branching,anastomosing,septate.Asci(104–)112–125(–132)×11–13.5μm
(mean±SD=118.5±7.5×12.3±0.9μm),cylindricalclavate,shortstipitate,apically
broadlyrounded,withanonamyloidapicalannulus3–3.5μmwide,1.5(–2)μmhigh.
Ascospores23.5–28.5(–30)×4.5–5.5μm(mean±SD=26.3±1.2×4.8±0.3μm),fusiform,
3septate,notconstrictedatthesepta,hyaline,smooth,2seriateorobliquely1seriate
withintheascus.Anamorph:Conidiophores210–350(–500)μmlong,5–7.5μmwide
abovethebase,6–8μmwideatthefertileregion,erect,setiform,taperinggraduallyup
wards,straightorgentlybent,simpleorbranched,themainstalkoftenwithseveralpri
marybranchescurvedupwardsatalmostarightangle,secondaryandtertiarybranches
alsodeveloped,septate,browntoreddishbrownandthickwalledtowardsthebase,light
browntoyellowbrownandthinnerwalledtowardstheapex,theupperpartofthemain
stalkandbranchesornamentedwithnumerouscolourlessexcrescences,apexsterile,sub
acute.Conidiogenouscellsmonophialidic,9–12.5×4–5.5μm,taperingto1–1.5μmjust
belowthecollarette,discrete,lateral,arrangedingroupsof2–5in1–3whorls,ovoidto
lageniform,subhyalinetolightbrown,smooth;collarettes1.5–2.5μmwide,1–1.5μm
deep.Macroconidia18–24.5×2.5–3μm(mean±SD=21.2±2.1×2.8±0.2μm),falcate,
curved,hyaline,smooth,accumulatinginwhitetoyellowmassenvelopingthewholefer
tileregion.Synanamorph:stanjehughesialike.Conidiophores155–270μmlong,(4–)5–6.5
μmwideabovethebase,(9–)11–13μmwideatthemidsection,erect,unbranched,straight
orbent,septate,cylindricaltocylindricalfusiform,taperingtowardsthebase,gradually
taperingtowardstheapex,darkbrowntoreddishbrown,palebrowntoyellowbrown
towardstheapex,roundedapically.Conidiogenouscellsandconidiawerenotobserved.
Microorganisms2021,9,70629of60
Culturecharacteristics:OnCMDcolonies11–12mmdiam,circular,flat,marginen
tiretoweaklyfimbriate,velvetylanose,darkgreybrown,reverseofthesamecolour.On
MLAcolonies13–14mmdiam,circular,flat,marginfimbriate,velvetylanose,aerialhy
phaewithnumerouscolourlessexudates,darkgreybrown,reverseblack.OnOAcolo
nies18–20mmdiam,circular,flat,marginfimbriatetorhizoidal,slightlysubsurface,
sparselylanosebecomingcobwebby,hyphaetowardstheperipherydecumbent,grey
browntodarkbrown,reversedarkolivaceousgreytoblack.OnPCAcolonies22–25mm
diam,circular,flat,slightlyconvexcentrally,marginfimbriate,lanose,somewhatfloccose,
beigetolightbrown,aerialhyphaewithnumerousminutecolourlessexudates,reverse
darkgreybrowntoblack.SporulationwasmoderateonMLAandPCA,absentonCMD
andOA.
DescriptiononPCA:Colonieseffuse,vegetativehyphaebrown,septate,branched,
2–4μmwide.Anamorph:Conidiophores80120μmlong,56(7.5)μmwideabovethe
base,78μmwideatthefertileregion,reducedandlesscomplexthanonthenatural
substrate,unbranched,lightbrowntoreddishbrown,setiform,taperingtowardsthe
apex,smooth,sometimesapexdevelopsintoaphialide.Conidiogenouscellsmono
phialidic,8–9×3.5–4.5μm,taperingto1.5–2μmjustbelowthecollarette,discrete,lateral,
arrangedingroupsof2–4in1–3whorls,orterminal;collarettes1.5–2μmwide,0.5–1μm
deep.Macroconidiaabsent.Microconidia56×1(–1.5)μm(mean±SD=5.4±0.5×1.1±
0.2μm),clavatetooblongclavate,hyaline,smooth.Synanamorph:stanjehughesialike.
Conidiophoresasonthenaturalsubstrate,210–310μmlong,4.5–6.5μmwideabovethe
base,8.5–11μmwideatthemidsection,occasionallywith1–2lateralphialides.Conidia
notobserved.Teleomorph:Notobserved.
Othermaterialexamined:NEWZEALAND,WestCoast,Bullerdistrict,VictoriaFor
estPark,Reefton,BigRiverInanganuatrack;ondecayingwoodofNothofagussp.,6March
2003,M.RéblováMR2723/NZ224B(PDD119365).
Habitatandgeographicaldistribution:Saprobeondecayingwood,knownfromNew
Zealand.
Notes:ZanclosporafalcatacanbeconfusedwithZ.novaezelandiae,especiallyinchar
actersofconidiophores,conidiaandascospores.Althoughbothspeciesshareapical,seti
formpartsofconidiophoresandbranchesornamentedwithnumerouscolourlessexcres
cencesandfalcateconidia,Z.falcatadiffersfromZ.novaezelandiaewithshorter,more
stronglycurvedconidiaandshorterconidiophoresofthestanjehughesialikesynana
morph.Weobservedthattheexcrescencesmaybeabsentonsomeconidiophoresina
singlecollectionofZ.falcata.Theirteleomorphsarecomparable,theasciofZ.falcatatend
tobeshorter,(104–)112–125(–132)×11–13.5μmvs(120–)126–139(–148)×11–12(–13)μm,
thantheasciofZ.novaezelandiae.ForafullcomparisonofbothspeciesseenotesofZ.
novaezelandiaeandTable2.
ZanclosporafalcataisalsosimilartoZ.lateriphiala,especiallyinanamorphiccharacters,
andrepresentsitscounterpartintheSouthernHemisphere.Bothspecieshaveasimilar
sizeofconidiophoresandconidiabutdifferinconidiophoreornamentation,whichislack
inginZ.lateriphiala.Besides,bothspeciesarewelldistinguishableinthesizeofasciand
ascospores,whicharesmallerinZ.lateriphiala.Inthefourgeneanalysis(Figure3),Z.fal
cata,Z.lateriphialaandZ.novaezelandiaewereresolvedasseparatespecies.
ZanclosporaibericaHern.Restr.,J.Mena&Gené,Stud.Mycol.86:85.2017.(Figure14).
Microorganisms2021,9,70630of60
Figure14.Zanclosporaiberica.(A)StanjehughesialikeandZanclosporaconidiophores(arrowsindicatephialides).(B)Stan
jehughesialikeconidiophore.(C,D,FI)Zanclosporaconidiophores.(E)Conidiogenouscells,indetail.(JL)Reducedand
lesscomplexZanclosporaconidiophores.(M)Microconidia.(NP)Macroconidia.Images:(AI,NP)onOAwithU.dioica
stemsafter3months;(JM)onOAafter3months;(AD,I,KM,O,P)fromCBS130426(extype);(EH,J,N)fromCBS
130280.Bars:(AD,FI)=20μm;(JP)=10μm.
Microorganisms2021,9,70631of60
Culturecharacteristics:OnCMDcolonies10–12mmdiam,circular,slightlyconvex,
marginfimbriate,velvetylanose,cobwebbytowardsthemargin,greybrowncentrally,
darkbrownatthemargin,reversedarkbrown.OnMLAcolonies12–20mmdiam,circu
lar,slightlyconvex,marginfimbriateorweaklyundulate,lanose,floccoseatthemargin,
greybrown,darkbrownatthemargin,reversedarkbrowntonearlyblack.OnOAcolo
nies10–14mmdiam,circular,flat,marginfimbriate,lanose,floccose,cobwebbytowards
themargin,darkbrowntoolivaceousbrown,reversedarkgreytonearlyblack.OnPCA
colonies11–13mmdiam,circular,flatorslightlyconvex,marginfimbriatetorhizoidal,
velvetylanose,beigecentrally,darkbrowntorussettowardsthemargin,withadark
brownouterzoneofsubmergedgrowth,reversedarkbrowngrey.Sporulationwasabun
dantonOAwithU.dioicastems,absentonCMD,MLA,OAandPCA.
DescriptiononOAwithU.dioicastems:Colonieseffuse,hairy,vegetativehyphae
semiimmersed,hyaline,subhyalinetobrown,septate,branched,1.5–3.5μmwide.Ana
morph:ConidiophoresarisingfrommyceliumonUrticastems128–318μmlong,4.5–6μm
wideabovethebase,6.5–9μmwideatthefertileregion,erect,setiform,taperinggradu
allyupwards,straightorgentlybent,branchedorsimple,themainstalkusuallywithone
orseveralprimarybranchescurvedupwards,secondaryandtertiarybranchesmayalso
develop,septate,darkbrownandthickwalledtowardsthebase,lightbrowntoyellow
brownandthinnerwalledtowardstheapex,smooth,apicalcellsterile,subacute.Conid
iophoresarisingfrommyceliumonagar52–96μmlong,3.5–4.5μmwide,4–5μmwideat
thefertileregion,lesscomplex,unbranched,sometimesreducedtosingleconidiogenous
cells.Conidiogenouscellsmonophialidic,8–12.5×4.5–6.5μm,taperingto1–2.5μm,dis
crete,lateral,sometimespercurrentlyelongating,arrangedingroupsof2–5in1–3(–5)
whorls,ovoidtolageniform,subhyalinetolightbrown,smooth;collarettesindistinct,1.5–
2×0.5(–1)μm.Macroconidia(12.5–)15.5–25×2–3μm(mean±SD=20.2±2.2×2.4±0.3
μm),falcate,slightlyobtuseatthebasalend,narrowlyroundedattheapicalend,aseptate,
sometimesinflatednearthebase,hyaline,smooth.Microconidia(5–)6–10.5×1.5–2μm
(mean±SD=8.2±1.6×1.6±0.2μm),clavatetooblongclavate,straightorgentlycurved,
aseptate,hyaline,smooth.Synanamorph:stanjehughesialike.Conidiophores340–660(–
920)μmlong,(3.5–)4.5–6μmwideabovethebaseand9–14μmwideatthemidsection,
erect,sinuous,septate,sometimesinflated,sterile,rarelywith1–2lageniformphialides
nearthebase,taperingtowardsthebase,graduallytaperingtowardsthetip,darkbrown,
lightbrowntoyellowbrowntowardstheapex,apicalcellbluntlyornarrowlyrounded.
Conidianotobserved.Teleomorph:Notobserved.
Materialexamined:SPAIN,Asturias,PicosdeEuropaNationalPark,LaMolina,on
deadwoodofunidentifiedplant,July2010,M.HernándezRestrepo,J.MenaPortales&
J.Guarro(holotypeCBSH22995,cultureextypeCBS130426=FMR11584).SPAIN,Ga
licia,LosAncaresNaturalreserve,plantdebris,12Aug.2010,M.HernándezRestrepo,J.
MenaPortales&J.Guarro(cultureCBS130280=FMR11022=IMI500756).
Habitatandgeographicaldistribution:Thespeciesisasaprobeondecayedplantma
terialandissofarknownonlyfromSpain([9],thisstudy).
Notes:ForadditionaldescriptionandillustrationsrefertoHernándezRestrepoetal.
[9].AlthoughconidiophoressimilartoStanjehughesiaweretheonlyanamorphicstructure
observedonthenaturalsubstrate,Zanclosporaandstanjehughesialike(Figure14A,B)co
nidiophoreswereobservedonUrticastemsinvitro.TheZanclosporaconidiophores
matchedwelltheprotologuebutvariedinsize.Thosewhichdevelopedfrommycelium
onagarweresmallerandlesscomplex(Figure14J–L)thanthoseformeddirectlyonUrtica
stems(Figure14C–I).Thesmallerconidiophoresandsingleconidiogenouscellsproduced
onlymicroconidia.
ZanclosporaibericaappearstobemostsimilartoZ.novaezelandiae.Becausethe
wildtypeofZ.ibericaisunknown,bothspeciescanonlybecomparedinculture.Thesterile
apicalpartoftheconidiophorestalkandbranchesissmoothinbothspecies.However,it
isornamentedwithdisklikeexcrescencesinZ.novaezelandiaeonthenaturalsubstrate
Microorganisms2021,9,70632of60
(Figures15Jand16E,F).Intheabsenceofthisdiagnosticcharacter,thespeciesarepracti
callyindistinguishablewhengrowninculture.Thesizeoftheirmacroconidiaoverlaps
significantly,i.e.(12.5–)15.5–25×2–3μm(thisstudy)and12.5–22×2–3μmfideHernández
Restrepoetal.[9]inZ.ibericavs16–24×(1.5–)2–3μminZ.novaezelandiae(ICMP15781ex
epitypestrain).Onthenaturalsubstrate,themacroconidiaofZ.novaezelandiaetendtobe
longer,24–28.5×(2–)2.5–3μmintheepitype(PDD80663),23.5–39×2.5–3.5μmintheholotype
(PDD20727).Thus,weexpectthatalsomacroconidiaofZ.ibericamaybelongerinnatural
conditions.IncomparisontoZ.novaezelandiae,theconidiophoresofZ.ibericaappearedtobe
lessflexuous,andconidiawereusuallyslightlyinflatedtowardsthebasalend.
Zanclosporajonesii(R.H.Perera,Maharachch.&K.D.Hyde)Réblová,A.N.Mill.&
Hern.Restr.,comb.nov.MycoBankMB837800.
Basionym:ChaetosphaeriajonesiiR.H.Perera,Maharachch.&K.D.Hyde,Mycosphere
7:1311.2016.
Habitatandgeographicaldistribution:Thespeciesisasaprobeondecorticatedwood,
knownsofarfromAsiainThailand[86].Environmentaldataconfirmanotheroccurrence
inthesoilinGuangdongprovince,southeasternChina,intheforestbiomewithSchimasu
perbaandMicheliamacclureiasthedominantplantspecies(Figures5and7)(TableS2).
Notes:Fordescriptionandillustrations,seePereraetal.[86].TheZanclosporaconid
iophoreswerenotobserved,thestanjehughesialikeconidiophores,probablymistaken
forsetae,occurredonascomataandthenaturesubstratearoundthem(seeDiscussion).In
thefourgenephylogenetictree(Figure3),Z.jonesiiclusteredasasistertoZ.tropicalis.
Bothspeciessharecylindricalascosporesbentnearthebasalend,butdifferintheirsize;
theascosporesofZ.jonesiiareshorterandnarrower,16.2–17.7×2.8–3.6μmfidePereraet
al.[86]thanthoseofZ.tropicalis,19–26×3.2–6.3μmfideFernándezandHuhndorf[12].
Zanclosporalateriphiala(F.A.Fernández&Huhndorf)Réblová,A.N.Mill.&Hern.Re
str.,comb.nov.MycoBankMB837801.
Basionym:ChaetosphaerialateriphialaF.A.Fernández&Huhndorf,Fung.Divers.18:
24.2005.
Culturecharacteristics:OnCMDcolonies11–14mmdiam,circular,raised,margin
fimbriate,lanose,cobwebbyatthemargin,colonycentrebeige,darkbrownatthemargin,
laterwithadistinctdarkbrownouterzoneofsubmergedgrowth,reversedarkbrownto
nearlyblack.OnMLAcolonies15–17mmdiam,circular,convex,marginfimbriate,la
nose,floccose,aerialmyceliumwithnumerousminutecolourlessexudates,beige,brown
atthemargin,reversedarkbrown.OnOAcolonies8–9mmdiam,circular,flat,margin
fimbriate,cobwebbybecomingmucoid,smoothtowardstheperiphery,mainlycompris
ingofsubmergedmycelium,olivaceousblack,reverseblack.OnPCAcolonies10–11mm
diam,circular,flat,marginfimbriatetorhizoidal,lanose,floccose,beigebrowncentrally,
withaprominentdarkbrowntorussetouterzoneofthesubmergedgrowth,reversedark
brown.Sporulationwasabsentonallmedia.
Materialexamined:USA,Wisconsin,GreenCo.,NewGlarusStatePark,13Sep.1995,
ondecayingwood(20cmlog),S.M.HuhndorfS.M.H.15461(cultureCBS147014).USA,
Illinois,FormanCypressSwamp,NWofBelknap,JohnsonCounty,Illinois,onsubmerged
decayedwood,9April1969,J.L.Crane8069(ILLS43049).USA,Illinois,JacksonHollow,
PopeCounty,ondecayedwood,9Apr.1969,J.L.Crane2569(ILLS35030).Ibid.,J.L.Crane
2769(ILLS34732).
Habitatandgeographicaldistribution:Saprobeondecorticatedwood,knownfrom
NorthAmericaintheUSA(Illinois,Indiana,NorthCarolina,Wisconsin)[12].
Notes:Fordescriptionandillustrations,seeFernándezandHuhndorf[12].Accord
ingtotheseauthors,repeatedtransfersofmyceliuminvitroresultedinthelossofthetypical
Zanclosporaconidiophores;theywerereducedtosingleconidiogenouscellsorwhorlsof
Microorganisms2021,9,70633of60
cellsonhyphaereminiscentofPhaeostalagmusandproducedsmaller,clavateconidia.Itisin
agreementwithourobservationsinotherZanclospora,conidiophoresformedonagarare
generallylesscomplexandproduceonlymicroconidia.Zanclosporalateriphialaissimilarto
Z.falcatabutdiffersinthesmoothsetiformpartofconidiophoresandbranchesandsmaller
asciandascospores.ThestanjehughesialikesynanamorphhasnotbeenyetreportedforZ.
lateriphiala.Forafullcomparisonwithotherspecies,seeTable2.
ThreecollectionsofZ.novaezelandiaeondecayingwood(ILLS34732,ILLS35030,
ILLS43049),reportedbySchoknechtandCrane[21]fromtheUSA,havebeenrevised.
Basedonthepublisheddescription,theconidia(15.5–23×2.3–3.3μm)andoverallchar
acteristicsofconidiophoresandphialidesmatchedthoseofZ.falcataandZ.lateriphiala.
However,theornamentationofconidiophoreswasnotgiven.Examinationofthesecol
lectionsrevealedthattheuppersetiformpartsofconidiophoresandbranchesaresmooth
andtheconidiophoresaremorerobustunlikethoseofZ.falcata.Thesecollectionsrepre
sentZ.lateriphiala,whichiscommoninthisregion(Figure7).
ZanclosporanovaezelandiaeS.Hughes&W.B.Kendr.,N.Z.J.Bot.3:152.1965.(Figures
15and16).
Typification:NEWZEALAND,Westland,LakeIanthe,Pukekura,ondecayingbark
andwoodofWeinmanniaracemosa,8April1963,S.Hughes(holotypePDD20737).NEW
ZEALAND,NorthCanterbury,Selwyndistrict,Arthur’sPassNationalPark,ondecaying
woodandbarkofNothofagussolandrivar.cliffortioides×fusca,29September2004,J.A.
CooperJAC9132(epitypeMBT394463designatedhere,PDD118975asdriedcultureon
CMAwithU.dioicastems)(PDD80663voucher,cultureexepitypeICMP15781).
