ArticlePDF AvailableLiterature Review

Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments

Authors:

Abstract and Figures

Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes. Keywords: pigments evolution; biological properties; horizontal gene transfer; fluorescent pigments
Content may be subject to copyright.
Microorganisms2021,9,637.https://doi.org/10.3390/microorganisms9030637www.mdpi.com/journal/microorganisms
Review
EcologicalandBiotechnologicalAspectsofPigmented
Microbes:AWayForwardinDevelopmentofFood
andPharmaceuticalGradePigments
RameshChatragadda
1,
*andLaurentDufossé
2,
*
1
BiologicalOceanographyDivision(BOD),CouncilofScientificandIndustrialResearchNationalInstitute
ofOceanography(CSIRNIO),DonaPaula403004,Goa,India
2
ChemistryandBiotechnologyofNaturalProducts(CHEMBIOPROLab),EcoleSupérieured’Ingénieurs
RéunionOcéanIndien(ESIROI),Départementagroalimentaire,UniversitédeLaRéunion,
F97744SaintDenis,France
*Correspondence:chramesh@nio.org(R.C.);laurent.dufosse@univreunion.fr(L.D.)
Abstract:Microbialpigmentsplaymultiplerolesintheecosystemconstruction,survival,andfitness
ofallkindsoforganisms.Considerably,microbial(bacteria,fungi,yeast,andmicroalgae)pigments
offerawidearrayoffood,drug,colorants,dyes,andimagingapplications.Incontrasttothenatural
pigmentsfrommicrobes,syntheticcolorantsarewidelyusedduetohighproduction,highintensity,
andlowcost.Nevertheless,naturalpigmentsaregainingmoredemandoversyntheticpigmentsas
syntheticpigmentshavedemonstratedsideeffectsonhumanhealth.Therefore,researchonmicro
bialpigmentsneedstobeextended,explored,andexploitedtofindpotentialindustrialapplications.
Inthisreview,theevolutionaryaspects,thespatialsignificanceofimportantpigments,biomedical
applications,researchgaps,andfutureperspectivesaredetailedbriefly.Thepathogenicnatureof
somepigmentedbacteriaisalsodetailedforawarenessandsafehandling.Inaddition,pigments
frommacroorganismsarealsodiscussedinsomesectionsforcomparisonwithmicrobes.
Keywords:pigmentsevolution;biologicalproperties;horizontalgenetransfer;fluorescent
pigments
1.Introduction
Thesurvivaloflifeformsonearthisdependentonvariouspigments,includinglight
harvestingpigmentslikechlorophylls,phycoerythrin,andphycobiliproteins[1,2];harm
fullightfilteringpigmentslikeproteorhodopsins[3,4],melanin’s,pyomelanin,pyocya
nin,fluorescentproteins;predatordefendingpigmentslikeaplysioviolin[5],cephalopods
ink[6,7],Dendrobatidaefrogtoxins[8],microbialpigmentsandsoon[9].Thequantity,
quality,andattractivenessofpigmentsfromvarioussourcessuchasmicrobes,algae,in
vertebrates,andmacroorganismsmaycompriseeitherbeneficialortoxicchemicalcon
stituents.Notallcolorsappealingtooureyesarebeneficialtohumans.Therefore,inves
tigationsonthechemistryofpigmentmoleculesaregainingmoreinterestinthecurrent
research.In1666,SirIsaacNewtonhadinitiatedthebeginningofresearchoncolorsby
developingthefirstcirculardiagramofcolors,andlatervariousresearcherslikeHarris
(1776)andGoethe(1810).SirHumphryDavydemonstratedthecausesofvariouscolors
oforganicmolecules[10].Laterin1820,FriedrichAccumrevealedthemanysideeffects
ofsyntheticcolorantsinvariousfoods[11].SirWilliamHenryPerkinwasthefirstmanto
developthefirstsynthetictextilecolorcompound“mauvine”in1856.Withthisbriefhis
toricalbackground,thevisiblespectralpigmentsandinvisiblenonspectralpigmentsgain
moreattentionduetonumerousapplicationsinecology,evolution,biomedical,andin
dustrialperspectives.Theinternationalcolorsymbolismchartindicatesthateachcolor
Citation:Ramesh,C.;Dufossé,L.
EcologicalandBiotechnological
AspectsofPigmentedMicrobes:
AWayForwardinDevelopment
ofFoodandPharmaceuticalGrade
Pigments.Microorganisms2021,9,
637.https://doi.org/10.3390/
microorganisms9030637
AcademicEditor:StefanJunne
Received:1February2021
Accepted:15March2021
Published:18March2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti
tutionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://cre
ativecommons.org/licenses/by/4.0/).
Microorganisms2021,9,6372of27
hasaspecificmeaningindifferentcountriesandcultures.Despitenumerousknownap
plications,evidenceshowsthatvisualpigments(colorandlight)candirectlyinfluencethe
brain[12],psychology[13],tasteandflavorofhumans[14–16],andsciencecommunica
tion[17].Thelackofdietarypigmentslikecarotenoidsinourdailyfoodintakemaylead
tovariousdiseasesandinrarecasedeath[18].Visualandfoodcolorantsareplayinga
significantroleindecisionmakinginourlifetochoosedifferentfoodsandmanyother
things[19],throughvision,flavor,olfaction,gustation,andoralsomatosensationways
[16].
Humanscannotseenonspectralcolorsduetoalackoftrichromaticortetrachromatic
colorvisionrelatedconetypesintheireyes.Arecentstudydemonstratedhummingbirdsʹ
abilitytoperceivenonspectralcolorsviathetetrachromacyphenomenon[20];anotherex
ampleofcategoricalcolorperceptionwasobservedinEstrildidfinches[21].Numerous
studieshavebeenexploringthespectralpigmentsfrommicrobesandhigherorganisms
forvariousapplications.Nevertheless,nonspectralpigmentsandtheirecologicalim
portanceinnatureandbiotechnologicalapplicationsarenotwellstudied.Thus,studies
onnonspectralpigmentsremainaresearchgapinthecurrentglobalsciencedevelopment
scenario.Indeed,theplanetearthisstructuredwithvisibleandinvisiblemicroandmac
romoleculesproducedbyprokaryotesandeukaryotes,regulatingvariousphysical,chem
ical,biological,andgeologicalprocesses.Aftergoingthroughavastliteratureonmicro
bialpigments,itisnowunderstoodthatmicrobesandmacroorganismsproducevaried
pigmentmoleculeswithaspecificpurposeintherespectivemilieus.
Theresourceofpigments,productionrate,transport,price,sustainability,palatabil
ity,durability,effectiveness,legislativeandregulatoryapproval,anddemandbyconsum
ersaretheprimaryrequisitesforvariousbiotechnologicalapplicationsincommercialin
dustries.Inthiscontext,microbialpigmentsareattractinggreatdemandtodevelopfood
grade,textilegrade,anddruggradenaturalpigments.Thereasonsforhighdemandfor
microbialpigmentsaretheirpromisingunlimitedresources,highproductionofrequired
quantityofpigments,leastcosteffective,easycultivationandcanbeharvestedthrough
outtheyear,adaptabilitytovariousenvironments,optimization,stability,geneticengi
neering,nosideeffects,ecofriendly,biodegradable,andindispensableapplicationsin
multidisciplinaryaspectssuchasecological,evolutionary,biomedical,agriculture,and
industrialstudies[9,22–24].Manymicrobesareknowntoproduceawidevarietyofpig
mentmoleculeswithinnumerablebiologicalpropertiesandotherindustrialapplications
[9,25,26].Especially,naturalpigmentsofmicrobialoriginhavemanyadvantagesover
syntheticpigments.Althoughartificialcolorsaremoreattractiveandhavebeenwidely
usedaroundtheworldmarket(42%)[19,27–30],theyarefoundtohavemanysideeffects
(e.g.,teratogenic,cancer,etc.)[29–31],andsomearenotbiodegradable(e.g.,textiledyes),
causinghealthdisorderstoaquaticorganismsandhumans[32–34].Hence,researchers
aretryingtofindalternativephysical,chemical,andbiologicalmethodstodegradesyn
theticcolors[35–37]toavoidthesideeffectsposedtothepublicandenvironmentalhealth.
Therefore,insteadofdevelopingsyntheticcolorsandfindingnewmethodsfortheirdeg
radation,exploringnaturalpigmentsfrommicrobeswouldbringaboutinnumerablead
vantagesforthepublicandtheenvironment.
Lackofknowledgeonpigmentedmicrobialisolationsourcesandtheirbioprospect
ingmethodswouldmakeresearchersfacetrialsinmicrobialpigmentresearch.Thanks
mustbeextendedtoallthepastresearcherswhoexploredthepigmentedmicrobesfrom
variousenvironmentsanddemonstratednumerousapplicationsthroughvariousmeth
ods.Basedonthepublishedreviewoftheliterature[9,23,25,38–45],currentresearchers
arelookingfornovelstrains,newextractiontechniques,andnewapplicationsofpig
ments.Inthiscontext,thisreviewisintendedtoprovidethecurrentknowledgeonvari
ousaspectsofmicrobialpigmentssuchasclassification,evolution,horizontalgenetrans
fer,marketdemand,spatialdistribution,pigmenttherapy,andfutureperspectives.
Microorganisms2021,9,6373of27
2.ClassificationofPigments
Microbesdisplayallkindsofcolorhuessuchasblack,blue,bronze,brown,cream,
grey,green,orange,purple,indigo,pink,red,yellow,metallicgreen,red,yellow,and
rainbow.Thesepigmentscanbeclassifiedintovariouscategoriesbasedontheirvisual,
chemical,andspectralpropertiesandsourceoforigin(basedonmobilegenes)[9].Based
onvisualappearance,prokaryotesandeukaryotesdisplaymonochromatictopolychro
maticpigmentcombinationswithintheMunsellcolorsystem.Somehigherorganismslike
dragonfish[46,47]andhummingbirds[20]exceptionallydisplayorseecolorsbeyondour
visiblespectrumandnearinfraredspectrum.Theseincidentssuggestthathumanslack
nonspectralconestoperceivecolorsexistingbeyondthevisiblespectrum.Visually,pig
mentsrepresentthefollowingphenomenaonearth:(1)Naturalpigments,(2)Biolumines
cence,(3)Fluorescence,and(4)Iridescence(structuralcolors),and(5)Nonspectralcolors.
Humanscanperceiveallthecolorphenomenaexceptnonspectralcolors.
Functionally,fivedifferenttypesofpigmentsarefoundinnature:(1)Biologicalpig
ments,(2)Fossilandsedimentarypigments,(3)Mineralpigments,(4)Synthetic&identi
calnaturalpigments,and(5)Caramelpigments(Figure1).Biologicalpigmentsarede
rivedfromlivemicrobes,plants,andanimals.Incontrast,fossilpigmentsareindeedbio
logicallyoriginatedbutpreservedinfossilsformillionsofyears,actingasevolutionary
evidence[48–53].Inrarecases,fossilpigmentscanbeofsyntheticorigin[54].Mineral
pigmentsareinorganicinsolublepigmentsusedinartistic,cosmetic,archeological,and
evolutionarystudies[55–60].Incontrast,syntheticcolorantsaresynthesizedinthelabor
atoryforfoodcolorantsanddyeingapplications[61].Dozensofsyntheticcolorantsare
beingusedinfoodandbeverages[61,62].Caramelpigmentsarenaturalsugarbasedcol
orantsusedinavarietyoffoodandbeverageproducts.Thesecaramelcolorsareclassified
intoCaramelI,II,III,andIVclassestofulfilltherequirementoffoodsystems[63].Solva
tochromicityofthesepigmentsvariesaccordingtotheextractionsolvent.
.
Figure1.Awidearrayofpigmentedmicrobesseeninnature.Theabundanceofthetypeofpigmentedbacteriaisdepicted
inbarsbasedontheavailableliterature.Rainbowbacteriaareiridescent.Classificationofpigmentsbasedonvarious
aspectsofbiochromes.Chlorophyllpigmentsarenotincludedinthedataastheyareubiquitous.HGT:Horizontalgene
transfer.
Microorganisms2021,9,6374of27
Basedonchemicalgroups,microbialpigmentsarebroadlydifferentiatedintoanthra
quinones,carotenoids,indoles,phycobiliproteins,prodigiosin,rhodopsins,melanins,and
violacein[9,64].Forunderstandingtheevolutionaryaspects,rhodopsins,melanins,and
iridescent(structural)pigmentsarebrieflydiscussedherein.Microbialrhodopsinsare
lightharvestingphotoproteinsthatbindtoretinalandrespondtolight,whichhasevolu
tionaryimportance.TheserhodopsinarefoundinArchaea,bacteria,fungi,viruses[65],
andsomeeukaryotes[66].Basedontheknownfunctions,rhodopsinsareclassifiedas
lightsensors(rhodopsins,opsins),energyconservingtransmembraneprotonpumps
(bacteriorhodopsins,proteorhodopsins,andxanthorhodopsins),andtransmembrane
chloridepumps(halorhodopsins)[4].InHaloarchaea,asinglecellcanpossessmultiple
rhodopsinswithvariedfunctions[4].Melaninsarebiosynthetically,functionally,and
structurallydiversepigments,includingfiveknowngroupsofallomelanin,eumelanin,
andneuromelaninpheomelanin,andpyomelanin[67].Itisofteneasytoisolatemono
chromaticpigmentproducingmicroorganismsfromdifferentenvironments,butisolation
ofpolychromaticpigmentsproducingbacteriasuchasPseudomonasaeruginosa(blueand
greenpigments),Streptomycessp.(yellow,orangeandbrown)[25]andiridescentorshim
meringbacteria(VIBGYOR)[68](https://www.hoekmine.com;accessedon10January
2021;HoekmineBV,2020)arerarelyisolated.Structuralcolorsarealsorecordedinfossil
feathers,suggestingtheimportanceofevolutionaryaspects[69].
Ingeneral,microbespossessinnatepigmenttraits,butsomenonpigmentedmi
crobesacquirepigmenttraitsfrompigmentedmicrobes(seethesectionbelow:Horizontal
genetransfer).Forthisreason,microbialpigmentsareclassifiedasinnatepigmentsand
acquiredpigments.Often,pigmentedmicrobesreleasediffusibleandnondiffusiblepig
mentsinculturemedia.However,rarely,somepigmentsarewaterinsoluble,forinstance,
bluepigmentindigoidine[70],redpigment[71],andviolacein[72].Somepigmentseven
donotdissolveinsolvents;insuchincidents,resinextractioncanbeemployedtoextract
pigments.
3.FunctionsofMicrobialPigments
Microbialpigmentsareknowntoplayavarietyofecologicalfunctionsintheirmi
lieus.(Figure2).Antioxidantpropertiesofdifferentmicrobialpigmentsaredetailedinthe
supplementaryfileprovidedinthepreviousreviewpublishedin2019(seesupplementary
file)[9].ProdigiosinpigmentproducedbysomestrainsofVibriosp.functionasphotopro
tectantsagainstUVlight[73].ViolaceinpigmentofJanthinobacteriumlividumandChromo
bacteriumviolaceumdemonstratedantipredatoractivityagainstbacterivorousnanoflagel
lates,indicatingitsdefensivefunction[74].J.lividumassociatedwiththeskinsofsome
frogsandsalamanders,secretesviolaceinpigmenttoprotectthemfrompathogenicfungi,
Batrachochytriumdendrobatidis[75–77].Phenazinecompoundsproducedbybacteriaplay
multiplefunctions,includingchemicalsignaling,biofilmformation,survival,andviru
lence[78].Pyoverdine,afluorescentyellowgreenpigment,regulatesirontransportand
virulencefunctionsinPseudomonasfluorescens[79].Tambjamine,ayellowpigmentpro
ducedbyPseudoalteromonastunicata[80],issuggestedtohelpitshostpreventotherpred
atoryfoulingorganisms[81].Likewise,indigoidine,abluepigmentproducedbyPhaeo
bacterstrains,issuggestedtoinhibitcompetingbacteriaintheenvironment[82].Bacterial
melaninpigmentsactasphotoprotectants[83–87].Forinstance,Vibriocholeraemelanins
serveassurvivalfitnessfactorswhenphysicochemicalfactorsbecomeunfavorable[88].
Someendophyticfungireleasesanthraquinones,toprotectthehostplantfromdamage
duetoinsectsandmicrobes[89];while,fungalmelaninsdemonstratemultiplefunctions
[90].
Bacteriochlorophyllsarephotosensitizers(lightharvesters)inphotosyntheticbacte
riabutabsentinnonphotosyntheticbacteria[91].Nonphotosyntheticbacteriamayuti
lizeaselfphotosensitizationmechanism[92].Inphotosyntheticandnonphotosynthetic
bacteria,carotenoids,theaccessoryphotosyntheticpigmentsactasphotoprotectantsand
antioxidants,thusprotectingcellsfromdamageduetoUVandsunlightillumination
Microorganisms2021,9,6375of27
[91,93,94].Bacterialcommunitiesintheairwaterinterfacedidproducemorepigmenta
tiontotoleratesunlightandarerelativelydrugresistantcomparedtononpigmentedbac
teria[95].Theextremophilicbacteriaisolatedfromsaltlakes[96]andcoldenvironments
likeAntarctica[97,98]adoptenvironmentalstresswithcarotenoidsandotherpigments.
TheyellowpigmentofThermuswasproposedasaphotoprotectant[99].Carotenoidsof
archaea[100],yeasts[101,102],cyanobacteria,andalgae[103]alsofunctionasphotopro
tectants.Marennine,abluepigmentproducedbydiatomHasleaisinvolvedingreening
onoysters[104],anddisplayedaprophylacticeffect[105,106].Foodcolorants,drug,dye,
andotherbiotechnologicalapplicationsofmicrobialpigmentsaredetailedinthesection
below.
.
Figure2.Ecologicalfunctionsandotherapplicationsofimportantmicrobialpigments.
4.PathogenicityofPigmentedMicrobes
Despitethenumerousknownpigments’applications,theliteraturesuggeststhat
somepigmentedbacteriaareemergingaspathogensinaquaculturefarmsandevenin
humans.ViolaceinproducingbacteriumChromobacteriumviolaceumhasbeenreportedto
causeinfectionsinchildrenandadults[107].Janthinobacteriumlividum,anotherviolacein
producingbacterium,resultedinmassmortalityofrainbowtroutOncorhynchusmykissin
thehatcheryfromKorea[108].ProdigiosinproducingSerratiamarcescensalsoinfectsin
sects,otherinvertebrates,andvertebrates,includinghumans[109,110].StrainsofS.mar
cescensandC.violaceumarereportedtobeopportunisticpathogenstohumans[111,112].
Inallthesecases,thereisnoevidencesabouttheroleofviolaceinandprodigiosinpig
mentsinvirulencefunction.Arecentstudydemonstratedthatprodigiosinpigmentdid
notplayavirulencefunctioninentomopathogenicS.marcescens[113].
However,fewpigmentssuchasbacterialmelanins[114]andpyoverdines[115]reg
ulatevirulencefunction.TheredpigmentproducingfungisuchasFusariumandMonascus
producemycotoxins(e.g.,citrininand4,15diacetoxyscirpenol)linkedtopathogenicity
[116].Thus,researchersaresearchingforfungalspeciesthatdonotproduceanytoxins
[117].Wesuggestthatdetermininganisolatedpigmentedmicrobe’spathogenicity(he
molyticactivity)wouldhelptoavoidinfectionsandmortality.
5.HorizontalGeneTransfer(HGT)ofPigmentGenes
Inthelasttwodecades,studiesobservedrareincidencesofacquisitionortransferof
pigmentgenesbetweenrelatedandnonrelatedmicrobialcommunities.Thetransferor
acquisitionofpigmentgenesbetweenvariousmicroorganismsisasignofenvironmental
function.Theacquiredpigmenttraitactsasadefensivemechanismagainstothermicro
organisms,actingassunscreen(photoprotection)againstUVraysandharvestslightfor
enhancedphotosynthesis.Thisisanexcitingareaofresearchtostudytheecologicalim
portanceofpigmentgenetransferamongmicrobes.
