ArticlePDF Available

Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)

Authors:

Abstract and Figures

Erymoid lobsters (Crustacea, Decapoda, Erymoidea) are an important component of Mesozoic crustacean faunas in Europe, especially during the Jurassic. With 36 species reported, these lobsters reach their highest diversity during the Late Jurassic. After the review presented here, 23 species belonging to Eryma Meyer, 1840 (11 species), Palaeastacus Bell, 1850 (2 species), Pustulina Quenstedt, 1857 (2 species) and Stenodactylina Beurlen, 1928 (8 species) remain valid. One new species is described: Stenodactylina shotoverigiganti n. sp., and Eryma pseudoventrosa Beurlen, 1928 is integrated to Stenodactylina. We also notice the oldest representative of Enoploclytia M’Coy, 1849, known by a single specimen unidentified at specific level. Eryma ventrosum (Meyer, 1835) is the most common species in Western Europe, and may be seen as emblematic of the Middle-Late Jurassic. Moreover, the lithographic limestones of Germany yield an exceptionally diversified erymoid fauna, with four genera (Eryma, Palaeastacus, Pustulina, Stenodactylina) and 11 species listed. All the Late Jurassic representatives of Palaeastacus were found in this lithology. Finally, the examination of some specimens allows the observation of the strong effects of the decortication on the ornamentation of the erymoids and the resulting taxonomic issues.
Content may be subject to copyright.
2021 43 2
geodiversitas
Geodiversitas est une revue en ux continu publiée par les Publications scientiques du Muséum, Paris
Geodiversitas is a fast track journal published by the Museum Science Press, Paris
Les Publications scientiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Zoosystema, Anthropozoologica, European
Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie, Comptes Rendus Palevol
Diffusion – Publications scientiques Muséum national d’Histoire naturelle
CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France)
Tél. : 33 (0)1 40 79 48 05 / Fax : 33 (0)1 40 79 38 40
diff.pub@mnhn.fr / http://sciencepress.mnhn.fr
© Publications scientiques du Muséum national d’Histoire naturelle, Paris, 2021
ISSN (imprimé / print) : 1280-9659/ ISSN (électronique / electronic) : 1638-9395
Directeur De la publication / Publication director : Bruno David,
Président du Muséum national d’Histoire naturelle
réDacteur en chef / editor-in-chief : Didier Merle
assistant De réDaction / assistant editor : Emmanuel Côtez (geodiv@mnhn.fr)
Mise en page / Page layout : Emmanuel Côtez
coMité scientifique / scientific board :
Christine Argot (Muséum national d’Histoire naturelle, Paris)
Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid)
Raymond L. Bernor (Howard University, Washington DC)
Alain Blieck (chercheur CNRS retraité, Haubourdin)
Henning Blom (Uppsala University)
Jean Broutin (Sorbonne Université, Paris, retraité)
Gaël Clément (Muséum national d’Histoire naturelle, Paris)
Ted Daeschler (Academy of Natural Sciences, Philadelphie)
Bruno David (Muséum national d’Histoire naturelle, Paris)
Gregory D. Edgecombe (The Natural History Museum, Londres)
Ursula Göhlich (Natural History Museum Vienna)
Jin Meng (American Museum of Natural History, New York)
Brigitte Meyer-Berthaud (CIRAD, Montpellier)
Zhu Min (Chinese Academy of Sciences, Pékin)
Isabelle Rouget (Muséum national d’Histoire naturelle, Paris)
Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité)
Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové)
Paul Taylor (The Natural History Museum, Londres, retraité)
couverture / cover :
Réalisée à partir des Figures de l’article/Made from the Figures of the article.
Geodiversitas est indexé dans / Geodiversitas is indexed in:
– Science Citation Index Expanded (SciSearch®)
– ISI Alerting Services®
– Current Contents® / Physical, Chemical, and Earth Sciences®
– Scopus®
Geodiversitas est distribué en version électronique par / Geodiversitas is distributed electronically by:
– BioOne® (http://www.bioone.org)
Les articles ainsi que les nouveautés nomenclaturales publiés dans Geodiversitas sont référencés par /
Articles and nomenclatural novelties published in Geodiversitas are referenced by:
– ZooBank® (http://zoobank.org)
25
GEODIVERSITAS • 2021 • 43 (2) © Publications scientiques du Muséum national d’Histoire naturelle, Paris. www.geodiversitas.com
urn:lsid:zoobank.org:pub:6EF0DFAC-609D-407D-B4CC-CB985C3295FC
Devillez J. & Charbonnier S. 2021. — Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda).
Geodiversitas 43 (2): 25-73. https://doi.org/10.5252/geodiversitas2021v43a2. http://geodiversitas.com/43/2
ABSTRACT
Erymoid lobsters (Crustacea, Decapoda, Erymoidea) are an important component of Mesozoic crus-
tacean faunas in Europe, especially during the Jurassic. With 36 species reported, these lobsters reach
their highest diversity during the Late Jurassic. After the review presented here, 23 species belonging
to Eryma Meyer, 1840 (11 species), Palaeastacus Bell, 1850 (2 species), Pustulina Quenstedt, 1857
(2 species) and Stenodactylina Beurlen, 1928 (8 species) remain valid. One new species is described:
Stenodactylina shotoverigiganti n. sp., and Eryma pseudoventrosa Beurlen, 1928 is integrated to Steno-
dactylina. We also notice the oldest representative of Enoploclytia M’Coy, 1849, known by a single
specimen unidentied at specic level. Eryma ventrosum (Meyer, 1835) is the most common species
in Western Europe, and may be seen as emblematic of the Middle-Late Jurassic. Moreover, the litho-
graphic limestones of Germany yield an exceptionally diversied erymoid fauna, with four genera
(Eryma, Palaeastacus, Pustulina, Stenodactylina) and 11 species listed. All the Late Jurassic representa-
tives of Palaeastacus were found in this lithology. Finally, the examination of some specimens allows
the observation of the strong eects of the decortication on the ornamentation of the erymoids and
the resulting taxonomic issues.
Julien DEVILLEZ
Sylvain CHARBONNIER
Muséum national d’Histoire naturelle, Paris
Centre de Recherche en Paléontologie – Paris (CR2P, UMR 7207), Sorbonne Université,
MNHN, UPMC, CNRS, 57 rue Cuvier, F-75231 Parix cedex 05 Paris (France)
sylvain.charbonnier@mnhn.fr
julien.devillez@edu.mnhn.fr (corresponding author)
Submitted on 27 May 2019 | accepted on 15 November 2019 | published on 28 January 2021
Review of the Late Jurassic erymoid lobsters
(Crustacea: Decapoda)
KEY WORDS
Mesozoic,
Erymoidea,
Erymidae,
lobster,
decortication,
Lagerstätte,
palaeobiodiversity,
Western Europe,
new synonyms,
new combination,
new species.