Descriptiononthenaturalsubstrate:Colonieseffuse,hairy,goldenbrowntoochre
browntolightbrown,consistingofstanjehughesialikeandZanclosporaconidiophores
andascomata.Teleomorph:Ascomata230–270μmdiam,250–300μmhigh,superficial,
basallyimmersed,solitaryorinsmallgroups,conical,papillate,darkbrowntoblack,gla
brous.Ostioleperiphysate.Ascomatalwallfragile,twolayered,28–35μmthick;outer
layercomposedofdarkbrown,thickwalled,polyhedralcells,aninnerlayercomposed
ofsubhyalinetohyaline,thinwalled,elongated,compressedcells.Paraphyses3–4.5μm
wide,taperingto1.5–2.5μm,hyaline,branching,anastomosing,septate.Asci(120–)126–
139(–148)×11–12(–13)μm(mean±SD=132.9±4.6×11.9±0.6μm),cylindricalclavate,
shortstipitate,apicallybroadlyroundedtoobtuse,withanonamyloidapicalannulus3–
3.5μmwide,ca.2μmhigh.Ascospores25–29.5(–31)×4–5μm(mean±SD=27.9±1.5×
4.6±0.3μm),fusiform,3septate,notconstrictedatthesepta,hyaline,smooth,2seriate
orobliquely1seriatewithintheascus.Anamorph:Conidiophores360–450μmlong,5.5–
7μmwideabovethebase,5.5–6.5μmwideatthefertileregion,erect,setiform,tapering
graduallyupwards,straightorbent,simpleorsparselybranched,themainstalkwithpri
marybranchescurvedupwardsatthealmostrightangle,secondaryandtertiarybranches
develop,septate,darkbrowntoreddishbrownandthickwalledtowardsthebase,light
browntoyellowbrownandthinnerwalledtowardstheapex,theupperpartofthemain
stalkandbrancheswithcolourlessexcrescences,apexsubacute,sterile.Conidiogenous
cellsmonophialidic,10–13×(3.5–)4–4.5μm,taperingto1–1.5μmjustbelowthecollarette,
discrete,lateral,arrangedingroupsof2–5in1–3whorls,ovoidtolageniform,subhyaline
tolightbrown,smooth;collarettesusuallyindistinct,ca.1.5μmwide,ca.1μmdeep.Mac
roconidia24–28.5×(2–)2.5–3μm(mean±SD=26.4±1.4×2.5±0.2μm),falcatetosome
whatcymbiform,gentlycurved,aseptate,hyaline,smooth,filledwithnumerousdrops,
accumulatinginawhitishtoyellowmassenvelopingthewholefertileregion.Synana
morph:stanjehughesialike.Conidiophores364–675μmlong,4.5–5μmwideabovethe
base,8–10.5μmwideatthemidsection,sometimesinflatedinthe
Microorganisms2021,9,70634of60
Figure15.Zanclosporanovaezelandiae.(AC,I)Conidiophores.(D)Phialideswithconidia.(E,F)Conidia.(G)Ascomata.
(H)Verticalsectionoftheascomalwall.(J)Anastomosingconidiophoreswithexcrescences,indetail.(K)Asci.(L)Ascal
apex.(M)Paraphyses.Images:(AM)onthenaturalsubstrate;(AF)fromPDD20737(holotype);(GM)fromICMP
15112.Bars:(A,B)=100μm;(C)=50μm;(D,E,JM)=10μm;(F)=5μm;(G)=250μm;(H)=20μm;(I)=25μm.
Microorganisms2021,9,70635of60
Figure16.Zanclosporanovaezelandiae.(A,B)Stanjehughesialikeconidiophores.(CE)Zanclosporaconidiophores.(F,HL)
Conidiophoresandbrancheswithphialidesinwhorls.(G)Apical,setiformpartoftheconidiophorewithexcrescences,in
detail.(MO)Singlephialidesorlesscomplexconidiophoreswithphialidesinverticillatearrangement.(P,Q)Macro
conidia.(R)Microconidia.Images:(A,C,D,IL,Q)onCMAwithU.dioicastemsafter3months;(B,EH,P)onthenatural
substrate;(MO,R)onMLAafter6weeks;(A,C,D,IL,MO,Q,R)fromICMP15781(exepitype);(B,EH,P)fromPDD
80663.Bars:(AE)=20μm;(FR)=10μm.
Microorganisms2021,9,70636of60
middle,erect,unbranched,straightorslightlysinuous,septate,cylindricaltocylindrical
fusiform,taperingtowardsthebase,graduallytaperingtowardstheapex,darkbrownto
reddishbrown,darkestnearthebase,apicalcelllightbrowntoyellowbrown,rounded.
Conidiogenouscellsandconidiawerenotobserved.
Culturecharacteristics:OnCMDcolonies11–12mmdiam,circulartoirregular,flat,
marginfimbriate,velvetylanoseatthecentrebecomingcobwebbytowardsthemargin,
colonycentreolivaceousbrown,olivaceousbeigeatthemargin,reversedarkbrown.On
MLAcolonies11–12mmdiam,circular,slightlyconvex,marginfimbriate,velvety,cob
webbyatthemargin,colonycentrebeige,darkbrownatthemargin,reversedarkbrown.
OnOAcolonies6–7mmdiam,circulartoirregular,flat,marginfimbriatetorhizoidal,
cobwebbycentrally,smoothtowardstheperiphery,darkolivaceousbrown,lightbrown
pigmentdiffusingintotheagar,reversebrown.OnPCAcolonies5–7mmdiam,circular
toirregular,flat,marginfimbriate,velvety,sometimesmucoidatthecentre,beigebrown,
withadarkbrownouterzoneofsubmergedgrowth,reversedarkbrown.Sporulationwas
absentonCMDandOA,moderateonPCAandMLA,abundantonCMAwithUrticastems.
DescriptiononCMAwithU.dioicastems:Colonieseffuse,vegetativehyphaesubhy
alinetolightbrown,smooth,semiimmersed,branched,septate,1.5–3μmwide.Ana
morph:ConidiophoresarisingfromUrticastems277–380μmlong,4.5–5.5(–6)μmwide
abovethebase,6.5–8μmwideatthefertileregion,septate,branched,smooth,apexsub
acute.Conidiophoresarisingfrommyceliumonagar20–45×2–2.5μm,lesscomplex,sub
hyalinetolightbrown,simpleorbranched,septate,occasionallyreducedtosingleconid
iogenouscellsorawhorlofseveralphialides.Conidiogenouscellsmonophialidic,(8.5–
)9–13(–14.5)×2.5–3.5μm,taperingto1.5–2μm,discrete,lateral,arrangedingroupsof2–
5in1–4(–5)whorls;collarettes1.5–2μwide,ca.0.5μmdeep.Macroconidia16–24×(1.5–
)2–3μm(mean±SD=19.4±2.0×2.4±0.3μm),falcate,straightorgentlycurved,slightly
truncateatthebasalend,taperingtowardstheapicalend,aseptate,hyaline,smooth.Mi
croconidia5–8×1.5–2μm(mean±SD=6.9±1.2×1.7±0.2μm),clavatetooblongclavate,
straightorgentlycurved,aseptate,hyaline,smooth.Synanamorph:stanjehughesialike.
Conidiophoresasonthenaturalsubstrate,605–800μmlong,5–5.5μmwideabovethe
base,6.5–7.5μmwideatthemidsection.Conidiogenouscellsandconidiawerenotob
served.Teleomorph:Notobserved.
Othermaterialexamined:NEWZEALAND,WestCoast,Bullerdistrict,VictoriaFor
estPark,BlackPointsca.1.5kmSEofReefton,MurrayCreektrack,ondecayingwood
andtheinnersideofthebarkofNothofagussp.,21February2003,M.RéblováandK.A.
SeifertM.R.2589/NZ54(PDD119105,cultureICMP15112).
Habitatandgeographicaldistribution:Zanclosporanovaezelandiaeisasaprobeonde
cayingwoodandbarkofLibocedrusbidwi,Nothofagusfusca,N.solandrivar.cliffortioides×
fusca,N.truncata,Oenocarpussp.,Weinmanniaracemosaandotherunidentifiedhosts.Itis
knownfromBrazil,Canada,India,Japan,NewZealand,Taiwan,USAandVietnam
([1,8,20,22,23,88–90],thisstudy).
Notes:ExaminationoftheholotypeofZ.novaezelandiaeandthreecollectionstenta
tivelyidentifiedasthisspeciesoriginatingfromNewZealand(PDD80663,PDD118746,
PDD119105),andcomparisonoftheirDNAsequences,revealedtwoseparatespecieslin
eages.Itconfirmedoursuspicionthatitmaycontaincrypticspecies,basedondifferent
morphologicalprofilesofZ.novaezelandiaeintheliterature.Althoughtwocollections,
PDD80663andPDD118746,fitintotheprotologueofZ.novaezelandiae[1],theydiffered
mainlyinthesizeofconidiathatdidnotoverlapandthesizeoftheassociatedstan
jehughesialikeconidiophores.HughesandKendrick[1]introducedZ.novaezelandiae
withconidiophores155–550(–750)μmlongandconidia18–35×1.6–2.6μm,citingarela
tivelywiderangeofconidiallengths.TheexaminationoftheholotypeofZ.novaezelandiae
PDD20737revealedafunguswithconidia23.5–39×2.5–3.5μm(mean=29.1×3.1μm),
conidiophores350–520μmlong,thestanjehughesialikeconidiophoreswerenotob
served.ThespecimenPDD80663hadconidia24–28.5×(2–)2.5–3μm,thestanjehughesia
likesynanamorphwaspresentwithconidiophores364–675μmlong.Theotherspecimen
Microorganisms2021,9,70637of60
PDD118746hadshorterconidia18–24.5×2.5–3μm,yetwithintherangegiveninthe
originaldescription,andshorterstanjehughesialikeconidiophores155–270μmlong.
Bothcollectionsareotherwisehighlysimilarandtheirconidiophoreshavedistinctcol
ourlessexcrescencesontheapicalsetiformpart.Inthefourgeneanalysis,theywere
shownasseparate,thoughcloselyrelatedlineages(Figure3).Giventheirdistinctconidial
andsynanamorphmorphologyaccompaniedbymoleculardata,theyaretreatedassib
lingspecies.ThespecimenPDD80663(cultureICMP15781)isusedtointerprettheholo
typeofZ.novaezelandiae.Unfortunately,itsherbariummaterialislargelydepauperate.
Therefore,adriedcultureonCMAwithUrticastems(Figure16)isselectedtoserveasthe
epitype.ThespecimenPDD118746isintroducedasanewspecies,Z.falcata.Thethird
collectionPDD119105isZ.novaezelandiae;itcontainedmatureascomataassociatedwith
asomewhatagedcolonyofZanclosporaconidiophoreswithmostlydisintegratedphialides
andabsentconidia(Figure15G–M).Thestanjehughesialikeconidiophoreswerenotob
served.TheteleomorphofZ.novaezelandiaeisreportedforthefirsttime.
ItischallengingtodistinguishZ.novaezelandiaefromZ.iberica.Inculture,whengrown
onUrticastems,bothspeciesaresimilarincharactersofconidia,phialidesandsmoothco
nidiophores.Forcomparisonofbothspeciesanddiscussion,seenotestoZ.iberica.
InadditiontoNewZealand,Z.novaezelandiaewasalsoreportedfromothergeo
graphicalareas(Figure7).However,allofthesecollectionslackedtheornamentationof
theconidiophorewall,orthischaracterwasnotmentionedinthedescription[8,20–23].
Besides,thesizeofconidiavariedamongthesecollectionsandcorrespondedtothelong
sporedZ.novaezelandiaes.str.,thenewlysegregatedshortsporedZ.falcata,bothfrom
NewZealand,butalsotoZ.lateriphialafromNorthAmerica.Examinationofthreecollec
tionsidentifiedasZ.novaezelandiaebySchoknechtandCrane[21]fromtheUSAwith
smoothconidiophoresandconidia15.5–23×2.3–3.3μmrevealedtheyrepresentZ.lat
eriphiala.ThespecimenofZ.novaezelandiaerecordedfromBrazilbyAlmeidaetal.[8]has
conidiasignificantlyshorter(10–16.5×1–2μm)thanZ.falcata,Z.lateriphialaandZ.novae
zelandiae,andlikelyrepresentsanothercrypticspeciesintheZ.novaezelandiaespecies
complex.Interestingly,Mel’niketal.[23]recordedaspecimenofZ.novaezelandiaefrom
Vietnamwithexclusivelyunbranched,smoothconidiophoresandconidia22–24(–26)×2–
2.4μm.AlthoughweareawareofinconsistenciesinthepublishedphenotypesofZ.novae
zelandiae,theserecordsarelistedabovebutneedtobeverified.Wepresentthefirstmo
leculardataofZ.novaezelandiae;however,moreconcentratedsamplingisrequiredtoas
sessitsglobalgeographicaldistribution.Weshouldalsoconsiderthepossibilitythatthe
speciesisendemictoNewZealand.
Zanclosporaphaeostalacta(Réblová)Réblová,A.N.Mill.&Hern.Rest.,comb.nov.My
coBankMB837802.
Basionym:ChaetosphaeriaphaeostalactaRéblová,Stud.Mycol.50:183.2004.
Culturecharacteristics:OnCMDcolonies8–10mmdiam,circular,slightlyconvex,
marginweaklyfimbriate,velvety,darkbeigebrown,reversedarkbrown.OnMLAcolo
nies7–8mmdiam,circular,slightlyconvex,marginentire,velvetylanose,darkbeige
brown,darkeratthemargin,reversedarkbrown.OnOAcolonies4–5mmdiam,circular,
flat,marginentiretoweaklyfimbriate,lanose,olivaceousbeige,reversedarkbrown.On
PCAcolonies4–5mmdiam,circular,convex,marginentiretoweaklyfimbriate,lanose,
beigebrownwithadarkbrownouterzoneofsubmergedgrowth,reversedarkbrown.
Sporulationabsentonallmedia;moderateonPCAafterprolongedincubation.
Materialexamined:NEWZEALAND,WestCoast,Westlanddistrict,Ross,Totara
Rivervalley,Totaraforest,ondecorticatedwoodofabranch,7March2003,M.Réblová
MR2735/NZ237(holotypePDD78274,cultureextypeICMP15137=CBS114554).
Habitatandgeographicaldistribution:Saprobeondecayingwood,knownfromNew
Zealand[85].
Microorganisms2021,9,70638of60
Notes:Fordescriptionandillustrations,refertoRéblová[85].TheZanclosporaorstan
jehughesialikeconidiophoreshavenotbeenobservedinthisspecies;onlyananamorph
ofthephaeostalagmuslikemorphotypewasformedwhengrowninculture.Itischarac
terisedbypigmented,macronematoustosemimacronematousconidiophoreswithphi
alidesarrangedlaterally,singlyorinverticilli,orterminalonshortbranchesproducing
ellipsoidal,slightlyapiculatemicroconidia.AmongotherZanclospora,Z.phaeostalactapos
sessesoneofthelargest(28–)30–38(–40)×5–6(–8)μm,5–7septateascospores,whileother
membersofthegenushaveascosporeswithamaximumoffiveseptaandusuallyupto
31μmlong,exceptforZ.aureawithascospores28.5–35.5μmlong.
ZanclosporaramiferaRéblová&Hern.Rest.,sp.nov.MycoBankMB837803.(Figure17).
Typus:NEWZEALAND,WestCoast,Westlanddistrict,WestlandTaiPoutiniNa
tionalpark,LakeMatheson,ondecayingwoodassociatedwithLentomitellamagna,13
April2005,M.RéblováM.R.2961/NZ781B(holotypePDD118747,cultureextypeICMP
22738=CBS147101).
Etymology:Ramus(L)branch,fero(L)carryorbear,referringtothebranchedconidio
phores.
Descriptiononthenaturalsubstrate:Colonieseffuse,hairy,darkbrown,composed
ofascomataandthestanjehughesialikeconidiophores.Teleomorph:Ascomata220–250
μmdiam,260–300μmhigh,superficial,solitaryorinsmallgroups,conical,papillate,dark
browntoblack,glabrous.Ostioleperiphysate.Ascomatalwallfragile,twolayered,25–30
μmthick;outerlayercomposedofdarkbrown,thickwalled,polyhedralcells,aninner
layercomposedofsubhyalinetohyaline,thinwalled,elongated,compressedcells.Pa
raphyses3–5.5μmwide,taperingtoca.2.5μm,hyaline,branching,anastomosing,sep
tate.Asci98–125×(10.5–)11–12.5μm(mean±SD=109.0±6.7×12.0±0.5μm),8spored,
cylindricalclavate,shortstipitate,apicallybroadlyroundedtoobtuse,withanonamy
loidapicalannulus3.5–4.5μmwide,1.5–2μmhigh.Ascospores17–24(–25.5)×5.5–7μm
(mean±SD=20.5±2.3×6.3±0.4μm),fusiform,3septate,notconstrictedatthesepta,
hyaline,smooth,2seriateorpartlyobliquely1seriatewithintheascus.Anamorph:Not
observed.Synanamorph:stanjehughesialike.Conidiophores155–195μmlong,4–5μm
wideabovethebase,10.5–12(–15)μmwideatthemidsection,erect,growingsparselynear
theascomata,unbranched,slightlysinuous,septate,cylindricaltocylindricalfusiform,
taperingtowardsthebase,darkreddishbrown,apicalcellpaler,rounded.Conidiogenous
cellsandconidiawerenotobserved.
Culturecharacteristics:OnCMDcolonies12–13mmdiam,circular,convex,margin
entiretoweaklyfimbriate,lanose,somewhatfloccose,beigeatthecentre,darkbeigeto
browntowardsthemargin,reversedarkbrown.OnMLAcolonies15–16mmdiam,cir
cular,slightlyconvexcentrally,marginweaklyfimbriate,lanose,cobwebbytowardsthe
periphery,zonate,beigeatthecentre,withdarkbrowntodarkreddishbrownmiddle
zoneandpalerbrownouterzone,reversebrown.OnOAcolonies6–8mmdiam,circular,
flat,marginentire,smoothtocobwebby,darkolivaceousgreywithanouterzoneofa
similarcolourofsubmergedgrowth,reversedarkbrown.OnPCAcolonies5–6mmdiam,
circular,flat,marginweaklyfimbriate,cobwebby,brownwithadarkbrownouterzone
ofsubmergedgrowth,reversedarkbrown.SporulationwasabundantonMLA,absenton
CMD,OAandPCA.
Microorganisms2021,9,70639of60
Figure17.Zanclosporaramifera(ICMP22738extype).(A)Ascomata.(B)Verticalsectionoftheascomalwall.(C)Ascal
apiceswithapicalrings.(D)Stanjehughesialikeconidiophores.(EH)Asciwithascospores.(I)Paraphyses.(J)Ascoge
noushyphae.(KP)Zanclosporaconidiophores.(Q,R)Myceliumwithstanjehughesialikeconidiophores.(S)Microconidia.
Images:(AJ)onnaturalsubstrate;(KS)onMLAafter8weeks.Bars:(A)=250μm;(B,D)=20μm;(C,ER)=10μm;(S)
=5μm.
Microorganisms2021,9,70640of60
DescriptiononMLA:Colonieseffuse,vegetativehyphaesubhyalinetolightbrown,
septate,branched,2–3.5μmwide.Anamorph:Conidiophores(30–)55–235μmlong,2–3.5
μmwideabovethebase,3.5–6μmwideatthefertileregion,sometimesreducedtosingle
conidiogenouscells,cylindricalfusiform,erect,simpleorbranched,withseveralprimary
branches,secondaryandtertiarybranchesoftendevelop,sometimeslongerthanthemain
stalk,septate,straightorslightlybent,lightbrowntolightreddishbrown,smooth,apical
celldevelopedintoaphialideorsterile,apexrounded,smooth;thefertileregionissitu
atedintheupperormiddlepartoftheconidiophore.Conidiogenouscellsmonophialidic,
7–12.5×2.5–4.5μm,taperingto1–1.5μm,discrete,lateral,arisejustbelowthesepta,ap
pressedtotheconidiophore,arrangedsinglyoringroupsof2–3in1–3whorls,lagen
iform,inolderculturespercurrentlyelongating,lightbrowntosubhyaline,smooth;col
larettesindistinct.Macroconidiaabsent.Microconidia5–6×1.5μm(mean±SD=5.5±0.5
×1.5±0.2μm),clavatetooblongclavate,straightorgentlycurved,taperingtowardsthe
basalend,roundedattheapicalend,hyaline,smooth.Synanamorph:stanjehughesialike.
Conidiophoresasonthenaturalsubstrate,53–154μmlong,3–3.5μmwideabovethebase
and3.5–7.5μmwideatthemidsection,occasionallybranched.Conidiogenouscellsand
conidiawerenotobserved.Teleomorph:Notobserved.
Othermaterialexamined:NEWZEALAND,WestCoast,Greydistrict,VictoriaFor
estPark,LakeChristabeltrack,Palmer’sHutca.18kmSWofSpringsJunctiononanun
pavedroad,ondecayingwoodofNothofagussp.,1March2003,M.RéblováM.R.2680/NZ
176(cultureICMP15127).
Habitatandgeographicaldistribution:SaprobeondecayingwoodofNothofagussp.
andanotherunidentifiedhost,knownfromNewZealand.