Genescodingforlightharvestingpigmentproteinssuchasproteorhodopsinswere
reportedlytransferredbetweenplanktonicbacteriaandarchaealcommunitiesdispersed
onlyinthephoticzone[4].Theseproteorhodopsinsencodinggenesreportedlyacquired
Microorganisms2021,9,6376of27
byeukaryotes,dinoflagellateprotistsfrombacteria[66],andprotists’viruses[65].Bacteria
likeCollimonasCTweresuggestedtoproducebluepigment(violacein)viapigmentgene
acquisition,probablyacquiredfromJ.lividumand/orDuganellasp.[118](Figure3).LuxA
genesresponsibleforlightemissionintheluminescentbacteriawerealsoreportedlyac
quiredbynonluminousvibriosthroughHGTandbecomeluminescent[119].Similarly,
pathogenicityrelatedgeneswerealsosharedamongmanybacteriaviaHGT[120].Stud
yingtheHGTmechanismsinthesemicrobeswillhelpustounderstandtheroleofHGT
inevolution.
.
Figure3.AcquisitionofpigmentencodinggenesbyArchaea,bacteria,andviruses.
6.CosmopolitanDistributionofPigmentedMicrobes
Thedistributionpatternsofwellknownpigmentedmicrobeshavenotbeendetailed
intheliteraturetounderstandtheirevolutionaryspreadindifferentgeographicalenvi
ronments.Thecurrentliteraturepublishedsofarrevealsthatpigmentsareenvironment
specific,depthspecific,hostspecific,andfunctionallydistinct[9,121].Chlorophyllpig
mentsareubiquitous,whereasotherpigmentmoleculesarenotwidespreadbutrestricted
tospecificgroupsofbacteria,indicatingtheevolutionaryimportanceofpigments.Tolink
Microorganisms2021,9,6377of27
theevolutionaryconceptwithmicrobialpigmentdistribution,thewellknownprodigi
osin,violacein,andiridescentbacteriaaremappedinthisreview(Figure4).Themap
showsthecosmopolitandistributionofthesebacteriaintropical,subtropical,andtemper
ateenvironments.Thisspreadpatternwillhelpustounderstandthehydrothermalvent
basedoriginoflifetheorybytestingpresenceandabsence,abundance,andlowlevelsof
microbialpigmentsincoastalanddeepseaenvironmentsofdifferentgeographicalareas.
Thus,furtherindepthstudiesarerequiredtolinktheirdistributionpatternstoevolution
arystudies.
.
Figure4.Cosmopolitandistributionofwellknownpigmentedmicrobesindifferentgeographicalareas.
7.EvolutionofPigments
Fromtheevolutionaryperspective,theoriginofmicrobialpigmentsremainsvery
littleknown.Itiswellunderstoodthatallthechemicalmoleculeshaveoriginatedfrom
theoriginofelementsprocess[122].Pigmentsofprokaryotesandeukaryotesdisplayspe
cificecologicalandbioactivefunctions[9,123,124].Pigmentsarealsoidentifiedinnon
livingmatterslikefossils,sediments,andinorganicminerals[49,125].Fossilpigments
[49,126]andsedimentarypigments[125,127]aregaininginecologicalandevolutionary
importancetostudyenvironmentalandpopulationdynamicsandchemicalconstituents
ofthepast.Microbialpigmentsareubiquitousindifferentenvironmentsatvariousdepths
andevolvedforaspecificfunctioninrespectivemilieus[9].Incontrasttomicrobialpig
ments,mineralpigmentsareintenselycoloredinorganicmoleculeswithpotentialappli
cationsinartistic,cosmetic,forensic,archaeological,andevolutionaryperspectives[55].
Intheevolutionaryperspectiveandaccordingtotheclaymineraltheoryonthechemical
originoflife[128]andrecentevidences[129],wemaybeabletointerlinktheoriginof
molecules,includingpigmentsinprotocell,whichhelpedprotocellstosurviveinextreme
conditionsandsupportedtheformationofmulticellularorganisms.
Microorganisms2021,9,6378of27
Sinceprotocells’origin,naturalpigmentshavetransformedintovariousphenomena
suchaspigments,fluorescence,andbioluminescence,foundinprokaryotesandeukary
otes.Currently,researchersbelievethatlifehadoriginated4.5billionyearsagofromthe
extremeenvironmentlikehydrothermalventsintheocean[130]orwarmwaterpoolsin
thevolcaniclandorgeothermal(hotspring)areas[129,131,132],basedontheevidences
ofhypotheticprotocellstructures,i.e.,vesiclesformedbysimplefattyacids[130]andpro
teins[133],RNA[131]andDNAmolecules[129].Theabundantexternalredpigments
seenindeepseatubewormsathydrothermalventsareindeedhemoglobinsthatactas
bindingsitestooxygenandhydrogensulfideandtransportthesemoleculestointernal
bacterialsymbionts[134].Incontrast,theevidenceofopsinsandpigmentmoleculesin
thermalventsisnotasabundantasinthephoticzoneorterrestrialenvironments.Deep
seamicrobialpigmentsisunderexploredduetodifficultiesinthecultureandmainte
nanceofsamplesunderinsituconditions.Opsinsarephylogeneticallywelldiversified
andstructurallydifferentlightsensorsobservedinprokaryotes[135,136],invertebrates,
andvertebrates[137,138].Opsinssenselightandrespondtophysiological,chemical,and
behavioralfunctions,anddevelopevolutionaryadaptations.Phycobiliproteinsarelight
harvestingchromophorespresentincyanobacteriaandsomealgae,whoseevolutionary
originisrelatedtoglobinproteinsandGCcontents[139].Effortstounderstandtheevo
lutionofphycobiliproteinsincyanobacteria[140,141]andalgae[139,142]usingspecific
genesandtargetedmoleculesisunderway.Lightharvestingpigments,phycobiliproteins,
andchlorophyllsmighthavearisenindependentlyseveraltimesindifferentlineages
[143].Apieceofevidenceexistsontheoriginandbiosynthesisofbacteriochlorophyllaby
abacterialenzyme“3vinylbacteriochlorophyllhydratase[144],suggestingtheoriginof
enzymesfirst,followedbynotionsofcoexistenceofRNAandDNA[145]orhomogenous
RNAworld[131,146,147]orDNAworld[148],orstilldebatingprebioticDNAworld
[149].Theoriginofothermicrobialpigments(e.g.,prodigiosin,violacein,etc.)alsoneeds
tobeevaluatedforindepthunderstandingandtointerlinktheevidence.
Thechemistryandmechanismsinvolvedinformingpigmentsinprotocellsandtheir
divergenceintodifferentlineagesareyettobeunveiled.Thelackofenoughevidenceof
protocellsintheenvironmentmakesitdifficultforresearcherstounderstandprotocells’
exactorigin.Theexactenvironmentalconditionsthatfavoredprotocellstodevelopvari
ouspigmentsareunknown.Thesepigmentsmighthaveevolvedtotoleratetheintense
illuminationduringtheearlyearthformationgeneratedfromthechromosphere,photo
sphere,andatmosphere.Thisresearchangleremainsuntouchedconcerningtheevolution
ofchromophores.Furtherdetailedinvestigationsonspatialandtemporalpatternsofvar
iouspigmentedmicrobesfromdifferentenvironmentsandtheircompletegenomics,pro
teomics,andchemicalomicsmayrevealsomecluesontheorigin,evolution,andinher
itanceofpigmentsfromprotocelltoeukaryotes.Arecentconceptualstudyprovidesa
newideatounderstandthesynthesisanddevelopmentofprebioticmoleculesinprimitive
cells[150].Roboticsbasedchemicalsynthesisstudieshavebeenarisinginrecenttimes
[150,151],whichmayhelpustounderstandthepossiblewaysoforiginofprimitivemol
ecules.However,thisconceptisstilltobevalidatedinrealtime,basedonfieldevidences
ratherthanempiricalevidences.Inthecomingtwotothreedecades,life’strueoriginis
expectedtobeincompletelightwithintegratedevidence.
8.PigmentGeneCassettes
Microbesproducinghighpigmentyieldaretheprimaryresearchtargetsforcommer
cialpurposes.Manynaturalmicrobeshavefailedtoproducetheexpectedyieldofpig
mentsforfood,drug,cosmetics,andtextileapplications.Therefore,exploringtheentire
pigmentgenecassetteofaninterestedmicrobialspeciesisfoundtobethebestapproach
toachievehighpigmentyieldthroughrecombinantDNAtechnology.Someresearchers
mightnotbeawareofthegenesresponsibleforpigments;thus,thissectionhasgarnered
informationondifferentmicrobes’geneclusters.Piggeneclusterforprodigiosinbiosyn
Microorganisms2021,9,6379of27
thesisinSerratiamarcescens[152,153],andredgeneclusterforundecylprodigiosinbiosyn
thesisinStr.coelicolorA3(2)wereidentified[154].ProdigiosinsynthesizinggenesinHa
hellachejuensisKCTC2396,andPseudoalteromonasspecieswereidentifiedashapgeneclus
ter[155].IndigoidinebiosynthesizinggeneclusterinPhaeobactersp.strainY4Iencodedas
igioperon[82].ViolaceinbiosyntheticgeneclusterviowasidentifiedinChromobacterium
violaceum[156]andPseudoalteromonasspecies[157].Tambjamine,ayellowpigmentof
Pseudoalteromonastunicataissynthesizedbytamgenecluster[158].Pyomelaninsynthesiz
inggeneswerenamedashatABCDEoperon[159].Bikaverin,areddishpigmentproduced
byFusariumfujikuroi,carriesbikaverinsynthesizingbikgenecluster[160].Monascusred
pigmentsbiosynthesizinggenesinMonascusruberandM.pilosus,aredesignatedasMrPig,
andmokgeneclusters,correspondingly[161,162].OtherstrainsofM.pilosuspossess
MpPKS5andmppgenes[163],whereasM.purpureabearsMpPKS9andmokgenecluster
[164].ThecrtgenesareinvolvedinthebiosynthesisofcarotenoidsinBrevundimonassp.
[165],Hematococcuspluvialis[166],Deinococcuswulumuqiensis[167],Xanthophyllomycesden
drorhous(Phaffiarhodozyma)[168],Antarcticbacteria[169],andotherbacteria[170].Dunal
iellasp.carotenoidsaremainlytriggeredbytwoessentialgenesCGPandLCYB[171].In
Rhodotorulamucilaginosa,CARgeneclustersynthesizescarotenoids[172].
9.Substrates,MutagenAgents,andAdsorbents
Theuseofnaturalagroindustrialwasteshasbeenarecenttrendandstrategyinthe
biotechnologicalprocesstoincreasepigmentyield.Thenaturalandgeneticallyengi
neeredmicrobesaresubjectedtofermentationstudiestoidentifytheoptimalculturecon
ditionsformaximumpigmentyieldwithvarioussubstrates(Table1).Avarietyofcost
effectivesubstratessuchascopraseed,peanutseed,sesameseed,coconutoil,peanutoil,
sesameoil[173],sunfloweroil[174],peanutpowder[175],cornsteepliquor,cassava
waste[176],squidpenpowder[175],brownsugar[177],tanneryfleshing[178],ramhorn
peptone[179],kitchenwaste[180],wheatbran[181],casein,sweetpotatopowder[182],
bagasse[183],sawdust,palmoilfiberandricehusk[184]hadbeenutilizedtoenhance
andimprovetheprodigiosinpigmentproductionfromS.marcescens.Violaceinproduc
tionratewasincreasedusingbrownsugar,molasses,sugarcanebagasse,andpineapple
waste[185,186].TheenhancedproductionofpyocyaninfromPseudomonasaeruginosawas
successfulwithcottonseedmeal[187].
Monascuspigmentproductionwasenhancedbyutilizingtapiocastarch[188],cas
savapowder,coconutoilcake,groundnutoilcake,jackfruitseedpowder,ricebran,palm
kernelcake,sesameoilcake,spentbrewinggrain,tamarindseedpowder,wheatbran
[189,190],cheesewhey,grapewaste,ricehulls,soybeanbran[191],coconutresidue,corn
meal,peanutmeal,soybeanmeal[192],corncob[193],jackfruitseed[194],avarietyof
rice[195–197],durianseed[198],sugarcanebagasse[199],sweetpotato[200],andbrew
ery’sspentgrain[201].
Carotenoidsproductioninyeastswasimprovedbysupplementingpeatextracts
[202],grapejuice[203],beetmolasses,glucosesyrup,grapemust,maizeflourextract,soy
beanflourextract[204],canemolasses[205–207],sugarcanejuice[208],cornsyrup
[207,209],coconutmilk[210],brewermaltwaste[211],cornmeal[212],mustardwaste
[213],rawmaltextract[207],tomatowaste[214],chickenfeatherpeptone[215],wheyfil
trate,coconutwater[216],datepalmwaste,maizewaste,mangopeels,onionwaste,pea
nutleafandfruitwastes,potatopeels,ricestraw,sugarcanewaste,wheatstraw[217],and
powdersofonionpeel,mungbean,peapodsandpotatoskin[218].

Microorganisms2021,9,63710of27
Table1.Substratespromotinghighpigmentyieldfromvariousmicrobesarealonedetailedhereinforfurtherbiotechno
logicalapplications.
OrganismSubstratePigmentMaximumPigment
YieldReference
Bacteria
S.marcescensPeanutseedbrothProdigiosin38.75mg/mL[173]
S.marcescensCassavawasteProdigiosin49.50mg/mL[176]
S.marcescensTanneryfleshingProdigiosin33mg/mL[178]
S.marcescensRamhornpeptone Prodigiosin27.77mg/mL[179]
S.marcescensKitchenwaste Prodigiosin22.3mg/mL[180]
S.marcescensBagasseProdigiosin40.86gkg1[183]
S.marcescensSunfloweroil Undecylprodigiosin7.90mg/mL[174]
Chromobacteriumvio
laceumLiquidpineapplewasteViolacein57.90mg/mL[185,186]
PseudomonasaeruginosaCottonseedmealPyocyanin9.2μg/mL[187]
Fungi
M.purpureus
J
ackfruitseedMonascus10.2OD/g[189]
M.purpureusGrapewasteMonascus20–22.5g/L[191]
M.purpureusCornmealMonascus129.63U/g[192]
M.purpureusCorncob Monascus25.42OD/g[193]
M.purpureusBrewery’sspentgrainMonascus16.75UA500[201]
Yeast
RhodotorularubraPeatextractβCarotene1,256μgg1[202]
RhodotorulaglutinisGrapemustCarotenoid915.4μgg1[204]
Rh.glutinisMolassesCarotenoid185mgL1[206]
Rh.glutinisChickenfeatherpep
toneCarotenoid92mgL1[215]
Xanthophyllomycesden
drorhousGrapejuiceAstaxanthin9.8μgmL1[203]
X.dendrorhousMustardwasteAstaxanthin25.8mgL1[213]
X.dendrorhousMolassesCarotenoid40mgL1[205]
X.dendrorhousCoconutmilk Astaxanthin850μgg1[210]
UA:Absorbanceunits;OD:Opticaldensity.
Mutagenicagentssuchasvariouschemicalreagents,UVillumination,andgamma
radiationhavebeenusedtoenhancepigmentproductionfromnaturalandrecombinant
microbialstrains[219,220].CarotenoidcontentofRhodopseudomonaspalustriswasstimu
latedwithblue,yellow,white,green,incandescentlamp,red,halogen,andfluorescence
lamp[221].Theenhancedprodigiosinproductionwassuccessfulwithgammaradiation
[219].Stimulatedpigmentproductioninfilamentousfungiwasevidentwithblue(forca
rotenoids)[222],green,red,andUVlight(redpigmentbikaverin)[223].Mutationsinthe
genescausedFusariumfujikuroitoproducedifferenthuesofpigments[160].Foryeasts,
lowenergyionbeamimplantation[224],gammaradiation[225],lightemittingdiodes
[226,227],andUVlight[228]wereusedasaneffectiveapproachforcarotenoidsenhance
ment.Highproductionofphycobiliproteinswasachievedfromcyanobacteria,Pseudana
baenamucicolaculturesgrownunderwhitelight[229].Theincreaseofphycocyaninpro
ductionfromSpirulinaplatensis[230]andPseudanabaenasp.[231]wasevidentunderred
light.MaximumproductionofphycoerythrinandcarotenoidsfromPseudanabaenasp.was
observedingreenlight[231].Inunicellularmicroalgae,carotenoidsproductionisen
hancedthroughUVradiation[232–235],blueandredlight[236,237],lightemittingdiodes
[238,239],andvarioustoxicchemicals[233,240].
Microorganisms2021,9,63711of27
Theuseofvariousadsorbentsinmicrobialfermentationappearstobethemostef
fectivestrategytoenhancepigmentproductionandmaximumpigmentrecovery.Studies
haveutilizeddifferentinternaladsorbentsformaximumpigmentrecovery.Treatingcul
tureflaskswithSigmacotetoreduceattachmentofpigmentcellstoaglasssurface[241];
useofresinslikeX5,HZ806,andHZ802inculturesforpigmentadsorption[242];adding
ricehusks[243]oralginatebeadstoculturesforadsorbingmorepigmentcells[244];ad
ditionofDiaionHP20resin[245–247]andpolyurethanefoamcubes[248]tocellculture
aretheadditionalstrategiesinprodigiosinpigmentrecovery.Monascinpigmentsarere
coveredbyaddingrice,called“redmoldrice”[161].Highmonascuspigmentyieldwas
achievedwithstirreddrumbioreactor[249].Variousextractiontechniquessuchasionic
liquid–assistedextraction,microwaveassistedextraction,ultrasoundassistedextraction,
pressurizedliquidextraction,pulsedelectricfieldassistedextraction,andsupercritical
CO2extractionareemployedtorecoverpigmentsfromfungi[220].Findingthenewad
sorbentsandextractiontechniquestorecoverpigmentsareimportantrequisitesinmicro
bialpigmentresearch.
10.BiomedicalandIndustrialApplications
Thissectionprovidesvariousapplicationsofmicrobialpigmentsthatwerenotcov
eredinthepreviousreview[9].Dozensofsyntheticandnaturalpigmentshavebeenused
inbeverages,foods,dyeing,andtextiles(Figures5and6).Aredpigmented(relatedto
carotenoid)Arthrobactersp.offertheantitumoractivityagainstesophagealcancercells
[71].ProdigiosinproducedbyPseudomonasrubradisplayedantimicrobialactivityagainst
pathogenicbacteriaandyeast[250].ProdigiosinextractedfromS.marcescensdisplayed
potentialinsecticidalactivityagainstDrosophilamelanogasterlarvae[175],ants,cock
roaches,andtermites[251].Prodigiosinandglycolipidbiosurfactant’ssynergisticeffect
demonstratedantimicrobialactivityagainstpathogenicbacteria[252].Prodigiosinex
tractedfromZooshikellasp.andStreptomycessp.andotherpigmentsfrommarinebacteria
displayedpotentialapplicationinstainingandfoodcolorants[253].Currently,inourlab,
calciumoxalateanduricacidstonesdissolvingpigmentsfrommarinebacteriaarebeing
isolated.ProdigiosinfromS.marcescens[254]andviolaceinfromC.violaceum[255]prom
isetotreatthechagasdisease.Violaceinpigmentisemployedincottonfabricsdyeing
[256],andleaddetectingwholecellleadbiosensor[257].ViolaceinproducedbyMi
crobulbifersp.demonstratedantinematodeactivityagainstCaenorhabditiselegans[258];a
strainofviolaceinproducingChromobacteriumisolatedfromtheHimalayaregion,pro
ducedbybioplasticpolyhydroxyalkanoates[259].
IndigopigmentisolatedfromPseudomonassp.displayedantioxidantproperty[260].