26 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
INTRODUCTION
Erymoid lobsters are an important component of the Mesozoic
decapod faunas, reported on every continents: in Europe (e.g.,
Mantell 1833; Bell 1850, 1863; Oppel 1861, 1862; Lahusen
1894; Van Straelen 1925; Beurlen 1928; Glaessner 1931; Reuss
1854; Bachmayer 1959; Förster& Rieber 1982; Garassino
1996; Jagt& Fraaije 2002; Garassino& Krobicki 2002; Bravi
etal. 2014), in the Middle East (Roger 1946; Förster& Seyed-
Emami 1982; Garassino 1994; Charbonnier etal. 2017), in
Africa (Beurlen 1933; Joleaud& Hsu 1935; Secrétan 1964,
1984; Charbonnier etal. 2012a), in North America (Rathbun
1923, 1926; Stenzel 1945; Feldmann& McPherson 1980;
Aguirre-Urreta& Ramos 1981; Aguirre-Urreta 1982, 1989;
Schweitzer& Feldmann 2001; Feldmann& Titus 2006; Feld-
mann& Haggart 2007; Vega etal. 2013; J. Luque pers. com.),
in Japan (Karasawa etal. 2008; Kato etal. 2010), in Australia
(Woodward 1877; Etheridge Jr 1914; Woods 1957), and in
Antarctica (Taylor 1979; Aguirre-Urreta 1989).
Despite its importance, this group of lobster was not revised
since the study of Förster (1966). With 36 species reported, the
Late Jurassic erymoid fauna is the most diversied. Indeed, it is
more than the number of species reported in Early and Middle
Jurassic together (Devillez& Charbonnier 2019) or in Cretaceous
(Devillez etal. 2016, 2017). So, this period is of high interest
in the evolutionary history of these lobsters.
Following the recent studies of Devillez etal. (2016, 2017)
and Devillez& Charbonnier (2017), the present contribution
aims to give a new look at the Late Jurassic erymoid species,
which benet of new descriptions.
MOTS CLÉS
Mésozoïque,
Erymoidea,
Erymidae,
homard,
décortication,
Lagerstätte,
paléobiodiversité,
Europe occidentale,
synonymes nouveaux,
combinaison nouvelle,
espèce nouvelle.
MATERIAL AND METHODS
e studied material includes 498 specimens Late Jurassic in
age, mainly from the palaeontological collections of European
institutions (Appendix 1).
e carapace and the P1 chelae are the most commonly
preserved anatomical parts in erymoid lobsters. So, most
of useful characters in generic and specic identications
are located on these parts. Especially, the trajectories and
connexions of the carapace grooves are of high taxonomic
value because they are involved in both generic and specic
identications. e extension and ination of the dierent
regions of the carapace mapped in Fig. 1A were also found
of importance in the identication of genera and species
while the ornamentation and shape of P1 chelae are only
used at specic level.
In extant lobsters, P1 chelae are laterally inclined, so the
palms are almost in the horizontal plan. us, in this con-
guration the occlusal openings are in the horizontal plan.
e terminology used in this paper follows this natural con-
guration for the description of the chelae: the palms are the
widest sides and correspond to the ventral and dorsal surfaces
of the chelae; similarly, the longitudinal margins correspond
to inner and outer margins with dactylus located on the inner
margin and index on the outer margin (Fig. 1B).
e Lagerstätte of Solnhofen is here of high interest because
it provides numerous specimens almost complete on which
some anatomical structures almost never preserved can be
easily observed, in particular the cephalic appendages and
third maxillipeds.
RÉSUMÉ
Révision des érymoïdes (Crustacea: Decapoda) du Jurassique supérieur.
Les érymoïdes (Crustacea, Decapoda, Erymoidea) sont une composante importante des faunes de
crustacés au Mésozoïque en Europe, tout particulièrement au Jurassique. Avec 36 espèces recen-
sées, le Jurassique supérieur est la période où ces homards atteignent leur plus grande diversité.
Àl’issue du travail de révision présenté ici, 23 espèces appartenant aux genres Eryma Meyer, 1840
(11 espèces), Palaeastacus Bell, 1850 (2 espèces), Pustulina Quenstedt, 1857 (2 espèces) et Steno-
dactylina Beurlen, 1928 (8 espèces) restent valides. Parmi elles nous décrivons une nouvelle espèce :
Stenodactylina shotoverigiganti n. sp., tandis quEryma pseudoventrosa Beurlen, 1928 est déplacée
dans Stenodactylina. Nous relevons aussi la présence du plus ancien représentant d’Enoploclytia
M’Coy, 1849 avec un spécimen non identié spéciquement. Eryma ventrosum (Meyer, 1835)
est l’espèce la plus courante en Europe occidentale et peut être considérée comme emblématique
du Jurassique moyen-supérieur. De plus, les calcaires lithographiques d’Allemagne présentent une
faune d’érymoïdes exceptionnellement diversiée avec quatre genres (Eryma, Palaeastacus, Pustu-
lina, Stenodactylina) et 11 espèces présentes. Les représentants du genre Palaeastacus du Jurassique
supérieur ne sont d’ailleurs connus que dans cette formation. Enn, l’examen de certains spécimens
permet aussi de visualiser l’eet important de la décortication sur l’ornementation des érymoïdes
et les problèmes taxinomiques qui peuvent en résulter.
fig. 1. — Carapace and P1 chela morphologies of the Late Jurassic erymoids: A, regions of the carapace; B, morphology of a chela of the rst pair of pereio-
pods; C, typical carapace groove pattern of Eryma; D, form I of chela of the rst pair of pereiopods of Eryma; E, form II of chela of the rst pair of pereiopods of
Eryma; F, typical carapace groove pattern of Palaeastacus; G, typical chela of the rst pair of pereiopods of Palaeastacus; H, typical carapace groove pattern
of Pustulina; I, typical chela of the rst pair of pereiopods of Pustulina; J, typical carapace groove pattern of Stenodactylina; K, form I of chela of the rst pair
27
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
A
C
B
gr
ar
cr
hr
pr
br
inner margin
outer margin
index
dactylus
dactylar bulge
occlusal
margins
dorsal surface
ventral surface
D
E
da
c
e1e
b
b1i
ip
ωχ
PoA
FG
da
c
e1e
b
b1i
ip
ωχ
PoA
HI
d
a
c
cd
e1e
b
b1i
ip
ωχ
JK
L
da
c
e1e
b
b1i
ip
ωχ
PoA
M
N
da
c
e1e
b
b1i
ip
ωχ
of pereiopods of Stenodactylina; L, form II of chela of the rst pair of pereiopods of Stenodactylina; F, typical carapace groove pattern of Enoploclytia; G, typi-
cal chela of the rst pair of pereiopods of Enoploclytia. Abbreviations: a, branchiocardiac groove; ar, antennal region; b, antennal groove; b1, hepatic groove;
br, branchial region; c, postcervical groove; cr, cardiac region; d, gastro-orbital groove; e
1
e, cervical groove; gr, gastric region; hr, hepatic region; i, inferior
groove; ip, intercalated plate; PoA, post-orbital area; pr, pterygostomial region; χ, attachment site of adductor testis muscle; ω, attachment site of mandibular
muscle. Line drawings: J. Devillez.