Notes:TheZanclosporaconidiophoreswereformedonlyinculture,thoughlesscom
plex,andproducedonlymicroconidia.ZanclosporalateriphialacloselyresemblesZ.ram
ifera,butdiffersinslightlyshorter(95–113μm)asci,narrower(4.5–6μm)ascosporesand
charactersoftheZanclosporaanamorphinvitro[12].Whengrowninculture,theconidio
phoresofZ.lateriphialaareunbranchedandproducefusiformtooblongclavatemacro
conidia(11–18×4–4.5μm),unlikethebranchedconidiophoreswithmicroconidiaofZ.
ramifera.
Zanclosporasylvatica(F.A.Fernández&Huhndorf)Réblová,A.N.Mill.&Hern.Rest.,
comb.nov.MycoBankMB837804.
Basionym:ChaetosphaeriasylvaticaF.A.Fernández&Huhndorf,Fung.Diver.18:38.
2005.
Habitatandgeographicaldistribution:Saprobeondecayingwood,knownfromthe
Caribbean(PuertoRico)[12].
Notes:Fordescriptionandillustrations,refertoFernándezandHuhndorf[12].Inthe
fourgenephylogeny,Z.sylvaticawasinferredasasistertoZ.jonesiiandZ.tropicalis.Zan
closporasylvaticaformsonlythephaeostalagmuslikesynanamorphinvitro,thestan
jehughesialikeandZanclosporaconidiophoreswerenotobserved.Thespeciesischarac
terisedbysymmetrical,3septate,fusiformascosporesincontrasttotheasymmetricalas
cosporesofZ.jonesiiandZ.tropicalis.
Zanclosporatropicalis(F.A.Fernández&Huhndorf)Réblová,A.N.Mill.&Hern.Rest.,
comb.nov.MycoBankMB837805.
Basionym:ChaetosphaeriatropicalisF.A.Fernández&Huhndorf,FungalDiversity18:
40.2005.
Habitatandgeographicaldistribution:Saprobeondecayingwood,knownonlyfrom
theCaribbean(PuertoRico)andCentralAmerica(CostaRica)[12].
Microorganisms2021,9,70641of60
Notes:Fordescriptionandillustrations,refertoFernándezandHuhndorf[12].A
synanamorphsimilartoPhaeostalagmushasbeenobservedinculture[12],butstan
jehughesialikeandZanclosporaconidiophoreshavenotbeenyetreportedforthisspecies.
ThereisastrikingresemblancebetweenZ.tropicalisandZ.jonesii[86]inascosporesthat
arecylindricalandbentatthelowerend.However,theascosporesofZ.tropicalisare
longerandwider(19–26×3.2–6.3μmvs16.2–17.7×2.8–3.6μm).Adetailedcomparison
canbefoundinthenotestoZ.jonesii.
Zanclosporaxylophilablová&Hern.Rest.,sp.nov.MycoBankMB837808.(Figure18).
Figure18.Zanclosporaxylophila(ICMP22737extype).(A,B)Ascomata.(CE)Stanjehughesialikeconidiophores.(FH)
Asciwithascospores.(I,J)Ascospores.(K)Ascalapexwithanapicalannulus.(LN)ReducedZanclosporaconidiophores.
(O)Microconidia.Images:(AD)onthenaturalsubstrate;(EM)onPCAafter8weeks.Bars:(A,B)=500μm;(C)=250
μm;(D,L,M)=20μm;(EK)=10μm.
Typus:NEWZEALAND,WestCoast,Westlanddistrict,MountAspiringNational
Park,HistoricalBridletrack,ondecayingwoodofabranchofNothofagussp.,31March
2005,M.RéblováM.R.3429/NZ710(holotypePDD118748,cultureextypeICMP22737).
Etymology:Xýlo(Greek)wood,‐philous(Greek)havinganaffinity,preference,from
philéō(love),referringtowood,whichthefungusinhabits.
Descriptiononthenaturalsubstrate:Colonieseffuse,hairy,darkbrown,consisting
ofstanjehughesialikeconidiophoresandascomata.Teleomorph:Ascomata190–230μm
diam,220–280μmhigh,superficial,solitaryorinsmallgroups,subglobosetobroadly
Microorganisms2021,9,70642of60
conical,papillate,darkbrowntoblack,glabrous.Ostioleperiphysate.Ascomatalwall
twolayered,30–40μmthick;outerlayercomposedofdarkbrown,thickwalled,polyhe
dralcells,aninnerlayercomposedofsubhyalinetohyaline,thinwalled,polyhedralto
elongated,compressedcells.Paraphyses3–4μmwide,hyaline,branching,anastomosing,
septate.Asci107–130(–141)×12.5–14(–14.5)μm(mean±SD=120.5±11.6×13.1±0.8μm),
cylindricalclavate,shortstipitate,apicallyobtuse,withanonamyloidapicalannulus
3.5–4μmwide,1.5–2μmhigh.Ascospores23–28(–31)×(4–)4.5–5.5(–6)μm(mean±SD=
25.2±1.4×5.2±0.3μm),fusiform,straightorslightlyinequilateral,3–5septate,notcon
strictedatthesepta,hyaline,smooth,2seriateorobliquely1seriatewithintheascus.An
amorph:Notobserved.Synanamorph:stanjehughesialike.Conidiophores180–382μm
long,5–6μmwideabovethebase,7.5–10μmwideatthemidsection,erectbecomingde
cumbent,sinuous,unbranched,occasionallyunilaterallybranched,usuallybentinthe
lowerhalf,septate,cylindricaltocylindricalfusiform,taperingtowardsthebase,brown,
darkbrowntoalmostopaqueatthebase,palertowardstheapex,apicalcelllightyellow
browntosubhyaline,rounded.Conidiogenouscellsandconidiawerenotobserved.
Culturecharacteristics:OnCMDcolonies11–14mmdiam,circular,convex,margin
entire,lanose,floccose,brown,darkertowardsthemargin,reversedarkbrown.OnMLA
colonies21–24mmdiam,circular,slightlyconvex,marginentiretoweaklyfimbriate,la
nose,cobwebbyatthemargin,lightbrowntoreddishbrownatthecentre,beigebrown
towardsthemargin,withadarkbrownouterzoneofsubmergedgrowth,reversedark
brown.OnOAcolonies4–5mmdiam,irregular,flat,marginentire,smoothtocobwebby,
darkbrownduetosubmergedgrowthandlackofaerialmycelium,lightyellowbrown
pigmentdiffusingintotheagar,reversedarkbrown.OnPCAcolonies11–13mmdiam,
circular,flat,marginfimbriate,lanose,floccosebecomingcobwebbytowardstheperiph
ery,beigeatthecentre,darkolivaceousbrowntowardsthemargin,reversedarkbrown.
SporulationwasmoderateonPCA,absentonCMD,MLAandOA.
DescriptioninPCAculture:Colonieseffuse,vegetativehyphaesubhyalinetolight
brown,septate,branched,becominglightlyencrusted,2.5–4μmwide,somehyphaemo
nilioid.Anamorph:Conidiophores70–130×3–4.5μm,erect,lightbrown,unbranched,
septate,significantlyreduced.Conidiogenouscellsmonophialidic,9–15×(2.5–)3–4.5(–5)
μm,taperingto1.5–2μmjustbelowthecollarette,integrated,terminalordiscrete,later
allyarrangedsinglyorinawhorl;collarette2–3×1.5–2μm.Macroconidiaabsent.Micro
conidia(5–)6–8×1.5–2μm(mean±SD=6.6±1.0×1.9±0.2μm),clavatetooblongclavate,
obtuseatthebase,straightorgentlycurved,aseptate,hyaline,smooth.Synanamorph:
Notobserved.Teleomorph:Notobserved.
Othermaterialexamined:NEWZEALAND,WestCoast,Westlanddistrict,Kokatahi,
LakeKaniere,DorothyFallsRoad,ondecayingwoodofabranch,12Apr.2005,M.
blováM.R.3492/NZ780(PDD118749).
Habitatandgeographicaldistribution:SaprobeondecayingwoodofNothofagussp.
andotherunidentifiedhosts,knownfromNewZealand.
Notes:TheZanclosporaconidiophoresareformedonlywhengrownincultureandin
areducedform.ZanclosporaxylophilaissimilartoZ.phaeostalacta[85]inascospores,but
thelatterspeciesdiffersinhaving5–7septateandlarger[(28–)30–38(–40)×5–6(–8)μm]
ascospores.
3.4.2.DoubtfulandExcludedSpecies
ThissectionincludesspeciesretainedinZanclosporabasedonmorphologybutnot
verifiedbymolecularDNAdata,aswellasspeciesexcludedortransferredtoothergenera
onthebasisofmolecularevidenceand/ormorphologicaldata.
ZanclosporaaustroamericanaB.Sutton&Hodges,NovaHedwigia26:522.1975.
Habitatandgeographicaldistribution:SaprobeonthebarkofEucalyptuspropinqua,
knownfromBrazil[3].
Microorganisms2021,9,70643of60
Notes:Fordescriptionandillustrations,seeSuttonandHodges[3].Thisspecies
closelyresemblesotherspeciesinthegenuswithtypicalZanclosporaconidiophoresand
falcateconidia.Itcanbedistinguishedinhavingsimpleconidiophoreswithconidioge
nouscellsconfinedtotwoseparateregions.
ZanclosporabicolorataR.F.Castañeda,M.Villav.&D.Sosa,Mycotaxon135:896.2020.
Habitatandgeographicaldistribution:Saprobeondecayingleavesofanunidentified
plant,knownfromEcuador[10].
Notes:Fordescriptionandillustrations,seeVillavicencioetal.[10].Zanclosporabicol
oratahasconidiogenouscellsdisposedofmoreorlessinthemiddleofthesimple,setiform
conidiophoreswithsuballantoidconidia,similartoZ.bonfinensis.However,theirconidi
ophoresdifferincolourandornamentationfromconidiophoresofothermembersofthe
genus.Theconidiophoresarepalebrownorbrownatthebasebecomingdarkreddish
browntodarkbrownandalmostopaquetowardtheapex.Theconidiophoresaresmooth
walledinZ.bicolorata,whileZ.bonfinensishastheconidiophoressmoothatthebase,be
comingverrucoseattheapex[8,10].
ZanclosporabonfinensisD.A.C.Almeida,Gusmão&M.F.O.Marques,Mycosphere4:
685.2013.
Habitatandgeographicaldistribution:Saprobeondecayingleavesofunidentified
dicotyledonousplant,knownfromBrazil[8].
Notes:Fordescriptionandillustrations,seeAlmeidaetal.[8].Forcomparison,see
commentunderZ.bicolorataandTable2.
ZanclosporabrevisporaS.Hughes&W.B.Kendr.,NewZealandJournalofBotany3:156.
1965.
Habitatandgeographicaldistribution:SaprobeonthebarkofNothofagussolandrivar.
cliffortioides,leavesofCocusnuciferaandondeadtwigsandleavesofotherunidentified
substrates.ItisknownfromBrazil,Cuba,NewZealandandSouthAfrica[1,5,8,28].
Notes:Fordescriptionandillustrations,seeHughesandKendrick[1].Twovarieties
weredescribedunderthisspecies,Z.brevisporavar.brevispora[1]andvar.transvaalensis
[5].Theyaredistinguishedmainlybythenumberofconidiogenouscellsandconidial
characters.Zanclosporabrevisporavar.brevisporahasmoreconidiogenouscellsandcurved
somewhatsmallerconidia[1,5].ThisspeciesfitswellintheconceptofZanclospora,how
everfurtherstudiesareneededtoresolve,whetheritisoneortwospecies.
ZanclosporaindicaSubram.&Vittal,Can.J.Bot.51:1132.1973.
Habitatandgeographicaldistribution:SaprobeondeadleavesofChamaecrista
desvauxii,Crotonsp.,Gymnosporiaemarginata,Nectandracoriaceaanddeadleavesandstems
ofotherunidentifiedplants.ItisknownfromCuba,Brazil,IndiaandIvoryCoast
[2,8,25,91–93].
Notes:Fordescriptionandillustrations,seeSubramanianandVittal[2].Thisspecies
deviatesfromthegenericconceptofZanclosporainthemorphologyoftheconidiogenous
cellsandthewaytheyareinsertedontheconidiophore.ThephialidesofZ.indicaare
broadlylageniform,extendintoanarrowneckandelongatepercurrentlytoformasec
ondaryphialide.Thecollaretteiswelldefined.Inaddition,someofthesecondaryphi
alidesareillustratedinalateralpositionontheprimaryphialidesuggestingasympodial
elongation.Thephialidesdivergefromtheconidiophoreandarearrangedinseveral
whorlsbelowthetransversesepta.OtherZanclosporadiffersfromZ.indicainhavingphi
alideswithanindistinctcollarette;theyaretightlyappressedtotheconidiophoreand
Microorganisms2021,9,70644of60
arrangedincompactfertilezones.Basedoncomparativemorphology,Z.indicaisnotac
ceptedinthegenus.
ZanclosporamysticaZucconi&Rambelli,MicologiaItaliana11:51.1982.
Habitatandgeographicaldistribution:Saprobeonleaflitter,knownonlyinIvory
Coast[4].
Notes:ZanclosporamysticadiffersfromotherZanclosporainacute,darkbrown,
opaque,sterilebranchesinsertedinthefertilezoneamongthephialides[4].Asimilar
patternwasobservedinKionochaetaramifera[17,87],whichdiffersfromZ.mysticaina
conidiogenousapparatusconsistingofacompactlyarrangedseriesofsubhyaline
branchesbearingconidiogenouscells.InotherZanclosporawithbranchedconidiophores,
lateralbranchesaresimilartothemainstalkandbearadditionalfertilezones(Z.aurea,Z.
falcata,Z.iberica,Z.novaezelandiae,Z.lateriphiala)orterminateintoamonophialide(Z.
ramifera).SimilarbranchesdescribedinZ.mysticaalsooccurinZ.stellata(=Stephanopho
rellastellata,thisstudy),buttheyaredisposedattheconidiophoreapexabovethefertile
zone.
BrachiampullaRéblová&Hern.Restr.,gen.nov.MycoBankMB836364.
Typespecies:Brachiampullaverticillata(B.Sutton&Hodges)blová&Hern.Restr.
Etymology:Brachium(Latin)arm,branch,ampulla(Latin)bottle,referringtodiver
gentlageniformconidiogenouscellswithalongextensionresemblingbranches.
Description:Colonieseffuse,darkbrown,whitishbrownwhensporulating,hairy.
Myceliummostlysuperficial,hyphaebranched,septate,pigmented.Anamorph:Conidi
ophoresmacronematous,mononematous,erect,setiform,unbranched,pigmented.Co
nidiogenouscellspolyphialidic,indeterminate,ampulliformtolageniform,elongating
percurrentlyandsympodially,discrete,lateral,arrangedsinglyorinwhorls,orterminal,
integrated.Conidiahyaline,aseptate,aggregatedinslimyheads.Teleomorph:Notob
served.
Brachiampullaverticillata(B.Sutton&Hodges)Réblová&Hern.Restr.,comb.nov.My
coBankMB837809.(Figure19).
Basionym:SelenosporellaverticillataB.Sutton&Hodges,NovaHedwigia29:602.1978
(1977).
Synonym:ZanclosporaureweraeJ.A.Cooper[as“ureweri”],N.Z.J.Bot.43:344.2005.
Descriptiononthenaturalsubstrate:Colonieseffuse,hairy,darkbrown,whitish
brownwhensporulating.Anamorph:Conidiophores120173×45.5(–6)μm,erect,single
orinfascicles,cylindricaltosubulate,basebulbose,setiform,straightorgentlybent,un
branched,septate,darkbrowntowardsthebase,palertowardstheapex,smooth,apical
cellsubhyalinetolightbrown,oftenfertile.Conidiogenouscellspolyphialidic,1116×46
μm,venter6–8μmlong,theupperpartaboveventersympodiallyextending4.59.5×
1.52μm,withnumerouslateralopeningswithminutecollarettes,indeterminate,ampul
liformtolageniform,discrete,lateral,arrangedsinglyoringroupsof25inwhorlsbelow
thetransversesepta,orintegrated,disposedofterminally,lightbrowntowardsthebase,
subhyalinetowardstheapex,smooth,divergingfromtheconidiophore.Conidia6.58×
1.52μm(mean±SD=7.2±0.4×1.8±0.2μm),lunate,hyaline,taperingatbothends,
acuteapically,withabasalscar,smooth,aggregatedinwhiteslimyheads.Teleomorph:
Notobserved.
Microorganisms2021,9,70645of60
Figure19.Brachiampullaverticillata.(AC,GI)Conidiophores.(D,JM)Detailsofconidiogenouscells.(E,F,N)Conidia.
(O)Apicalpartoftheconidiophore.(P)ColoniesonCMD,MLA,OAandPCAafter4weeks(fromlefttoright).Images:
(AF,P)onthenaturalsubstrate(ICMP15993);(GO)onPCAafter8weeks(ICMP15065exparatype).Bars:(A,B)=20
μm;(CD,GN)=10μm;(E,F,O)=5μm;(P)=1cm.
Microorganisms2021,9,70646of60
Culturecharacteristics:OnCMDcolonies14–15mmdiam,circular,flat,margin
finelyfimbriate,cobwebbytosparselyfloccosebecomingmucoidtowardsthemargin,
amberbeige,withalightbeigeouterzoneofsubmergedgrowth,reverselightbrown.On
MLAcolonies24–25mmdiam,circular,convexcentrally,flatmargin,marginfinelyfim
briate,lanose,floccose,furrowedatthecentre,zonate,beigewithabeigebrowninterme
diatezone,darkbrowntorussetatthemargin,reversedarkbrown.OnOAcolonies23–
25mmdiam,circular,flat,marginsubsurface,lobate,lanose,floccosebecomingmucoid
towardsthemargin,beigebrownwithablackouterzoneofsubmergedgrowth,reverse
black.OnPCAcolonies15–17mmdiam,circular,slightlyraised,marginentire,lanose,
floccosebecomingcobwebbytolocallymucoidatthemargin,beige,darkbrownatthe
marginwitharussetouterzoneofsubmergedgrowth,reversedarkbrown.Sporulation
wasabundantonCMD,OA(restrictedtotheinoculationblockandthecentreofthecol
ony),moderateonPCA,absentonMLA.
DescriptiononPCA:Colonieseffuse,hairy,vegetativehyphaesubhyalinetobrown,
septate,branched,1.5–3μmwide.Anamorph:Conidiophores,conidiogenouscellsand
conidiaasonthenaturalsubstrate.Conidiophores105168×3.54.5μm,apicalcellfertile,
terminatedintoaphialideorawhorlofseveralphialides.Conidiogenouscellspolyphia
lidic,13.525×46μm,venter6–8μmlong,theupperpartaboveventersympodially
extending(6)717.5×1.52.5μm,occasionallywith1–2(–3)percurrentelongations,dis
crete,lateral,arrangedsinglyoringroupsof23(4)inwhorlsorintegrated,terminal.
Conidia6.59.5×1.52μm(mean±SD=7.9±1.0×2.0±0.2μm),lunate,hyaline,aseptate.
Teleomorph:Notobserved.
Materialexamined:NEWZEALAND,BayofPlenty,Gisborne,TeUreweraprotected
area,LakeWaikaremoana,Ngamokotrack(38.76254867,177.1541956),onadeadleafof
Nothofagusfusca,11May2001,J.A.CooperJAC8191(holotypeofZ.ureweraePDD76621).
NEWZEALAND,BayofPlenty,AongeteteLodge(37.67386195,175.9152742),onadead
leafofWeinmanniaracemosa,9May2003,J.A.CooperJAC8609(paratypeofZ.urewerae
PDD76612,exparatypecultureICMP15065).NEWZEALAND,Manawatū‐Whanganui,
EruaForest(39.25690416,175.326371),4Apr.2005,onincubateddeadleaffromabog,
J.A.CooperJAC9549(PDD80888,cultureICMP15993).
Habitatandgeographicaldistribution:SaprobeonfallenleavesofEucalyptussp.,
Nothofagusfusca,WeinmanniaracemosaandotherunidentifiedhostsinNewZealandand
theUSA,Hawaii[7,94].