Glaukothalin,abluepigmentproducedbyRheinheimerasp.,showedantibacterialactivity
againstfewmarinebacteria[261].PyocyaninfromPseudomonasaeruginosademonstrated
textiledyeingproperties,antifungalactivityagainstblastfungus,Magnaporthegrisea,and
antibacterialpropertiesagainstblightofrice,Xanthomonasoryzae[262].Micrococcussp.’s
yellowpigmentshowedexcellentwoundhealingandantiinflammatorypropertyinal
binorats[263].Bacterioruberincarotenoidsofhalophilicbacteriahavesignificantantiox
idantandantibacterialactivities[264].Microbialpigments(Actinorhodin,carotenoids,
flexirubin,melanin,phycocyanin,phycoerythrin,bluepigment)arealsousedtosynthe
sizevariousnanoparticleswithbiologicalpropertieslikeantioxidant,antimicrobial,anti
canceractivities[265].
Fungalpigmentswerereviewedtohaveawiderangeofapplicationsinfoodcolor
ants[266,267],bioactiveproperties,andtextiledyeing[40,268–270].Incontrast,bacterial
pigmentslikeprodigiosinandviolaceinareusedtocolorpapers,candles,soaps,ink,
clothes[271],andtextiledyeing[272].Monascuspigmentoranthocyaninpigmentareem
ployedasnoninvasivedyeindicatorsinsafecellviabilityassayforParamecium[273],Eu
glena[274],andbreastcancercells[275].Microbesisolatedfromcryosphereenvironments
alsoproducedvariouspigmentswithmultifacetedapplications[269,276,277],including
anticanceractivities[278].
Microorganisms2021,9,63712of27
Carotenoidsofarchaea[100]andThraustochytrids[279,280]havepotentialnutraceu
ticalapplications.However,pigmentsfrommarinearchaeaandprotistsremaintheleast
studiedgroups.RedalgaeextractsareusedtomakeL’OrealParisPureClayMaskforskin
glowandsmoothening.Similarly,othercommercialcosmeticproductshavebeendevel
opedfromcyanobacteriaandmicroalgae[281].Phycobiliproteinsfromcyanobacteriaand
algaedemonstratedcosmetic,dye,nutraceutical,andbioactiveapplications[282–284].
Marennine,abluepigmentproducedbydiatoms,Hasleaspecies,promisesantimicrobial,
antiviral,anticancer,andantioxidantactivities[285].
.
Figure5.Chemicalsstructuresofsyntheticpigments.
Microorganisms2021,9,63713of27
Figure6.Chemicalstructuresofimportantmicrobialpigments.
Microorganisms2021,9,63714of27
11.PhotoPigmentTherapy
Thecombinationsoflightandpigmentswerefoundtobeaneffectivestrategyin
antimicrobialassays.Astudyfoundthatthebactericidaleffectofbluelightirradiated
intracellularblackpigment(protoporphyrinIX)onPorphyromonasgingivalis[286].Like
wise,flavinmononucleotideactivatedbybluelightresultedininhibitionofStaphylococcus
aureusbiofilm[287].Suchstrategiesmaybeadoptedandemployedtoincreasethebioac
tiveeffectivityofmicrobialpigmentsagainstvariouspathogens.
12.MarketDemandforMicrobialPigments
Inrecenttimes,peoplearoundtheworldhavecometoknowtheharmfuleffectsof
syntheticcolorantsinfoods(Figure7).Thus,demandonnaturalpigmentsisincreasing
overartificialcolorants.In1971,theUnitedStatesspentaround1billionUSdollarsto
increasethesupplyofnaturalcolorantsfromvariousnaturalresources[288].Thereare
inadequateorscarcedataontheglobalmarketvalueoffoodgrademicrobialpigments.
Veryfewpigmentssuchasβ‐carotene,astaxanthin,andmonascusareavailableinthe
market.Lackofsurveysandliteratureonmicrobialpigments’costanddemandarebe
cominghurdlestoestimatetheactualglobalmarketdemandonmicrobialpigments.
Figure7.Anillustrationexplainingtherequirementofnaturalcolorantsoversyntheticcolorants.
MonascuspigmentsaretraditionalfoodcolorantswidelyusedinsoutheastAsian
countries,whichhadanestimatedmarketvalueof$12.0milliondollarsduring1992[289].
MonascuspigmentsareprohibitedintheUnitedStatesandEuropeduetothepresence
ofmycotoxins[290].Theglobalcommercialmarketvalueforcarotenoidsreached$1.2
billionin2010,$1.5billionin2014,andisexpectedtoreach$2.0billionby2022
[228,291,292],withanannualgrowthrateof5.7%fortheperiod2017–2022[293].Prodigi
osinandviolacein(chemicalstandards)arefetchingabout$5000×10
5
perkginthemarket
[271].Naturalcarotenoids(24%)aregainingahighmarketvalueof$350to7500kg
1
than
syntheticcarotenoids(76%)withavalueof$250–2000kg
1
[294].Astaxanthinandβ‐car
otenearethehighlydemandedpigmentsgloballywithanexpectedmarketvalueof$225
and$309milliondollarsby2018,respectively[295].Luteinisaxanthophyllpigmentex
pectedtogaina$308millionmarketvalueby2018[296].Theglobalmarketvalueofca
Microorganisms2021,9,63715of27
rotenoidsisprojectedtoreachupto2.0billionby2026[297].Accordingtotheglobalphy
cobiliproteinsmarketresearchreport,marketdemandforphycobiliproteinsisexpected
toriseby2026.Currently,thephycobiliproteins(10mg)priceinMerckrangesfrom$200
to$270.Arecentreporthasestimatedtheexpectedglobaldyesandpigmentsmarket
valueof$33.2to49.1billiondollarsby2027[298].Indeed,80to90%ofthecarotenoids
supplyinthemarketisfulfilledviachemicalsynthesis[299].However,duetosynthetic
colorants’sideeffectsandtheexpensivepigmentsourceofplants,microbialpigments
havebeengaininghighdemandinrecenttimes.Therefore,findingpotentialpromising
microbesbecamearesearchinterestinfoodanddrugindustries.Forinstance,yeastca
rotenoids’marketvaluehasdeclinedduetolowdryweightproduction(0.40%)compared
toalgae,Haematococcussp.(3.0%)[295].Inthecurrentglobalpopulationrisescenario,de
mandforediblemicrobialpigmentsasfoodcolorantsisexpectedtorisetofulfillthefood
industryrequirements[300].
Microbialspecieswithhighbiomassandpigmentyield,includingthegenetically
modifiedmicrobes,arehighlyinterestedinthecurrentresearch.Ontheotherhand,in
viewofthesideeffectsposedwithsyntheticcolorants[31,36,301],thescientificcommu
nityhastoreachthepublicthroughvarioussocialprogramstomakeawarenessaboutthe
importanceofnaturalpigmentsandnegativeimpactsofsyntheticcolorantsonhealth.
Theseawarenessprogramswouldsavemanylivesfromvarioushealthdisorders,includ
inglifethreateningcancer.
13.FuturePerspective
Microbialpigmentsdemonstratedawidevarietyofapplicationsinfood,drug,and
textiles.Thesenaturalpigmentscanreplacesyntheticcolorantsandfulfilltheemerging
needonfoodcolorantsintheglobalmarket.Microbialpigmentsplayanindirectrolein
theconservationofplantsandanimalresourcesbysubstitutingthemfrompigmentre
sources.Manyresearchersarerestrictedtopigmentslikeprodigiosin,violacein,monas
cin,astaxanthin,lutein,andphycobiliproteins.Therefore,exploringothermicrobialpig
mentsfromdifferentenvironmentswouldoffernovelandpotentialknownpigmentmol
eculesformultifacetedapplications.Researchonmicrobialpigmentswouldultimately
revealtheevolutionarylineagesoforiginoflifeandthedispersalofvariouschromophore
basedphenomenainalllineages.Isolationandchemicalcharacterizationofmicrobialpig
mentsareeasierthannonpigmentedmicrobes,whosecompounds’characterizationis
arduousandtimeconsuming.Thus,focusingonmicrobialpigmentswouldgarnermore
attentiontoresearchanddevelopmentandtheireconomicdemandinvariousindustries.
AuthorContributions:R.C.conceptualizedthereviewsections,wrotethemanuscript,anddrew
allfigures.L.D.wrotesectionsofthemanuscript,editedthewholetext.R.C.andL.D.bothvali
datedthefinalproof.Allauthorshavereadandagreedtothepublishedversionofthemanu
script.
Funding:LaurentDufossédeeplythankstheConseilRégionaldeLaRéunion,IndianOcean,for
continuousfinancialsupportofresearchprojectsdedicatedtomicrobialpigments.
DataAvailabilityStatement:Datasharingnotapplicable.
Acknowledgments:TheauthorChatragaddaRameshthankstheDirector,NIO,forhissupport
andencouragement.ThisisCSIR–NIO’scontributionreferencenumber:6706.LaurentDufossé
showsgratitudetoMireilleFouillaudandYanisCaroformanyyearscloserelationshipinmicro
bialpigmentsresearch.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
Microorganisms2021,9,63716of27
References
1. Scholes,G.D.;Mirkovic,T.;Turner,D.B.;Fassioli,F.;Buchleitner,A.Solarlightharvestingbyenergytransfer:Fromecologyto
coherence.EnergyEnviron.Sci.2012,5,9374–9393,doi:10.1039/c2ee23013e.
2. Croce,R.;vanAmerongen,H.Naturalstrategiesforphotosyntheticlightharvesting.Nat.Chem.Biol.2014,10,492–501,
doi:10.1038/nchembio.1555.
3. Béja,O.;Spudich,E.N.;Spudich,J.L.;Leclerc,M.;DeLong,E.F.Proteorhodopsinphototrophyintheocean.Nature2001,411,
786–789,doi:10.1038/35081051.
4. Frigaard,N.U.;Martinez,A.;Mincer,T.J.;DeLong,E.F.ProteorhodopsinlateralgenetransferbetweenmarineplanktonicBac
teriaandArchaea.Nature2006,439,847–850,doi:10.1038/nature04435.
5. Kamio,M.;Grimes,T.V.;Hutchins,M.H.;vanDam,R.;Derby,C.D.Thepurplepigmentaplysioviolininseahareinkdeters
predatorybluecrabsthroughtheirchemicalsenses.Anim.Behav.2010,80,89–100,doi:10.1016/j.anbehav.2010.04.003.
6. Derby,C.D.EscapebyInkingandSecreting:MarineMolluscsAvoidPredatorsThroughaRichArrayofChemicalsandMech
anisms.Biol.Bull.2007,213,274–289.
7. Derby,C.D.CephalopodInk:Production,Chemistry,FunctionsandApplications.Mar.Drugs2014,12,2700–2730,
doi:10.3390/md12052700.
8. Santos,J.C.;Coloma,L.A.;Cannatella,D.C.Multiple,recurringoriginsofaposematismanddietspecializationinpoisonfrogs.
Proc.Natl.Acad.Sci.USA2003,100,12792–12797,doi:10.1073/pnas.2133521100.
9. Ramesh,C.;Vinithkumar,N.V.;Kirubagaran,R.;Venil,C.K.;Dufossé,L.Multifacetedapplicationsofmicrobialpigments:Cur
rentknowledge,challengesandfuturedirectionsforpublichealthimplications.Microorganisms2019,7,186.
10. Davy,S.H.EssaysonHeat,Light,andtheCombinationsofLight,withaNewTheoryofRespiration.OntheGenerationofOxygenGas,
andtheCausesoftheColorsofOrganicBeings;1799.
11. Friedrich,A.C.ATreatiseonAdulterationsofFood,andCulinaryPoisons:ExhibitingtheFraudulentSophisticationsofBread,Beer,
Wine,SpiritousLiquors,Tea,Coffee,Cream,Confectionery,Vinegar,Mustard,Pepper,Cheese,OliveOil,Pickles,andOtherArticles
EmployedinDomesticEconomy;andMethodsofDetectingThem;Ab’mSmall:Philadelphia,PA,USA,1820.
12. Vandewalle,G.;Schmidt,C.;Albouy,G.;Sterpenich,V.;Darsaud,A.;Rauchs,G.;Berken,P.Y.;Balteau,E.;Degueldre,C.;
Luxen,A.;etal.BrainResponsestoViolet,Blue,andGreenMonochromaticLightExposuresinHumans:ProminentRoleof
BlueLightandtheBrainstem.PLoSONE2007,2,e1247,doi:10.1371/journal.pone.0001247.
13. Kurt,S.;Osueke,K.K.TheEffectsofColorontheMoodsofCollegeStudents.SAGEOpen2014,2014,1–12,
doi:10.1177/2158244014525423.
14. Spence,C.Onthepsychologicalimpactoffoodcolour.Flavour2015,4,21,doi:10.1186/s1341101500313.
15. PiquerasFiszman,B.;Giboreau,A.;Spence,C.Assessingtheinfluenceofthecoloroftheplateontheperceptionofacomplex
foodinarestaurantsetting.Flavour2013,2,24,doi:10.1186/20447248224.
16. Spence,C.;Levitan,C.A.;Shankar,M.U.;Zampini,M.Doesfoodcolorinfluencetasteandflavorperceptioninhumans?
Chemosens.Percept.2010,3,68–84,doi:10.1007/s120780109067z.
17. Crameri,F.;Shephard,G.E.;Heron,P.J.Themisuseofcolourinsciencecommunication.Nat.Commun.2020,11,5444.
18. Olson,J.A.Biologicalactionsofcarotenoids.J.Nutr.1989,119,94–95,doi:10.1093/jn/119.1.94.
19. Downham,A.;Collins,P.Colouringourfoodsinthelastandnextmillennium.Int.J.FoodSci.Technol.2000,35,5–22,
doi:10.1046/j.13652621.2000.00373.x.
20. Stoddard,M.C.;Eyster,H.N.;Hogan,B.G.;Morris,D.H.;Soucy,E.R.;Inouye,D.W.Wildhummingbirdsdiscriminatenonspec
tralcolors.Proc.Natl.Acad.Sci.USA2020,117,15112–15122,doi:10.1073/pnas.1919377117.
21. Caves,E.M.;Green,P.A.;Zipple,M.N.;Bharath,D.;Peters,S.;Johnsen,S.;Nowicki,S.Comparisonofcategoricalcolorpercep
tionintwoEstrildidfinches.Am.Nat.2020,doi:10.1086/712379.
22. Newsome,A.G.;Murphy,B.T.;VanBreemen,R.Isolationandcharacterizationofnaturalbluepigmentsfromunderexplored
sources.ACSSymp.Ser.2013,1138,105–125,doi:10.1021/bk20131138.ch008.
23. Venil,C.K.;Dufossé,L.;Devi,P.R.BacterialPigments:SustainableCompoundsWithMarketPotentialforPharmaandFood
Industry.Front.Sustain.FoodSyst.2020,4,100.
24. Dufossé,L.Research,Development,andProductionofMicroalgalandMicrobialBiocolorants.InBioprocessingforBiomolecules
Production;Molina,G.,Gupta,V.K.,Singh,B.N.,Gathergood,N.,Eds.;yJohnWiley&SonsLtd.,2020.
25. Ramesh,C.;Vinithkumar,N.V.;Kirubagaran,R.Marinepigmentedbacteria:Aprospectivesourceofantibacterialcompounds.
J.Nat.Sci.Biol.Med.2019,10,104–113.
26. Nawaz,A.;Chaudhary,R.;Shah,Z.;Dufossé,L.;Fouillaud,M.;Mukhtar,H.;ulHaq,I.Anoverviewonindustrialandmedical
applicationsofbiopigmentssynthesizedbymarinebacteria.Microorganisms2021,9,11.
27. Rajapaksha,G.K.M.;Wansapala,M.A.J.;Silva,A.B.G.DetectionofSyntheticColoursinSelectedFoods&BeveragesAvailable
inColomboDistrict,SriLanka.Int.J.Sci.Res.2017,6,801–808,doi:10.21275/ART20173280.
28. Saleem,N.;Umar,Z.N.;Khan,S.I.SurveyontheuseofsyntheticFoodColorsinFoodSamplesprocuredfromdifferenteduca
tionalinstitutesofKarachicity.J.Trop.Life.Sci.2013,3,1–7.
29. Okafor,S.N.;Obonga,W.;Ezeokonkwo,M.A.;Nurudeen,J.;Orovwigho,U.;Ahiabuike,J.AssessmentoftheHealthimplica
tionsofSyntheticandNaturalFoodColourantsACriticalReview.UKJ.Pharm.Biosci.2016,4,1–11.
30. Babitha,S.Microbialpigments.InBiotechnologyforAgroIndustrialResiduesUtilisation:UtilisationofAgroResidues;Nigam,P.S.,
Pandey,A.,Eds.;Springer:Berlin/Heidelberg,Germany,2009;pp.147–162ISBN9781402099410.
Microorganisms2021,9,63717of27
31. Burrows,A.J.D.Paletteofourpalates:Abriefhistoryoffoodcoloringanditsregulation.Compr.Rev.FoodSci.FoodSaf.2009,8,
394–408,doi:10.1111/j.15414337.2009.00089.x.
32. Lellis,B.;FávaroPolonio,C.Z.;Pamphile,J.A.;Polonio,J.C.Effectsoftextiledyesonhealthandtheenvironmentandbioreme
diationpotentialoflivingorganisms.Biotechnol.Res.Innov.2019,3,275–290,doi:10.1016/j.biori.2019.09.001.
33. Saini,R.D.Textileorganicdyes:Pollutingeffectsandeliminationmethodsfromtextilewastewater.Int.J.Chem.Eng.Res.2017,
9,121–136.
34. Berradi,M.;Hsissou,R.;Khudhair,M.;Assouag,M.;Cherkaoui,O.;ElBachiri,A.;ElHarfi,A.Textilefinishingdyesandtheir
impactonaquaticenvirons.Heliyon2019,5,e02711,doi:10.1016/j.heliyon.2019.e02711.
35. Jamee,R.;Siddique,R.Biodegradationofsyntheticdyesoftextileeffluentbymicroorganisms:Anenvironmentallyandeco
nomicallysustainableapproach.Eur.J.Microbiol.Immunol.2019,9,114–118,doi:10.1556/1886.2019.00018.
36. Roy,A.K.C.Ecofriendlydyesanddyeing.Adv.Mat.Tech.Env.2018,2,145–176.
37. Puvaneswari,N.;Muthukrishnan,J.;Gunasekaran,P.Toxicityassessmentandmicrobialdegradationofazodyes.IndianJ.Exp.
Biol.2006,44,618–626.
38. Mumtaz,R.;Bashir,S.;Numan,M.;Shinwari,Z.K.;Ali,M.Pigmentsfromsoilbacteriaandtheirtherapeuticproperties:Amini
review.Curr.Microbiol.2019,76,783–790,doi:10.1007/s0028401815572.
39. PaillièJiménez,M.E.;Stincone,P.;Brandelli,A.Naturalpigmentsofmicrobialorigin.Front.Sustain.FoodSyst.2020,4,590439.
40. Venil,C.K.;Velmurugan,P.;Dufossé,L.;Devi,P.R.;Ravi,A.V.Fungalpigments:Potentialcoloringcompoundsforwiderang
ingapplicationsintextiledyeing.J.Fungi2020,6,68,doi:10.3390/jof6020068.
41. Sen,T.;Barrow,C.J.;Deshmukh,S.K.Microbialpigmentsinthefoodindustry—challengesandthewayforward.Front.Nutr.
2019,6,7,doi:10.3389/fnut.2019.00007.
42. NarsingRao,M.P.;Xiao,M.;Li,W.J.Fungalandbacterialpigments:Secondarymetaboliteswithwideapplications.Front.Mi
crobiol.2017,8,1113,doi:10.3389/fmicb.2017.01113.
43. Darshan,N.;Manonmani,H.K.Prodigiosinanditspotentialapplications.J.FoodSci.Technol.2015,52,5393–5407,
doi:10.1007/s1319701517404.
44. deCarvalho,J.C.;Bicas,J.L.;Fernández,D.E.R.;Woiciechowski,A.L.;Medeiros,A.B.P.;Soccol,C.R.Naturalcolorantsfrom
microorganisms.InBiotechnologicalproductionofnaturalingredientsforfoodindustry;Bicas,J.L.,MarósticaJr,M.R.,Pastore,G.M.,
Eds.;BenthamSciencePublishersLtd.:Sharjah,2016;pp.288–321.