28 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
AbbreviAtions
Institutional abbreviations
BSPG Bayerische Staatsammlung für Paläontologie und
Geologie, Munich;
FSL Université Claude Bernard Lyon 1, Lyon;
GPIT Fachbereichs Geowissenschafte, Eberhard Karls Uni-
versität, Tübingen;
IRSNB
Institut royal des Sciences naturelles de Belgique, Bruxelles;
MAN Musée-aquarium, Nancy;
MFN Museum für Naturkunde, Berlin;
MJSN Musée jurassien des sciences naturelles, Porrentruy;
MNHLN Muséum d’Histoire naturelle, Le Mans;
MNHN Muséum national d’Histoire naturelle, Paris;
NHMUK Natural History Museum, London;
NMB Naturhistorisches Museum Basel;
OSUG Observatoire des Sciences de l’Univers, Grenoble;
PVM Paléospace l’Odyssée, Villers-sur-Mer;
SM Sedgwick Museum of Earth Sciences, Cambridge;
SMNS Staatliches Museum für Naturkunde, Stuttgart;
UR Laboratoire de paléontologie de l’Université de Rennes,
Rennes;
USNM United States National Museum of Natural History,
Smithsonian Institution, Washington.
Anatomical abbreviations
Mxp3 ird maxilliped;
P1-5 Pereiopods 1 to 5;
s1-s6 Somites 1 to 6;
χ Attachment site of adductor testis muscle;
ω Attachment site of mandibular muscle.
SYSTEMATIC PALAEONTOLOGY
Class MALACOSTRACA Latreille, 1802
Order DECAPODA Latreille, 1802
Superfamily erymoideA Van Straelen, 1925
Genus Eryma Meyer, 1840
(Fig. 1C-E)
Eryma Meyer, 1840a: 587.Oppel 1862: 20.— Zittel 1885:
693.— Méchin 1901: 74.— Van Straelen 1925: 233.Rath-
bun 1926: 127.— Secrétan 1964: 61; 1984: 516.— Förster 1966:
88.— Glaessner 1969: 455.Aguirre-Urreta& Ramos 1981:
610.— Aguirre-Urreta 1989: 513.— Crônier& Courville 2004:
1004.— Feldmann& Titus 2006: 63.Feldmann& Haggart
2007: 1792.— Hyžný etal. 2015: 375.— Feldmann etal. 2015:
1.— Devillez etal. 2016: 518.— Devillez& Charbonnier 2017: 3.
Bolina Münster, 1839 sensu Étallon (1859: 192; non Mertens, 1833).
Klytia Meyer, 1840b: 19.— Glaessner 1969: 456.
Protoclytiopsis Birshtein, 1958: 477.— Förster 1966: 86.— Feld-
mann etal. 2015: 10.
Galicia Garassino& Krobicki, 2002: 55.Feldmann etal. 2015: 3.
Clytia – Beurlen 1928: 165.
type species.— Macrourites modestiformis Schlotheim, 1822, by
subsequent designation of Glaessner (1929).
d
iAgnosis
by
Devillez & Charbonnier (2019).Fusiform intercalated
plate; deep cervical groove, strongly inclined dorsally, joined to dorsal
margin and to antennal groove; short gastro-orbital groove, originating
as a slight median inexion of the cervical groove; postcervical groove
joined to branchiocardiac groove at carapace mid-height; branchiocar-
diac groove usually strongly inclined, joined to the posterior extremity
of hepatic groove; hepatic groove concavo-convex, joined to cervical
groove; inferior groove convex posteriorly, joined to hepatic groove
and to ventral margin; ω area usually inated; cephalic region usually
with an orbital row and with strong orbital and antennal spines; chelate
P1-P3; P1 chelae without prominent spines and with an homogene-
ous ornamentation; P1 propodus compressed dorso-ventrally with
narrow inner and outer margins, with a narrow dactylar bulge; P1
ngers usually longer than propodus, equal in length, progressively
narrowing to their distal extremity; index wider than dactylus; P1
chelae (form I; Fig. 1D) with a short rectangular propodus, straight
ngers, slightly longer than propodus; P1 chelae (form II; Fig. 1E)
with an elongated subrectangular or trapezoidal propodus, bearing
ngers quite longer than propodus, usually curved inward.
discussion
In the literature, two species only known by isolated P1 chelae
found in the Oxfordian of United Kingdom were wrongly
assigned to Eryma: Eryma pulchellum Carter, 1886 and Eryma
stricklandi (Phillips, 1871). e short propodus bearing short
ngers slightly curved outward indicates that E.pulchellum
does not belong to Erymoidea. Förster (1966) proposed to
assign this species to Magila Münster, 1839. e P1 chelae of
E.stricklandi exhibits elongated propodus and ngers, that are
slender and of opposite curvatures – so their distal extremi-
ties are convergent – and an index longer than dactylus. Such
morphology is not consistent with any known erymoid lobster.
So, E.stricklandi does not belong to Erymoidea.
De Gregorio (1884) described Eryma rinellincolum on
a P1 propodus from the Tithonian near Palermo (Italy).
is specimen is not located and has never been gured. It
is also insuciently described (Förster 1966). Because it is
impossible to clearly determine the genus or the familly of
this specimen, we consider it as nomen dubium.
Some specimens of Eryma mandelslohi (Meyer, 1840) from
the Oxfordian of France and Switzerland are stored in the
collections of the MNHN and the NMB. e age of this
species is Callovian (Middle Jurassic). Devillez& Charbon-
nier (2019) have redescribed it in the review of the Early
and Middle Jurassic erymids, so it will not be discussed here.
To shorten the discussions, the comparisons of the species
of Eryma described below are restricted to the other Late
Jurassic species.
Eryma georgeii Carter, 1886
(Fig. 2A-D)
Eryma georgeii Carter, 1886: 549, pl.16, g.4.— Van Straelen 1925:
267.— Woods 1930: 78, pl.21, g.9.Secrétan 1964: 69.—
Schweitzer etal. 2010: 24.
Clytia georgei – Glaessner 1929: 115.