Notes:Althoughthespecieswasdescribedwithconidiogenouscellswithasingle
phialidicopening[7],theexaminationoftheparatype,otherherbariummaterialandliv
ingculturesrevealedthattheconidiogenouscellsarepolyphialidic,indeterminate,the
upperpartissympodiallyelongatingandcontainsnumerousopeningswithinminute
collarettes.TheholotypePDD76621ofZ.ureweraedidnotcontainanyherbariummate
rial,onlyadriedculture.ApersonalnoteontheholotypeofZ.ureweraebyJ.A.Cooper,
dated2July2010,waspostedonthewebsiteofthePDDherbariumandreadsas:“A
subsequentexaminationofconidiogenouscellsunderSEMsuggeststhisisSelenosporella”.
BasedonadetailedcomparisonoftherevisedmaterialofZ.ureweraeandthedescrip
tionandillustrationofSelenosporellaverticillata[94],weconsiderbothspeciesidentical.
Therefore,anewgenusBrachiampullaisproposedforS.verticillataintheXyladictyochae
taceae,andZ.ureweraeisreducedtosynonymyundertheformerspecies.Brachiampulla
verticillataresemblesS.acicularis[95]andS.aristata[96]inthemorphologyofconidioge
nouscellswithminutephialidicopeningsformedaftersympodialelongation.Onthe
otherhand,highlysimilarSelenosporellaspeciescharacterisedbyampulliform,polyblastic,
sympodiallyelongatingconidiogenouscellsarrangedinwhorlsandunicellular,hyaline
conidiabutwithholoblasticconidiogenesisincludeS.curvispora[97],thetypespeciesof
Selenosporella,andalsoS.nandiensis[98]andS.setosa[99].
StephanophorellaRéblová&Hern.Restr.,gen.nov.MycoBankMB836363.
Microorganisms2021,9,70647of60
Typespecies:Stephanophorellastellata(M.Calduch,Gené&Guarro)Réblová&Hern.
Restr.
Etymology:Stephanos(Greek)crown,‐phora(Greek)bearing,frompherein(tobear),
referringtoagroupofshortbranchesresemblingacrownattheconidiophoreapex,‐ella,
diminutive,usedasanameformingsuffix.
Description:Colonieshairy,blackish.Myceliumismostlyimmersed.Anamorph:Co
nidiophoresmacronematous,mononematous,setiform,pigmented,withsetiform,sterile
branchesinsertedintothemainstalkinacrownlikefashion.Conidiogenouscellsphia
lidic,determinate,ampulliformtolageniform,withatubularcollarette,discrete,lateral,
appressedtotheconidiophore,arrangedinwhorlsformingacompactfertilezone.Co
nidiahyaline,aseptate,slimy.Teleomorph:Notobserved.(PartiallyadaptedfromCal
duchetal.[6].)
Stephanophorellastellata(M.Calduch,Gené&Guarro)Réblová&Hern.Restr.,comb.
nov.MycoBankMB837811.(Figure20).
Basionym:ZanclosporastellataM.Calduch,Gené&Guarro,Mycologia94:131.2002.
Culturecharacteristics:OnCMDcolonies14–15mmdiam,circular,raised,margin
fimbriate,cobwebby,floccosebecomingmucoid,deeplyfurrowed,darkbrown,russetto
wardstheperiphery,beigeatthemargin,reversedarkbrown.OnMLAcolonies20–21
mmdiam,circular,convex,marginentire,velvetytocobwebby,floccose,mucoidcen
trally,deeplyfurrowed,irregularlyfolded,darkbrown,beigebrowntowardsthemargin,
withadarkamberbrownouterzone,reversebrownblack.OnOAcolonies20–22mm
diam,circular,raised,marginlobate,mucoid,locallycobwebbytoflaky,withshallowir
regularfoldsespeciallyatthemargin,darkgreytoalmostblackwitholivaceousgrey
zones,reversedarkolivaceousgrey.OnPCAcolonies13–16mmdiam,circular,convex,
flattowardstheperiphery,marginsubsurface,fimbriate,cobwebby,floccose,furrowed
centrally,smoothtowardstheperiphery,beigebrownwithadarkbrowntodarkamber
brownouterzoneofsubmergedgrowth,reverseblack.Sporulationwasabundanton
CMA,absentonCMD,MLA,OAandPCA.
DescriptiononCMA:Coloniespulvinate,darkbrowntoblack,whitishduetoconid
ialmassesonsporulatingconidiophoresandalsocoveringthesurface,vegetativehyphae
hyaline,subhyalinetobrown,branched,septate,1.5–3μmwide.Anamorph:Stromawell
developedatthesurfaceofthecolony,consistingofglobosetopolyhedral,thickwalled,
subhyalinetoolivaceousbrowncells,ca.10.5–22μmdiam;cellssometimesarrangedin
monilioidstrands.Conidiophores125–158μmlong,4–5.5μmwideabovethebase,6.5–8
μmwideatthefertileregion,erect,setiform,palebrownatthemidsectionandtowards
thebase,darkbrownandopaqueattheapex,septate,cylindricaltocylindricalfusiform,
basebulbose2.5–3.5μmwidewithseveralrhizoids,apexsmooth,sterile,acute,withup
tosixdarkbrown,opaque,acute,setiformbranchesarrangedinastellateformationin
oneortwolevelsattheapex.Conidiogenouscellsmonophialidic,6–8.5×3–4μm,tapering
toca.1μmbelowthecollarette,ampulliformtolageniform,tightlyappressedtotheco
nidiophore,arrangedingroupsof4–6in10–15whorlsjustbelowsepta;collaretteflared,
narrowlywedgeshapedtotubular,1.5–2×2–3μm.Conidia3–4.5×(0.5–)1–1.5μm(mean
±SD=3.4±0.3×1.2±0.1μm),clavatetooblongclavatetosuballantoid,taperingtowards
thebasalend,roundedattheapicalend,withaconspicuousexcentricinflatedscaratthe
base,straightorinequilateral,hyaline,aseptate,smooth.Teleomorph:Notobserved.
Materialexamined:NIGERIA,CrossRiverState,MammoForest,onunidentified
deadfallenleaves,2Jun.1997,M.Calduch,J.GuarroandA.M.Stchigel(cultureextype
CBS101301=FMR6481).
Microorganisms2021,9,70648of60
Figure20.Stephanophorellastellata(CBS101301extype).(AC)Colonieswithconidiophores,indetail.(DG)Conidio
phores.(H)Branchesarrangedinastellatefashion.(I,J)Conidiogenouscells.(K)Conidia.(L)ColoniesonCMD,MLA,
OAandPCAafter4weeks(fromlefttoright).Images:(AK)onCMAafter6weeks.Bars:(A)=500μm;(B,C)=200μm;
(D,E)=20μm;(FH)=10μm;(IK)=5μm;(L)=1cm.
Habitatandgeographicaldistribution:Thespeciesisasaprobeonplantdebris,
knownsofarfromAfricainNigeria[6].
Microorganisms2021,9,70649of60
Notes:Foradditionaldescriptionandillustrations,seeCalduchetal.[6].Stephanophorella
stellataresemblesZanclosporainsetiformconidiophores,lateral,determinatephialidesar
rangedalongthemidsectioninafertilezoneandhyalineconidia,butdiffersinphialideswith
awelldefinedcollaretteandacrownofsetiformbranchesattheconidiophoreapex.
4.Discussion
4.1.Morphology,InterspecificVariabilityandLifeHistoryofZanclospora
Ourphylogeneticanalysisofthecombined18S,28Sandrpb2sequenceshasprovided
strongsupportfortherecognitionofZanclosporaasapolyphyleticgenus,withspecies
distributedamongthreedistantlyrelatedevolutionarylineagesintheSordariomycetes
(Figure1).Thecoreofthegenus,includingZ.novaezelandiae,clusteredintheChaeto
sphaeriaceae(Chaetosphaeriales),Z.stellataispositionedintheVermiculariopsiellaceae
(Vermiculariopsiellales),andZ.ureweraeisnestedintheXyladictyochaetaceae
(Xylariales).
WithintheChaetosphaeriaceae,Zanclosporaisresolvedasawellsupportedmono
phyleticclade(Figure2).Itisaholomorphicgenusencompassing17speciesandtwova
rieties.Cultivationstudies,morphologicalcomparisonsonnaturalsubstratesandphylo
geneticanalysisoffourmarkers(ITS,28S,tef1‐αandtub2)of21strainsrepresenting12
speciesrevealedunknownpleomorphisminZanclospora.Ourbarcodinggapanalysis
showedthatthebarcodeswidelyusedinAscomycota(i.e.ITS,tef1‐αandtub2)areappli
cableforspeciesdelimitationinZanclospora.
Threedifferentconidiophoremorphotypeshithertoconsideredunrelated,occurin
thelifecycleofseveralmembersofthegenus.Theyincludetheanamorphwiththetypical
Zanclosporaconidiophoresandphaeostalagmusandstanjehughesialikesynanamorphs.
Basedonnovelmolecularandphenotypicdata,thegenericconceptofZanclosporais
emendedtoincludeteleomorphicandanamorphiccharacters.TenZanclosporaspecies
haveknownteleomorphanamorphconnections,whichwereeitherexperimentallyestab
lished([12],thisstudy)orestimated,basedonthejuxtapositionofbothmorphs[11].
ThediagnosticcharactersofZanclosporaincludeerect,pigmented,setiformconidio
phoresthatbearonetoseveralwhorlsofpalebrown,sessilemonophialidesarisingjust
belowthesepta.Thephialidesareappressedtotheconidiophore;theyformacompact
fertilezoneandproducehyaline,aseptateconidiawithoutsetulae.Macroconidiaform
onlyonnaturalconditionsandvaryinshapefromfalcate,horseshoeshaped,obovoidto
bacilliform,whereasmicroconidiaformonlyincultureandareclavatetooblongclavate,
ellipsoidaltofusiform.However,theZanclosporaanamorphsgrowingonagarornatural
substrate/Urticastemsinculture,providingseminaturalconditions,differinsize,overall
complexityandappearanceofconidiophoresandalsoinconidialmorphology.Thesynan
amorphsimilartoPhaeostalagmus[19]occasionallyoccurswhenthespeciesisgrownin
culture.ItshareswithZanclosporathearrangementoflateralphialidesinwhorlsonthe
conidiophore,ortheycanbedisposedofinaverticillatefashiononshortbranches.Toa
certainextent,itmayrepresentasimplifiedZanclosporaunderinvitroconditions.Asim
ilaranalogycanbefoundbetweenZanclosporaandthestanjehughesialikesynanamorph.
Thelatterformsdarkbrown,multiseptateconidiophores,whicharewiderandseveral
timeslongerthanthoseofZanclospora,butremainsterile,rarelywithoneortwolateral
phialides(Figure14A).Althoughconidiophoresofthissynanamorpharestrikinglyrem
iniscentofconidiaofStanjehughesia(conidiophoresareabsent,reducedtoconidiogenous
cells),adematiaceoushyphomycetesegregatedfromSporidesmium[18],theyrepresenta
differentstructurewithadifferentfunction.Thestanjehughesialikesynanamorphhas
beenfrequentlyobservedonnaturalsubstratesaswellasinculture.Phaeostalagmusand
StanjehughesiaformseparatelineagesintheChaetosphaeriaceaetree(Figure2).
DeHoog[100]addressedplasticityandvariationinconidiogenesisofyeastlikefungi
anddistinguishedsynanamorphsintotwobasiccategories,i.e.pleoanamorphydepend
Microorganisms2021,9,70650of60
entonenvironmentalconditionsandspontaneouspleoanamorphythatexistsunderiden
ticalenvironmentalconditions.Thephaeostalagmuslikesynanamorphwasobserved
onlywhengrowninculture.Weassumethatitmayrepresentthegroupofsynanamorphs
thatareinfluencedbyenvironmentalconditions.
TheidentificationofZanclosporabecamechallengingbecauseofthehighdegreeof
variabilityintheanamorphicmorphologyandtheirirregularpresenceonthenaturalsub
strateandinculture.ThisisespeciallytrueincaseswhentheZanclosporaconidiophores
areabsentonmaterialfromnatureandformonlyinculture,andthestanjehughesialike
synanamorphistheonlyanamorphicphenotypepresent,i.e.Z.clavulata,Z.iberica,Z.ram
ifera,Z.xylophila.Inaddition,somestrainsderivedfromascosporeslackbothZanclospora
andstanjehughesialikeconidiophores,andonlythephaeostalagmuslikesynanamorph
isformedinculture,namelyZ.phaeostalacta,Z.sylvaticaandZ.tropicalis.Althoughthe
anamorphofZ.jonesiiisunknown,brown,sinuous,cylindrical‘setae’arisingfromthe
baseofascomataandintheirvicinityweredescribedandillustratedbyPereraetal.([86],
Figure5g)intheprotologue.Thesepresumedsetaematchthestanjehughesialikesynan
amorphobservedinotherZanclosporaspecies.
AlthoughthestanjehughesialikeconidiophoresonlymimicconidiaofSporidesmium
anditssegregates,wecancomparebothgroupsintermsoftheformationofphialideson
thesemorphologicallysimilarstructuresorintheirlifecycle.Phialidicsynanamorphsare
rareinSporidesmiumandsimilartaxa.Stanjehughesiahormiscioides(teleomorphUmbrino
sphaeria,Chaetosphaeriaceae)formachloridiumlikesynanamorphwhengrownincul
ture[101].Kirk[102]describedaphialidicsynanamorphaccompanyingSporidesmium
clarkii;discretephialidesproducingfiliform,bentmicroconidiaareborndirectlyonco
nidiaorseparateconidiophores,solitarilyoroncompactbranches.
Inthephylogenetictreeinferredfromthefourcombinedloci(Figure3),Z.novae
zelandiaeandthreeothermorphologicallysimilarspecies,i.e.Z.clavulata,Z.falcataandZ.
iberica,wereresolvedascloselyrelatedbutseparatespecieslineages.ExceptforZ.clavu
lata,whichformsonlymicroconidia,theyareremarkablysimilarinmacroconidia,conid
iogenouscellandconidiophoremorphology.Ornamentationofthesetiform,apicalpart
oftheconidiophoresofZ.novaezelandiae[1],originallyuniquetothisspecies,isnewly
describedinZ.falcata.Moreover,theexcrescencesontheconidiophoresurfacedonotde
velopinculture.MoleculardatasuggestthatZ.novaezelandiaeisaspeciescomplex.The
fourgenephylogenyandmorphologicalcomparisonofspecimenstentativelyidentified
asZ.novaezealandiaewiththeholotypeofthisspeciesfacilitatedtheircorrectidentifica
tionandallowedinterpretationofthetypematerial.Asaresult,anewspecies,Z.falcata,
wasdesignatedandseparatedfromZ.novaezelandiaebyprimarilyanamorphicfeatures
andZ.novaezelandiaewasepitypified.Giventheknownbroadgeographicaldistribution
andthedescribedvariabilityinconidialsizeandconidiophorecharactersofZ.novae
zelandiae,thismolecularstudyisthefirsttosuggestthatitisanunexploredcomplexthat
maycontainothercrypticspecies.
4.2.GlobalBiogeographyofZanclospora
Zanclosporawasidentifiedasalowdiversegenuscomprising12verifiedspeciesand
arelativelylownumberofphylotypesinferredfromtheenvironmentalDNA(Figures3,
5and6).WecouldnotlinkmostofthephylotypesbetweenITS1(6)andITS2(14)datasets,
exceptforthree,whichcontainthewholeITS,butweassumethatduetotheirgeography
andecology(Figure7)theyoverlaporsomerepresentknownbutsofarnotsequenced
species.Inourstudy,theminimalnumberoftaxafromenvironmentalDNAdata,roughly
correspondingtothelevelofspecies,was14(Figure6).DatafromNCBIGenBankand
UNITEdatabasescontributedtothisdiversitystudybyonlyonesequence(DQ124120)
belongingtothephylotypeITS1ENV5(Figure5).TheseresultsconfirmGlobalFungi,the
mostcomprehensiveatlasofglobalfungaldistribution,asapowerfultoolfordiversity
studies.
Microorganisms2021,9,70651of60
ShortreadsattributabletoZanclosporawereextremelyrare.Theoretically,itcouldbe
duetothePCRamplificationbias,resultinginanunderestimationofstudiedfungi.In
general,Zanclosporacanbeamplifiedandsequencedunderstandardconditionswithcom
monlyusedITSprimers.Onthecontrary,dataminingofsequenceonlymembersofthe
ChaetosphaeriaceaeresultedintensofthousandsofhitssoPCRbiasappearsunlikelyas
anexplanationforthelackofZanclosporasequencesinthesedatasets(TablesS2andS3).
We,therefore,expectthatourfindingsreflectrealityratherthanbeingduetolimitations
ofPCRandmassivelyparallelsequencing.
WecanfurtherconfirmthatZanclosporainhabitsaspectrumofsubstratesincluding
decayingbark,woodandfallenleaves,butalsolivingrootsandmoreoftensoil,which
wasnotyetknown.Ourdataminingconfirmsfullythepatternofdistributionknown
fromclassicalstudiesandexpandsitsdistributionandecology.Knowncentresofgeo
graphicaldistribution(NewZealand,CentralAmericaandCaribbean,SouthAmerica)
wereconfirmedfrommetabarcodingdataandalsohaveshownthatSoutheastAsiarep
resentsanotherhotspotofZanclosporadiversity.Inconclusion,basedonacceptedspecies,
mostofwhichareknownfromthetypecollectiononly,anddatafromtheGlobalFungi
database,wehavedemonstratedthatZanclosporaisaveryraregenusofworldwidedis
tribution,livinginhumidnaturalforests(mostlytemperaterainforestandtropicalrain
forestzones)insoilandondecayingplantmatter.Ourstudyisthefirstapplicationofthe
GlobalFungidatabasefordiversity,biogeographyandecologysurveyofagroupoffungi.
ThepresentphylogeniesofmetabarcodingbasedonITS1orITS2forthemajorityof
sequencesdemonstratetheimportanceofenvironmentalDNAsequencesinphylogeny
basedtaxonomicstudies.Therehasbeenmuchdiscussioninthemycologicalcommunity
onusingmetagenomicDNAfromenvironmentalsamplesasholotypesandingeneralfor
taxonnaming[103–110].Inaddition,thefirststudiesonnamingDNAbasedtaxahave
alreadybeenpublished,e.g.DeBeeretal.[111],LückingandMoncada[112],Kalsoom
Khanetal.[113].TheITS1andITS2phylotypesattributedtoZanclosporarepresenteither
newlineagesoralreadydescribedspeciesthathavenotyetbeensequenced.Theyexpand
theknowngeographicaldistributionandecologyandhelptoestimatethenumberofex
istingspecies;thenumberofrecoveredphylotypesalmostdoublesthenumberofknown
Zanclosporaspecies.Usingmetabarcodingdata,wegatheredmostinformationonthedis
tribution,ecologyandphylogenyofZanclosporaexceptmorphology.However,Zanclo
sporaincludesthreeanamorphicphenotypes,whichrepresentmostofthemorphological
variabilityofthegenus.We,therefore,prefertodefinetheenvironmentalsequencesof
the‘dark’Zanclosporataxaasphylotypes.Wehopethatfuturesamplingandincreased
effortstocultivatethesefascinatingfungiwillrevealnewconnectionsbetweencultivable
fungiandtheircounterpartsidentifiedfromenvironmentalDNA.
4.3.ZanclosporaandItsAllies
ZanclosporacanbecomparedtoCryptophiale[15],Cryptophialoidea[16]andKionochaeta
[17],allmembersoftheChaetosphaeriaceae,whichformseparatelineages(Figure2).
Theysharepigmented,mononematous,setiformconidiophoreswithphialidesarranged
infertilezonesandhyalineconidia.Themaindistinguishingcharactersarethearrange
mentofphialidesontheconidiophore,branchingpatternoftheconidiogenousapparatus
andpresenceorabsenceofashieldshapedplate.InCryptophiale,CryptophialoideaandZan
closporathephialidesarediscrete,sessile,whileinKionochaetatheyareintegrated,dis
posedattheapexofconidiophoresorbranches.Zanclosporaistheonlyofthesefourgenera
withphialidesarrangedverticallyalongthemainaxisoftheconidiophoreinwhorlsand
aroundtheentireconidiophoreperimeter.Thephialideshaveapoorlydefinedcollarette
andarenotobscuredbyashieldoranysterilestructure.Cryptophiale,ontheotherhand,
encompassesfungiwiththefertileregioncomposedofsessilephialideswithindistinct
collarettesthatariseatarightangletotheconidiophoreaxis,arrangedinoneortwopal
isaderows,andcoveredandpartlyenclosedbyashieldshapedplateofsterile,fusedcells.