45. Numan,M.;Bashir,S.;Mumtaz,R.;Tayyab,S.;Rehman,N.U.;Khan,A.L.;Shinwari,Z.K.;AlHarrasi,A.Therapeuticapplica
tionsofbacterialpigments:Areviewofcurrentstatusandfutureopportunities.3Biotech2018,8,207.
46. Kenaley,C.P.ComparativeInnervationofCephalicPhotophoresoftheLoosejawDragonfishes(Teleostei:Stomiiformes:
Stomiidae):EvidenceforParallelEvolutionof.J.Morphol.2010,271,418–437,doi:10.1002/jmor.10807.
47. Kenaley,C.P.;DeVaney,S.C.;Fjeran,T.T.Thecomplexevolutionaryhistoryofseeingred:Molecularphylogenyandtheevolu
tionofanadaptivevisualsystemindeepseadragonfishes(Stomiiformes:Stomiidae).Evolution2014,68,996–1013,
doi:10.1111/evo.12322.
48. Roy,A.;Pittman,M.;Saitta,E.T.;Kaye,T.G.;Xu,X.Recentadvancesinamniotepalaeocolourreconstructionandaframework
forfutureresearch.Biol.Rev.2020,95,22–50,doi:10.1111/brv.12552.
49. Lindgren,J.Fossilpigments.Curr.Biol.2016,26,R445–R460.
50. Colleary,C.;Dolocan,A.;Gardner,J.;Singh,S.;Wuttke,M.;Rabenstein,R.;Habersetzer,J.;Schaal,S.;Feseha,M.;Clemens,M.;
etal.Chemical,experimental,andmorphologicalevidencefordiageneticallyalteredmelanininexceptionallypreservedfossils.
Proc.Natl.Acad.Sci.USA2015,112,12592–12597,doi:10.1073/pnas.1509831112.
51. Blumer,M.Pigmentsofafossilechinoderm.Nature1960,188,1100–1101,doi:10.1038/1881100b0.
52. Zhang,F.;Kearns,S.L.;Orr,P.J.;Benton,M.J.;Zhou,Z.;Johnson,D.;Xu,X.;Wang,X.Fossilizedmelanosomesandthecolour
ofCretaceousdinosaursandbirds.Nature2010,463,1075–1078,doi:10.1038/nature08740.
53. Babarovic,F.;Puttick,M.N.;Zaher,M.;Learmonth,E.;Gallimore,E.J.;Smithwick,F.M.;Mayr,G.;Vinther,J.Characterization
ofmelanosomesinvolvedintheproductionofnoniridescentstructuralfeathercoloursandtheirdetectioninthefossilrecord.
J.R.Soc.Interface2019,16,20180921,doi:10.1098/rsif.2018.0921.
54. PérezDiez,S.;FernándezMenéndez,L.J.;Morillas,H.;Martellone,A.;DeNigris,B.;Osanna,M.;Bordel,N.;Caruso,F.;Ma
dariaga,J.M.;Maguregui,M.Elucidationofthechemicalroleofthepyroclasticmaterialsonthestateofconservationofmural
paintingsfromPompeii.Angew.Chemie2020,doi:10.1002/ange.202010497.
55. Siddall,R.Mineralpigmentsinarchaeology:Theiranalysisandtherangeofavailablematerials.Minerals2018,8,201,
doi:10.3390/min8050201.
56. Reiche,I.Mineralpigments:Thecolourfulpaletteofnature.Eur.Mineral.UnionNotesMineral.2019,20,283–322,
doi:10.1180/EMUnotes.20.7.
57. Barnett,J.R.;Miller,S.;Pearce,E.Colourandart:Abriefhistoryofpigments.Opt.LaserTechnol.2006,38,445–453,
doi:10.1016/j.optlastec.2005.06.005.
58. Zilhão,J.;Angelucci,D.E.;BadalGarcía,E.;d’Errico,F.;Daniel,F.;Dayet,L.;Douka,K.;Higham,T.F.G.;MartínezSánchez,
M.J.;MontesBernárdez,R.;etal.SymbolicuseofmarineshellsandmineralpigmentsbyIberianNeandertals.Proc.Natl.Acad.
Sci.USA2010,107,1023–8,doi:10.1073/pnas.0914088107.
59. Aubert,M.;Lebe,R.;Oktaviana,A.A.;Tang,M.;Burhan,B.;Hamrullah;Jusdi,A.;Abdullah;Hakim,B.;Zhao,J.X.;etal.Earliest
huntingsceneinprehistoricart.Nature2019,576,442–445,doi:10.1038/s415860191806y.
Microorganisms2021,9,63718of27
60. Kurniawan,R.;Kadja,G.T.M.;Setiawan,P.;Burhan,B.;Oktaviana,A.A.;Rustan;Hakim,B.;Aubert,M.;Brumm,A.;Ismunan
dar.ChemistryofprehistoricrockartpigmentsfromtheIndonesianislandofSulawesi.Microchem.J.2019,146,227–233,
doi:10.1016/j.microc.2019.01.001.
61. Martins,N.;Roriz,C.L.;Morales,P.;Barros,L.;Ferreira,I.C.F.R.Foodcolorants:Challenges,opportunitiesandcurrentdesires
ofagroindustriestoensureconsumerexpectationsandregulatorypractices.TrendsFoodSci.Technol.2016,52,1–15,
doi:10.1016/j.tifs.2016.03.009.
62. Smith,J.;HongShum,L.FoodAdditivesDataBook;2nded.;BlackwellPublishingLtd.:Hoboken,NJ,USA,2011;.
63. Sengar,G.;Kumar,H.Foodcaramels:Areview.J.Food.Sci.Technol.2014,51,1686–1696.
64. Velmurugan,P.;Venil,C.K.;VeeraRavi,A.;Dufossé,L.Marinebacteriaisthecellfactorytoproducebioactivepigments:A
prospectivepigmentsourceintheocean.Front.Sustain.FoodSyst.2020,4,589655,doi:10.3389/fsufs.2020.589655.
65. Yutin,N.;Koonin,E.V.Proteorhodopsingenesingiantviruses.Biol.Direct2012,7,34,doi:10.1186/17456150734.
66. Slamovits,C.H.;Okamoto,N.;Burri,L.;James,E.R.;Keeling,P.J.Abacterialproteorhodopsinprotonpumpinmarineeukary
otes.Nat.Commun.2011,2,183,doi:10.1038/ncomms1188.
67. Cao,W.;McCallum,N.C.;Ni,Q.Z.;Li,W.;Boyce,H.;Mao,H.;Zhou,X.;Sun,H.;Thompson,M.P.;Battistella,C.;etal.Seleno
melanin:Anabioticseleniumanalogueofpheomelanin.J.Am.Chem.Soc.2020,142,12802–12810,doi:10.1021/jacs.0c05573.
68. Kientz,B.;Luke,S.;Vukusic,P.;Péteri,R.;Beaudry,C.;Renault,T.;Simon,D.;Mignot,T.;Rosenfeld,E.Auniqueselforgani
zationofbacterialsubcommunitiescreatesiridescenceinCellulophagalyticacolonybiofilms.Sci.Rep.2016,6,19906,
doi:10.1038/srep19906.
69. Vinther,J.;Briggs,D.E.G.;Clarke,J.;Mayr,G.;Prum,R.O.Structuralcolorationinafossilfeather.Biol.Lett.2010,6,128–131,
doi:10.1098/rsbl.2009.0524.
70. Buchan,A.;Neidle,E.L.;Moran,M.A.Diverseorganizationofgenesoftheβ‐ketoadipatepathwayinmembersofthemarine
Roseobacterlineage.Appl.Environ.Microbiol.2004,doi:10.1128/AEM.70.3.16581668.2004.
71. Afra,S.;Makhdoumi,A.;Matin,M.M.;Feizy,J.AnovelredpigmentfrommarineArthrobactersp.G20withspecificanticancer
activity.J.Appl.Microbiol.2017,123,1228–1236,doi:10.1111/jam.13576.
72. Choi,S.Y.;Lim,S.;Cho,G.;Kwon,J.;Mun,W.;Im,H.;Mitchell,R.J.Chromobacteriumviolaceumdeliversviolacein,ahydrophobic
antibiotic,toothermicrobesinmembranevesicles.Environ.Microbiol.2020,22,705–713,doi:10.1111/14622920.14888.
73. Borić,M.;Danevčič,T.;Stopar,D.ProdigiosinfromVibriosp.DSM14379;anewUVprotectivepigment.Microb.Ecol.2011,62,
528–536,doi:10.1007/s0024801198570.
74. Matz,C.;Deines,P.;Boenigk,J.;Arndt,H.;Eberl,L.;Kjelleberg,S.;Jürgens,K.Impactofviolaceinproducingbacteriaonsur
vivalandfeedingofbacterivorousnanoflagellates.Appl.Environ.Microbiol.2004,70,1593–1599,doi:10.1128/AEM.70.3.1593
1599.2004.
75. Brucker,R.M.;Harris,R.N.;Schwantes,C.R.;Gallaher,T.N.;Flaherty,D.C.;Lam,B.A.;Minbiole,K.P.C.Amphibianchemical
defense:AntifungalmetabolitesofthemicrosymbiontJanthinobacteriumlividumonthesalamanderPlethodoncinereus.J.Chem.
Ecol.2008,34,1422–1429,doi:10.1007/s1088600895557.
76. Harris,R.N.;Brucker,R.M.;Walke,J.B.;Becker,M.H.;Schwantes,C.R.;Flaherty,D.C.;Lam,B.A.;Woodhams,D.C.;Briggs,C.J.;
Vredenburg,V.T.;etal.Skinmicrobesonfrogspreventmorbidityandmortalitycausedbyalethalskinfungus.ISMEJ.2009,
3,818–824,doi:10.1038/ismej.2009.27.
77. Becker,M.H.;Brucker,R.M.;Schwantes,C.R.;Harris,R.N.;Minbiole,K.P.C.Thebacteriallyproducedmetaboliteviolaceinis
associatedwithsurvivalofamphibiansinfectedwithalethalfungus.Appl.Environ.Microbiol.2009,75,6635–6638,
doi:10.1128/AEM.0129409.
78. Pierson,L.S.;Pierson,E.A.Metabolismandfunctionofphenazinesinbacteria:Impactsonthebehaviorofbacteriaintheenvi
ronmentandbiotechnologicalprocesses.Appl.Microbiol.Biotechnol.2010,86,1659–1670,doi:10.1007/s0025301025093.
79. Visca,P.;Imperi,F.;Lamont,I.L.Pyoverdinesiderophores:Frombiogenesistobiosignificance.TrendsMicrobiol.2007,15,22–
30,doi:10.1016/j.tim.2006.11.004.
80. Franks,A.;Haywood,P.;Holmström,C.;Egan,S.;Kjelleberg,S.;Kumar,N.Isolationandstructureelucidationofanovelyellow
pigmentfromthemarinebacteriumPseudoalteromonastunicata.Molecules2005,10,1286–1291,doi:10.3390/10101286.
81. Egan,S.;James,S.;Holmström,C.;Kjelleberg,S.Correlationbetweenpigmentationandantifoulingcompoundsproducedby
Pseudoalteromonastunicata.Environ.Microbiol.2002,4,433–442,doi:10.1046/j.14622920.2002.00322.x.
82. Cude,W.N.;Mooney,J.;Tavanaei,A.A.;Hadden,M.K.;Frank,A.M.;Gulvik,C.A.;May,A.L.;Buchan,A.Productionofthe
antimicrobialsecondarymetaboliteindigoidinecontributestocompetitivesurfacecolonizationbythemarineroseobacterPhae
obactersp.strainY4I.Appl.Environ.Microbiol.2012,78,4771–4780,doi:10.1128/AEM.0029712.
83. NúñezPons,L.;Avila,C.;Romano,G.;Verde,C.;Giordano,D.UVprotectivecompoundsinmarineorganismsfromthesouth
ernocean.Mar.Drugs2018,16,336,doi:10.3390/md16090336.
84. Plonka,P.M.;Grabacka,M.Melaninsynthesisinmicroorganisms—Biotechnologicalandmedicalaspects.ActaBiochim.Pol.
2006,53,429–443,doi:20061329.
85. Kotob,S.I.;Coon,S.L.;Quintero,E.J.;Weiner,R.M.HomogentisicacidistheprimaryprecursorofmelaninsynthesisinVibrio
cholerae,aHyphomonasstrain,andShewanellacolwelliana.Appl.Environ.Microbiol.1995,61,1620–1622,doi:10.1128/aem.61.4.1620
1622.1995.
Microorganisms2021,9,63719of27
86. Ivanova,E.P.;Kiprianova,E.A.;Mikhailov,V.V.;Levanova,G.F.;Garagulya,A.D.;Gorshkova,N.M.;Yumoto,N.;Yoshikawa,
S.CharacterizationandidentificationofmarineAlteromonasnigrifaciensstrainsandemendationofthedescription.Int.J.Syst.
Bacteriol.1996,46,223–228,doi:10.1099/00207713461223.
87. Kahng,H.Y.;Chung,B.S.;Lee,D.H.;Jung,J.S.;Park,J.H.;Jeon,C.O.Cellulophagatyrosinoxydanssp.nov.,atyrosinaseproducing
bacteriumisolatedfromseawater.Int.J.Syst.Evol.Microbiol.2009,59,654–657,doi:10.1099/ijs.0.0032100.
88. Coyne,V.E.;AlHarthi,L.InductionofmelaninbiosynthesisinVibriocholerae.Appl.Environ.Microbiol.1992,58,2861–2865.
89. Gessler,N.N.;Egorova,A.S.;Belozerskaya,T.A.Fungalanthraquinones.Appl.Biochem.Microbiol.2013,49,85–99,
doi:10.1134/S000368381302004X.
90. Cordero,R.J.B.;Casadevall,A.Functionsoffungalmelaninbeyondvirulence.FungalBiol.Rev.2017,31,99–112,
doi:10.1016/j.fbr.2016.12.003.
91. Mathews,M.M.;Sistrom,W.R.Functionofcarotenoidpigmentsinnonphotosyntheticbacteria.Nature1959,184,1892–1893,
doi:10.1038/1841892a0.
92. Sakimoto,K.K.;Wong,A.B.;Yang,P.Selfphotosensitizationofnonphotosyntheticbacteriaforsolartochemicalproduction.
Science2016,351,74–77,doi:10.1126/science.aad3317.
93. Krinsky,N.I.Nonphotosyntheticfunctionsofcarotenoids.Philos.Trans.R.Soc.London.B1978,284,581–590,
doi:10.1098/rstb.1978.0091.
94. Agogué,H.;Joux,F.;Obernosterer,I.;Lebaron,P.Resistanceofmarinebacterioneustontosolarradiation.Appl.Environ.Micro
biol.2005,71,5282–5289,doi:10.1128/AEM.71.9.52825289.2005.
95. Hermansson,M.;Jones,G.W.;Kjelleberg,S.Frequencyofantibioticandheavymetalresistance,pigmentation,andplasmidsin
bacteriaofthemarineairwaterinterface.Appl.Environ.Microbiol.1987,53,2338–2342.
96. Mandelli,F.;Miranda,V.S.;Rodrigues,E.;Mercadante,A.Z.Identificationofcarotenoidswithhighantioxidantcapacitypro
ducedbyextremophilemicroorganisms.WorldJ.Microbiol.Biotechnol.2012,28,1781–1790,doi:10.1007/s112740110993y.
97. Dieser,M.;Greenwood,M.;Foreman,C.M.CarotenoidpigmentationinAntarcticheterotrophicbacteriaasastrategytowith
standenvironmentalstresses.Arctic,Antarct.Alp.Res.2010,42,396–405,doi:10.1657/1938424642.4.396.
98. Marizcurrena,J.J.;Cerdá,M.F.;Alem,D.;CastroSowinski,S.LivingwithPigments:TheColourPaletteofAntarcticLife.InThe
EcologicalRoleofMicroOrganismsintheAntarcticEnvironment;Springer:Cham,Switzerland,2019;pp.65–82.
99. Albuquerque,L.;DaCosta,M.S.Thefamilythermaceae.InTheProkaryotes:OtherMajorLineagesofBacteriaandTheArchaea;
Rosenberg,E.,DeLong,E.F.,Lory,S.,Stackebrandt,E.,Thompson,F.,Eds.;SpringerBerlinHeidelberg,2014;pp.955–987ISBN
9783642301230.
100. RodrigoBaños,M.;Garbayo,I.;Vílchez,C.;Bonete,M.J.;MartínezEspinosa,R.M.CarotenoidsfromHaloarchaeaandtheir
potentialinbiotechnology.Mar.Drugs2015,13,5508–5532,doi:10.3390/md13095508.
101. Moliné,M.;Flores,M.R.;Libkind,D.;DelCarmenDiéguez,M.;Farías,M.E.;VanBroock,M.Photoprotectionbycarotenoid
pigmentsintheyeastRhodotorulamucilaginosa:Theroleoftorularhodin.Photochem.Photobiol.Sci.2010,9,1145–1151,
doi:10.1039/c0pp00009d.
102. Moliné,M.;Libkind,D.;delCarmenDiéguez,M.;vanBroock,M.Photoprotectiveroleofcarotenoidsinyeasts:Responseto
UVBofpigmentedandnaturallyoccurringalbinostrains.J.Photochem.Photobiol.BBiol.2009,95,156–161,doi:10.1016/j.jpho
tobiol.2009.02.006.
103. Rastogi,R.P.;Sonani,R.R.;Madamwar,D.UVphotoprotectantsfromalgaesynthesisandbiofunctionalities.InAlgalGreen
Chemistry:RecentProgressinBiotechnology;Elsevier,2017;pp.17–38ISBN9780444640413.
104. Gastineau,R.;Hardivillier,Y.;Leignel,V.;Tekaya,N.;Morançais,M.;Fleurence,J.;Davidovich,N.;Jacquette,B.;Gaudin,P.;
Hellio,C.;etal.GreeningeffectonoystersandbiologicalactivitiesofthebluepigmentsproducedbythediatomHasleakar
adagensis(Naviculaceae).Aquaculture2012,368369,61–67,doi:10.1016/j.aquaculture.2012.09.016.
105. Falaise,C.;James,A.;Travers,M.A.;Zanella,M.;Badawi,M.;Mouget,J.L.Complexrelationshipsbetweenthebluepigment
marennineandmarinebacteriaofthegenusVibrio.Mar.Drugs2019,17,160,doi:10.3390/md17030160.
106. Turcotte,F.;Mouget,J.L.;Genard,B.;Lemarchand,K.;Deschênes,J.S.;Tremblay,R.ProphylacticeffectofHasleaostreariaculture
supernatantcontainingthepigmentmarenninetostabilizebivalvehatcheryproduction.Aquat.LivingResour.2016,29,401,
doi:10.1051/alr/2016032.
107. Jitmuang,A.HumanChromobacteriumviolaceuminfectioninSoutheastAsia:Casereportsandliteraturereview.SoutheastAsian
J.Trop.Med.PublicHealth2008,39,452–460.
108. Oh,W.T.;Giri,S.S.;Yun,S.;Kim,H.J.;Kim,S.G.;Kim,S.W.;Kang,J.W.;Han,S.J.;Kwon,J.;Jun,J.W.;etal.Janthinobacterium
lividumasanemergingpathogenicbacteriumaffectingrainbowtrout(Oncorhynchusmykiss)fisheriesinKorea.Pathogens2019,
8,146,doi:10.3390/pathogens8030146.
109. Petersen,L.M.;Tisa,L.S.Friendorfoe?areviewofthemechanismsthatdriveSerratiatowardsdiverselifestyles.Can.J.Microbiol.
2013,59,627–640,doi:10.1139/cjm20130343.
110. Grimont,F.;Grimont,P.A.D.ThegenusSerratia.InTheProkaryotes;Dworkin,M.,Falkow,S.,Rosenberg,E.,Schleifer,K.H.,
Stackebrandt,E.,Eds.;Springer:NewYork,2006;pp.219–244.