Eryma stricklandi – Förster 1966: 111, g.18, pl.15, g.1 (non 2-3, 6).
type mAteriAl.— Holotype SM J 3247; one paratype SM J 3248.
type locAlity.— St. Ives, Cambridgeshire, United Kingdom.
type Age.— Oxfordian.
29
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
EF
G
a
c
e1e
d
b
b1
ω
i
PoA
pr
cr
md
A
B
a
d
c
e1e
bω
b1i
C
D
fig. 2
. — Eryma georgeii Carter, 1868 and Eryma jungostrix Feldmann & Titus, 2006 from the Oxfordian: A, B, holotype SM J 3247 of E. georgeii (St Ives, United Kingdom):
general view (A), schema (B); C, paratype SM J 3248 of E. georgeii (St Ives, United Kingdom); D, carapace of E. georgeii NMB F501 (Soyhières, Switzerland), left lateral
view; E-G, holotype USNM 530027 of E. jungostrix (Utah, United States): left lateral view (E), schema (F), right lateral view (G). Abbreviations: a, branchiocardiac groove;
b, antennal groove; b1, hepatic groove; c, postcervical groove; cr, carpus; d, gastro-orbital groove; e1e, cervical groove; i, inferior groove; md, mandible; PoA, post-or-
bital area; pr, propodus; ω: attachment site of mandibular muscle. Photographs: A, C, D, J. Devillez; E, G, L. O’Reilly. Line drawings: J. Devillez. Scale bars: 1 cm.
30 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
description
Carapace
Sub-cylindrical carapace; deep and wide cervical groove,
strongly inclined dorsally, sub-vertical under its strong
median inexion, joined to dorsal margin and to antennal
groove; deep and shallow antennal groove, curved; short
gastro-orbital groove, deep and wide, originating as median
inexion of cervical groove; deep postcervical groove, sinu-
ous, joined to dorsal margin and to branchiocardiac groove
at carapace mid-height, with a long and sinuous ventral
extension; branchiocardiac groove slightly curved, narrow
dorsally, joined to dorsal margin and to hepatic groove; shal-
low and narrow hepatic groove, concavo-convex, joined to
cervical groove; inated ω area; at χ area; deep and wide
inferior groove.
oracic appendages
Chelate P1; P1 propodus trapezoidal, inner and outer mar-
gins slightly rounded in shape, compressed dorso-ventrally;
narrow dactylar bulge, posteriorly delimited by a deep
groove; long P1 ngers, strongly curved inward, progres-
sively narrowing to their distal extremity,basis of occlusal
margin of the dactylus strongly curved, with small conical
teeth very closely spaced.
Ornamentation
Carapace homogeneously covered by small and prominent
tubercles, separated by wide rounded depressions; P1 propodus
covered by small tubercles preceded by deep crescent-shaped
depressions; ngers covered by depressions.
discussion
Eryma georgeii was described on a carapace and an iso-
lated P1 chela. It is assigned to Eryma because of the short
gastro-orbital groove, the presence of a junction between
postcervical and branchiocardiac grooves at carapace mid-
height, the sinuous hepatic groove and the shape of the
chela (trapezoidal, compressed propodus bearing curved
ngers narrowing to their distal extremity).
Förster (1966) considered this species as a junior syno-
nym of Eryma stricklandi (Phillips, 1871). is latter is
based on a P1 chela which has not the classical morphol-
ogy of those of the erymoid lobsters (see discussion above
about Eryma for more details). However, Carter’s species
is clearly an erymid, so E.georgeii is here considered as a
valid species.
Erymageorgeii has an extremely elongated ventral exten-
sion of the postcervical groove, which is a unique feature
among the genus. e ornamentation of this species made
of tubercles separated by depressions is present in some
species of the genus, but the tubercles of E.georgeii have
the particularity to be strongly prominent. Moreover, the
clearly trapezoidal shape of the P1 propodus of this species
is distinct from that of E.jungostrix, E.lerasi, E.major,
E.mandelslohi, E.modestiforme, E.quadriverrucatum, E.vel-
theimii, E.ventrosum, and E.westphali.
Eryma jungostrix Feldmann& Titus, 2006
(Fig. 2E-G)
Eryma jungostrix Feldmann& Titus, 2006: 64, gs3-4.— Gar-
assino& Schweigert 2006: 8.Feldmann& Haggart 2007: 1792,
1794.— Schweitzer etal. 2010: 24.— Devillez etal. 2017: 792.
type mAteriAl.— Holotype USNM 530027.
type locAlity.— NE ¼, SW¼, SW ¼, Sec. 4, T5S, R24E (Salt
Lake Meridian), Utah, United States.
type Age.— Oxfordian.
description
Carapace
Sub-cylindrical carapace; short, spiny rostrum; fusiform inter-
calated plate; narrow, inated post-orbital area; high pterygos-
tomial region; deep and wide cervical groove, strongly inected
at carapace mid-height, joined to dorsal margin and to antennal
groove; shallow and narrow antennal groove; short and narrow
gastro-orbital groove, originating as strong median inexion
of cervical groove; deep and wide postcervical groove, almost
straight, strongly inclined, joined to dorsal margin and joined
to branchiocardiac groove at carapace mid-height, with a short
ventral extension; deep branchiocardiac groove, subparallel to
postcervical groove, almost straight dorsally, slightly curved
towards its junction to the hepatic groove, strongly inclined,
joined to dorsal margin and to hepatic groove; deep and wide
hepatic groove, concavo-convex, joined to cervical groove;
inated ω area, strongly rounded in shape, ventrally delim-
ited by a shallow depression extending between antennal and
hepatic grooves; at χ area; deep and wide inferior groove.
Pleon and uropods
Somites with a bulge at the basis of the pleurites.
oracic appendages
Chelate P1; P1 propodus subrectangular, compressed dor-
so-ventrally; P1 carpus short, subtriangular.
Ornamentation
Carapace densely covered by rounded tubercles; gastric region
with a row of coarse tubercles parallel to the intercalated plate,
and with an oblique orbital row ended by a strong antennal
spine; pterygostomial region with a row of coarse tubercles
under the antennal groove; pleonal tergites with small and
widely spaced tubercles; pleonal pleurites densely covered by
rounded depressions; P1 propodus and carpus densely covered
by small tubercles.
discussion
Eryma jungostrix is known by only one specimen with a
carapace connected to a rst cheliped and most of the pleon.
Amandible is also preserved (Fig. 2E). e generic assigna-
tion of this species is supported by the typical carapace groove
pattern: short gastro-orbital groove, presence of a junction
between postcervical and branchiocardiac grooves, and sinu-
ous hepatic groove.