Theconidiophoresareapicallysterile,branchedorunbranched,orwithlateralbranches.
Microorganisms2021,9,70652of60
Cryptophialespecieswithphialideswithawelldefinedcollarettearrangedononlyone
sideoftheconidiophoreandlackingtheprotectingshieldweresegregatedintoCrypto
phialoidea(Cr.)byKuthubutheenandNawawi[16].Moleculardata,whichareavailable
onlyfornontypestrainsofCr.fasciculata[114]andtwoCryptophiale[75],suggestaclose
relationshipofbothgenera.ThefundamentalcharacterofKionochaetaisthebranching
patternoftheconidiogenousapparatus.Itcomprisescompactorlooselyarranged
branchesbearingconidiogenouscells,irregularlybranchedorinapenicillatefashion.The
conidiophoresareunbranchedorwithlateralbranchesinsertedinorabovethefertilere
gion.
IntheITS28SphylogenyoftheChaetosphaeriaceae(Figure2),theclosestrelatives
toZanclosporawereChaetosphaeriaminuta[12]andacladecontainingCryptophiale,Crypto
phialoidea,KionochaetaivorensisandConicomyces.Inthearrangementandmorphologyof
phialides,theanamorphofCh.minutaresemblesCryptophialoidea[16].Themajorityofspe
ciesofCryptophialoideaaremonophialidic,e.g.Cr.ramosa,Cr.secunda,thetypespecies,or
Cr.uncispora[16,114,115],mono‐ orrarelypolyphialidicinCr.fasciculata[24,114],or
polyphialidicinCr.manifesta[87].Moreover,someCryptophialoideahavephialidesar
rangedindiscreteunilateralbundles(Cr.fasciculata,Cr.manifesta,Cr.ramosa),whilein
otherspeciesthephialidesareevenlydistributedalongtheconidiophore.Theconidia
varyinshapeandseptation;theyare0–1septate,fusiform,falcateorapicallyhooked.The
lackofmoleculardatadoesnotallowassessingthetaxonomicvalueofthesefeaturesin
Cryptophialoidea.TheseparatepositionofCr.fasciculataandCh.minutawiththecrypto
phialoidealikeanamorphsuggestsfurthervariabilityofthissmallgenus,whichcurrently
includesfivespecies[116].TheextypestrainofK.ivorensis[17,117]isshownasasisterto
CryptophialeandCryptophialoidea,whileK.ramifera[87],thetypespeciesofthegenus,and
twootherKionochaetaformaseparate,monophyleticlineage(Figure2).Thegroupingof
K.ivorensissuggestsevenwiderphenotypicplasticityoftheCryptophialecladethanhas
beendescribed.Conicomyces[118],ontheotherhand,ismorphologicallywelldistinguish
ablefromZanclospora.Thegenuswasintroducedforsynnematous,pigmentedhyphomy
ceteswithintegratedphialidesandseptate,setulateconidia.
Inthephylogeneticanalysisofthecombined18S,28Sandrpb2sequences(Figure1),
theextypestrainofZ.stellataclusteredintheVermiculariopsiellalesonasinglebranch
basaltoacladecomprisingTubulicolla[42]andVermiculariopsiella[9].Therefore,Z.stellata
isexcludedfromZanclosporaintoanewgenus,Stephanophorella.MembersoftheVermic
ulariopsiellalesaresaprobic,dematiaceoushyphomycetesthatformeffusecoloniesor
sporodochia.StephanophorellaresemblesZanclosporainsetiformconidiophoresandthear
rangementofsessile,lateralphialides,butdiffersmainlyinwelldefinedcollarettesand
thedark,opaque,setiformpartoftheconidiophorewithbranchesinsertedinastellate
fashionattheapex.
4.4.SelenosporellaandMorphologicallySimilarTaxa
Duetothenewlydiscoveredmorphologicalcharactersofconidiogenouscells,Z.
ureweraewasfoundtobeconspecificwithSelenosporellaverticillata[94]andexcludedfrom
Zanclospora.AnewgenusBrachiampullaisproposedforZ.ureweraeanditssystematic
placementisresolvedwiththefourcombinedlociintheXyladictyochaetaceae
(Xylariales).Brachiampulla,basedonB.verticillata,includessaprobesonfallenleaves,
whicharemorphologicallyreminiscentofSelenosporella.
ThegenericconceptofSelenosporella[97,119],typifiedbyS.curvispora,ismorpholog
icallyheterogeneousandthegenusispolyphyleticbasedonknownmorphotypes,avail
ablemoleculardataandknownlinksofSelenosporellaspp.andselenosporellalikefungi
invarioustaxonomicgroups,e.g.[20,61,67,120–127].Selenosporellacurvisporawasde
scribedfromdeadleavesofJuncuseffususfromIreland[119]andvalidatedbyMacGarvie
[97].AnontypestrainofS.curvisporaCBS102623(Figure21),collectedonfallenleaves
ofanunidentifiedhostinSpainwasexamined[onCMA:conidiophores195–600μm,dark
brown,verticillateabove;conidiogenouscellspolyblastic,11–21.5×3–4.5μm(venter7–
Microorganisms2021,9,70653of60
10.5μmlong,theupperpartaboveventerwithminutedenticles,sympodiallyextending
4–11.5×2–2.5μm,elongatingevenmoreuponageingupto24.5μm),venterlightbrown,
rachishyalinebecominglightolivaceousbrown;conidia9.5–11.5×1,lunate,taperingap
ically,truncateatthebasewithascar].TheplacementofS.curvisporawasconfirmedin
theHelminthosphaeriaceae(Figure1).Interestingly,theSelenosporellaphenotypeiswide
spreadinthisfamily.TheHelminthosphaeriaceaeaccommodateseveralgenerawithdif
ferentmodesofconidiogenesissuchastretic(Diplococcium),holoblastic(Endophragmiella)
andholoblasticdenticulate(Selenosporellaandselenosporellalike).Membersofthefamily
includeHelminthosphaeriawiththeDiplococciumanamorphandseveralDiplococciumare
knowntoformaselenosporellalikesynanamorph[127,128].Otherspeciesexperimen
tallylinkedwiththeselenosporellalikesynanamorphsbelongtothefamily,forexample,
Endophragmielladimorphospora[20,129],Echinosphaeriacanescens,Hilberinapunctata
[121,122]andRuzeniaspermoides[61,130].
Figure21.Selenosporellacurvispora(CBS102623).(A,B,E)Conidiophores.(C,D)Conidiogenouscell,indetail.(E)Conidia.
Images:(AE)onCMAafter8weeks.Bars:(AB)=20μm;(C,E,F)=10μm;(D)=5μm.
MacGarvie[97]describedtheconidiogenouscellsofS.curvisporaaspolyphialidic,
whichwasconfirmedbyEllis[131],SuttonandHodges[94–96].Inaddition,Ellis[131]
describedtheconidiogenouscellswithminuteprotrudingcollarettesandcoinedtheterm
‘denticularcollarette’.Theseobservationswere,however,incontrastwithMatsushima
[18],whointerpretedtheconidiogenouscellsasdenticulate.OnofriandCastagnola[132]
studiedS.curvispora(collectiononadeadleaffromtheprimaryrainforest,IvoryCoast)
Microorganisms2021,9,70654of60
withelectronmicroscopyandreportedtheconidiogenesisholoblasticdenticulateonsym
podiallyelongatingconidiogenouscells.Itisdifficulttoobservethesedelicatestructures
onconidiogenouscellswithlightmicroscopy.
AlthoughSuttonandHodges[94]describedtheconidiogenouscellsofB.verticillata
aspolyphialidic,theyaddedthat:“conidiogenesiscouldwellbeholoblasticratherthan
enteroblastic”.
WeagreewithSuttonandHodges[94]tointerpretthestructuressurroundingthe
conidiogenouslociofB.verticillataasminutecollarettesonpolyphialidicconidiogenous
cells.AsimilarmodeofconidiogenesiswasdescribedinXyladictyochaeta,asistergenusof
BrachiampullaintheXyladictyochaetaceae[9].ItislikelythatSelenosporellaandseleno
sporellalikefungiaccommodatedinseveralphylogeneticallydifferentgroupsvaryinthe
modeofconidiogenesis.Inaddition,SelenosporellaandBrachiampullasharesimilarmor
phologyoftheconidiogenouscellsthatareampulliformtolageniform,undetermined
withsympodiallyextendingapex,arrangedinwhorlsalongtheconidiophoreandconidia
thatarehyaline,unicellular,lunateorfalcate.
WithintheXylariales,BrachiampullaiscomparabletoSelenodriella[133,134]inpig
mentedmacronematousconidiophores,ampulliform,lateral,polyblasticconidiogenous
cellsarrangedinwhorlsorterminally,andunicellular,hyalineconidia,butSelenodriella
differsinholoblasticdenticulateconidiogenesis.Ceratocladium[135],representedbyC.
polysetosum[136]inourphylogeny,shareswithBrachiampullapolyblastic,discrete,lateral,
ampulliformconidiogenouscellsandunicellular,hyalineconidia,butdiffersinthepres
enceofsetaeandconidiogenouscellsgrowingonclimbingfertilehyphae.Thespecieswas
resolvedasaseparatelineagewithoutaffinitytoanyknownfamilies.Itsrelationshipto
morphologicallysimilarCircinotrichumwasinvestigatedbyHernándezRestrepoetal.[9].
AsimilararrangementofsympodialconidiogenouscellsfoundinBrachiampullaoccurs,
forexample,inUmbellidion[137].InUmbellidion(generaincertaesedis),theconidiogenous
cellsarecylindricaltolageniformandformonlytheapicalwhorl,occasionallythepig
mentedconidiophoreproliferatesandasecondwhorlisdeveloped.
5.Conclusions
Zanclosporaispleomorphicgenusrarelyencounteredondecayingbark,woodorleaf
litter.Severalspeciesaddedtothegenushavebroadeneditsboundaries,butthegeneric
concepthasneverbeenevaluatedwithmolecularDNAdata.OurknowledgeofZanclo
sporabiogeographyisminimal;thefieldrecordsareunverifiedwithmoleculardata,and
onlyoneorahandfulofcollectionshavebeenrecordedforeachspecies.Usingsixgenetic
markers,Zanclosporawasshowntobepolyphyletic,withthreedistantlyrelatedlineages
intheSordariomycetes.Zanclosporas.str.wasresolvedasastronglysupportedmonophy
leticcladeintheChaetosphaeriaceae.Basedontheresultsofphylogeneticanalysesand
phenotypicdata,twonewsegregategenera,BrachiampullaandStephanophorella,werepro
posedforZ.ureweraeandZ.stellata,respectively.Theyrepresenttwodistantlyrelated
lineagesintheXylarialesandVermiculariopsiellales.
ZanclosporaproducesteleomorphspreviouslyclassifiedinthegenusChaetosphaeria.
However,morefrequentlyZanclosporaproducesanamorphscharacterisedbyerect,pig
mented,setiform,oftenbranchedconidiophores,sessilemonophialideswithindistinct
collarettesarrangedinwhorlsandtightlyappressedtotheconidiophoresorbranches,
andhyaline,aseptatemacroconidia(onthenaturalsubstrate;falcatetohorseshoeshaped
toobovoid)andmicroconidia(inculture;usuallyclavatetoellipsoidal)withoutsetulae.
Seventeenspeciesareaccepted,12ofwhichhavebeenverifiedwithDNAsequencedata.
Wehavediscoveredvariabilityinanamorphiccharacteristicsassociatedwiththreeana
morphicstages,ofwhichphaeostalagmus‐andstanjehughesialikearenewlydescribed.
PhylogeneticanalysesofenvironmentalITS1andITS2sequencesretrievedfromtheGlob
alFungidatabaseprovidedinsightintotheglobalbiogeographyofZanclospora.Sevenand
15phylotypeshavebeenidentifiedinsamplesderivedfromsoil,deadwoodandroots.
ThefieldrecordsverifiedbyDNAdataindicatedtwomaindiversitycoresinAustralasia
Microorganisms2021,9,70655of60
andCaribbean/CentralAmerica.EnvironmentalITSdatasuggestedSoutheastAsiaasa
thirdhotspotofZanclosporadiversity.Interestingly,environmentalsequencesofthese
fungiwerecompletelymissinginEuropeandNorthAmerica,whicharethebestsampled
continentsintheGlobalFungidatabase.
Ourstudydemonstratedtheimportanceofinvitrostudiestoassessanamorphic
plasticityandsystematicsofZanclosporaandtheuseofenvironmentalsequencestoex
pandourknowledgeonbiogeographyandunknowninterspecificdiversity.Ithasalso
confirmedthatdifferentphenotypesdistinguishedwithinZanclosporaarephylogenet
icallydistinct.Wehopethatfuturesamplingandincreasedeffortstocultivatethesefasci
natingfungiwillrevealnewconnectionsbetweencultivablefungiandtheircounterparts
identifiedfromenvironmentalDNA.Althoughweaddressedissuesrelatedtoevaluating
taxonomicdiagnosticcriteriaatthegenericlevel,wewereunabletoobtainallspeciesto
assesstheirphylogeneticrelationships.TheyareretainedinZanclosporabasedonmor
phology.
SupplementaryMaterials:Thefollowingareavailableonlineatwww.mdpi.com/2076
2607/9/4/706/s1,TableS1:TaxaoftheSordariomycetes,theircollectionnumbersandaccessionnum
bersforsequencesretrievedfromGenBank,TableS2:Alistofenvironmentalsamplesattributable
toZanclosporawithreferencestoallstudiesintheGlobalFungidatabase,TableS3:Taxarelatedto
ZanclosporaandcomparisonoftheirBLASTsearchintheGlobalFungidatabase,TableS4:Estimates
ofevolutionarydivergencebetweenITSrDNA,28SrDNA,tub2andtef1‐αsequences,TableS5:The
biogeography,substrateandhabitataffinityofZanclosporaandoutgrouptaxainferredfromthe
GlobalFungidatabase,TableS6:PublishedrecordsofZanclosporawithhost,substrate,countryof
thecollectionandreferences.
AuthorContributions:Conceptualization:M.K.,M.H.R.andM.R.;Methodology:J.N.,M.K.,
M.H.R.andM.R.;Formalanalysis:M.K.andM.R.;Investigation:A.N.M.,J.N.,M.K.,M.H.R.and
M.R.;Resources:A.N.M.,M.H.R.andM.R.;Visualization:M.R.;Writing—originaldraft:M.K.,
M.H.R.andM.R.;Writing—reviewandediting:A.N.M.,J.N.,M.K.,M.H.R.andM.R.;Funding
acquisition:M.R.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisstudywassupportedbytheprojectoftheCzechScienceFoundation(GAČR20
14840S),andaslongtermresearchdevelopmentprojectsoftheCzechAcademyofSciences,Insti
tuteofBotany(RVO67985939)(M.R.),BIOCEV(CZ.1.05/1.1.00/02.0109)(M.K.)andtheUniversity
HospitalHradecKrálovéMHCZ—DRO(UHHK,00179906)(J.N.).Thisstudywasalsosupported
byaNationalScienceFoundationaward(DEB0515558)toA.N.M.TheWMKeckCenteratthe
UniversityofIllinoisUrbanaChampaignisthankedforsequencingservices.Thefieldworkof
M.R.inNewZealandwaspartlysupportedbyStudienstiftungfürmykologischeSystematikund
Ökologie(2003)andManaakiWhenuaFellowship,LandcareResearchAuckland(2005).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:AllsequencesgeneratedinthisstudyweresubmittedtoGenBank
(ITS:MW144418–MW144437;28S:MW144402–MW144417;18S:MW151684–MW151690;tef1‐α:
MW147322–MW147335;rpb2:MW147336–MW147342;tub2:MW147343–MW147355).
Acknowledgments:PeterJohnstonisthankedforhisassistancetoM.R.inrevisingtheholotypeof
Z.novaezelandiaeandobtainingtheManaakiWhenuaFellowshipandcollectingpermitsforNew
Zealand.WethankSabineHuhndorffortheuseofhercollectionsandDNAextracts.Cony
Decock,JosepaGené,TrixMerkx,MeganPeterson,AdrienneStantonandBevanWeirare
acknowledgedforassistancewithobtaininglivingculturesandherbariumloansanddepositing
newherbariummaterialandstrains.WethankKonstanzeBenschandShaunPennycookfor
grammaticalreviewofnewnamesandreviewersfortheircommentsandsuggestions.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
Microorganisms2021,9,70656of60
References
1. Hughes,S.J.;Kendrick,W.B.NewZealandfungi4.Zanclosporagen.nov.N.Z.J.Bot.1965,3,151158.
2. Subramanian.C.V.;Vittal.B.P.R.Threenewhyphomycetesfromlitter.Can.J.Bot.1973,51,1127–1132.
3. Sutton,B.C.;Hodges,C.S.,Jr.Eucalyptusmicrofungi:CodinaeaandZanclosporaspeciesfromBrazil.NovaHedwigia1975,26,517–
525.
4. Zucconi,L.;Rambelli,A.UnanovaspeciediZanclosporadallalettieradelPardoNazionaledelTai.Micol.Ital.1982,11,51–52.
5. MorganJones,G.;Sinclair,R.C.;Eicker,A.DematiaceoushyphomycetesfromSouthAfrica:II.Somephialidicspecies,including
Chalaratranskeiensis,newspecies,andZanclosporabrevisporavar.transvaalensis,newvariety,twonewtaxa.S.Afr.J.Bot.1992,
58,147–154.
6. Calduch,M.;Gené,J.;Guarro,J.;MercadoSierra,A.;CastañedaRuíz,R.F.HyphomycetesfromNigerianrainforests.Mycologia
2002,94,127–135.
7. Cooper,J.A.NewZealandhyphomycetefungi:Additionalrecords,newspecies,andnotesoninterestingcollections.N.Zealand
J.Bot.2005,43,323–349,doi:10.1080/0028825x.2005.9512957.
8. Almeida,D.A.C.;Cruz,A.C.R.;Marques,M.F.O.;Gusmão,L.F.P.ConidialfungifromthesemiaridCaatingabiomeofBrazil.
NewandinterestingZanclosporaspecies.Mycosphere2013,4,684–692.
9. HernándezRestrepo,M.;Gené,J.;CastañedaRuiz,R.;MenaPortales,J.;Crous,P.;Guarro,J.Phylogenyofsaprobicmicrofungi
fromSouthernEurope.Stud.Mycol.2017,86,53–97,doi:10.1016/j.simyco.2017.05.002.
10. Villavicencio,M.;Sosa,D.;Vera,M.;Espinoza,F.;Quevedo,A.;Magdama,F.;Serrano,L.;PérezMartínez,S.;CastañedaRuíz,
R.F.Zanclosporabicoloratasp.nov.fromEcuador.Mycotaxon2020,135,895–900.
11. Hughes,S.J.;Kendrick,W.B.NewZealandfungi12.Menispora,Codinaea,Menisporopsis.N.Z.J.Bot.1968,6,323375.
12. Fernández,F.A.;Huhndorf,S.M.NewspeciesofChaetosphaeria,MelanopsammellaandTainosphaeriagen.nov.fromtheAmericas.
FungalDivers.2005,18,15–57.
13. Fernández,F.A.;Miller,A.N.;Huhndorf,S.M.;Lutzoni,F.M.;Zoller,S.SystematicsofthegenusChaetosphaeriaanditsallied
genera:Morphologicalandphylogeneticdiversityinnorthtemperateandneotropicaltaxa.Mycologia2006,98,121–130,
doi:10.3852/mycologia.98.1.121.
14. Pirozynski,K.A.Cryptophiale,anewgenusofHyphomycetes.Can.J.Bot.1968,46,1123–1127,doi:10.1139/b68148.
15. Goh,T.K.;Hyde,K.D.Cryptophialemultiseptata,sp.nov.fromsubmergedwoodinAustralia,andkeystothegenus.Mycol.Res.
1996,100,999–1004,doi:10.1016/s09537562(96)800542.
16. Kuthubutheen,A.;Nawawi,A.Cryptophialoideagen.nov.ondecayingleavesfromMalaysia.Trans.Br.Mycol.Soc.1987,89,581–
583,doi:10.1016/s00071536(87)800955.