111. Mahlen,S.D.Serratiainfections:Frommilitaryexperimentstocurrentpractice.Clin.Microbiol.Rev.2011,24,755–791,
doi:10.1128/CMR.0001711.
112. Sharmin,S.;Kamal,S.M.ReviewonChromobacteriumviolaceum,ararebutfatalbacterianeedsspecialclinicalattention.Anwer
KhanMod.Med.Coll.J.2019,10,169–175,doi:10.3329/akmmcj.v10i2.44131.
Microorganisms2021,9,63720of27
113. Zhou,W.;Li,J.H.;Chen,J.;Liu,X.Y.;Xiang,T.T.;Zhang,L.;Wan,Y.J.Theredpigmentprodigiosinisnotanessentialvirulence
factorinentomopathogenicSerratiamarcescens.J.Invertebr.Pathol.2016,136,92–94,doi:10.1016/j.jip.2016.03.011.
114. Nosanchuk,J.D.;Casadevall,A.Thecontributionofmelanintomicrobialpathogenesis.Cell.Microbiol.2003,5,203–223,
doi:10.1046/j.14625814.2003.00268.x.
115. Kang,D.;Revtovich,A.V.;Chen,Q.;Shah,K.N.;Cannon,C.L.;Kirienko,N.V.PyoverdinedependentvirulenceofPseudomonas
aeruginosaisolatesfromcysticfibrosispatients.Front.Microbiol.2019,10,2048,doi:10.3389/fmicb.2019.02048.
116. Wang,Y.Z.;Ju,X.L.;Zhou,Y.G.ThevariabilityofcitrininproductioninMonascustypecultures.FoodMicrobiol.2005,22,145–
148,doi:10.1016/j.fm.2004.01.006.
117. Mapari,S.A.S.;Meyer,A.S.;Thrane,U.;Frisvad,J.C.Identificationofpotentiallysafepromisingfungalcellfactoriesforthe
productionofpolyketidenaturalfoodcolorantsusingchemotaxonomicrationale.Microb.CellFact.2009,8,24,doi:10.1186/1475
2859824.
118. Hakvåg,S.;Fjærvik,E.;Klinkenberg,G.;Borgos,S.E.F.;Josefsen,K.D.;Ellingsen,T.E.;Zotchev,S.B.ViolaceinproducingCol
limonassp.fromtheseasurfacemicrolayerofcostalwatersinTrøndelag,Norway.Mar.Drugs2009,7,576–588,
doi:10.3390/md7040576.
119. Urbanczyk,H.;Ast,J.C.;Kaeding,A.J.;Oliver,J.D.;Dunlap,P.V.Phylogeneticanalysisoftheincidenceofluxgenehorizontal
transferinVibrionaceae.J.Bacteriol.2008,190,3494–3504,doi:10.1128/JB.0010108.
120. Ziebuhr,W.;Ohlsen,K.;Karch,H.;Korhonen,T.;Hacker,J.Evolutionofbacterialpathogenesis.InProceedingsoftheCellular
andMolecularLifeSciences;1999;pp.56:719728.
121. Choi,S.Y.;Yoon,K.H.;Lee,J.I.;Mitchell,R.J.Violacein:Propertiesandproductionofaversatilebacterialpigment.BiomedRes.
Int.2015,2015,doi:10.1155/2015/465056.
122. Kobayashi,C.;Karakas,A.I.;Lugaro,M.TheOriginofElementsfromCarbontoUranium.Astrophys.J.2020,doi:10.3847/1538
4357/abae65.
123. Wang,S.;Xu,F.;Zhan,J.IntroductionofNaturalPigmentsfromMicroorganisms.InBiopigmentationandBiotechnologicalImple
mentations;Singh,O.V.,Ed.;JohnWiley&Sons,Inc.:Hoboken,NJ,USA,2017;pp.1–22.
124. Bandaranayake,W.M.Thenatureandroleofpigmentsofmarineinvertebrates.Nat.Prod.Rep.2006,23,223–55,
doi:10.1039/b307612c.
125. Leavitt,P.R.;Hodgson,D.A.SedimentaryPigments.InTrackingEnvironmentalChangeUsingLakeSediments.Volume3:Terrestrial,
Algal,andSiliceousIndicators;Smol,J.P.,Birks,H.J.B.,Last,W.M.,Eds.;KluwerAcademicPublishers,Dordrecht,TheNether
lands,2001;pp.1–31.
126. Sanger,J.E.Fossilpigmentsinpaleoecologyandpaleolimnology.Palaeogeogr.Palaeoclimatol.Palaeoecol.1988,62,343–359,
doi:10.1016/00310182(88)900612.
127. Reuss,N.Sedimentpigmentsasbiomarkersofenvironmentalchange,PhDThesis,UniversityofCopenhagen,2005.
128. Hashizume,H.RoleofClayMineralsinChemicalEvolutionandtheOriginsofLife.InClayMineralsinNature—TheirCharac
terization,ModificationandApplication;Valaškova,M.,Martynkova,G.S.,Eds.;InTechOpenScience:Rijeka,Croatia,2012;pp.
191–208.
129. Gómez,F.;Cavalazzi,B.;Rodríguez,N.;Amils,R.;Ori,G.G.;OlssonFrancis,K.;Escudero,C.;Martínez,J.M.;Miruts,H.Ultra
smallmicroorganismsinthepolyextremeconditionsoftheDallolvolcano,NorthernAfar,Ethiopia.Sci.Rep.2019,9,7907,
doi:10.1038/s41598019444408.
130. Jordan,S.F.;Rammu,H.;Zheludev,I.N.;Hartley,A.M.;Maréchal,A.;Lane,N.Promotionofprotocellselfassemblyfrommixed
amphiphilesattheoriginoflife.Nat.Ecol.Evol.2019,3,1705–1714,doi:10.1038/s415590191015y.
131. Kim,S.C.;Zhou,L.;Zhang,W.;O’Flaherty,D.K.;RondoBrovetto,V.;Szostak,J.W.AmodelfortheemergenceofRNAfroma
prebioticallyplausiblemixtureofribonucleotides,arabinonucleotides,and2′‐deoxynucleotides.J.Am.Chem.Soc.2020,
doi:10.1021/jacs.9b11239.
132. Belilla,J.;Moreira,D.;Jardillier,L.;Reboul,G.;Benzerara,K.;LópezGarcía,J.M.;Bertolino,P.;LópezArchilla,A.I.;López
García,P.HyperdiversearchaeanearlifelimitsatthepolyextremegeothermalDallolarea.Nat.Ecol.Evol.2019,3,1552–1561,
doi:10.1038/s4155901910050.
133. Dautel,D.R.;Champion,J.A.Proteinvesiclesselfassembledfromfunctionalglobularproteinswithdifferentchargeandsize.
Biomacromolecules2020,doi:10.1021/acs.biomac.0c00671.
134. Hourdez,S.;Weber,R.E.Molecularandfunctionaladaptationsindeepseahemoglobins.J.Inorg.Biochem.2005,99,130–141,
doi:10.1016/j.jinorgbio.2004.09.017.
135. Terakita,A.Theopsins.GenomeBiol.2005,6,213.
136. Yizhar,O.;Fenno,L.;Zhang,F.;Hegemann,P.;Deisseroth,K.MicrobialOpsinsAFamilyofSingleComponentToolsforOptical
ControlofNeuralActivity.ColdSpringHarb.Protoc.2011,6,doi:10.1101/pdb.top102.
137. Davies,W.I.L.;Collin,S.P.;Hunt,D.M.Molecularecologyandadaptationofvisualphotopigmentsincraniates.Mol.Ecol.2012,
21,3121–3158,doi:10.1111/j.1365294X.2012.05617.x.
138. Spudich,J.L.;Yang,C.S.;Jung,K.H.;Spudich,E.N.Retinylideneproteins:Structuresandfunctionsfromarchaeatohumans.
Annu.Rev.CellDev.Biol.2000,16,365–392.
139. Kannaujiya,V.K.;Shanthy,S.;Sinha,R.P.Evolutionofphycobiliproteins.InPhycobiliproteins:Recentdevelopmentsandfuture
applications;Kannaujiya,V.K.,Shanthy,S.,Sinha,R.P.,Eds.;SpringerNature:Singapore,2017;pp.7–19.
Microorganisms2021,9,63721of27
140. Green,B.R.EvolutionofLightHarvestingAntennasinanOxygenWorld.InEvolutionofPrimaryProducersintheSea;Academic
Press:Amsterdam,TheNetherlands,2007;pp.37–53ISBN9780123705181.
141. Apt,K.E.;Collier,J.L.;Grossman,A.R.Evolutionofthephycobiliproteins.J.Mol.Biol.1995,248,79–96,
doi:10.1006/jmbi.1995.0203.
142. Greenwold,M.J.;Cunningham,B.R.;Lachenmyer,E.M.;Pullman,J.M.;Richardson,T.L.;Dudycha,J.L.Diversificationoflight
captureabilitywasaccompaniedbytheevolutionofphycobiliproteinsincryptophytealgae.Proc.R.Soc.BBiol.Sci.2019,286,
20190655,doi:10.1098/rspb.2019.0655.
143. Palenik,B.;Haselkorn,R.Multipleevolutionaryoriginsofprochlorophytes,thechlorophyllbcontainingprokaryotes.Nature
1992,355,265–267,doi:10.1038/355265a0.
144. Cardona,T.Originofbacteriochlorophyllaandtheearlydiversificationofphotosynthesis.PLoSONE2016,11,e0151250,
doi:10.1371/journal.pone.0151250.
145. Xu,J.;Chmela,V.;Green,N.J.J.;Russell,D.A.A.;Janicki,M.J.J.;Góra,R.W.W.;Szabla,R.;Bond,A.D.D.;Sutherland,J.D.D.Se
lectiveprebioticformationofRNApyrimidineandDNApurinenucleosides.Nature2020,582,60–66,doi:10.1038/s41586020
23309.
146. Horning,D.P.;Joyce,G.F.AmplificationofRNAbyanRNApolymeraseribozyme.Proc.Natl.Acad.Sci.2016,113,9786–9791,
doi:10.1073/pnas.1610103113.
147. Yi,R.;Tran,Q.P.;Ali,S.;Yoda,I.;Adam,Z.R.;Cleaves,H.J.;Fahrenbach,A.C.Acontinuousreactionnetworkthatproduces
RNAprecursors.Proc.Natl.Acad.Sci.U.S.A.2020,117,13267–13274,doi:10.1073/pnas.1922139117.
148. Bernhardt,H.S.TheRNAworldhypothesis:Theworsttheoryoftheearlyevolutionoflife(exceptforalltheothers)a.Biol.
Direct2012,7,23,doi:10.1186/17456150723.
149. Teichert,J.S.;Kruse,F.M.;Trapp,O.DirectprebioticpathwaytoDNAnucleosides.Angew.Chem.Int.Ed.2019,58,9944–9947,
doi:10.1002/anie.201903400.
150. Wołos,A.;Roszak,R.;ŻądłoDobrowolska,A.;Beker,W.;MikulakKlucznik,B.;Spólnik,G.;Dygas,M.;Szymkuć,S.;Grzyb
owski,B.A.Syntheticconnectivity,emergence,andselfregenerationinthenetworkofprebioticchemistry.Science2020,369,
eaaw1955,doi:10.1126/science.aaw1955.
151. Mehr,S.H.M.;Craven,M.;Leonov,A.I.;Keenan,G.;Cronin,L.Auniversalsystemfordigitizationandautomaticexecutionof
thechemicalsynthesisliterature.Science2020,370,101–108,doi:10.1126/science.abc2986.
152. Harris,A.K.P.;Williamson,N.R.;Slater,H.;Cox,A.;Abbasi,S.;Foulds,I.;Simonsen,H.T.;Leeper,F.J.;Salmond,G.P.C.The
Serratiageneclusterencodingbiosynthesisoftheredantibiotic,prodigiosin,showsspecies‐andstraindependentgenomecon
textvariation.Microbiology2004,150,3547–3560,doi:10.1099/mic.0.272220.
153. Williamson,N.R.;Fineran,P.C.;Leeper,F.J.;Salmond,G.P.C.Thebiosynthesisandregulationofbacterialprodiginines.Nat.
Rev.Microbiol.2006,4,887–899,doi:10.1038/nrmicro1531.
154. Cerdeño,A.M.;Bibb,M.J.;Challis,G.L.AnalysisoftheprodigininebiosynthesisgeneclusterofStreptomycescoelicolorA3(2):
Newmechanismsforchaininitiationandterminationinmodularmultienzymes.Chem.Biol.2001,8,817–829,doi:10.1016/S1074
5521(01)000540.
155. Kim,D.;Park,Y.K.;Lee,J.S.;Kim,J.F.;Jeong,H.;Kim,B.S.;Lee,C.H.Analysisofaprodigiosinbiosyntheticgeneclusterfrom
themarinebacteriumHahellachejuensisKCTC2396.J.Microbiol.Biotechnol.2006,16,1912–1918.
156. Sánchez,C.;Braña,A.F.;Méndez,C.;Salas,J.A.Reevaluationoftheviolaceinbiosyntheticpathwayanditsrelationshiptoin
dolocarbazolebiosynthesis.ChemBioChem2006,7,1231–1240,doi:10.1002/cbic.200600029.
157. Zhang,J.J.;Tang,X.;Zhang,M.;Nguyen,D.;Moore,B.S.Broadhostrangeexpressionrevealsnativeandhostregulatoryele
mentsthatinfluenceheterologousantibioticproductioninGramnegativebacteria.MBio2017,8,e0129117,
doi:10.1128/mBio.0129117.
158. Burke,C.;Thomas,T.;Egan,S.;Kjelleberg,S.Theuseoffunctionalgenomicsfortheidentificationofageneclusterencoding
forthebiosynthesisofanantifungaltambjamineinthemarinebacteriumPseudoalteromonastunicata:Briefreport.Environ.Mi
crobiol.2007,9,814–818,doi:10.1111/j.14622920.2006.01177.x.
159. Hunter,R.C.;Newman,D.K.AputativeABCtransporter,hatABCDE,isamongmoleculardeterminantsofpyomelaninpro
ductioninPseudomonasaeruginosa.J.Bacteriol.2010,192,5962–5971,doi:10.1128/JB.0102110.
160. Wiemann,P.;Willmann,A.;Straeten,M.;Kleigrewe,K.;Beyer,M.;Humpf,H.U.;Tudzynski,B.Biosynthesisoftheredpigment
bikaverininFusariumfujikuroi:Genes,theirfunctionandregulation.Mol.Microbiol.2009,72,931–946,doi:10.1111/j.1365
2958.2009.06695.x.
161. Chen,W.;He,Y.;Zhou,Y.;Shao,Y.;Feng,Y.;Li,M.;Chen,F.EdiblefilamentousfungifromthespeciesMonascus:Earlytadi
tionalfermentations,modernmolecularbiology,andfuturegenomics.Compr.Rev.FoodSci.FoodSaf.2015,14,555–567,
doi:10.1111/15414337.12145.
162. Chen,W.;Chen,R.;Liu,Q.;He,Y.;He,K.;Ding,X.;Kang,L.;Guo,X.;Xie,N.;Zhou,Y.;etal.Orange,red,yellow:Biosynthesis
ofazaphilonepigmentsinMonascusfungi.Chem.Sci.2017,8,4917–4925,doi:10.1039/c7sc00475c.
163. Balakrishnan,B.;Karki,S.;Chiu,S.H.;Kim,H.J.;Suh,J.W.;Nam,B.;Yoon,Y.M.;Chen,C.C.;Kwon,H.J.Geneticlocalization
andinvivocharacterizationofaMonascusazaphilonepigmentbiosyntheticgenecluster.Appl.Microbiol.Biotechnol.2013,97,
6337–6345,doi:10.1007/s0025301347459.
164. Kwon,H.J.;Balakrishnan,B.;Kim,Y.K.SomeMonascuspurpureusgenomeslackthemonacolinKbiosynthesislocus.J.Appl.
Biol.Chem.2016,59,45–47,doi:10.3839/jabc.2016.009.
Microorganisms2021,9,63722of27
165. Nishida,Y.;Adachi,K.;Kasai,H.;Shizuri,Y.;Shindo,K.;Sawabe,A.;Komemushi,S.;Miki,W.;Misawa,N.Elucidationofa
carotenoidbiosynthesisgeneclusterencodinganovelenzyme,2,2′‐β‐hydroxylase,fromBrevundimonassp.strainSD212and
combinatorialbiosynthesisofneworrarexanthophylls.Appl.Environ.Microbiol.2005,71,4286–4296,
doi:10.1128/AEM.71.8.42864296.2005.
166. Gao,Z.;Li,Y.;Wu,G.;Li,G.;Sun,H.;Deng,S.;Shen,Y.;Chen,G.;Zhang,R.;Meng,C.;etal.TranscriptomeanalysisinHaem
atococcuspluvialis:Astaxanthininductionbysalicylicacid(SA)andjasmonicacid(JA).PLoSONE2015,10,e0140609,
doi:10.1371/journal.pone.0140609.
167. Xu,X.;Tian,L.;Xu,J.;Xie,C.;Jiang,L.;Huang,H.AnalysisandexpressionofthecarotenoidbiosynthesisgenesfromDeinococcus
wulumuqiensisR12inengineeredEscherichiacoli.AMBExpress2018,8,94,doi:10.1186/s1356801806241.
168. Álvarez,V.;RodríguezSáiz,M.;delaFuente,J.L.;Gudiña,E.J.;Godio,R.P.;Martín,J.F.;Barredo,J.L.ThecrtSgeneofXantho
phyllomycesdendrorhousencodesanovelcytochromeP450hydroxylaseinvolvedintheconversionofβ‐caroteneintoastaxanthin
andotherxanthophylls.FungalGenet.Biol.2006,43,261–272,doi:10.1016/j.fgb.2005.12.004.
169. Styczynski,M.;Rogowska,A.;Gieczewska,K.;Garstka,M.;Szakiel,A.;Dziewit,L.Genomebasedinsightsintotheproduction
ofcarotenoidsbyAntarcticbacteria,Planococcussp.ANT_H30andRhodococcussp.ANT_H53B.Molecules2020,25,4357,
doi:10.3390/molecules25194357.
170. Lee,P.C.;SchmidtDannert,C.Metabolicengineeringtowardsbiotechnologicalproductionofcarotenoidsinmicroorganisms.
Appl.Microbiol.Biotechnol.2002,60,1–11,doi:10.1007/s002530021101x.
171. Elleuch,F.;Hlima,H.B.;Barkallah,M.;Baril,P.;Abdelkafi,S.;Pichon,C.;Fendri,I.CarotenoidsoverproductioninDunaliella
sp.:Transcriptionalchangesandnewinsightsthroughlycopenecyclaseregulation.Appl.Sci.2019,9,5389,
doi:10.3390/app9245389.
172. Landolfo,S.;Ianiri,G.;Camiolo,S.;Porceddu,A.;Mulas,G.;Chessa,R.;Zara,G.;Mannazzu,I.CARgeneclusterandtranscript
levelsofcarotenogenicgenesinRhodotorulamucilaginosa.Microbiol.(UnitedKingdom)2018,164,78–87,doi:10.1099/mic.0.000588.
173. Giri,A.V.;Anandkumar,N.;Muthukumaran,G.;Pennathur,G.Anovelmediumfortheenhancedcellgrowthandproduction
ofprodigiosinfromSerratiamarcescensisolatedfromsoil.BMCMicrobiol.2004,4,11,doi:10.1186/14712180411.
174. Wei,Y.H.;Chen,W.C.EnhancedproductionofprodigiosinlikepigmentfromSerratiamarcescensSMΔRbymediumimprove
mentandoilsupplementationstrategies.J.Biosci.Bioeng.2005,99,616–622,doi:10.1263/jbb.99.616.