31
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
F G
H
G
H
CD
ad
c
e1e
b
χω
b1
i
PoA
E
di
s2
s3
s4
s5
dd
ip
st
s6
or
fig. 3. — Eryma ventrosum (Meyer, 1835) from France: A, B, cast of the holotype MNHN.F.B12484 (Oxfordian, Frétigney): general view (A), schema (B); C, specimen
MNHN.F.A29468 (Oxfordian, Mailley); D, specimen MNHN.F.A29470 (Oxfordian, Mailley); E, specimen MNHN.F.A29479 (Oxfordian, Montcey); F-H, specimen BSPG
1961 VIII 148 (Kimmeridgian, Chablis): general view (F), detailed view of an entirely decorticated area (G), detailed view of an area non entirely decorticated (H).
Abbreviations: a, branchiocardiac groove; b, antennal groove; b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; dd, dorsal domes; di, diaeresis;
e1e, cervical groove; i, inferior groove; ip, intercalated plate; or, orbital row; PoA, post-orbital area; s2-s6, pleonal somites; st, sternum; χ, attachment site of adductor
testis muscle; ω, attachment site of mandibular muscle. Photographs: A, D, F-G, J. Devillez; C, L. Cazes; E, P. Loubry. Line drawing: J. Devillez. Scale bars: 1 cm.
32 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Eryma jungostrix is the only Eryma species to have a row
of tubercles under the antennal groove. Some features of its
carapace groove pattern support the distinction of E.jungostrix
from other Late Jurassic species. Indeed, the strong inexion of
the cervical groove is not present in E.mandelslohi, E.modes-
tiforme, E.ventrosum, and E.westphali. Moreover, the almost
straight postcervical and branchiocardiac grooves are distinct
from E.georgeii, E.lerasi, E.mandelslohi, E.modestiforme,
E.quadriverrucatum, E.ventrosum, and E.westphali. e cara-
pace ornamentation of E.jungostrix is only made of tubercles
contrary to E.georgeii, E.lerasi, E.mandelslohi, E.modesti-
forme, E.quadriverrucatum, E.ventrosum, and E.westphali.
Eryma ventrosum (Meyer, 1835)
(Figs 3-5)
Glyphea ventrosa Meyer, 1835: 329; 1836: 56.— Quenstedt 1857:
599, pl.74, g.20.
Clytia girodi Étallon, 1857: 19 (nomen nudum). n. syn.
Bolina thirriae Étallon, 1859: 198, pl.5, g.5.
Eryma greppini Oppel, 1861: 357; 1862: 27, pl.4, gs8-9 n. syn.—
Trautschold 1866: 20, 21.— Quenstedt 1857: 321; 1885: 410.—
Carter 1886: 549.— Krause 1891: 201.— Lissajous 1907: 66.Van
Straelen 1925: 245, g.114.— Secrétan 1964: 69.— Wannier&
Panchaud 1977: 931.— Förster& Seyed-Emami 1982: 43.—
Bravi etal. 2014: 94.Charbonnier etal. 2014b: 333, gs2-4.
n. syn.— Devillez& Charbonnier 2019: 17.
Eryma radiata Oppel, 1861: 358; 1862: 31, pl.6, gs2-3.— Morière
1888: 143.— Lahusen 1894: 318.— Förster 1966: 113.— Etter
2004: 384.— Feldmann& Titus 2006: 64. n. syn.
Eryma subventrosa Étallon, 1861: 165.Oppel 1861: 358; 1862:
33.— Van Straelen 1925: 263.— Schweitzer etal. 2010: 25.
Eryma rugosa Étallon, 1861: 167, pl.8, gs3-4.Oppel 1861:
358; 1862: 31.— Lahusen 1894: 321. n. syn.
Eryma babeaui Étallon, 1861: 169, pl.8, g.1.Oppel 1861:
359; 1862: 42, pl.10, g.8.Dollfus 1863: 36.Morière 1883:
165.— Carter 1886: 548, pl.16, g.3.— Krause 1891: 207.—
Sauvage 1891: 92, 95, pl.4, gs1-2.— Van Straelen 1925: 269,
g.125.Woods 1930: 78.Förster 1966: 115, pl.16, g.4.—
Carriol 1991: 222.— Feldmann& Titus 2006: 63.— Schweitzer
etal. 2010: 23.— Devillez etal. 2016: 524, table1.
Eryma thurmanni Étallon, 1861: 169, pl.7, g.4.Oppel 1861:
359; 1862: 42.Étallon& urmann 1862: 437, pl.60, g.11.—
Van Straelen 1925: 268.— Schweitzer etal. 2010: 25.
Eryma anis Ferry, 1865: 368, pl.7, gs3-4.— Lissajous 1907:
66.— Van Straelen 1925: 249, g.116.— Secrétan 1964: 69.—
Förster 1966: 102.— Feldmann& Titus 2006: 63.— Schweitzer
etal. 2010: 23.Bravi et al. 2014: 94.Charbonnier etal.
2014b: 335. n. syn.
Eryma villersi Morière, 1883: 166, pl.1, gs1-5.— Carter 1886:
548, pl.16, g.3.— Hée 1924: 130.— Van Straelen 1925: 265,
pl.9, g.1-2.Glaessner 1929: 163.— Woods 1930: 78.—
Förster 1966: 110.— Carpentier etal. 2006: 624, g.8.Sch-
weitzer etal. 2010: 25.
Eryma falcifera Morière, 1888: 141, pl.5, gs1-2.— Schweitzer
etal. 2010: 23. n. syn.
Eryma corbieri Morière, 1888: 142, pl.5, g.3.Krause 1891:
205.— Hée 1924: 132.— Schweitzer etal. 2010: 23. n. syn.
Eryma caraboeu Morière, 1888: 143, pl.5, g.4.Hée 1924:
131.— Van Straelen 1925: 254.— Glaessner 1929: 162.— Förster
1966: 103.— Crônier& Courville 2004: 1007.Feldmann&
Titus 2006: 63.— Schweitzer etal. 2010: 23. n. syn.
Eryma meandrina Krause, 1891: 204, pl.13, g.7.Van Straelen
1925: 253.— Beurlen 1928: 174.— Crônier& Courville 2004:
1007.— Schweitzer etal. 2010: 25.
Eryma crassimanus Krause, 1891: 205, pl.13, g.5.Van Straelen
1925: 267.— Beurlen 1928: 157, 162, 163.— Glaessner 1929:
153.— Förster 1966: 113.— Feldmann& Titus 2006: 63. n. syn.
Eryma fossata Krause, 1891: 205, pl.13, g.6.— Beurlen 1928: 157,
159, 163.— Secrétan 1964: 69.Förster 1966: 113.Förster&
Seyed-Emami 1982: 44.— Feldmann& Titus 2006: 63. n. syn.