17. Kirk,P.;Sutton,B.AreassessmentoftheanamorphgenusChaetopsina(Hyphomycetes).Trans.Br.Mycol.Soc.1985,85,709–717,
doi:10.1016/s00071536(85)802679.
18. Subramanian,C.V.AreassessmentofSporidesmium(hyphomycetes)andsomerelatedtaxa.Proc.Natl.Acad.Sci.India1992,58,
179–190.
19. Gams,W.;HolubováJechová,V.Chloridiumandsomeotherdematiaceoushyphomycetesgrowingondecayingwood.Stud.
Mycol.1976,13,1–99.
20. Matsushima,T.IconesMicrofungorumaMatsushimaLectorum;TheNipponPrinting&PublishingMycol.:Osaka,Japan,1976;p.
955.
21. Schoknecht,J.D.;Crane,J.L.AdditionalHyphomycetesfromfreshwaterswampsandhammocks.Can.J.Bot.1983,61,2243–
2247,doi:10.1139/b83243.
22. Chang,H.S.SetiformconidiophorehyphomycetesfromTaiwan.Bot.Bull.Acad.Sinica1990,31,257–262.
23. Mel’Nik,V.A.;Braun,U.;Alexandrova,A.V.Kiliophoranovozhiloviisp.nov.andfirstrecordofZanclosporacf.novaezelandiae
(asexualascomycetes)fromVietnam.Mycobiota2016,6,47–54,doi:10.12664/mycobiota.2016.06.05.
24. Kirk,P.M.NeworinterestingmicrofungiXIV.DematiaceoushyphomycetesfromMtKenya.Mycotaxon1985,23,305352.
25. MercadoSierra,A.;HolubováJechová,V.;MenaPortales,J.HifomicetosDematiáceosdeCuba,Enteroblásticos.MonografieXXIII;
MuseoRegionalediScienzeNaturali:Torino,Italy,1997.
26. Tsui,C.;Hyde,K.;Hodgkiss,I.BiodiversityoffungionsubmergedwoodinHongKongstreams.Aquat.Microb.Ecol.2000,21,
289–298,doi:10.3354/ame021289.
27. Izabel,T.D.S.S.;Santos,D.S.;DeAlmeida,D.A.C.;Gusmão,L.F.P.FungosconidiaisdobiomaCaatingaII.Novosregistrospara
ocontinenteamericano,Neotrópico,AméricadoSuleBrasil.Rodriguésia2011,62,229–240,doi:10.1590/21757860201162201.
28. Whitton,S.R.;McKenzie,E.H.C.;Hyde,K.D.AnamorphicfungiassociatedwithPandanaceae.InFungiAssociatedwith
Pandanaceae;Hyde,K.D,Ed.;Springer:Dordrecht,TheNetherlands,2012;pp.125353.
29. Sayers,E.W.;Cavanaugh,M.;Clark,K.;Ostell,J.;Pruitt,K.D.;KarschMizrachi,I.GenBank.NucleicAcidsRes.2019,47,D94–
D99.
30. Nilsson,R.H.;Larsson,K.H.;Taylor,A.F.S.;BengtssonPalme,J.;Jeppesen,T.S.;Schigel,D.;Kennedy,P.;Picard,K.;Glöckner,
F.O.;Tedersoo,L.;etal.TheUNITEdatabaseformolecularidentificationoffungi:Handlingdarktaxaandparalleltaxonomic
classifications.NucleicAcidsRes.2019,47,D259–D264,doi:10.1093/nar/gky1022.
31. Zhang,Z.;Schwartz,S.;Wagner,L.;Miller,W.AgreedyalgorithmforaligningDNAsequences.J.Comput.Biol.2000,7,203–
214,doi:10.1089/10665270050081478.
Microorganisms2021,9,70657of60
32. Looney,B.P.;Ryberg,M.;Hampe,F.;SánchezGarcía,M.;Matheny,P.B.Intoandoutofthetropics:Globaldiversification
patternsinahyperdiversecladeofectomycorrhizalfungi.Mol.Ecol.2016,25,630–647.
33. MaciáVicente,J.G.;Piepenbring,M.;Koukol,O.Brassicaceousrootsasanunexpecteddiversityhotspotofhelotialean
endophytes.ImaFungus2020,11,1–23,doi:10.1186/s4300802000036w.
34. Větrovský,T.;Morais,D.;Kohout,P.;Lepinay,C.;AlgoraGallardo,C.;AwokunleHollá,S.;DoreenBahnmann,B.;Bílohnědá,
K.;Brabcová,V.;D’Alò,F.;Human,Z.R.;etal.GlobalFungi,aglobaldatabaseoffungaloccurrencesfromhighthroughput
sequencingmetabarcodingstudies.Sci.Data2020,7,228.
35. GlobalFungiDatabase.Availableonline:Globalfungi.com(accessedon23September2020).
36. Malloch,D.Moulds:TheirIsolation,CultivationandIdentification;UniversityofTorontoPress:Toronto,ON,Canada,1981.
37. Gooding,G.V.;Lucas,G.B.FactorsinfluencingsporangialformationandzoosporeactivityinPhytophthoraparasiticavar.
nicotianae.Phytopathologia1959,49,277–281.
38. Crous,P.W.;Verkley,G.J.M.;Groenewald,J.Z.;Houbraken,J.FungalBiodiversity.CBSLaboratoryManualSeries1;CBSKNAW
FungalBiodiversityCentre:Utrecht,TheNetherlands,2019.
39. Huhndorf,S.M.;Miller,A.N.;Fernández,F.A.MolecularsystematicsoftheSordariales:Theorderandthefamily
Lasiosphaeriaceaeredefined.Mycologia2004,96,368387.
40. Hustad,V.P.;Miller,A.N.StudiesinthegenusGlutinoglossum.Mycologia2015,107,647–657.
41. Réblová,M.;HernándezRestrepo,M.;Fournier,J.;Nekvindová,J.NewinsightsintothesystematicsofBactrodesmiumandits
alliesandintroducingnewgenera,speciesandmorphologicalpatternsinthePleurothecialesandSavoryellales
(Sordariomycetes).Stud.Mycol.2020,95,415–466.
42. Réblová,M.;Nekvindová,J.;Kolařík,M.;HernándezRestrepo,M.DelimitationandphylogenyofDictyochaeta,and
introductionofAchrochaetaandTubulicollageneranova.Mycologia2021,113,390–433,doi:10.1080/00275514.2020.1822095.
43. BecerraHernández,C.I.;González,I.;DeLuna,E.;MenaPortales,J.FirstreportofpleoanamorphyinGyrothrixverticicladawith
anIdriellalikesynanamorph.Cryptogam.Mycol.2019,37,241–252.
44. Crous,PW.;Verkley,G.J.M.;Christensen,M.;CastañedaRuíz,R.F.;Groenewald,J.Z.Howimportantareconidialappendages?
Persoonia2012,28,126–137.
45. Crous,P.W.;Shivas,R.G.;Quaedvlieg,W.;vanderBank,M.;Zhang,Y.;Summerell,B.A.;Guarro,J.;Wingfield,M.J.;Wood,
A.R.;Alfenas,A.C.;etal.FungalPlanetdescriptionsheets:214–280.Persoonia2014,32,184–306.
46. Crous,P.W.;Wingfield,M.J.;Richardson,D.M.;Leroux,J.J.;Strasberg,D.;Edwards,J.;Roets,F.;Hubka,V.;Taylor,P.W.J.;
Heykoop,M.;etal.FungalPlanetdescriptionsheets:400–468.Persoonia2016,36,316–458.
47. Crous,P.W.;Wingfield,M.J.;Burgess,T.I.;Carnegie,A.J.;Hardy,G.E.St.J.;Smith,D.;Summerell,B.A.;CanoLira,J.F.;Guarro,
J.;Houbraken,J.;etal.FungalPlanetdescriptionsheets:625–715.Persoonia2017,39,270–467.
48. Crous,P.W.;Carnegie,A.J.;Wingfield,M.J.;Sharma,R.;Mughini,G.;Noordeloos,M.E.;Santini,A.;Shouche,Y.S.;Bezerra,
J.D.P.;Dima,B.;etal.FungalPlanetdescriptionsheets:868–950.Persoonia2019,42,291–473.
49. Hashimoto,A.;Sato,G.;Matsuda,T.;Matsumura,M.;Hatakeyama,S.;Harada,Y.;Ikeda,H.;Tanaka,K.Taxonomicrevisionof
PseudolachneaandPseudolachnella,andestablishmentofNeopseudolachnellaandPseudodinemasporiumgeneranova.Mycologia
2015,107,383–408.
50. HernándezRestrepo,M.;Schumacher,R.K.;Wingfield,M.J.;Ahmad,I.;Cai,L.;Duong,T.A.;Edwards,J.;Gené,J.;Groenewald,
J.Z.;Jabeen,S.;etal.FungalSystematicsandEvolution:FUSE2.Sydowia2016,68,193230.
51. HernándezRestrepo,M.;Schumacher,R.K.;Wingfield,M.J.;Ahmad,I.;Cai,L.;Duong,T.A.;Edwards,J.;Gené,J.;Groenewald,
J.Z.;Jabeen,S.;etal.TheGeneraofFungi–G6:Arthrographis,Kramasamuha,Melnikomyces,Thysanorea,andVerruconis.Fungal
SystematicsandEvolution2020,6,124.
52. Jaklitsch,W.M.;Voglmayr,H.PhylogeneticrelationshipsoffivegeneraofXylarialesandRosasphaeriagen.nov.(Hypocreales).
FungalDivers.2012,52,7598.
53. Jaklitsch,W.M.;Fournier,J.;Rogers,J.D.;Voglmayr,H.PhylogeneticandtaxonomicrevisionofLopadostoma.Persoonia2014,32,
5282.
54. Jaklitsch,W.M.;Gardiennet,A.;Voglmayr,H.Resolutionofmorphologybasedtaxonomicdelusions:Acrocordiella,
Basiseptospora,Blogiascospora,Clypeosphaeria,Hymenopleella,Lepteutypa,Pseudapiospora,Requienella,SeiridiumandStrickeria.
Persoonia2016,37,82105.
55. Konta,S.;Hongsanan,S.;Tibpromma,S.;Thongbai,B.;Maharachchikumbura,S.S.N.;Bahkali,A.H.;Hyde,K.D.;Boonmee,S.
Anadvanceintheendophytestory:Oxydothidaceaefam.nov.withsixnewspeciesofOxydothis.Mycosphere2016,7,14251446.
56. Lin,C.G.;McKenzie,E.H.C.;Liu,J.K.;Jones,E.B.G.;Hyde,K.D.Hyalinesporedchaetosphaeriaceoushyphomycetesfrom
ThailandandChina,withareviewofthefamilyChaetosphaeriaceae.Mycosphere2019,10,655–700.
57. Liu,F.;Bonthond,G.;Groenewald,J.Z.;Cai,L.;Crous,P.W.Sporocadaceae,afamilyofcoelomycetousfungiwithappendage
bearingconidia.Stud.Mycol.2019,92,287415.
58. Lombard,L.;vanderMerwe,N.A.;Groenewald,J.Z.;Crous,P.W.GenericconceptsinNectriaceae.Stud.Mycol.2015,80,
189245.
59. Lu,Y.Z.;Liu,K.J.;Hyde,K.D.;Bhat,D.J.;Xiao,Y.P.;Tian,Q.;Wen,T.C.;Boonmee,S.;Kang,J.C.Brunneodinemasporiumjonesii
andTainosphaeriajonesiispp.nov.(Chaetosphaeriaceae,Chaetosphaeriales)fromsouthernChina.Mycosphere2016,7,1322–1331.
60. Luo,Z.L.;Hyde,K.D.;Liu,J.K.;Maharachchikumbura,S.S.N.;Rajesh,J.;Bao,D.F.;Bhat,D.J.;Lin,C.G.;Li,W.L.;Yang,J.;et
al.Freshwatersordariomycetes.FungalDivers.2019,99,451–660.
Microorganisms2021,9,70658of60
61. Miller,A.N.;Huhndorf,S.M.AnaturalclassificationofLasiosphaeriabasedonnuclearLSUrDNAsequences.Mycol.Res.2004,
108,26–34.
62. Miller,A.N.;Huhndorf,S.M.;Fournier,J.PhylogeneticrelationshipsoffiveuncommonspeciesofLasiosphaeriaandthreenew
speciesintheHelminthosphaeriaceae(Sordariomycetes).Mycologia2014,106,505–524.
63. Réblová,M.;Winka,K.PhylogenyofChaetosphaeriaanditsanamorphsbasedonmorphologicalandmoleculardata.Mycologia
2000,92,939–954.
64. Réblová,M.;Mostert,L.;Gams,W.;Crous,P.W.NewgeneraintheCalosphaeriales:TogniniellaanditsanamorphPhaeocrella,and
CalosphaeriophoraasanamorphofCalosphaeria.Stud.Mycol.2004,50,533–550.
65. Réblová,M.;Réblová,K.;Štěpánek,V.MolecularsystematicsofBarbatosphaeria(Sordariomycetes):Multigenephylogenyand
secondaryITSstructure.Persoonia2015,35,21–38.
66. Réblová,M.;Seifert,K.A.;Fournier,J.;Štěpánek,V.Newlyrecognisedlineagesofperithecialascomycetes:Theneworders
ConioscyphalesandPleurotheciales.Persoonia2016,37,57–81.
67. Réblová,M.;Miller,A.N.;Réblová,K.;Štěpánek,V.PhylogeneticclassificationandgenericdelineationofCalyptosphaeriagen.
nov.,Lentomitella,SpadicoidesandTorrentispora(Sordariomycetes).Stud.Mycol.2018,89,1–62.
68. Samarakoon,M.C.;Liu,J.K.;Hyde,K.D.;Promputtha,I.TwonewspeciesofAmphisphaeria(Amphisphaeriaceae)fromnorthern
Thailand.Phytotaxa2019,391,207–217.
69. Shenoy,B.D.;Jeewon,R.;Wu,W.P.;Bhat,D.J.;Hyde,K.D.Ribosomalandrpb2DNAsequenceanalysessuggestthat
Sporidesmiumandmorphologicallysimilargeneraarepolyphyletic.Mycol.Res.2006,110,916–928.
70. Spatafora,J.W.;Sung,G.H.;Johnson,D.;Hesse,C.;OʹRourke,B.;Serdani,M.;Spotts,R.;Lutzoni,F.;Hofstetter,V.;
Miadlikowska,J.AfivegenephylogenyofPezizomycotina.Mycologia2007,98,1018–1028.
71. VoglmayrH,FriebesG,Gardiennet,A.;JaklitschWM.BarrmaeliaandEntosordariainBarrmaeliaceae(fam.nov.,Xylariales)and
criticalnotesonAnthostomellalikegenerabasedonmultigenephylogenies.Mycol.Prog.2017,17,155–177.
72. Voglmayr,H.;AguirreHudson,M.B.;Wagner,H.G.;Tello,S.;Jaklitsch,W.M.Lichensorendophytes?Theenigmaticgenus
LeptosilliaintheLeptosilliaceaefam.nov.(Xylariales),andFurfurellagen.nov.(Delonicicolaceae).Persoonia2019,42,228–260.
73. Vu,D.;Groenewald,M.;deVries,M.;Gehrmann,T.;Stielow,B.;Eberhardt,U.;AlHatmi,A.;Groenewald,J.Z.;Cardinali,G.;
Houbraken,J.;etal.LargescalegenerationandanalysisoffilamentousfungalDNAbarcodesboostscoverageforkingdom
fungiandrevealsthresholdsforfungalspeciesandhighertaxondelimitation.Stud.Mycol.2019,92,135–154.
74. Wendt,L.;Sir,E.B.;Kuhnert,E.;Heitkämper,S.;Lambert,C.;Hladki,A.I.;Romero,A.I.;Luangsaard,J.J.;Srikitikulchai,P.;
Peršoh,D.;etal.ResurrectionandemendationoftheHypoxylaceae,recognisedfromamultigenephylogenyoftheXylariales.
Mycol.Prog.2018,17,115–154.
75. Yang,J.;Liu,N.G.;Liu,J.K.;Hyde,K.D.;Jones,E.B.G.;Liu,Z.Y.PhylogeneticplacementofCryptophiale,Cryptophialoidea,
Nawawia,Neonawawiagen.nov.andPhialosporostilbe.Mycosphere2018,9,1132–1150.
76. Hall,T.A.BioEdit5.0.9:AuserfriendlybiologicalsequencealignmenteditorandanalysisprogramforWindows95/98/NT.
NucleicAcidsSymp.Ser.1999,41,95–98.
77. Lanfear,R.;Frandsen,P.B.;Wright,A.M.;Senfeld,T.;Calcott,B.PartitionFinder2:Newmethodsforselectingpartitioned
modelsofevolutionformolecularandmorphologicalphylogeneticanalyses.Mol.Biol.Evol.2017,34,772773.
78. Miller,M.A.;Pfeiffer,W.;Schwartz,T.CreatingtheCIPRESScienceGatewayforinferenceoflargephylogenetictrees.
ProceedingsoftheGatewayComputingEnvironmentsWorkshop(GCE),14November2010,NewOrleans,LA,USA;pp.1–8.
79. CIPRESScienceGateway.Availableonline:www.phylo.org(accessedon10October2020).
80. Stamatakis,A.RAxMLVersion8:Atoolforphylogeneticanalysisandpostanalysisoflargephylogenies.Bioinformatics2014,
30,1312–1313.
81. Huelsenbeck,J.P.;Ronquist,F.MrBayes:Bayesianinferenceofphylogenetictrees.Bioinformatics2001,17,754–755.
82. Kumar,S.;Stecher,G.;Li,M.;Knyaz,C.;Tamura,K.MEGAX:MolecularEvolutionaryGeneticsAnalysisacrosscomputing
platforms.Mol.Biol.Evol.2018,35,1547–1549.
83. Guindon,S.;Dufayard,J.F.;Lefort,V.;Anisimova,M.;Hordijk,W.;Gascuel,O.Newalgorithmsandmethodstoestimate
maximumlikelihoodphylogenies:AssessingtheperformanceofPhyML3.0.Syst.Biol.2010,59,307–321.
84. Stadler,M.;Lambert,C.;Wibberg,D.;Kalinowski,J.;Cox,R.J.;Kolařík,M.;Kuhnert,E.IntragenomicpolymorphismsintheITS
regionofhighqualitygenomesoftheHypoxylaceae(Xylariales,Ascomycota).Mycol.Prog.2020,19,235–245.
85. Réblová,M.FournewspeciesofChaetosphaeriafromNewZealandandredescriptionofDictyochaetafuegiana.Stud.Mycol.2004,
50,171–186.
86. Perera,R.H.;Maharachchikumbura,S.S.N.;Bhat,J.D.;AlSadi,A.M.;Liu,J.K.;Hyde,K.D.;Liu,Z.Y.NewspeciesofThozetella
andChaetosphaeriaandnewrecordsofChaetosphaeriaandTainosphaeriafromThailand.Mycosphere2016,7,1301–1321.
87. Sutton,B.C.;Hodges,C.S.,Jr.Eucalyptusmicrofungi:Somesetosehyphomyceteswithphialides.NovaHedwig.1976,27,343–
347.
88. Rao,V.G.;deHoog,G.S.NeworcriticalhyphomycetesfromIndia.Stud.Mycol.1986,28,184.
89. Barbosa,F.R.;Raja,H.A.;Shearer,C.A.;Gusmão,L.F.P.SomefreshwaterfungifromtheBraziliansemiaridregion,including
twonewspeciesofhyphomycetes.Cryptogam.Mycol.2013,34,243–258.
90. Monteiro,J.S.;Sarmento,P.S.M.;Sotão,H.M.P.SaprobicconidialfungiassociatedwithpalmleaflitterineasternAmazon,
Brazil.Acad.Bras.Cienc.2019,91,e20180545.
Microorganisms2021,9,70659of60
91. CastañedaRuíz,R.F.DeuteromycotinadeCuba.HyphomycetesIV.;InstitutodeInvestigacionesFundamentalesenAgricultura
Tropical“AlejandrodeHumboldt”:Havana,Cuba,1986.