175. Wang,S.L.;Wang,C.Y.;Yen,Y.H.;Liang,T.W.;Chen,S.Y.;Chen,C.H.Enhancedproductionofinsecticidalprodigiosinfrom
SerratiamarcescensTKU011inmediacontainingsquidpen.ProcessBiochem.2012,47,1684–1690,
doi:10.1016/j.procbio.2011.07.010.
176. DeAraújo,H.W.C.;Fukushima,K.;Takaki,G.M.C.ProdigiosinproductionbySerratiamarcescensUCP1549usingrenewable
resourcesasalowcostsubstrate.Molecules2010,15,6931–6940,doi:10.3390/molecules15106931.
177. Aruldass,C.A.;Venil,C.K.;Zakaria,Z.A.;Ahmad,W.A.Brownsugarasalowcostmediumfortheproductionofprodigiosin
bylocallyisolatedSerratiamarcescensUTM1.Int.Biodeterior.Biodegrad.2014,95A,19–24,doi:10.1016/j.ibiod.2014.04.006.
178. Sumathi,C.;Mohanapriya,D.;Swarnalatha,S.;Dinesh,M.G.;Sekaran,G.Productionofprodigiosinusingtanneryfleshingand
evaluatingitspharmacologicaleffects.Sci.WorldJ.2014,2014,290327,doi:10.1155/2014/290327.
179. Kurbanoglu,E.B.;Ozdal,M.;Ozdal,O.G.;Algur,O.F.EnhancedproductionofprodigiosinbySerratiamarcescensMO1using
ramhornpeptone.Braz.J.Microbiol.2015,46,631–637,doi:10.1590/S1517838246246220131143.
180. Xia,S.;Veony,E.;Yang,Q.KitchenwasteasanovelavailablesubstrateforprodigiosinproductionbySerratiamarcescense.IOP
Conf.Ser.EarthEnviron.Sci.2018,171,012037,doi:10.1088/17551315/171/1/012037.
181. Arivizhivendhan,K.V.;Mahesh,M.;Boopathy,R.;Swarnalatha,S.;ReginaMary,R.;Sekaran,G.Antioxidantandantimicrobial
activityofbioactiveprodigiosinproducesfromSerratiamarcescensusingagriculturalwasteasasubstrate.J.FoodSci.Technol.
2018,55,2661–2670,doi:10.1007/s1319701831889.
182. Suryawanshi,R.K.;Patil,C.D.;Borase,H.P.;Salunke,B.K.;Patil,S.V.Studiesonproductionandbiologicalpotentialofprodi
giosinbySerratiamarcescens.Appl.Biochem.Biotechnol.2014,173,1209–1221,doi:10.1007/s1201001409213.
183. Xia,Y.;Wang,G.;Lin,X.;Song,X.;Ai,L.SolidstatefermentationwithSerratiamarcescensXd1enhancedproductionofprodi
giosinbyusingbagasseasaninertiamatrix.Ann.Microbiol.2016,66,1239–1247,doi:10.1007/s1321301612084.
184. Aniyan,N.B.;Thomas,S.K.SolidstatefermentationforprodigiosinproductionusingSerratiamarcescens.Int.Res.J.Eng.Technol.
2019,6,330–335.
185. Ahmad,W.A.;Ahmad,W.Y.W.;Zakaria,Z.A.;Yusof,N.Z.Optimizationofpigmentproduction:CaseofChromobacteriumvio
laceumandSerratiamarcescens.InApplicationofBacterialPigmentsasColorant;SpringerBriefsinMolecularScience,2012;pp.45–
56.
186. Ahmad,W.A.;Venil,C.K.;Aruldass,C.A.ProductionofviolaceinbyChromobacteriumviolaceumgrowninliquidpineapple
waste:Currentscenario.InBeneficialMicroorganismsinAgriculture,AquacultureandOtherAreas,MicrobiologyMonographs;Liong,
M.T.,Ed.;Springer:Berlin/Heidelberg,Germany,2015;pp.45–58.
187. ElFouly,M.Z.;Sharaf,A.M.;Shahin,A.A.M.;ElBialy,H.A.;Omara,A.M.A.BiosynthesisofpyocyaninpigmentbyPseudomonas
aeruginosa.J.Radiat.Res.Appl.Sci.2015,8,36–48,doi:10.1016/j.jrras.2014.10.007.
188. Timotius,K.H.Theinfluenceoftapiocaonthegrowth,theactivityofglucoamylaseandpigmentproductionofMonascuspur
pureusUKSW40insoybeansoakingwastewater.WorldJ.Microbiol.Biotechnol.2005,21,615–617,doi:10.1007/s112740041892
2.
Microorganisms2021,9,63723of27
189. Babitha,S.;Soccol,C.R.;Pandey,A.SolidstatefermentationfortheproductionofMonascuspigmentsfromjackfruitseed.Bio
resour.Technol.2007,98,1554–1560,doi:10.1016/j.biortech.2006.06.005.
190. Babitha,S.;Soccol,C.R.;Pandey,A.Jackfruitseed—AnovelsubstratefortheproductionofMonascuspigmentsthroughsolid
statefermentation.FoodTechnol.Biotechnol.2006,44,465–471.
191. Silveira,S.T.;Daroit,D.J.;Brandelli,A.PigmentproductionbyMonascuspurpureusingrapewasteusingfactorialdesign.Food
Sci.Technol.2008,41,170–174,doi:10.1016/j.lwt.2007.01.013.
192. Nimnoi,P.;Lumyong,S.ImprovingsolidstatefermentationofMonascuspurpureusonagriculturalproductsforpigmentpro
duction.FoodBioprocessTechnol.2011,4,1384–1390,doi:10.1007/s1194700902338.
193. Velmurugan,P.;Hur,H.;Balachandar,V.;KamalaKannan,S.;Lee,K.J.;Lee,S.M.;Chae,J.C.;Shea,P.J.;Oh,B.T.Monascus
pigmentproductionbysolidstatefermentationwithcorncobsubstrate.J.Biosci.Bioeng.2011,112,590–594,doi:10.1016/j.jbi
osc.2011.08.009.
194. Subhasree,R.S.;DineshBabu,P.;Vidyalakshmi,R.;Mohan,V.C.Effectofcarbonandnitrogensourcesonstimulationofpig
mentproductionbyMonascuspurpureusonjackfruitseeds.Int.J.Microbiol.Res.2011,2,184–187.
195. Vidyalakshmi,R.;Paranthaman,R.;Murugesh,S.;Singaravadivel,K.Microbialbioconversionofricebrokentofoodgrade
pigments.Glob.J.Biotechnol.Biochem.2009,4,84–87.
196. Dikshit,R.;Tallapragada,P.Monascuspurpureus:Apotentialsourcefornaturalpigmentproduction.J.Microbiol.Biotechnol.
2011,1,164–174.
197. Said,F.M.;Chisti,Y.;Brooks,J.Theeffectsofforcedaerationandinitialmoisturelevelonredpigmentandbiomassproduction
byMonascusruberinpackedbedsolidstatefermentation.Int.J.Environ.Sci.Dev.2010,1,1–4.
198. Srianta,I.;Novita,Y.;Kusumawati,N.Productionofmonascuspigmentsondurianseed:Effectofsupplementationofcarbon
source.J.PureAppl.Microbiol.2012,6,59–63.
199. Silveira,S.T.;Daroit,D.J.;Sant’Anna,V.;Brandelli,A.StabilitymodelingofredpigmentsproducedbyMonascuspurpureusin
submergedcultivationswithsugarcanebagasse.FoodBioprocessTechnol.2013,6,1007–1014,doi:10.1007/s1194701107108.
200. Srivastav,P.;Yadav,V.K.;Govindasamy,S.;Chandrasekaran,M.RedpigmentproductionbyMonascuspurpureususingsweet
potatobasedmediuminsubmergedfermentation.Nutrafoods2015,14,159–167,doi:10.1007/s137490150032y.
201. Silbir,S.;Goksungur,Y.NaturalredpigmentproductionbyMonascuspurpureusinsubmergedfermentationsystemsusinga
foodindustrywaste:Brewer’sspentgrain.Foods2019,8,161,doi:10.3390/foods8050161.
202. Martin,A.M.;Lu,C.;Patel,T.R.GrowthparametersfortheyeastRhodotorularubragrowninpeatextracts.J.Ferment.Bioeng.
1993,76,321–325,doi:10.1016/0922338X(93)90202J.
203. Meyer,P.S.;duPreez,J.C.AstaxanthinproductionbyaPhaffiarhodozymamutantongrapejuice.WorldJ.Microbiol.Biotechnol.
1994,10,178–183,doi:10.1007/BF00360882.
204. Buzzini,P.;Martini,A.ProductionofcarotenoidsbystrainsofRhodotorulaglutinisculturedinrawmaterialsofagroindustrial
origin.Bioresour.Technol.1999,71,41–44,doi:10.1016/S09608524(99)000565.
205. An,G.;Jang,B.;Cho,M.Cultivationofthecarotenoidhyperproducingmutant2A2NoftheredyeastXanthophyllomycesdendro
rhous(Phaffiarhodozyma)withmolasses.J.Biosci.Bioeng.2001,92,121–125.
206. Bhosale,P.;Gadre,R.V.β‐caroteneproductioninsugarcanemolassesbyaRhodotorulaglutinismutant.J.Ind.Microbiol.Biotech
nol.2001,26,327–332,doi:10.1038/sj.jim.7000138.
207. Libkind,D.;VanBroock,M.Biomassandcarotenoidpigmentproductionbypatagoniannativeyeasts.WorldJ.Microbiol.Bio
technol.2006,22,687–692,doi:10.1007/s1127400590913.
208. Squina,F.M.;Yamashita,F.;Pereira,J.L.;Mercadante,A.Z.ProductionofcarotenoidsbyRhodotorularubraandR.glutinisin
culturemediumsupplementedwithsugarcanejuice.FoodBiotechnol.2002,16,227–235,doi:10.1081/FBT120016776.
209. Buzzini,P.BatchandfedbatchcarotenoidproductionbyRhodotorulaglutinis—Debaryomycescastelliicoculturesincorn
syrup.J.Appl.Microbiol.2001,90,843–847,doi:10.1046/j.13652672.2001.01319.x.
210. DomínguezBocanegra,A.R.;TorresMuñoz,J.A.AstaxanthinhyperproductionbyPhaffiarhodozyma(nowXanthophyllomyces
dendrorhous)withrawcoconutmilkassolesourceofenergy.Appl.Microbiol.Biotechnol.2004,66,249–252,doi:10.1007/s00253
00416863.
211. Teo,I.T.N.;Chui,C.H.;Tang,J.C.O.;Lau,F.Y.;Cheng,G.Y.M.;Wong,R.S.M.;Kok,S.H.L.;Cheng,C.H.;Chan,A.S.C.;Ho,K.P.
AntiproliferationandinductionofcelldeathofPhaffiarhodozyma(Xanthophyllomycesdendrorhous)extractfermentedbybrewer
maltwasteonbreastcancercells.Int.J.Mol.Med.2005,16,931–936,doi:10.3892/ijmm.16.5.931.
212. Zheng,Y.G.;Hu,Z.C.;Wang,Z.;Shen,Y.C.LargescaleproductionofastaxanthinbyXanthophyllomycesdendrorhous.FoodBi
oprod.Process.2006,84,164–166,doi:10.1205/fbp.05030.
213. Tinoi,J.;Rakariyatham,N.;Deming,R.L.UtilizationofmustardwasteisolatesforimprovedproductionofastaxanthinbyXan
thophyllomycesdendrorhous.J.Ind.Microbiol.Biotechnol.2006,33,309–314,doi:10.1007/s1029500500543.
214. Chandi,G.K.;Singh,S.P.;Gill,B.S.;Sogi,D.S.;Singh,P.OptimizationofcarotenoidsbyRhodotorulaglutinis.FoodSci.Biotechnol.
2010,19,881–887,doi:10.1007/s1006801001258.
215. Taskin,M.;Sisman,T.;Erdal,S.;Kurbanoglu,E.B.Useofwastechickenfeathersaspeptoneforproductionofcarotenoidsin
submergedcultureofRhodotorulaglutinisMT5.Eur.FoodRes.Technol.2011,233,657–665,doi:10.1007/s0021701115612.
216. Kaur,B.;Chakraborty,D.;Kaur,H.ProductionandstabilityanalysisofyellowishpinkpigmentsfromRhodotorularubraMTCC
1446.InternetJ.Microbiol.2012,7,1–7,doi:10.5580/245b.
Microorganisms2021,9,63724of27
217. Bagy,M.M.K.;AbdAlla,M.H.;Nafady,N.A.;Morsy,F.M.;Mahmoud,G.A.Bioconversionofplantwastestoβ‐caroteneby
RhodotorulaglutinisKU550702.Eur.J.Biol.Res.2016,6,226–241,doi:10.5281/zenodo.163649.
218. Sharma,R.;Ghoshal,G.OptimizationofcarotenoidsproductionbyRhodotorulamucilaginosa(MTCC1403)usingagroindustrial
wasteinbioreactor:Astatisticalapproach.Biotechnol.Reports2020,25,e00407,doi:10.1016/j.btre.2019.e00407.
219. Elkenawy,N.M.;Yassin,A.S.;Elhifnawy,H.N.;Amin,M.A.OptimizationofprodigiosinproductionbySerratiamarcescensusing
crudeglycerolandenhancingproductionusinggammaradiation.Biotechnol.Reports2017,14,47–53,
doi:10.1016/j.btre.2017.04.001.
220. Kalra,R.;Conlan,X.A.;Goel,M.Fungiasapotentialsourceofpigments:Harnessingfilamentousfungi.Front.Chem.2020,8,
369,doi:10.3389/fchem.2020.00369.
221. Kuo,F.S.;Chien,Y.H.;Chen,C.J.EffectsoflightsourcesongrowthandcarotenoidcontentofphotosyntheticbacteriaRhodop
seudomonaspalustris.Bioresour.Technol.2012,113,315–318,doi:10.1016/j.biortech.2012.01.087.
222. Gmoser,R.;Ferreira,J.A.;Taherzadeh,M.J.;Lennartsson,P.R.Posttreatmentoffungalbiomasstoenhancepigmentproduction.
Appl.Biochem.Biotechnol.2019,189,160–174,doi:10.1007/s1201001902961y.
223. PalacioBarrera,A.M.;Areiza,D.;Zapata,P.;Atehortúa,L.;Correa,C.;PeñuelaVásquez,M.Inductionofpigmentproduction
throughmediacomposition,abioticandbioticfactorsintwofilamentousfungi.Biotechnol.Reports2019,21,e00308,
doi:10.1016/j.btre.2019.e00308.
224. Liu,Z.Q.;Zhang,J.F.;Zheng,Y.G.;Shen,Y.C.ImprovementofastaxanthinproductionbyanewlyisolatedPhaffiarhodozyma
mutantwithlowenergyionbeamimplantation.J.Appl.Microbiol.2008,104,861–872,doi:10.1111/j.13652672.2007.03603.x.
225. Najafi,N.;Ahmadi,A.R.;Hosseini,R.;Golkhoo,S.Gammairradiationasausefultoolfortheisolationofastaxanthinoverpro
ducingmutantstrainsofPhaffiarhodozyma.Can.J.Microbiol.2011,57,730–734,doi:10.1139/w11060.
226. Yen,H.W.;Zhang,Z.EnhancementofcellgrowthratebylightirradiationinthecultivationofRhodotorulaglutinis.Bioresour.
Technol.2011,102,9279–9281,doi:10.1016/j.biortech.2011.06.062.
227. DeCarvalho,J.C.;Cardoso,L.C.;Ghiggi,V.;Woiciechowski,A.L.;DeSouzaVandenberghe,L.P.;Soccol,C.R.Microbialpig
ments.InBiotransformationofWasteBiomassintoHighValueBiochemicals;Brar,S.,Dhillon,G.,Soccol,C.,Eds.;Springer:New
York,2014;pp.73–98ISBN9781461480051.
228. MataGómez,L.C.;Montañez,J.C.;MéndezZavala,A.;Aguilar,C.N.Biotechnologicalproductionofcarotenoidsbyyeasts:An
overview.Microb.CellFact.2014,13,12,doi:10.1186/147528591312.
229. Khatoon,H.;KokLeong,L.;AbduRahman,N.;Mian,S.;Begum,H.;Banerjee,S.;Endut,A.Effectsofdifferentlightsourceand
mediaongrowthandproductionofphycobiliproteinfromfreshwatercyanobacteria.Bioresour.Technol.2018,249,652–658,
doi:10.1016/j.biortech.2017.10.052.
230. Walter,A.;deCarvalho,J.C.;Soccol,V.T.;deFaria,A.B.B.;Ghiggi,V.;Soccol,C.R.Studyofphycocyaninproductionfrom
spirulinaplatensisunderdifferentlightspectra.BrazilianArch.Biol.Technol.2011,54,675–682,doi:10.1590/S1516
89132011000400005.
231. Mishra,S.K.;Shrivastav,A.;Maurya,R.R.;Patidar,S.K.;Haldar,S.;Mishra,S.EffectoflightqualityontheCphycoerythrin
productioninmarinecyanobacteriaPseudanabaenasp.isolatedfromGujaratcoast,India.ProteinExpr.Purif.2012,81,5–10,
doi:10.1016/j.pep.2011.08.011.
232. Sharma,R.;Sharma,V.K.EffectofultravioletBradiationongrowthandpigmentsofChlorellavulgaris.J.IndianBot.Siciety2015,
94,81–88.
233. Kamath,B.S.;Vidhyavathi,R.;Sarada,R.;Ravishankar,G.A.Enhancementofcarotenoidsbymutationandstressinducedca
rotenogenicgenesinHaematococcuspluvialismutants.Bioresour.Technol.2008,99,8667–8673,
doi:10.1016/j.biortech.2008.04.013.
234. Depauw,F.A.;Rogato,A.;D’Alcalá,M.R.;Falciatore,A.Exploringthemolecularbasisofresponsestolightinmarinediatoms.
J.Exp.Bot.2012,63,1575–1591,doi:10.1093/jxb/ers005.
235. Yi,Z.;Xu,M.;Magnusdottir,M.;Zhang,Y.;Brynjolfsson,S.;Fu,W.;MartinJézéquel,V.Photooxidativestressdrivenmuta
genesisandadaptiveevolutiononthemarinediatomPhaeodactylumtricornutumforenhancedcarotenoidaccumulation.Mar.
Drugs2015,13,6138–6151,doi:10.3390/md13106138.
236. Kobayashi,M.;Kakizono,T.;Nishio,N.;Nagai,S.Effectsoflightintensity,lightquality,andilluminationcycleonastaxanthin
formationinagreenalga,Haematococcuspluvialis.J.Ferment.Bioeng.1992,74,61–63,doi:10.1016/0922338X(92)90271U.
237. Xu,Y.;Harvey,P.J.CarotenoidproductionbyDunaliellasalinaunderredlight.Antioxidants2019,8,123,doi:10.3390/an
tiox8050123.
238. Fu,W.;Guomundsson,Ó.;Paglia,G.;Herjólfsson,G.;Andrésson,Ó.S.;Palsson,B.O.;Brynjólfsson,S.Enhancementofcarote
noidbiosynthesisinthegreenmicroalgaDunaliellasalinawithlightemittingdiodesandadaptivelaboratoryevolution.Appl.
Microbiol.Biotechnol.2013,97,2395–2403,doi:10.1007/s0025301245025.
239. Fu,W.;Gudmundsson,O.;Feist,A.M.;Herjolfsson,G.;Brynjolfsson,S.;Palsson,B.Maximizingbiomassproductivityandcell
densityofChlorellavulgarisbyusinglightemittingdiodebasedphotobioreactor.J.Biotechnol.2012,161,242–249,
doi:10.1016/j.jbiotec.2012.07.004.
240. Yi,Z.;Su,Y.;Xu,M.;Bergmann,A.;Ingthorsson,S.;Rolfsson,O.;SalehiAshtiani,K.;Brynjolfsson,S.;Fu,W.Chemicalmuta
genesisandfluorescencebasedhighthroughputscreeningforenhancedaccumulationofcarotenoidsinamodelmarinediatom
Phaeodactylumtricornutum.Mar.Drugs2018,16,272,doi:10.3390/md16080272.