Eryma leblanci Sauvage, 1891: 90, pl.4, g.6.— Carriol 1991:
224. n. syn.
Eryma boloniensis Sauvage, 1891: 92, pl.3, gs5-6.— Van Straelen
1925: 282.— Glaessner 1929: 152.Förster 1966: 116 (non
pl.16, g.5).— Carriol 1991: 223.— Feldmann& Titus 2006:
63.— Schweitzer etal. 2010: 23. n. syn.
Eryma beaugrandi Sauvage, 1891: 94, pl.4, g.3.Carriol 1991:
223. n. syn.
Eryma cumonti Van Straelen, 1921: 139, pl.1, gs2-3; 1922:
983; 1925: 253, g.118.Secrétan 1964: 67, 68.— Förster
1966: 103.— Fischer 2003: 241.— Crônier& Courville 2004:
1007.— Feldmann& Titus 2006: 63.— Charbonnier 2009: 15,
158, table14.— Charbonnier etal. 2010: 115, tables 1-2, gs3B,
4E; 2014a: 375.— Schweitzer etal. 2010: 23. n. syn.
Eryma morieri Hée, 1924: 128, pl.3, g.2.Schweitzer etal.
2010: 25.
Eryma corallina Van Straelen, 1925: 255, g.119, pl.8, g.4.—
Secrétan 1964: 69.— Förster 1966: 103.— Crônier& Courville
2004: 1007.— Feldmann& Titus 2006: 63. n. syn.
Galicia marianae Garassino& Krobicki, 2002: 55, g.5-8.— Sch-
weitzer etal. 2010: 25.— Karasawa etal. 2013: table1.— Hyžný
etal. 2015: 375, 376, 379. .Devillez etal. 2017: 6, 8, gs2G-H.
Klytia ventrosa – Meyer 1840b: 20, pl.4, g.29.— Quenstedt
1850: 195, pl.2, gs18-19.— Devillez etal. 2017: 4, gs2C-D.
Clytia ventrosa – Bronn 1849: 578; 1852: 425.— Reuss 1854: 4,
5.— Beurlen 1928: 168.Glaessner 1929: 118.Vialle 1948: 63.
Astacus ventrosus – Quenstedt 1852: 268, pl.20, g.13; 1867: 320,
pl.25, g.13; 1885: 410, 412, pl.32, g.8.
fig. 4. — Synonyms of Eryma ventrosum (Meyer, 1835): A, original gure of Étallon (1861: pl. 8, g. 4) of Eryma rugosa (Oxfordian, Eschert, France); B, original
gure of Étallon (1861: pl. 8, g. 4) of Eryma thurmanni (Kimmeridgian, Porrentruy, France); C, D, original gures of Morière (1888: pl. 5, gs 1-2) of Eryma falcif-
era (Callovian, Écouché, France); E, original gure of Morière (1888: pl. 5, g. 4) of Eryma caraboeu (Callovian, Troarn, France); F, original gure of Morière (1888:
pl. 5, g. 3) of Eryma corbieri (Callovian, Écouché, France); G, original gure of Krause (1891: pl. 8, g. 7) of Eryma meandrina (Callovian, Hildesheim, Germany);
H, original gure of Krause (1891: pl. 8, g. 5) of Eryma crassimanus (Oxfordian, Galgenberg near Hildesheim, Germany); I, original gure of Krause (1891: pl. 8,
33
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
EGH
I
C
J
DA
B
L
F
K
MN
P
O
Q
g. 6) of Eryma fossata (Oxfordian, Galgenberg near Hildesheim, Germany); J, original gure of Sauvage (1891: pl. 4, g. 6) of Eryma leblanci (Kimmeridgian,
Boulogne-sur-Mer, France); K, original gure of Sauvage (1891: pl. 3, g. 5) of Eryma boloniensis (Kimmeridgian, Boulogne-sur-Mer, France); L, original gure of
Sauvage (1891: pl. 4, g. 3) of Eryma beaugrandi (Kimmeridgian, Boulogne-sur-Mer, France); M, N, original gures of Morière (1883: pl. 1, gs 1-2) of the syntypes
of Eryma villersi (Oxfordian, Villers-sur-Mer, France); O, original gure of Van Straelen (1925: pl. 9, g. 1) of the holotype of Eryma morieri Hée, 1924 (Oxfordian,
Villers-sur-Mer, France); P, Q, specimen from the Callovian of Villers-sur-Mer (France, private collection of J.-P. Pezy). Photographs: L. Cazes. Scale bars: 1 cm.
34 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Bolina ventrosa – Étallon 1859: 194, 202, pl.6, gs1-6.— Morière
1883: 165.
Bolina ventrosa var. major – Étallon 1859: 194, pl.6, gs1-6.
Bolina girodi Étallon, 1859: 196, pl.6, gs7-8.Devillez&
Charbonnier 2017: table1.
Eryma ventrosaÉtallon 1861: 164, pl.8, g.7.— Oppel 1861:
358; 1862: 32, pl.6, g.4.— Morière 1883: 165, 166.— Carter
1886: 547, 550.— Krause 1891: 202.— Sauvage 1891: 93, 95.—
Van Straelen 1921: 141.— Hée 1924: 127.— Beurlen 1928: 156,
160.— Woods 1930: 76, pl.21, g.4, gs6-7 (non 5).— Woods
1957: 156.— Secrétan 1964: 69.— Förster 1966: 108, g.12,
pl.15, gs4-5, g.7, pl.16, gs1-2.— Feldmann& Copeland
1988: 95.— Crônier& Courville 2004: 1005, 1006.— Etter 2004:
384.— Carpentier etal. 2006: 624, g.5D.— Feldmann& Titus
2006: 64.— Charbonnier etal. 2012b: 552, gs14-17.
Eryma girodiÉtallon 1861: 165.— Oppel 1861: 357; 1862:
28.— Sauvage 1891: 91.Van Straelen 1925: 248, g.115, pl.8,
g.1.— Secrétan 1964: 69.— Förster& Seyed-Emami 1982: 43.
Eryma thirriaiÉtallon 1861: 168.— Oppel 1861: 359; 1862:
42.— Sauvage 1891: 91.Van Straelen 1925: 267, g.124,
pl.9, g.3.— Secrétan 1964: 69.— Schweitzer etal. 2010: 25.
Eryma mandelslohi – Van Straelen 1922: 983.— Vialle 1948:
60.— Martill 1991: g.7.3j.— Charbonnier 2009: 15, table14,
gs234, 242; 2010: pl.2, g.7.— Charbonnier etal. 2010: 115,
tables 1-2, g.4D; 2014a: 375, table1, gs4J.
Eryma bizeti – Van Straelen 1925: 250, g.117, pl.8, gs2-3.