92. Rambelli,A.;Mulas,B.;Pasqualetti,M.ComparativestudiesonmicrofungiintropicalecosystemsinIvoryCoastlitter:
Behaviourondifferentsubstrata.Mycol.Res.2004,108,325–336.
93. Marques,M.F.O.;Gusmão,L.F.P.;Maia,L.C.RiquezadeespéciesdefungosconidiaisemduasáreasdemataAtlânticanomorro
dapioneira,SerradaJibóia,Bahia,Brasil.ActaBot.Bras.2008,22,954–961.
94. Sutton,B.C.;Hodges,C.S.,Jr.Eucalyptusmicrofungi:Chaetendophragmiopsisgen.nov.andotherhyphomycetes.NovaHedwig.
1978,29,593–607.
95. Sutton,B.C.;Hodges,C.S.,Jr.Eucalyptusmicrofungi:Miscellaneoushyphomycetes.NovaHedwig.1977,28,487–498.
96. Kuthubutheen,A.J.;Nawawi,A.AnewspeciesofSelenosporella(hyphomycetes)fromMalaysia.Trans.Br.Mycol.Soc.1988,91,
331334.
97. MacGarvieQD.HyphomycetesonJuncuseffususL.Sci.Proc.R.DublinSoc.1968,2,153161.
98. Sutton,B.C.AnnotatedlistofmicrofungifromtheNandiHills,Mysore.MysoreJ.Agric.Sci.1973,7,400–411.
99. CastañedaRuíz,R.F.;Guerrero,B.;Adamo,G.M.;Morillo,O.;Minter,D.W.;Stadler,M.;Gené,J.;Guarro,J.Anewspeciesof
SelenosporellaandtwomicrofungirecordedfromacloudforestinMérida,Venezuela.Mycotaxon2009,109,63–74.
100. DeHoog,G.SPleoanamorphyofyeastlikefungiandlittledifferentiatedhyphomycetes.InPleomorphicFungi.TheDiversityand
itsTaxonomicImplications;Sugiyama,J.,Ed.;Publisher:ElsevierSciencePublishingCo.:NewYork,NY,USA,1987;pp.221–232.
101. Réblová,M.StudiesinChaetosphaeriasensulatoIII.Umbrinosphaeriagen.nov.andMiyoshiellawithSporidesmiumanamorphs.
Mycotaxon1999,71,13–43.
102. Kirk,P.M.NeworinterestingmicrofungiIV.DematiaceoushyphomycetesfromDevon.Trans.Br.Mycol.Soc.1982,78:5574.
103. Hawksworth,D.L.;Hibbett,D.S.;Kirk,P.M.;Lücking,R.(308–310)ProposalstopermitDNAsequencedatatoserveastypesof
namesoffungi.Taxon2016,65,899–900.
104. Hibbett,D.Theinvisibledimensionoffungaldiversity.Science2016,351,1150–1151.
105. Hongsanan,S.;Jeewon,R.;Purahong,W.;Xie,N.;Liu,J.K.;Jayawardena,R.S.;Ekanayaka,A.H.;Dissanayake,A.;Raspé,O.;
Hyde,K.D.;etal.CanweuseenvironmentalDNAasholotypes?FungalDivers.2018,92,1–30.
106. Lücking,R.;Kirk,P.M.;Hawksworth,D.L.Sequencebasednomenclature:AreplytoThinesetal.andZamoraetal.and
provisionsforanamendedproposal.IMAFungus2018,9,185–198.
107. Ryberg,M.;Nilsson,R.H.Newlightonnamesandnamingofdarktaxa.MycoKeys2018,30,31–39.
108. Thines,M.;Crous,P.W.;Aime,M.C.;Aoki,T.;Cai,L.;Hyde,K.D.;Miller,A.N.;Zhang,N.;Stadler,M.Tenreasonswhya
sequencebasednomenclatureisnotusefulforfungianytimesoon.IMAFungus2018,9,177–183.
109. Zamora,J.C.;Svensson,M.;Kirschner,R.;Olariaga,I.;Ryman,S.;AlbertoParra,L.;Geml,J.Rosling,A.;Slavomír,A.;Ahti,T.;
etal.ConsiderationsandconsequencesofallowingDNAsequencedataastypesoffungaltaxa.IMAFungus2018,9,167–175.
110. Wu,B.;Hussain,M.;Zhang,W.;Stadler,M.;Liu,X.;Xiang,M.Currentinsightsintofungalspeciesdiversityandperspective
onnamingtheenvironmentalDNAsequencesoffungi.Mycology2019,10,127–140.
111. DeBeer,Z.W.;Marincowitz,S.;Duong,T.A.;Kim,J.J.;Rodrigues,A.;Wingfield,M.J.Hawksworthiomycesgen.nov.
(Ophiostomatales),illustratestheurgencyforadecisiononhowtonamenoveltaxaknownonlyfromenvironmentalnucleic
acidsequences(ENAS).FungalBiol.2016,120,1323–1340.
112. Lücking,R.;Moncada,B.DismantlingMarchandiomphalinaintoAgonimia(Verrucariaceae)andLawreymycesgen.nov.
(Corticiaceae):Settingaprecedenttotheformalrecognitionofthousandsofvoucherlessfungibasedontypesequences.Fungal
Divers.2017,84,119–138.
113. KalsoomKhan,F.;Kluting,K.;Tångrot,J.;Urbina,H.;Ammunet,T.;EshghiSahraei,S.;Rydén,M.;Ryberg,M.;Rosling,A.
Namingtheuntouchable–Environmentalsequencesandnichepartitioningastaxonomicalevidenceinfungi.IMAFungus2020,
11,23.
114. Kuthubutheen,A.J.;Nawawi,A.Cryptophialoideafasciculatasp.nov.andC.manifestacomb.nov.fromMalaysia.Mycol.Res.1994,
98,686688.
115. Delgado,G.;MenaPortales,J.;Gené,J.;Guarro,J.NewspeciesofCryptophialoideaandHughesinia(hyphomycetes,anamorphic
fungi)fromCuba.FungalDivers.2005,20,31–38.
116. IndexFungorum.Availableonline:www.indexfungorum.org(accessedon1December2020).
117. Rambelli,A.;Lunghini,D.Chaetopsinaivoriensis,anewspeciesofdematiaceoushyphomycetes.G.Bot.Ital.1976,110,253–258.
118. Sinclair,R.C.;Eicker,A.;MorganJones,G.Conicomyces,auniquesynnematoushyphomycetegenusfromSouthAfrica.
Mycologia1983,75,1100–1103.
119. Arnaud,G.Mycologieconcrète:GeneraII.Bull.Soc.Mycol.Fr.1953,69,265–306.
120. Hughes,S.J.NewZealandfungi1.CeratosporiumSchw.N.Z.J.Bot.1964,2,305309.
121. Hughes,S.J.RelocationofspeciesofEndophragmiaauct.withnotesonrelevantgenericnames.N.Z.J.Bot.1979,17,139188.
122. Sivanesan,A.StudiesonAscomycetes.Trans.Br.Mycol.Soc.1983,81,313332.
123. SamuelsGJ.;Müller,E.;PetriniOA.StudiesontheAmphisphaeriaceae(sensulato)3.NewspeciesofMonographellaand
Pestalosphaeriaandtwonewgenera.Mycotaxon1987,28,473499.
124. Samuels,G.J.;Rossmann,A.Y.StudiesintheAmphisphaeriaceae(sensulato)2.Leiosphaerellacocoësandtwonewspeciesof
Oxydothisonpalms.Mycotaxon1987,28,461471.
Microorganisms2021,9,70660of60
125. Kuthubutheen,A.J.;Nawawi,A.Polytretophoradendroideasp.nov.andP.calcarata(hyphomycetes)fromMalaysia.Mycol.Res.
1991,95,623–627.
126. Lunghini,D.;Pinzari,F.;Zucconi,L.StudiesonMediterraneanhyphomycetes.III.Quadracaeamediterraneaanam.gen.andsp.
nov.Mycotaxon1996,60,103110.
127. HernándezRestrepo,M.;SilveraSimón,C.;MenaPortales,J.;MercadoSierra,A.;Guarro,J.;Gené,J.Threenewspeciesanda
newrecordofDiplococciumfromplantdebrisinSpain.Mycol.Prog.2012,11,191199.
128. Wang,C.J.K.;Sutton,B.C.Diplococciumhughesiisp.nov.withaSelenosporellasynanamorph.Can.J.Bot.1998,76,1608–1613.
129. Awao,T.;Udagawa,S.I.Endophragmiadimorphospora,anewhyphomycete.Trans.Mycol.Soc.Jap.1974,15,9910.
130. Gams,W.Phialideswithsolitaryconidia?Remarksonconidiumontogenyinsomehyphomycetes.Persoonia1973,7,161–169.
131. Ellis,M.B.Dematiaceoushyphomycetes.Publisher:CommonwealthMycologicalInstitute,Kew,Surrey,England,1971.
132. Onofri,S.;Castagnola,M.Scanningelectronmicroscopyonsomedematiaceoussympodiallyproliferatinghyphomycetes.My
cotaxon1982,14,125139.
133. CastañedaRuíz,R.F.;Kendrick,B.NinetynineconidialfungifromCubaandthreefromCanada.Univ.WaterlooBiol.Ser.1991,
35,1–132.
134. HernándezRestrepo,M.;Groenewald,J.Z.;Crous,P.W.TaxonomicandphylogeneticreevaluationofMicrodochium,
MonographellaandIdriella.Persoonia2016,36,5782.
135. Corda,A.C.J.IconesFungorumhucusqueCognitorum3.J.G.;Calve,Ed.;Prague,CzechRepublic,1839.
136. MenaPortales,J.;HernándezRestrepo,M.;Gené,J.;Minter,D.AnewspeciesandanewcombinationofCeratocladiumCorda
(anamorphicfungi)fromSpain.Mycol.Prog.2011,10,493–496.
137. Sutton,B.C.;Hodges,C.S.,Jr.Eucalyptusmicrofungi:TwonewhyphomycetegenerafromBrazil.NovaHedwig.1975,26,527–
533.
... Based on a detailed comparison of the material of Zanclospora urewerae and the description and illustration of Selenosporella verticillata. Réblová et al. (2021a) considered that both species identical and introduced Brachiampulla for Selenosporella verticillata and Zanclospora urewerae. Brachiampulla verticillata resembles S. acicularis and S. aristata in the morphology of conidiogenous cells with minute phialidic openings formed after sympodial elongation (Réblová et al. 2021a) (M. ...
... Réblová et al. (2021a) considered that both species identical and introduced Brachiampulla for Selenosporella verticillata and Zanclospora urewerae. Brachiampulla verticillata resembles S. acicularis and S. aristata in the morphology of conidiogenous cells with minute phialidic openings formed after sympodial elongation (Réblová et al. 2021a) (M. Erdoğdu). ...
... This genus was introduced to accommodate (in Arthoniaceae) S. purpurissata (Basionym: Arthonia purpurissata Nyl.) based on morphological and chemical data (Grube 2018 Stephanophorella Réblová & Hern.-Restr. Stephanophorella was introduced by Réblová et al. (2021a) to accommodate Zanclospora stellata. Stephanophorella resembles Zanclospora in setiform conidiophores and the arrangement of sessile, lateral phialides, but differs mainly in well-defined collarettes and the dark, opaque, setiform part of the conidiophore with branches inserted in a stellate fashion at the apex (Réblová et al. 2021a) (M. ...
... Pleosporacean genus/species boundaries were inferred from ML trees of ITS1 and ITS2 sequences computed in RAxML. Virtual taxa, consisting of environmental sequences only, were defined as arbitrary phylotypes in the phylogenetic trees, following Réblová et al. [58,59]. Data on occurrence across environmental samples and metadata related to the particular samples (location, substrate, biome, or climatic data) were obtained for each taxon and are listed in Table S1 (Supplementary Material). ...
... A huge number of unidentified environmental fungal sequences have been generated in the last decade by numerous metagenomic studies, with relevant information on ecology and distribution. One way to resolve their identification is currently to attempt to link them to sequences of known and well-established species [58,[75][76][77][78]. In this context, following the recent studies on the phylogeny and global distribution of Zanclospora and Codinaea [58,59], we traced the novel species N. polymorphum and Sc. ...
... One way to resolve their identification is currently to attempt to link them to sequences of known and well-established species [58,[75][76][77][78]. In this context, following the recent studies on the phylogeny and global distribution of Zanclospora and Codinaea [58,59], we traced the novel species N. polymorphum and Sc. submersus in the GlobalFungi database [20] to explore their putative geographical distribution as well as to detect hypothetical hidden taxa related. ...
... Pleosporacean genus/species boundaries were inferred from ML trees of ITS1 and ITS2 sequences computed in RAxML. Virtual taxa, consisting of environmental sequences only, were defined as arbitrary phylotypes in the phylogenetic trees, following Réblová et al. [58,59]. Data on occurrence across environmental samples and metadata related to the particular samples (location, substrate, biome, or climatic data) were obtained for each taxon and are listed in Table S1 (Supplementary Material). ...
... A huge number of unidentified environmental fungal sequences have been generated in the last decade by numerous metagenomic studies, with relevant information on ecology and distribution. One way to resolve their identification is currently to attempt to link them to sequences of known and well-established species [58,[75][76][77][78]. In this context, following the recent studies on the phylogeny and global distribution of Zanclospora and Codinaea [58,59], we traced the novel species N. polymorphum and Sc. ...
... One way to resolve their identification is currently to attempt to link them to sequences of known and well-established species [58,[75][76][77][78]. In this context, following the recent studies on the phylogeny and global distribution of Zanclospora and Codinaea [58,59], we traced the novel species N. polymorphum and Sc. submersus in the Glob-alFungi database [20] to explore their putative geographical distribution as well as to detect hypothetical hidden taxa related. ...
Article
Full-text available
Although the Pleosporaceae is one of the species-richest families in the Pleosporales, research into less-explored substrates can contribute to widening the knowledge of its diversity. In our ongoing survey on culturable Ascomycota from freshwater sediments in Spain, several pleosporacean specimens of taxonomic interest were isolated. Phylogenetic analyses based on five gene markers (ITS, LSU, gapdh, rbp2, and tef1) revealed that these fungi represent so far undescribed lineages, which are proposed as two novel genera in the family, i.e., Neostemphylium typified by Neostemphylium polymorphum sp. nov., and Scleromyces to accommodate Scleromyces submersus sp. nov. Neostemphylium is characterized by the production of phaeodictyospores from apically swollen and darkened conidiogenous cells, the presence of a synanamorph that consists of cylindrical and brown phragmoconidia growing terminally or laterally on hyphae, and by the ability to produce secondary conidia by a microconidiation cycle. Scleromyces is placed phylogenetically distant to any genera in the family and only produces sclerotium-like structures in vitro. The geographic distribution and ecology of N. polymorphum and Sc. submersus were inferred from metabarcoding data using the GlobalFungi database. The results suggest that N. polymorphum is a globally distributed fungus represented by environmental sequences originating primarily from soil samples collected in Australia, Europe, and the USA, whereas Sc. submersus is a less common species that has only been found associated with one environmental sequence from an Australian soil sample. The phylogenetic analyses of the environmental ITS1 and ITS2 sequences revealed at least four dark taxa that might be related to Neostemphylium and Scleromyces. The phylogeny presented here allows us to resolve the taxonomy of the genus Asteromyces as a member of the Pleosporaceae.
... Based on a detailed comparison of the material of Zanclospora urewerae and the description and illustration of Selenosporella verticillata. Réblová et al. (2021a) considered that both species identical and introduced Brachiampulla for Selenosporella verticillata and Zanclospora urewerae. Brachiampulla verticillata resembles S. acicularis and S. aristata in the morphology of conidiogenous cells with minute phialidic openings formed after sympodial elongation (Réblová et al. 2021a) (M. ...
... Réblová et al. (2021a) considered that both species identical and introduced Brachiampulla for Selenosporella verticillata and Zanclospora urewerae. Brachiampulla verticillata resembles S. acicularis and S. aristata in the morphology of conidiogenous cells with minute phialidic openings formed after sympodial elongation (Réblová et al. 2021a) (M. Erdoğdu). ...
... This genus was introduced to accommodate (in Arthoniaceae) S. purpurissata (Basionym: Arthonia purpurissata Nyl.) based on morphological and chemical data (Grube 2018 Stephanophorella Réblová & Hern.-Restr. Stephanophorella was introduced by Réblová et al. (2021a) to accommodate Zanclospora stellata. Stephanophorella resembles Zanclospora in setiform conidiophores and the arrangement of sessile, lateral phialides, but differs mainly in well-defined collarettes and the dark, opaque, setiform part of the conidiophore with branches inserted in a stellate fashion at the apex (Réblová et al. 2021a) (M. ...
Article
Full-text available
This paper provides an updated classification of the Kingdom Fungi (including fossil fungi) and fungus-like taxa. Five-hundred and twenty-three (535) notes are provided for newly introduced taxa and for changes that have been made since the previous outline. In the discussion, the latest taxonomic changes in Basidiomycota are provided and the classification of Mycosphaerellales are broadly discussed. Genera listed in Mycosphaerellaceae have been confirmed by DNA sequence analyses, while doubtful genera (DNA sequences being unavailable but traditionally accommodated in Mycosphaerellaceae) are listed in the discussion. Problematic genera in Glomeromycota are also discussed based on phylogenetic results.
... They remotely resemble conidiophores of Chaetopsina, Phaeostalagmus, or Zanclospora (e.g. Gams & Holubová-Jechová 1976, Rossman et al. 1999, Réblová et al. 2021c. Their sterile, setiform extensions anastomose, adhere, and intertwine, causing the conidiophores to be hardly separable. ...
... Therefore, only now, when we are more confident of the actual species boundaries, we can start to think about the biogeographical patterns of common soil fungi (e.g. Réblová et al. 2021c, Torres-Garcia et al. 2022. In this respect, our study is pioneering because it is the first to be conducted on a large set of relatively common fungi using published metabarcoding data. ...
Article
Full-text available
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi.
... To assess the global geographical distribution and habitat affiliations of the novel taxa among environmental sequences, we followed the workflow of Réblová et al. [72,73] and Torres-Garcia et al. [42]. The full length of the ITS1 and ITS2 sequences of our isolates were blasted against those deposited in the GlobalFungi database (https://globalfungi.com (accessed on 2 April 2023)) [52]. ...
Article
Full-text available
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
... The outgroup was selected from members of Chaetosphaeriaceae, namely Chaetosphaeria innumera, Gongromeriza pygmaea, and Menispora uncinata. This selection was made based on the known close relationship between these two groups, as indicated by the findings of Réblová et al. (2021c). ...
Article
Full-text available
In this study, we investigated the morphological and genetic variability of selected species belonging to the genus Chloridium sensu lato , some also referred to as chloridium-like asexual morphs and other undescribed morphologically similar fungi. These species do not conform to the revised generic concept and thus necessitate a re-evaluation in terms of taxonomy and phylogeny. The family Chaetosphaeriaceae ( Chaetosphaeriales ) encompasses a wide range of asexual morphotypes, and among them, the simplest form is represented by Chloridium sect. Chloridium . The morphological simplicity of the Chloridium morphotype has historically led to the amalgamation of numerous unrelated species, thereby creating a heterogeneous genus. By conducting phylogenetic reconstruction of four DNA loci and examining a set of 71 strains, including all available ex-type and other non-type strains as well as holotypes and other herbarium material, we were able to gain new insights into the relationships between these taxa. Phylogenetic analyses revealed that the studied species are distantly related to Chloridium sensu stricto and can be grouped into two orders in the Sordariomycetes . Within the Chaetosphaeriales , they formed nine well-separated genera in four clades, such as Cacumisporium , Caliciastrum gen. nov. , Caligospora gen. nov. , Capillisphaeria gen. nov. , Curvichaeta , Fusichloridium , Geniculoseta gen. nov. , Papillospora gen. nov. , and Spicatispora gen. nov. We also established Chloridiopsiella gen. nov. and Chloridiopsis gen. nov. in Vermiculariopsiellales . Four new species and eight new combinations are proposed in these genera. Our study provides a clearer understanding of the genus Chloridium , its relationship to other morphologically similar fungi, and a new taxonomic treatment and molecular phylogeny to facilitate their accurate identification and classification in future research.