Microorganisms2021,9,63725of27
241. Rokem,J.S.;Weitzman,P.ProdigiosinformationbySerratiamarcescensinachemostat.EnzymeMicrob.Technol.1987,9,153–155,
doi:10.1016/01410229(87)90069X.
242. Wang,X.;Tao,J.;Wei,D.;Shen,Y.;Tong,W.Developmentofanadsorptionprocedureforthedirectseparationandpurification
ofprodigiosinfromculturebroth.Biotechnol.Appl.Biochem.2004,40,277–280,doi:10.1042/ba20030210.
243. Xu,F.;Xia,S.;Yang,Q.StrategyforobtaininginexpensiveprodigiosinproductionbySerratiamarcescens.InProceedingsof
theInProceedingsofthe3rdInternationalConferenceonChemical,BiologicalandEnvironmentalEngineering,Chengdu,
China,23–25September2011;2011;Vol.20,pp.32–36.
244. Chen,W.C.;Yu,W.J.;Chang,C.C.;Chang,J.S.;Huang,S.H.;Chang,C.H.;Chen,S.Y.;Chien,C.C.;Yao,C.L.;Chen,W.M.;etal.
EnhancingproductionofprodigiosinfromSerratiamarcescensC3bystatisticalexperimentaldesignandporouscarrieraddition
strategy.Biochem.Eng.J.2013,78,93–100,doi:10.1016/j.bej.2013.02.001.
245. Song,M.J.;Bae,J.;Lee,D.S.;Kim,C.H.;Kim,J.S.;Kim,S.W.;Hong,S.I.Purificationandcharacterizationofprodigiosinproduced
byintegratedbioreactorfromSerratiasp.KH95.J.Biosci.Bioeng.2006,101,157–161.
246. Juang,R.S.;Yeh,C.L.Adsorptiverecoveryandpurificationofprodigiosinfrommethanol/watersolutionsofSerratiamarcescens
fermentationbroth.Biotechnol.BioprocessEng.2014,19,159–168,doi:10.1007/s1225701305472.
247. Bae,J.;Moon,H.;Oh,K.K.;Kim,C.H.;SilLee,D.;Kim,S.W.;Hong,S.I.Anovelbioreactorwithaninternaladsorbentfor
integratedfermentationandrecoveryofprodigiosinlikepigmentproducedfromSerratiasp.KH95.Biotechnol.Lett.2001,23,
1315–1319,doi:10.1023/A:1010573427080.
248. Domröse,A.;Klein,A.S.;HageHülsmann,J.;Thies,S.;Svensson,V.;Classen,T.;Pietruszka,J.;Jaeger,K.E.;Drepper,T.;Lo
eschcke,A.EfficientrecombinantproductionofprodigiosininPseudomonasputida.Front.Microbiol.2015,6,1–10,
doi:10.3389/fmicb.2015.00972.
249. Said,F.M.;Razali,M.A.A.Effectoffactorsontheredpigmentproductioninthestirreddrumbioreactor:Fractionalfactorial
designapproach.InProceedingsoftheProceedingsofthe2ndInternationalConferenceonBiosciencesandMedicalEngineer
ing(ICBME2019):TowardsInnovativeResearchandCrossDisciplinaryCollaborations,Bali,Indonesia,11–12April2019,Vol
ume2155;2019;p.020008.
250. Setiyono,E.;Adhiwibawa,M.A.S.;Indrawati,R.;Prihastyanti,M.N.U.;Shioi,Y.;Brotosudarmo,T.H.P.AnIndonesianMarine
Bacterium,Pseudoalteromonasrubra,ProducesAntimicrobialProdigininePigments.ACSOmega2020,
doi:10.1021/acsomega.9b04322.
251. Sagar,B.S.V.;Deepak,B.S.;Tejaswini,G.S.;Aparna,Y.;Sarada,J.Evaluationofprodigiosinpigmentforantimicrobialandin
secticidalactivitiesonselectedbacterialpathogens&householdpests.Int.J.Sci.Res.Biol.Sci.2019,6,96–102.
252. Mathlom,G.S.;Hayder,N.H.;Mahmood,M.S.SynergisticeffectofbiosurfactantandprodigiosinproducedbySerratiamar
cescensasantimicrobialagent.Curr.Res.Microbiol.Biotechnol.2018,6,1601–1615.
253. Ramesh,C.;Vinithkumar,N.V.;Kirubagaran,R.;Venil,C.K.;Dufosse,L.Applicationsofprodigiosinextractedfrommarinered
pigmentedbacteriaZooshikellasp.andactinomyceteStreptomycessp.Microorganisms2020,8,556.
254. Genes,C.;Baquero,E.;Echeverri,F.;Maya,J.D.;Triana,O.MitochondrialdysfunctioninTrypanosomacruzi:TheroleofSerratia
marcescensprodigiosininthealternativetreatmentofChagasdisease.ParasitesandVectors2011,4,66,doi:10.1186/175633054
66.
255. Canuto,J.A.;Lima,D.B.;deMenezes,R.R.P.P.B.;Batista,A.H.M.;Nogueira,P.C.D.N.;Silveira,E.R.;Grangeiro,T.B.;Nogueira,
N.A.P.;Martins,A.M.C.AntichagasiceffectofviolaceinfromChromobacteriumviolaceum.J.Appl.Microbiol.2019,127,1373–1380,
doi:10.1111/jam.14391.
256. Kanelli,M.;Mandic,M.;Kalakona,M.;Vasilakos,S.;Kekos,D.;NikodinovicRunic,J.;Topakas,E.Microbialproductionof
violaceinandprocessoptimizationfordyeingpolyamidefabricswithacquiredantimicrobialproperties.Front.Microbiol.2018,
9,1495,doi:10.3389/fmicb.2018.01495.
257. Hui,C.Y.;Guo,Y.;Liu,L.;Zhang,N.X.;Gao,C.X.;Yang,X.Q.;Yi,J.Geneticcontrolofviolaceinbiosynthesistoenableapigment
basedwholecellleadbiosensor.RSCAdv.2020,10,28106–28113,doi:10.1039/d0ra04815a.
258. Ballestriero,F.;Daim,M.;Penesyan,A.;Nappi,J.;Schleheck,D.;Bazzicalupo,P.;DiSchiavi,E.;Egan,S.Antinematodeactivity
ofviolaceinandtheroleoftheinsulin/IGF1pathwayincontrollingviolaceinsensitivityinCaenorhabditiselegans.PLoSONE
2014,13,e0210026,doi:10.1371/journal.pone.0109201.
259. Kumar,V.;Thakur,V.;Ambika;Kumar,S.;Singh,D.Bioplasticreservoirofdiversebacterialcommunitiesrevealedalongalti
tudegradientofPangiChambatransHimalayanregion.FEMSMicrobiol.Lett.2018,365,1–9,doi:10.1093/femsle/fny144.
260. Dua,A.;Chauhan,K.;Pathak,H.BiotransformationofindigopigmentbyindigenouslyisolatedPseudomonassp.HAV1and
assessmentofitsantioxidantproperty.Biotechnol.Res.Int.2014,2014,109249,doi:10.1155/2014/109249.
261. Grossart,H.P.;Thorwest,M.;Plitzko,I.;Brinkhoff,T.;Simon,M.;Zeeck,A.ProductionofaBluePigment(Glaukothalin)by
MarineRheinheimeraspp.Int.J.Microbiol.2009,2009,1–7,doi:10.1155/2009/701735.
262. DeBritto,S.;Gajbar,T.D.;Satapute,P.;Sundaram,L.;Lakshmikantha,R.Y.;Jogaiah,S.;Ito,S.ichiIsolationandcharacterization
ofnutrientdependentpyocyaninfromPseudomonasaeruginosaanditsdyeandagrochemicalproperties.Sci.Rep.2020,10,1542,
doi:10.1038/s41598020583356.
263. Srilekha,V.;Krishna,G.;Seshasrinivas,V.;Singaracharya,M.A.Evaluationofwoundhealingandantiinflammatoryactivity
ofamarineyellowpigmentedbacterium,Micrococcussp.IndianJ.GeoMarineSci.2018,47,2454–2464.
Microorganisms2021,9,63726of27
264. Fariq,A.;Yasmin,A.;Jamil,M.Production,characterizationandantimicrobialactivitiesofbiopigmentsbyAquisalibacillus
elongatusMB592,SalinicoccussesuviiMB597,andHalomonasaquamarinaMB598isolatedfromKhewraSaltRange,Pakistan.Ex
tremophiles2019,23,435–449,doi:10.1007/s00792019010957.
265. Venil,C.K.;Devi,P.R.;Dufossé,L.Synthesisofpigmentmediatednanoparticlesanditspharmacologicalapplications.InGreen
nanoparticlessynthesisandbiomedicalapplications;Patra,J.K.,Fraceto,F.L.,Das,G.,Campos,E.V.R.,Eds.;Springer:Switzerland
AG,2020;pp.331–346.
266. Mapari,S.A.S.;Nielsen,K.F.;Larsen,T.O.;Frisvad,J.C.;Meyer,A.S.;Thrane,U.Exploringfungalbiodiversityfortheproduction
ofwatersolublepigmentsaspotentialnaturalfoodcolorants.Curr.Opin.Biotechnol.2005,16,231–238,doi:10.1016/j.cop
bio.2005.03.004.
267. Nigam,P.S.;Luke,J.S.Foodadditives:Productionofmicrobialpigmentsandtheirantioxidantproperties.Curr.Opin.FoodSci.
2016,2,174–193,doi:10.1016/j.cofs.2016.02.004.
268. Lagashetti,A.C.;Dufossé,L.;Singh,S.K.;Singh,P.N.Fungalpigmentsandtheirprospectsindifferentindustries.Microorgan
isms2019,7,604,doi:10.3390/microorganisms7120604.
269. Duarte,A.W.F.;deMenezes,G.C.A.;eSilva,T.R.;Bicas,J.L.;Oliveira,V.M.;Rosa,L.H.Antarcticfungiasproducersofpigments.
InFungiofAntarctica;Rosa,L.H.,Ed.;SpringerNature:Cham,SwitzerlandAG,2019;pp.305–318.
270. Velmurugan,P.;KamalaKannan,S.;Balachandar,V.;Lakshmanaperumalsamy,P.;Chae,J.C.;Oh,B.T.Naturalpigmentex
tractionfromfivefilamentousfungiforindustrialapplicationsanddyeingofleather.Carbohydr.Polym.2010,79,262–268,
doi:10.1016/j.carbpol.2009.07.058.
271. Venil,C.K.;Zakaria,Z.A.;Ahmad,W.A.Bacterialpigmentsandtheirapplications.ProcessBiochem.2013,48,1065–1079,
doi:10.1016/j.procbio.2013.06.006.
272. Agha,Y.Y.;Bahjat,S.A.;Thanoon,M.F.Assessmentofbacterialpigmentsastextilecolorants.IndianJ.PublicHeal.Res.Dev.2019,
10,1564–1569,doi:10.37506/v10/i12/2019/ijphrd/192431.
273. Yamashita,K.;Tokunaga,E.NoninvasiveandsafecellviabilityassayforParameciumusingnaturalpigmentextractedfrom
food.Sci.Rep.2020,10,10996,doi:10.1038/s41598020677120.
274. Yamashita,K.;Yamada,K.;Suzuki,K.;Tokunaga,E.NoninvasiveandsafecellviabilityassayforEuglenagracilisusingnatural
foodpigment.PeerJ2019,7,e6636,doi:10.7717/peerj.6636.
275. Yamashita,K.;Tagawa,R.;Higami,Y.;Tokunaga,E.NoninvasiveandsafecellviabilityassayforbreastcancerMCF7cells
usingnaturalfoodpigment.Biology2020,9,227,doi:10.3390/biology9080227.
276. Vila,E.;HorneroMéndez,D.;Azziz,G.;Lareo,C.;Saravia,V.Carotenoidsfromheterotrophicbacteriaisolatedfromfildes
Peninsula,KingGeorgeIsland,Antarctica.Biotechnol.Reports2019,21,e00306,doi:10.1016/j.btre.2019.e00306.
277. Sajjad,W.;Din,G.;Rafiq,M.;Iqbal,A.;Khan,S.;Zada,S.;Ali,B.;Kang,S.Pigmentproductionbycoldadaptedbacteriaand
fungi:Colorfultaleofcryospherewithwiderangeapplications.Extremophiles2020,24,447–473,doi:10.1007/s0079202001180
2.
278. Tapia,C.;López,B.;Astuya,A.;Becerra,J.;Gugliandolo,C.;Parra,B.;Martínez,M.Antiproliferativeactivityofcarotenoid
pigmentsproducedbyextremophilebacteria.Nat.Prod.Res.2019,1–5,doi:10.1080/14786419.2019.1698574.
279. Aki,T.;Hachida,K.;Yoshinaga,M.;Katai,Y.;Yamasaki,T.;Kawamoto,S.;Kakizono,T.;Maoka,T.;Shigeta,S.;Suzuki,O.;et
al.Thraustochytridasapotentialsourceofcarotenoids.J.Am.OilChem.Soc.2003,80,789–794,doi:10.1007/s1174600307732.
280. Park,H.;Kwak,M.;Seo,J.W.;Ju,J.H.;Heo,S.Y.;Park,S.M.;Hong,W.K.EnhancedproductionofcarotenoidsusingaThrausto
chytridmicroalgalstraincontaininghighlevelsofdocosahexaenoicacidrichoil.BioprocessBiosyst.Eng.2018,41,1355–1370,
doi:10.1007/s0044901819637.
281. MorochoJácome,A.L.;Ruscinc,N.;Martinez,R.M.;deCarvalho,J.C.M.;SantosdeAlmeida,T.;Rosado,C.;Costa,J.G.;Velasco,
M.V.R.;Baby,A.R.(Bio)Technologicalaspectsofmicroalgaepigmentsforcosmetics.Appl.Microbiol.Biotechnol.2020,
doi:10.1007/s0025302010936x.
282. Kannaujiya,V.K.;Kumar,D.;Pathak,J.;Sinha,R.P.PhycobiliproteinsandTheirCommercialSignificance.InCyanobacteria:From
BasicSciencetoApplications;Mishra,A.K.,Tiwari,D.N.,Rai,A.N.,Eds.;AcademicPress:Cambridge,MA,USA,2018;pp.207–
216ISBN9780128146682.
283. Sonani,R.R.Recentadvancesinproduction,purificationandapplicationsofphycobiliproteins.WorldJ.Biol.Chem.2016,7,100–
109,doi:10.4331/wjbc.v7.i1.100.
284. Sonani,R.R.;Rastogi,R.P.;Madamwar,D.Naturalantioxidantsfromalgae:Atherapeuticperspective.InAlgalGreenChemistry:
RecentProgressinBiotechnology;Rastogi,R.,Madamwar,D.,Pandey,A.,Eds.;ElsevierB.V.:Amsterdam,TheNetherlands,2017;
pp.91–120ISBN9780444640413.
285. Gastineau,R.;Turcotte,F.;Pouvreau,J.B.;Morançais,M.;Fleurence,J.;Windarto,E.;Prasetiya,F.S.;Arsad,S.;Jaouen,P.;Babin,
M.;etal.Marennine,promisingbluepigmentsfromawidespreadHasleadiatomspeciescomplex.Mar.Drugs2014,12,3161–
3189,doi:10.3390/md12063161.
286. Yoshida,A.;Sasaki,H.;Toyama,T.;Araki,M.;Fujioka,J.;Tsukiyama,K.;Hamada,N.;Yoshino,F.Antimicrobialeffectofblue
lightusingPorphyromonasgingivalispigment.Sci.Rep.2017,7,5225,doi:10.1038/s41598017057061.
287. Leelanarat,K.;Katsuta,Y.;Katsuragi,H.;Watanabe,F.Antibacterialactivityofbluehighpowerlightemittingdiodeactivated
flavinmononucleotideagainstStaphylococcusaureusbiofilmonasandblastedandetchedsurface.PhotodiagnosisPhotodyn.Ther.
2020,31,101855.
288. FNBFoodColors.FoodandNutritionBoard.;NationalAcademyofSciences,Washington,D.C.,1971;.
Microorganisms2021,9,63727of27
289. Carvalho,J.C.;Pandey,A.;Babitha,S.;Soccol,C.R.ProductionofMonascusbiopigments:Anoverview.AgroFoodInd.Hi.Tech.
2003,14,37–42.
290. Dufossé,L.;Galaup,P.;Yaron,A.;Arad,S.M.;Blanc,P.;Murthy,K.N.C.;Ravishankar,G.A.Microorganismsandmicroalgaeas
sourcesofpigmentsforfooduse:Ascientificoddityoranindustrialreality?TrendsFoodSci.Technol.2005,16,389–406,
doi:10.1016/j.tifs.2005.02.006.
291. Venil,C.K.;Aruldass,C.A.;Dufossé,L.;Zakaria,Z.A.;Ahmad,W.A.Currentperspectiveonbacterialpigments:Emerging
sustainablecompoundswithcoloringandbiologicalpropertiesfortheindustryanincisiveevaluation.RSCAdv.2014,4,39523,
doi:10.1039/c4ra06162d.
292. Saini,R.K.;Keum,Y.S.ProgressinMicrobialCarotenoidsProduction.IndianJ.Microbiol.2017,57,129–130,doi:10.1007/s12088
0160637x.
293. McWilliams,A.TheglobalmarketforcarotenoidsAvailableonline:https://www.bccresearch.com/marketresearch/foodand
beverage/theglobalmarketforcarotenoids.html(accessedon25January2021).
294. DeinoveCarotenoidsMarket.NaturalCarotenoidsMeetingConsumerNeeds.Availableonline:http://www.de
inove.com/en/profile/strategyand‐markets/carotenoidsmarket/(accessedon18August2020).
295. Bhosale,P.;Bernstein,P.S.Microbialxanthophylls.Appl.Microbiol.Biotechnol.2005,68,445–455,doi:10.1007/s0025300500328.
296. Lin,J.H.;Lee,D.J.;Chang,J.S.Luteinproductionfrombiomass:Marigoldflowersversusmicroalgae.Bioresour.Technol.2015,
184,421–428,doi:10.1016/j.biortech.2014.09.099.
297. Markets,M.andCarotenoidsMarketbyType(Astaxanthin,BetaCarotene,Lutein,Lycopene,Canthaxanthin,andZeaxanthin),
Application(Feed,Food&Beverages,DietarySupplements,Cosmetics,andPharmaceuticals),Source,Formulation,andRe
gion—GlobalForecastto2026.Availableonline:https://www.marketsandmarkets.com/MarketReports/carotenoidmarket
158421566.html(accessedon18August2020).
298. GrandViewResearchDyesandPigmentsMarketSize,Share&TrendsAnalysisReportbyProduct(Dyes(Reactive,Vat,Acid,
Direct,Disperse),Pigment(Organic,Inorganic)),ByApplication,ByRegion,AndSegmentForecasts,2020–2027.Available
online:https://www.grandviewresearch.com/industryanalysis/dyesandpigmentsmarket(accessedon25January2021).
299. Saini,R.K.;Keum,Y.S.Microbialplatformstoproducecommerciallyvitalcarotenoidsatindustrialscale:Anupdatedreview
ofcriticalissues.J.Ind.Microbiol.Biotechnol.2019,46,657–674,doi:10.1007/s1029501821047.
300. Aberoumand,A.AReviewArticleonEdiblePigmentsPropertiesandSourcesasNaturalBiocolorantsinFoodstuffandFood
Industry.WorldJ.DairyFoodSci.2011,6,71–78.
301. Harris,R.M.ColoringTechnologyforPlastics;PlasticsDesignLibrary:NewYork,NY,USA,1999.
... Microbial pigments are in high demand due to their endless potential resources, high pigment production, year-round harvestability, ease of cultivation, adaptability to various environments, genetic engineering, lack of negative side effects, eco-friendliness, and biodegradability, as well as their essential uses in a variety of fields including ecological, evolutionary, biomedical, agricultural, and industrial studies. (Chatragadda & Dufossé 2021). ...