Clytia greppini – Beurlen 1928: 168, 172.— Glaessner 1929:
116.— Vialle 1948: 64.
Clytia girodi – Beurlen 1928: 168.— Glaessner 1929: 115.
Clytia radiata – Beurlen 1928: 169, 170, pl.7, g.18, 21.
Clytia thirriai – Beurlen 1928: 171.— Glaessner 1929: 117.—
Vialle 1948: 64.
Erymastacus babeaui – Beurlen 1928: 175.— Schweigert etal.
2000: 8, pl.3, gs4-5.
Clytia anis – Glaessner 1929: 114.
Clytia corallina – Glaessner 1929: 115.
Clytia cumonti – Glaessner 1929: 115.
Clytia thurmanni – Glaessner 1929: 118.
Eryma sp. cf. ventrosa – Woods 1930: 77, pl.20, g.8.
Eryma cf. bedelta – Beurlen 1933: 89, 91, g.1.
Eryma sp. – Förster 1966: 101, pl.14, g.13 (non 7).Etter
2004: 384, g.2A.
Eryma cf. babeaui – Carpentier etal. 2006: 623, g.7.
Eryma corallinum – Schweitzer etal. 2010: 23.
Eryma crassimanum – Schweitzer etal. 2010: 23.
Eryma fossatum – Schweitzer etal. 2010: 24.
Eryma radiatum – Schweitzer etal. 2010: 24.
Eryma ventrosumSchweitzer etal. 2010: 25.— Charbonnier etal.
2015: tables 1-2, gs3-5a, b.Devillez etal. 2016: 518; 2017: 6,
8, table1.— Devillez& Charbonnier 2019: 5, 7, 13, 15, 17, 32.
Stenodactylina villersi – Devillez etal. 2016: 524.
type mAteriAl.— Holotype not located, cast MNHN.F.B12484.
t
ype
locAlity
.— Frétigney, Haute-Saône departement, Bour-
gogne, France.
type Age.— Oxfordian.
description
Carapace
Sub-cylindrical carapace; moderately elongated, spineless rostrum;
fusiform intercalated plate; smooth post-orbital area; deep and
wide cervical groove, strongly inclined dorsally, slightly inclined
ventrally, joined to dorsal margin and to antennal groove; deep
and narrow antennal groove; short gastro-orbital groove, origi-
nating as a median inexion of cervical groove; deep and wide
postcervical groove, almost straight or very slightly concave
forward, not joined to dorsal margin, joined to branchiocardiac
groove at carapace mid-height, with a straight ventral extension;
deep and wide branchiocardiac groove, almost straight with a
slight inexion towards its junction with hepatic groove, not
joined to dorsal margin, joined to hepatic groove; deep and
narrow hepatic groove, concavo-convex, joined to cervical
groove; inated ω area; at or slightly inated χ area; deep and
wide inferior groove, curved forward, joined to hepatic groove.
Pleon and uropods
Somites with subrectangular tergites; somites with subtriangular
pleurites, directed backward, with a longitudinal elliptic bulge
on their basis; s2 pleurites wider than others, s3-5 pleurites
equal in length, s6 pleurites shorter; rounded telson; uropods
as long as telson; uropodal endopods with a longitudinal carina;
uropodal exopods with a diaeresis, and a longitudinal carina.
Eyes and cephalic appendages
Rounded stalked eyes, with numerous small rectangular
ommatidia; antennas made of numerous and short cylindrical
articles; short, triangular scaphocerite;wide epistome, with a
linear contact with the carapace; wide, subrectangular man-
dibles (Charbonnier etal. 2012b: g.14F-G).
oracic appendages
Elongated Mxp3; chelate P1; P1 propodus subrectangular
or trapezoidal, compressed dorso-ventrally; narrow dactylar
bulge, inated, posteriorly delimited by a deep and narrow
groove; thin, elongated ngers, equal in length, progres-
fig. 5. — Additionnal synonyms of Eryma ventrosum (Meyer, 1835): A, B, holotype BSPG AS VIII 114 of Eryma radiatum Oppel, 1861 (Oxfordian, Balingen, Ger-
many): carapace (A), P1 chela (B); C, holotype IRSNB of Eryma cumonti Van Straelen, 1921 (Callovian, Pougues-les-Eaux, France); D, holotype MNHN.F.B13231
of Eryma babeaui Étallon, 1861 (Kimmeridgian, Boulogne-sur-mer, France); E, syntype MNHN.F.A29782 of Bolina thirriae Étallon, 1859 (Kimmeridgian, Gray,
France); F, syntype MNHN.F.A29727 of Eryma afnis Ferry, 1865 (Bathonian, Fuissé, France); G, original gure of Garassino & Krobicki (2002: g. 7) of the
35
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
ABC
DF
E
I
G
dd
H
LM
J
K
dd
holotype of Galicia marianae (Oxfordian, Rudno, Poland); H, syntype MNHN.F.A29783 of Bolina girodi Étallon, 1859 (Saint-Claude, France); I, lectotype MJSN
Col.Del.475 of Eryma greppini (Oppel, 1861) (Vellerat, Switzerland); J, paralectotype MJSN Col.Del.1 of E. greppini (Vellerat, Switzerland); K, dorsal view of the
syntype MNHN.F.A29783 of B. girodi; L, dorsal view of the lectotype MJSN Col.Del.475 of E. greppini; M, specimen MFN 2236 P1383/2 MB.A.1537 from the
Late Jurassic of Tanzania. Abbreviation: dd, dorsal domes. Photographs: A-C, M, J. Devillez; D-F, P. Loubry; H, K, L. Cazes; I-J, L, D. Becker. Scale bars: 1 cm.
36 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
sively narrowing to their distal extremity, almost straight or
curved inward,sometimes with a terminal hook; occlusal
margin with small conical teeth closely spaced; P1 carpus
short, subtriangular; elongated P1 merus, triangular in
section, with a short process at outer side of its ventral
extremity; thin P2-P5.