Article
Freshwater fungi comprises a highly diverse group of organisms occurring in freshwater habitats throughout the world. During a survey of freshwater fungi on submerged wood in streams and lakes, a wide range of sexual and asexual species were collected mainly from karst regions in China and Thailand. Phylogenetic inferences using partial gene regions of LSU, ITS, SSU, TEF1α, and RPB2 sequences revealed that most of these fungi belonged to Dothideomycetes and Sordariomycetes and a few were related to Eurotiomycetes. Based on the morphology and multi-gene phylogeny, we introduce four new genera, viz. Aquabispora, Neocirrenalia, Ocellisimilis and Uvarisporella, and 47 new species, viz. Acrodictys chishuiensis, A. effusa, A. pyriformis, Actinocladium aquaticum, Annulatascus tratensis, Aquabispora setosa, Aqualignicola setosa, Aquimassariosphaeria vermiformis, Ceratosphaeria flava, Chaetosphaeria polygonalis, Conlarium muriforme, Digitodesmium chishuiense, Ellisembia aquirostrata, Fuscosporella atrobrunnea, Halobyssothecium aquifusiforme, H. caohaiense, Hongkongmyces aquisetosus, Kirschsteiniothelia dushanensis, Monilochaetes alsophilae, Mycoenterolobium macrosporum, Myrmecridium splendidum, Neohelicascus griseoflavus, Neohelicomyces denticulatus, Neohelicosporium fluviatile, Neokalmusia aquibrunnea, Neomassariosphaeria aquimucosa, Neomyrmecridium naviculare, Neospadicoides biseptata, Ocellisimilis clavata, Ophioceras thailandense, Paragaeumannomyces aquaticus, Phialoturbella aquilunata, Pleurohelicosporium hyalinum, Pseudodactylaria denticulata, P. longidenticulata, P. uniseptata, Pseudohalonectria aurantiaca, Rhamphoriopsis aquimicrospora, Setoseptoria bambusae, Shrungabeeja fluviatilis, Sporidesmium tratense, S. versicolor, Sporoschisma atroviride, Stanjehughesia aquatica, Thysanorea amniculi, Uvarisporella aquatica and Xylolentia aseptata, with an illustrated account, discussion of their taxonomic placement and comparison with morphological similar taxa. Seven new combinations are introduced, viz. Aquabispora grandispora (≡ Boerlagiomyces grandisporus), A. websteri (≡ Boerlagiomyces websteri), Ceratosphaeria suthepensis (≡ Pseudohalonectria suthepensis), Gamsomyces aquaticus (≡ Pseudobactrodesmium aquaticum), G. malabaricus (≡ Gangliostilbe malabarica), Neocirrenalia nigrospora (≡ Cirrenalia nigrospora), and Rhamphoriopsis glauca (≡ Chloridium glaucum). Ten new geographical records are reported in China and Thailand and nine species are first reported from freshwater habitats. Reference specimens are provided for Diplocladiella scalaroides and Neocirrenalia nigrospora (≡ Cirrenalia nigrospora). Systematic placement of the previously introduced genera Actinocladium, Aqualignicola, and Diplocladiella is first elucidated based on the reference specimens and new collections. Species recollected from China and Thailand are also described and illustrated. The overall trees of freshwater Dothideomycetes and Sordariomycetes collected in this study are provided respectively and genera or family/order trees are constructed for selected taxa.
Article
Full-text available
Arthroderma is the most diverse genus of dermatophytes, and its natural reservoir is considered to be soil enriched by keratin sources. During a study on the diversity of dermatophytes in wild small rodents in the Czech Republic, we isolated several strains of Arthroderma . To explore the diversity and ecological significance of these isolates from rodents (n = 29), we characterised the strains genetically (i.e., sequenced ITS, tubb and tef1α ), morphologically, physiologically, and by conducting mating experiments. We then compared the rodent-derived strains to existing ITS sequence data from GenBank and the GlobalFungi Database to further investigate biogeography and the association of Arthroderma species with different types of environments. In total, eight Arthroderma species were isolated from rodents, including four previously described species ( A. crocatum , A. cuniculi , A. curreyi , A. quadrifidum ) and four new species proposed herein, i.e., A. rodenticum , A. simile , A. zoogenum and A. psychrophilum . The geographical distribution of these newly described species was not restricted to the Czech Republic nor rodents. Additional isolates were obtained from bats and other mammals, reptiles, and soil from Europe, North America, and Asia. Data mining showed that the genus has a diverse ecology, with some lineages occurring relatively frequently in soil, whereas others appeared to be more closely associated with live animals, as we observed in A. rodenticum . Low numbers of sequence reads ascribed to Arthroderma in soil show that the genus is rare in this environment, which supports the hypothesis that Arthroderma spp. are not soil generalists but rather strongly associated with animals and keratin debris. This is the first study to utilise existing metabarcoding data to assess biogeographical, ecological, and diversity patterns in dermatophytes.
Article
Full-text available
Chaetosphaeriaceae is one of the largest families in Sordariomycetes with its members commonly found on decaying leaf, fruit, branch, bark and wood in both terrestrial and submerged environment in nature. This paper reports our research result of diversity, taxonomy and phylogeny of anamorphic Chaetosphaeriaceae in China, which is based on a systematic study with an integrated approach of morphological observation and phylogenetic analysis for a large collection (> 1300 herbarium specimens and 1100 living strains). The family Chaetosphaeriaceae is expanded to accommodate 89 accepted genera, including 22 new genera and 10 newly assigned genera. Most of these genera (except for Chaetosphaeria and several other relatively large genera) are delimitated as monophyletic genera with well-defined diagnostic characters in morphology. The phylogenetic connection of non-phialidic Sporidesmium -like fungi is further confirmed and expanded to 10 different genera. The polyphyletic Codinaea / Dictyochaeta/Tainosphaeria complex is further resolved with a taxonomic framework of 28 monophyletic genera by redelimitation of Codinaea and Dictyochaeta with narrower concept, acceptance of the 16 established genera, and finally introduction of 10 new genera. Chloridium is phylogenetically redefined as monophyletic genus with narrower concept as typified by the type species, but a systematic review in both generic and species level is still needed. For biodiversity of chaetosphaeriaceous fungi, a total of 369 species in 76 genera, including 119 new species, 47 new combinations, and one new name, are documented. The identification keys are provided for most genera, especially the large genera such as Codinaea s. str., Codinaeella , Stilbochaeta , Cryptophiale , Thozetella , Dinemasporium and Pseudolachnella . In addition, ten known species were excluded from the family and reclassified. Systematic revision of several relatively large polyphyletic genera should be conducted in future studies, including Bahusutrabeeja , Ellisembia , Stanjehughesia , Cacumisporium , Chaetosphaeria , Chloridium , Craspedodidymum , Cryptophiale , Cryptophialoidea , Dictyochaetopsis , Minimidochium , and many published species of Codinaea and Dictyochaeta .
Article
Full-text available
Due to their submerged and cryptic lifestyle, the vast majority of fungal species are difficult to observe and describe morphologically, and many remain known to science only from sequences detected in environmental samples. The lack of practices to delimit and name most fungal species is a staggering limitation to communication and interpretation of ecology and evolution in kingdom Fungi. Here, we use environmental sequence data as taxonomical evidence and combine phylogenetic and ecological data to generate and test species hypotheses in the class Archaeorhizomycetes (Taphrinomycotina, Ascomycota). Based on environmental amplicon sequencing from a well-studied Swedish pine forest podzol soil, we generate 68 distinct species hypotheses of Archaeorhizomycetes, of which two correspond to the only described species in the class. Nine of the species hypotheses represent 78% of the sequenced Archaeorhizomycetes community, and are supported by long read data that form the backbone for delimiting species hypothesis based on phylogenetic branch lengths. Soil fungal communities are shaped by environmental filtering and competitive exclusion so that closely related species are less likely to co-occur in a niche if adaptive traits are evolutionarily conserved. In soil profiles, distinct vertical horizons represent a testable niche dimension, and we found significantly differential distribution across samples for a well-supported pair of sister species hypotheses. Based on the combination of phylogenetic and ecological evidence, we identify two novel species for which we provide molecular diagnostics and propose names. While environmental sequences cannot be automatically translated to species, they can be used to generate phylogenetically distinct species hypotheses that can be further tested using sequences as ecological evidence. We conclude that in the case of abundantly and frequently observed species, environmental sequences can support species recognition in the absences of physical specimens, while rare taxa remain uncaptured at our sampling and sequencing intensity.
Article
Full-text available
A high number of fungal strains were isolated from roots of Brassicaceae species collected across western and southern Europe, resulting in an unexpectedly rich collection of Cadophora species. These isolates enable us to present a new and comprehensive view of the ecological, morphological, and phylogenetic traits of root-inhabiting members of this helotialean genus. We provide phylogenetic placement of all of our isolates based on a four-gene dataset, analyze their phenotypic traits in relation to their phylogenetic relationships, and infer the potential distribution ranges of the species by sequence comparisons with available databases. We consider seven well supported phylogenetic lineages as species new to science. Six further lineages probably also represent new species but remain undescribed due to the lack of diagnostic morphological characters. Our results show that Cadophora, as currently circumscribed, is paraphyletic and encompasses a broad spectrum of morphologies and lifestyles. Among the new species, only two (C. ferruginea and C. constrictospora) form phialides and conidia typical of Cadophora, three species (C. echinata, C. gamsii and C. variabilis) produce chains of swollen hyphal segments that may function as holoblastic conidia, and one species (C. fascicularis) produces chains of holoblastic ramoconidia and conidia. Ancestral state reconstruction analysis suggests that phialidic conidiogenesis evolved several times in Cadophora s. lat. from a putatively holoblastic common ancestor. Most Cadophora lineages are rare as estimated from the availability of sequence data, in spite of having relatively wide distribution ranges, whereas five lineages may represent endemic relationships given their restricted distributions. Our dataset, probably the most comprehensive available for Cadophora, nevertheless shows knowledge gaps concerning the phylogenetic relationships within this genus and highlights a need for further investigation.
Article
Full-text available
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. the high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. to reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com. The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. the study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Article
Full-text available
The newly discovered systematic placement of Bactrodesmium abruptum, the lectotype species of the genus, prompted a re-valuation of the traditionally broadly conceived genus Bactrodesmium. Fresh material, axenic cultures and new DNA sequence data of five gene regions of six species, i.e. B. abruptum, B. diversum, B. leptopus, B. obovatum, B. pallidum and B. spilomeum, were studied. Bactrodesmium is a strongly resolved lineage in the Savoryellales (Sordariomycetes), supported by Bayesian and Maximum Likelihood methods. The genus Bactrodesmium is emended and delimited to hyphomycetes characterised by sporodochial conidiomata, mononematous often fasciculate conidiophores, holoblastic conidiogenesis and acrogenous, solitary, dry, pigmented, transversely or rarely longitudinally septate conidia. The conidia are seceding rhexolytically, exhibiting multiple secession patterns. An identification key to 35 species accepted in Bactrodesmium is given, providing the most important diagnostic characters. Novel DNA sequence data of B. longisporum and B. stilboideum confirmed their placement in the Sclerococcales (Eurotiomycetes). For other Bactrodesmium, molecular data are available for B. cubense and B. gabretae, which position them in the Dothideomycetes and Leotiomycetes, respectively. All four species are excluded from Bactrodesmium and segregated into new genera, Aphanodesmium, Gamsomyces and Kaseifertia. Classification of other 20 species and varieties not recognised in the genus is discussed. Based on new collections of Dematiosporium aquaticum, the type species of Dematiosporium, the genus is emended to accommodate monodictys-like freshwater lignicolous fungi of the Savoryellales characterised by effuse colonies, holoblastic conidiogenous cells and dictyosporous, pigmented conidia with a pore in each cell. Study of additional new collections, cultures and DNA sequence data revealed several unknown species, which are proposed as taxonomic novelties in the Savoryellales and closely related Pleurotheciales. Ascotaiwania latericolla, Helicoascotaiwania lacustris and Pleurotheciella erumpens are described from terrestrial, lentic and lotic habitats from New Zealand and France, respectively. New combinations are proposed for Helicoascotaiwania farinosa and Neoascotaiwania fusiformis. Relationships and systematics of the Savoryellales are discussed in the light of recent phylogenies and morphological patterns newly linked with the order through cultural studies.
Article
Full-text available
The internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) has been established (and is generally accepted) as a primary "universal" genetic barcode for fungi for many years, but the actual value for taxonomy has been heavily disputed among mycologists. Recently, twelve draft genome sequences, mainly derived from type species of the family Hypoxylaceae (Xylariales, Ascomycota) and the ex-epitype strain of Xylaria hypoxylon have become available during the course of a large phylogenomic study that was primarily aimed at establishing a correlation between the existing multi-gene-based genealogy with a genome-based phylogeny and the discovery of novel biosynthetic gene clusters encoding for secondary metabolites. The genome sequences were obtained using combinations of Illumina and Oxford nanopore technologies or PacBio sequencing, respectively, and resulted in high-quality sequences with an average N50 of 3.2 Mbp. While the main results will be published concurrently in a separate paper, the current case study was dedicated to the detection of ITS nrDNA copies in the genomes, in an attempt to explain certain incongruities and apparent mismatches between phenotypes and genotypes that had been observed during previous polyphasic studies. The results revealed that all of the studied strains had at least three copies of rDNA in their genomes, with Hypoxylon fragiforme having at least 19 copies of the ITS region, followed by Xylaria hypoxylon with at least 13 copies. Several of the genomes contained 2-3 copies that were nearly identical, but in some cases drastic differences, below 97% identity were observed. In one case, ascribable to the presence of a pseudogene, the deviations of the ITS sequences from the same genome resulted in only ca. 90% of overall homology. These results are discussed in the scope of the current trends to use ITS data for species recognition and segregation of fungi. We propose that additional genomes should be checked for such ITS polymorphisms to reassess the validity of this non-coding part of the fungal DNA for molecular identification.
Article
Full-text available
The Genera of Fungi series, of which this is the sixth contribution, links type species of fungal genera to their morphology and DNA sequence data. Five genera of microfungi are treated in this study, with new species introduced in Arthrographis , Melnikomyces , and Verruconis . The genus Thysanorea is emended and two new species and nine combinations are proposed. Kramasamuha sibika , the type species of the genus, is provided with DNA sequence data for first time and shown to be a member of Helminthosphaeriaceae ( Sordariomycetes ). Aureoconidiella is introduced as a new genus representing a new lineage in the Dothideomycetes .
Article
Full-text available
Phylogenetic analysis of some foliicolous lichens collected in Hainan Province, China, revealed a new lineage morphologically similar to Porina but phylogenetically related to Strigulaceae (Dothideomycetes), differing from the latter in ascus type. The monospecific genus Tenuitholiascus gen. nov. is introduced for the single species, T. porinoides sp. nov., which is placed in the new, monogeneric family Tenuitholiascaceae, sister to Strigulaceae in Strigulales. The new taxon closely resembles the genus Porina in external morphology and ascospore type, as well as the thin-walled asci and unbranched paraphyses. Yet, it is entirely unrelated to the latter, which belongs in class Lecanoromycetes in the order Gyalectales.
Article
Full-text available
Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi mainly characterized by perithecial ascomata and inoperculate unitunicate asci. Freshwater Sordariomycetes play an important role in ecosystems and some of them have the potential to produce bioactive compounds. This study documents and reviews the freshwater Sordariomycetes, which is one of the largest and important groups of fungi in aquatic habitats. Based on evidence from DNA sequence data and morphology, we introduce a new order Distoseptisporales, two new families, viz. Ceratosphaeriaceae and Triadelphiaceae, three new genera, viz. Aquafiliformis, Dematiosporium and Neospadicoides, 47 new species, viz. Acrodictys fluminicola, Aquafiliformis lignicola, Aquapteridospora fusiformis, Arthrinium aquaticum, Ascosacculus fusiformis, Atractospora aquatica, Barbatosphaeria lignicola, Ceratosphaeria aquatica, C. lignicola, Chaetosphaeria aquatica, Ch. catenulata, Ch. guttulata, Ch. submersa, Codinaea yunnanensis, Conioscypha aquatica, C. submersa, Cordana aquatica, C. lignicola, Cosmospora aquatica, Cylindrotrichum submersum, Dematiosporium aquaticum, Dictyochaeta cangshanensis, D. ellipsoidea, D. lignicola, D. submersa, Distoseptispora appendiculata, D. lignicola, D. neorostrata, D. obclavata, Hypoxylon lignicola, Lepteutypa aquatica, Myrmecridium aquaticum, Neospadicoides aquatica, N. lignicola, N. yunnanensis, Ophioceras submersum, Peroneutypa lignicola, Phaeoisaria filiformis, Pseudostanjehughesia lignicola, Rhodoveronaea aquatica, Seiridium aquaticum, Sporidesmiella aquatica, Sporidesmium lageniforme, S. lignicola, Tainosphaeria lunata, T. obclavata, Wongia aquatica, two new combinations, viz. Acrodictys aquatica, Cylindrotrichum aquaticum, and 9 new records, viz. Chaetomium globosum, Chaetosphaeria cubensis, Ch. myriocarpa, Cordana abramovii, Co. terrestris, Cuspidatispora xiphiago, Sporidesmiella hyalosperma, Stachybotrys chartarum,S. chlorohalonata. A comprehensive classification of the freshwater Sordariomycetes is presented based on updated literature. Phylogenetic inferences based on DNA sequence analyses of a combined LSU, SSU, RPB2 and TEF1α dataset comprising species of freshwater Sordariomycetes are provided. Detailed information including their habitats distribution, diversity, holotype, specimens collected and classification are provided.
Article
Full-text available
Fungi play an important role in litter decomposition in forest ecosystems and are considered an undersampled group in the Amazon biome. This study aims to describe the composition, richness and frequency of species of conidial fungi associated with palm trees in an area of the Amapá National Forest, State of Amapá, Brazil. Palm leaf litter was collected from July 2009 to June 2010, incubated in moist chambers and examined for the presence of fungi. One hundred and seven species of conidial fungi were identified, in 79 genera and 25 families. As for the relative frequency of the species, the majority (94.4%) was sporadic and occurred on leaflets. We report new records for South America (Chaetopsis intermedia, Chaetochalara laevis and Thysanophora verrucosa) and Brazil (Chloridium phaeosporum, Helminthosporiella stilbacea and Zygosporium geminatum), and 83 for the State of Amapá, while 15 are also new for the Brazilian Amazon. This study significantly increases the knowledge about the distribution of the fungal species in the Amazon biome, and emphasizes the importance of the conservation of these organisms particularly in view of the large number of sporadic species recorded.
Article
Dictyochaeta (Chaetosphaeriaceae) is a phialidic dematiaceous hyphomycete with teleomorphs classified in Chaetosphaeria. It is associated with significant variability of asexual morphological traits, which led to its broad delimitation. In the present study, six loci: nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), nuc 18S rDNA (18S), nuc 28S rDNA (28S), DNA-directed RNA polymerase II second largest subunit gene (RPB2), translation elongation factor 1-α (TEF1-α), and β-tubulin (TUB2), along with comparative morphological and cultivation studies, are used to reevaluate the concept of Dictyochaeta and establish species boundaries. Based on revised species, morphological characteristics of conidia (shape, septation, absence or presence of setulae), collarettes (shape), and setae (presence or absence) and an extension of the conidiogenous cell proved to be important at the generic level. The dual DNA barcoding using ITS and TEF1-α, together with TUB2, facilitated accurate identification of Dictyochaeta species. Thirteen species are accepted, of which seven are characterized in this study; an identification key is provided. It was revealed that D. fuegiana, the type species, is a complex of three distinct species including D. querna and the newly described D. stratosa. Besides, a new species, D. detriticola, and two new combinations, D. callimorpha and D. montana, are proposed. An epitype of D. montana is selected. Dictyochaeta includes saprobes on decaying wood, bark, woody fruits, and fallen leaves. Dictyochaeta is shown to be distantly related to the morphologically similar Codinaea, which is resolved as paraphyletic. Chaetosphaeria talbotii with a Dictyochaeta anamorph represents a novel lineage in the Chaetosphaeriaceae; it is segregated from Dictyochaeta, and a new genus Achrochaeta is proposed. Multigene phylogenetic analysis revealed that D. cylindrospora belongs to the Vermiculariopsiellales, and a new genus Tubulicolla is introduced.