Chapter
Biotechnology is one of the emerging fields that can add new and better application in a wide range of sectors like health care, service sector, agriculture, and processing industry to name some. This book will provide an excellent opportunity to focus on recent developments in the frontier areas of Biotechnology and establish new collaborations in these areas. The book will highlight multidisciplinary perspectives to interested biotechnologists, microbiologists, pharmaceutical experts, bioprocess engineers, agronomists, medical professionals, sustainability researchers and academicians. This technical publication will provide a platform for potential knowledge exhibition on recent trends, theories and practices in the field of Biotechnology
... Industrialization and fast fashion give rise to use of synthetic dyes. The nature of synthetic dyes being non-biodegradable, toxic, carcinogenic and allergenic has increased the demand of natural resources such as bioactive microbial pigments, a safer and environmental-friendly alternative [1][2][3]. In textile sectors, along with dyeing of fabric with eco-friendly pigments, in recent years, importance has also been given to the production of antimicrobial fabrics having prolonged shelf life, reduced cleaning cycles, and extended durability. ...
Article
Full-text available
Microbial pigments and biogenic nanoparticles have gained increasing attention as sustainable alternatives to their synthetic counterpart due to their eco-friendly nature and diverse applications. This study focuses on harnessing the potential of an isolated bacterium, identified as Burkholderia sp. EIKU21 for pigment production coupled with biogenic ZnO-NP synthesis while solubilizing bulk ZnO (bZnO), and subsequent application in textile dyeing and coating with enhanced antimicrobial properties. EIKU21 started production of pigment in culture medium in 8 days during batch growth when maximum bZnO solubilization (~ 800 mg Zn/L) was observed. Atomic absorption spectrophotometer (AAS), DLS, zeta potential, energy-dispersive X-ray (EDAX), TEM, and XRD analyses of 0.22 μm membrane filtered cell-free supernatant (CFS) affirmed the synthesis of stable biogenic ZnO-NPs of average size 55.08 ± 2.28 nm (hydrodynamic size ~ 78.89 nm) with negative surface charge (~ − 3.86 mV). Pigment in cell-free supernatant was successfully applied to dye cotton fabrics under different condition and optimization through CIElab and K/S measurement indicated excellent color retention at 100 °C for 60 min (K/S-0.5244) even after rinsing with water and detergent. Furthermore, SEM and EDAX analyses, supported by FTIR spectral analysis, confirmed the coating of dyed fabric with stable biogenic ZnO-NP. The dyed fabric exhibited varying degrees of antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Enterobacter aerogenes, Pseudomonas aeruginosa emphasizing their potential for use in fabric with enhanced hygiene and longevity. Our findings highlight the dual benefits of utilizing Burkholderia sp. EIKU21 derived pigments conjugated with biogenic ZnO-NPs for sustainable textile dyeing and antibacterial coating on the fabric that foster eco-friendly and effective solutions for the textile industry. Graphical Abstract
... 43,44 In addition, natural novel pigments are being applying in cosmetic, drug and food industries throughout the world. 45 Nowadays, researchers are still looking for new agro-waste substrates due to the significance of these substrates in the pigment synthesis process. 46 ...
Article
Full-text available
Improving feed suitability and bolstering the global upsurge in fish production is a strategic challenge for aquaculture. The utilization of plant and animal derived ingredients in aquafeed for achieving sustainable in finfish aquaculture is affected by various factors, including the presence of antinutritional factors, lowered nutrient bioavailability, indigestible particles and microbial contaminants. Applying fermentation to overcome these problems in aquafeed ingredients has received considerable attention in recent years as fermentation provides health-promoting probiotic benefits to host organisms. Fermentation has also been shown in many studies to improve nutrient availability and bioavailability of feed, increased palatability and digestibility and eliminate anti-nutritional compounds in dietary feed ingredients, making them more easily digestible which eventually improve growth and health performance of fish. Therefore, it is imperative to accelerate the use of fermented feedstuffs as aqua-feed if sustainable aquaculture is to be achieved. This review reported the various methods of fermentation, characteristics of fermented feed ingredients, factors that are considered during fermentation and overall nutritional quality of fermented feed ingredients for aquaculture production. The role of fermented feed ingredients for various farmed species in terms of growth, feed utilization, gut microbiota composition , immunity and disease resistance in fish is thoroughly discussed. The possible drawbacks associated with the fermentation process are also discussed in the article. K E Y W O R D S aquafeed ingredient, antinutritional factors, fermentation, fish health, limitations of fermentation, sustainable aquaculture
... Among pigment-producing microorganisms the most promising are bacteria, cyanobacteria, yeast and microalgae which are unicellular and characterized by a rapid uniform growth and ability to utilize various substrates often considered as wastes, side-streams, or by-products [25,31]. Microbes produce a wide range of pigments with different structures and biological properties, such as actinorhodin, carotenoids, flexirubin, melanin, phycocyanin, phycoerythrin etc. [4]. Today, among all carotenoids, six are regarded as industrially significant: astaxanthin, β-carotene, canthaxanthin, lutein, lycopene, and zeaxanthin [22]. ...
... Certain microorganisms, such as fungi, bacteria, archaea, algae, and protists, synthesize their own pigments, allowing them to generate a stunning palette of colours. These pigments can be synthesized through different pathways that depend on the genetics of the organism, and they can either be intracellular or diffuse in the surrounding media (Chatragadda & Dufossé's, 2021). Bacterial pigments are ideal for interdisciplinary activities as they are visually attractive and spark curiosity (de Ordanza, 2019). ...
Article
Full-text available
Microbial art, an emerging trend in microbiology education, integrates artistic activities to enhance critical thinking and deepen comprehension of intricate scientific concepts. This study examines the effect of microbial art activity on students' understanding and competency of microbiological culturing methods. A qualitative content analysis was employed to evaluate the comprehension of 108 students who participated in the microbial activity, which encompassed the assessment of both their visual creations and written reports. The relationship between students' understanding of bacterial culturing techniques and the quality of their artworks was assessed using descriptive statistics and Pearson's correlation coefficient. The quality of the artwork was classified as poor, moderate, and good, reflecting students' cultivation skills, with 53% at a moderate level, 30% good, and only 17% having poor artwork quality. According to the analysis of the students' written reports, it was found that 71% of the students exhibited a strong understanding of the activity, while 29% showed an average level of understanding. However, there was no correlation found between students' understanding and the quality of their artwork. This study demonstrates that incorporating microbial art into science education can improve student cultivation techniques by providing an engaging and creative way to practice microbiology skills. Keywords: Artworks; Culturing technique; Enhance; Microbial art; Microbiology education
Chapter
Microbial biomolecules have gained significant attention owing to their remarkable capacity for promoting advancements in human health and environmental sustainability. This chapter focuses on the exploration of microbial biomolecules and their diverse applications in addressing key challenges in these domains. The chapter highlights their role in developing novel therapeutics, diagnostics, and personalized medicine approaches to improve human health outcomes. Microbial biomolecules serve as a source of natural products with therapeutic potential, including antibiotics, antifungal agents, and anticancer compounds. Additionally, they can be utilized for the development of diagnostic tools such as biosensors and biomarkers for disease detection and monitoring. Furthermore, microbial biomolecules are instrumental in advancing personalized medicine, enabling targeted therapies based on individual genetic profiles and microbiome analysis. Microbial biomolecules exhibit significant potential in driving environmental sustainability. It is derived from microorganisms like bacteria, fungi, and algae and has emerged as a promising avenue for addressing environmental challenges. Bioremediation utilizes microbial biomolecules, particularly enzymes, to degrade and remove pollutants from soil, water, and air, facilitating the restoration of contaminated ecosystems. Microbial biomolecules also contribute to sustainable materials, such as biodegradable plastics and bio-based composites, reducing reliance on non-renewable resources. Renewable energy production benefits from microbial biomolecules as they enable the conversion of organic matter into biofuels through biochemical processes. Biotechnological innovations, including genetic engineering and novel production approaches, expand the potential of microbial biomolecules in various applications. While the potential of microbial biomolecules is promising, several challenges exist in their effective utilization. These include optimizing production processes, enhancing product yields, ensuring safety and regulatory compliance, and addressing ethical considerations. Overcoming these challenges will require interdisciplinary research efforts, involving microbiology, biotechnology, bioengineering, and environmental sciences. Continued exploration and implementation of microbial biomolecules can lead to positive environmental impacts, supporting the transition toward a more sustainable society.
Article
Full-text available
Over the past few years, there has been an increasing fascination with environmentally conscious techniques for the synthesis of nanoparticles, due to the drawbacks associated with conventional methodologies. These conventional methods frequently depend on the utilization of hazardous chemical substances and yield substantial waste, resulting in detrimental ecological contamination. As a result, alternative strategies utilizing plants and microorganisms such as bacteria, fungi, algae, and their metabolites have gained attention. Microbial pigments (MPs) have gained significant attention in recent years due to their versatile bioactivities. This field of research combines the unique properties of MPs with the diverse applications of metal nanoparticles (MNPs), resulting in a range of promising outcomes. In microbial pigment-mediated nanoparticles (MP-MNPs) synthesis, the biological activities, chemical diversity of pigments, solubility in aqueous medium, lower reaction time, and renewable energy account for high rate of MNPs synthesis with divers shapes and sizes along with corresponding applications. Furthermore, it mitigates the use of harmful chemicals and reduces the generation of waste associated with conventional methods. However, care has to be taken to select suitable MPs for MNPs synthesis, such as in terms of solubility, stability, non-toxicity, and extraction of pigment. This review focuses on the utilization of MPs in the fabrication of MNPs, discussing the possible mechanisms and applications of the synthesized nanoparticles. The advantages and limitations of the microbial pigment-mediated synthesis of different MNPs are also summarized in this review. Graphic Abstract
Preprint
Full-text available
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications Due to their beneficial properties, including anticancer, antibacterial, antioxidant, and cytotoxic actions, marine-derived bacterial pigments were desirable in the food, pharmaceutical, textile, and cosmetic industries. Marine bio-pigments are preferred over synthetically produced colored compounds due to their biodegradability and higher environmentally friendly nature. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. Herein, we have reviewed the potential of different bacterial species isolated from the marine environment in diverse studies that produce bioactive pigments with potential commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. The chemical structures of the bioactive compounds are also discussed.
Chapter
Full-text available
Natural colors derived from plants, animals, and microorganism are being used since ancient time. Keeping in mind the harmful effects of synthetic dyes, these eco-friendly pigments are of high demand. Among these, microbial pigments are widely used in various industries including food, textile, pharmaceuticals, etc. They have attracted scientific attention due to their easy harvesting, cost-effectivity, higher stability, and high production value. However, the availability and diversity of microbial pigments are not expanding in the same ratio their demand is increasing. It may increase the undesirable use of synthetic colorants to meet commercial demands. Therefore, besides identifying the new microbial sources, scientific efforts are urgently needed to develop novel strategies for easy extraction and monitoring processes. This review provides an overview of microbial pigments and their characteristics features. Moreover, it summarizes their recent applications in various field and industries.
Article
Full-text available
The textile industry is considered the second most polluting industry in the world. Synthetic non�biodegradable petroleum-based dyes and toxic mordants play a major part in this pollution. Almost 20% of global water pollution has been associated with the textile dyeing practices. These controversies with the current environmental regulations, lead to a great demand for natural colors in food, pharmaceuticals, cosmetics, textiles and in the printing dye industry. Recently, microbial pigments have been shown to be a promising alternative not only to synthetic dyes, but also to other biopigments derived from vegetables or animals as they are viewed as natural, non-toxic, have no seasonal production issues, offer excellent productivity, economical and most important they are ecofriendly. An environmental screening of 77 samples was carried out for pigment production. Pigmented bacteria represented 55 (68%) of total samples with the highest percentage of pigmented bacteria found in air samples and the lowest percentage from water samples. Five potential pigmented isolates were chosen for pigment extraction and used for dyeing three types of fabrics - nylon, wool, and polyester. Furthermore, stability of dyes following treatment with acid, alkaline and detergents was studied to investigate the retention of dyes. Bacterial pigments in some unmordanted fabrics were retained 100% in cases of acid treatments while a small amount of discoloration was observed when subjected to alkali, or cold water and detergent. Apart from colorant, Serratia marcescens pigments demonstrated antibacterial activity against gram positive bacteria. The current study demonstrated that coloring ability of the natural dyes can be compared to that of the synthetic dyes. Furthermore, these biochromes are also able to produce various shades similar to those of the synthetic dyes and express variable resistance to treatment with acid, alkaline and detergents.
Article
Full-text available
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes , including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy. An overview on industrial and medical applications of bio-pigments synthesized by marine bacteria. Nawaz A., Chaudhary R., Shah Z., Dufossé L., Fouillaud M., Mukhtar H., ul Haq I.. Microorganisms, 2020, 9(1), 11 (24 pages), DOI: 10.3390/microorganisms9010011
Article
Full-text available
The course of investigations of bioactive compounds like bacterial pigments from the marine environment has greatly expanded in recent decades. Despite the huge concern in secluding and collecting marine bacteria, microbial metabolites are progressively alluring to science due to their wide-ranging applications in various fields, particularly those with distinctive color pigments. This review is a short appraisal of the studies undertaken over the past five years on the bacterial pigments sourced from the marine environment. Herein, we have reviewed the potential of different bacterial species isolated from the marine environment in diverse studies that are producing bioactive pigments that have potential commercial applications.
Article
Full-text available
The accurate representation of data is essential in science communication. However, colour maps that visually distort data through uneven colour gradients or are unreadable to those with colour-vision deficiency remain prevalent in science. These include, but are not limited to, rainbow-like and red–green colour maps. Here, we present a simple guide for the scientific use of colour. We show how scientifically derived colour maps report true data variations, reduce complexity, and are accessible for people with colour-vision deficiencies. We highlight ways for the scientific community to identify and prevent the misuse of colour in science, and call for a proactive step away from colour misuse among the community, publishers, and the press.
Article
Full-text available
The world demands new solutions and products to be used as dyes for industrial applications. Microbial pigments represent an eco-friendly alternative as they can be produced in large amounts through biotechnological processes and do not present environmental risks, as they are easily decomposable. Moreover, some of these metabolites are recognized for their biological activities, which qualify them for potential uses as food colorants and nutraceuticals, protecting against degenerative diseases related with oxidative stress. Because of their genetic simplicity as compared with plants, microorganisms may be a better source to understand biosynthetic mechanisms and to be engineered for producing high pigment yields. Despite the origin of the pigmented microorganism, it seems very important to develop protocols using organic industrial residues and agricultural byproducts as substrates for pigment production and find novel green strategies for rapid pigment extraction. This review looks for the most recent studies that describe microbial pigments from microalgae, fungi, and bacteria. In particular, the underexploited tools of omics science such as proteomics and metabolomics are addressed. The use of techniques involving mass spectrometry, allows to identify different protein and metabolite profiles that may be associated with a variety of biotechnologically-relevant pathways of pigment synthesis.
Article
Full-text available
Pyroclastic strata have always been thought to protect the archaeological remains of the Vesuvian area (Italy), hence allowing their conservation throughout the centuries. In this work, we demonstrate that they constitute a potential threat for the conservation state of the mural paintings of Pompeii. The ions that could be leached from them and the ion‐rich groundwater coming from the volcanic soil/rocks may contribute to salt crystallisation. Thermodynamic modelling not only allowed to predict which salts can precipitate from such leaching events but also assisted the identification of additional sources of sulfates and alkali metals to explain the formation of the sulfates identified in efflorescences from the mural paintings of Pompeii. For the future, fluorine, mainly related to a volcanic origin, can be proposed as a marker to monitor the extent of the impact in the mural paintings of Pompeii in situ.
Article
Sensory systems are predicted to be adapted to the perception of important stimuli, such as signals used in communication. Prior work has shown that female zebra finches perceive the carotenoid-based orange-red coloration of male beaks-a mate choice signal-categorically. Specifically, females exhibited an increased ability to discriminate between colors from opposite sides of a perceptual category boundary than equally different colors from the same side of the boundary. The Bengalese finch, an estrildid finch related to the zebra finch, is black, brown, and white, lacking carotenoid coloration. To explore the relationship between categorical color perception and signal use, we tested Bengalese finches using the same orange-red continuum as in zebra finches, and we also tested how both species discriminated among colors differing systematically in hue and brightness. Unlike in zebra finches, we found no evidence of categorical perception of an orange-red continuum in Bengalese finches. Instead, we found that the combination of chromatic distance (hue difference) and Michelson contrast (difference in brightness) strongly correlated with color discrimination ability on all tested color pairs in Bengalese finches. The pattern was different in zebra finches: this strong correlation held when discriminating between colors from different categories but not when discriminating between colors from within the same category. These experiments suggest that categorical perception is not a universal feature of avian-or even estrildid finch-vision. Our findings also provide further insights into the mechanism underlying categorical perception and are consistent with the hypothesis that categorical perception is adapted for signal perception.
Article
Pyroclastic materials buried and protected ancient Pompeii throughout the centuries. In this work, we demonstrate that they could represent a threat for the conservation state of the mural paintings, since rainwater and groundwater cause the leaching and transfer of ions to the mural paintings, promoting salt crystallisation. At Pompeii, the latter is one of the main causes of the detachment of the pictorial layers. Abstract Pyroclastic strata have always been thought to protect the archaeological remains of the Vesuvian area (Italy), hence allowing their conservation throughout the centuries. In this work, we demonstrate that they constitute a potential threat for the conservation state of the mural paintings of Pompeii. The ions that could be leached from them and the ion‐rich groundwater coming from the volcanic soil/rocks may contribute to salt crystallisation. Thermodynamic modelling not only allowed to predict which salts can precipitate from such leaching events but also assisted the identification of additional sources of sulfates and alkali metals to explain the formation of the sulfates identified in efflorescences from the mural paintings of Pompeii. For the future, fluorine, mainly related to a volcanic origin, can be proposed as a marker to monitor the extent of the impact in the mural paintings of Pompeii in situ.
Article
Paper in, product out A typical chemist running a known reaction will start by finding the method described in a published paper. Mehr et al. report a software platform that uses natural language processing to translate the organic chemistry literature directly into editable code, which in turn can be compiled to drive automated synthesis of the compound in the laboratory. The synthesis procedure is intended to be universally applicable to robotic systems operating in a batch reaction architecture. The full process is demonstrated for synthesis of an analgesic as well as common oxidizing and fluorinating agents. Science , this issue p. 101
Article
To reach a deeper understanding of the origin of elements in the periodic table, we construct Galactic chemical evolution (GCE) models for all stable elements from C ( A = 12) to U ( A = 238) from first principles, i.e., using theoretical nucleosynthesis yields and event rates of all chemical enrichment sources. This enables us to predict the origin of elements as a function of time and environment. In the solar neighborhood, we find that stars with initial masses of M > 30 M ⊙ can become failed supernovae if there is a significant contribution from hypernovae (HNe) at M ∼ 20–50 M ⊙ . The contribution to GCE from super-asymptotic giant branch (AGB) stars (with M ∼ 8–10 M ⊙ at solar metallicity) is negligible, unless hybrid white dwarfs from low-mass super-AGB stars explode as so-called Type Iax supernovae, or high-mass super-AGB stars explode as electron-capture supernovae (ECSNe). Among neutron-capture elements, the observed abundances of the second (Ba) and third (Pb) peak elements are well reproduced with our updated yields of the slow neutron-capture process (s-process) from AGB stars. The first peak elements (Sr, Y, Zr) are sufficiently produced by ECSNe together with AGB stars. Neutron star mergers can produce rapid neutron-capture process (r-process) elements up to Th and U, but the timescales are too long to explain observations at low metallicities. The observed evolutionary trends, such as for Eu, can well be explained if ∼3% of 25–50 M ⊙ HNe are magneto-rotational supernovae producing r-process elements. Along with the solar neighborhood, we also predict the evolutionary trends in the halo, bulge, and thick disk for future comparison with Galactic archeology surveys.