Ornamentation
Carapace densely covered by small tubercles preceded by
crescent-shaped depressions; intercalated plate irregularly
covered by small tubercles; cephalic region with an oblique
row of tubercles ended by an orbital spine; antennal region
with an oblique row of tubercles ended by an antennal
spine; pleonal tergites and pleurites densely covered by
small depressions; P1 propodus, carpus, merus and ngers
densely covered by small tubercles; smooth P2-P5.
discussion
is species is based on a carapace from the Terrain à Chailles
Formation (Oxfordian, France) and supported the establish-
ment of Klytia Meyer, 1840bb. Careful examination of the
cast of the holotype stored in the collections of the MNHN
clearly shows that the groove pattern of this carapace is
typical of Eryma: short gastro-orbital groove, presence of a
junction between postcervical and branchiocardiac grooves
at carapace mid-height, and sinuous hepatic groove.
e holotype of Eryma ventrosum is an internal mould
entirely decorticated. So, the apparent ornamentation is
only made of tubercles. However, a specimen stored in
the collections of the BSPG is only partially decorticated
(Fig. 3F). Only tubercles are present on the parts were the
internal mould is exposed (Fig. 3G) while these tubercles
are preceded by crescent-shaped depressions where the
cuticle remains (Fig. 3H). So, the true ornamentation
of E.ventrosum consists in tubercles and crescent-shaped
depressions. is case is an illustration of the eects of
the decortication on the ornamentation of the erymid
lobsters. e review of Eryma subventrosa Étallon, 1861 is
probably a concrete case of confusion resulting from the
eects of the decortication on ornamentation. is species
also from the Terrain à Chailles Formation (Oxfordian,
France) has never been gured and the type material is not
located. In the description, Étallon pointed out the prox-
imity of this species with E.ventrosum, well-represented
in the same formations. After Étallon (1861), the main
dierence is in the ornamentation. Indeed, the tubercles
of E.pseudoventrosa are inclined forward and are preceded
by depressions. Considering these elements, the distinction
between E.ventrosum and E.pseudoventrosa established by
Étallon (1861) is probably the consequence of dierent
states of decortication between the holotypes of these two
species. So, E.pseudoventrosa is here considered as a junior
synonym of E.ventrosum.
is review results with the integration of many species
described since the second half of the nineteenth century
into the synonymy of Eryma ventrosum. e type material
of some of these species could not been examined because it
is lost or destroyed. Some of them were based on P1 chelae
more or less complete. en, Eryma rugosa Étallon, 1861
(Oxfordian, France; Fig. 4A), Eryma thurmanni Étallon, 1861
(Kimmeridgian, France; Fig. 4B), Eryma falcifera Morière,
1888 (Callovian, France; Fig. 4C, D), Eryma caraboeu
Morière, 1888 (Callovian, France; Fig. 4E), Eryma corbieri
Morière, 1888 (Callovian, France; Fig. 4F), Eryma mean-
drina Krause, 1891 (Callovian, Germany; Fig. 4G), Eryma
crassimanus Krause, 1891 (Oxfordian, Germany; Fig. 4H),
Eryma boloniensis Sauvage, 1891 (Kimmeridgian, France;
Fig. 4K), and Eryma beaugrandi Sauvage, 1891 (Kimmerid-
gian, France; Fig. 4L) exhibit a very similar ornamentation
(ne, homogeneous and dense), a subrectangular or slightly
trapezoidal P1 propodus, and thin elongated ngers, lon-
ger than propodus, progressively narrowing to their distal
extremity and with occlusal margins adorned by numerous
short conical teeth. ese morphological features are char-
acteristics of E.ventrosum, so the species previously cited
are considered as junior synonyms of this species.
e lost type material of Eryma fossata Krause, 1891
(Oxfordian, Germany; Fig. 4I) and Eryma leblanci Sauvage,
1891 (Kimmeridgian, France; Fig. 4J) consists of isolated
carapaces. Both exhibit a dense, ne ornamentation very
close to that of E.ventrosum. Moreover, the carapace groove
patterns of E.fossata and E.leblanci are similar to that of
E.ventrosum with a slightly inected cervical groove, a short
gastro-orbital groove, deep and wide postcervical and bran-
chiocardiac grooves, slightly curved and joined at the level
of the gastro-orbital groove. So, E.fossata and E.leblanci
are also considered as junior synonyms of E.ventrosum.
Van Straelen (1925) described Eryma corallina (Callovian,
France) based on a fragment of carapace poorly preserved
and currently lost. e original photograph is not good
enough to clearly see the specimen, but the characteristics
of the species are represented on a schematic sketch (Van
Straelen 1925: g.119). It shows the presence of orbital
and antennal rows of tubercles like in E.ventrosum. e
description also indicates a ne ornamentation with small
tubercles. ese features led us to consider E.corallina as
another junior synonym of E.ventrosum.
e erymid fossils from the Callovian – Oxfordian of
the Vaches Noires clis (Normandy, France) are assigned
to Eryma villersi Morière, 1883 and Eryma morieri Hée,
1924 (Fig. 4O). e type material of these species gured
by Morière (1883; Fig. 4M-N) was probably destroyed
during the World War II but numerous fossils were found
in the same locality since the nineteenth century. So, the
examination of the gures of Morière (1883) and of new
specimens (Fig. 4P, Q) reveals that E.villersi and E.morieri
have a cervical groove slightly inected, a short gastro-orbital
groove, slightly curved postcervical and branchiochardiac
grooves, joined at carapace mid-height, a ventral extension
of the postcervical groove, an inated ω area, a dense, ne
ornamentation made of tubercles and crescent-shaped
depressions, orbital and antennal rows of tubercles, elon-
gated P1 chelae with a subrectangular propodus which is
compressed dorso-ventrally, bearing long thin ngers armed
37
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
with numerous teeth. ese species share the listed char-
acteristics with E.ventrosum, so, following Förster (1966),
we consider E.villersi and E.morieri as junior synonyms
of E.ventrosum. Previously, Devillez etal. (2016) assigned
E.villersi to Stenodactylina because the junction of the
postcervical and branchiocardiac grooves is not visible on
Morière’s original gures and the strong length of the P1
ngers of the specimens. However, the junction of the post-
cervical and branchiocardiac grooves which is usually shal-
low. So, this could explain the absence on Morière’s gure.
e holotype of Eryma radiatum Oppel, 1861 (Oxfordian,
Germany; Fig. 5A, B) has a carapace groove pattern (short
gastro-orbital groove, postcervical and branchiocardiac
grooves slightly curved and joined at carapace mid-height,
presence of a ventral extension of the postcervical groove),
an ornamentation (dense made of small tubercles preceded
by crescent-shaped depressions), and a P1 chela (slightly
trapezoidal propodus, compressed dorso-ventrally, thin
and elongated ngers, curved inward) very close to those
of E.ventrosum. Both Eryma cumonti Van Straelen, 1921
(Callovian, France; Fig. 5C), Eryma babeaui Étallon, 1861
(Kimmeridgian, France; Fig. 5D), Bolina thirriae Étallon,
1859 (Kimmeridgian, France; Fig. 5E), Eryma anis Ferry,
1865 (Bathonian, France, Fig. 5F), and Galicia marianae
Garassino& Krobicki, 2002 (Oxfordian, Poland; Fig. 5G)
exhibit similar characteristics. So, considering these mor-
phological features, we consider E.radiatum, E.cumonti,
E.babeaui, B.thirriae, E.anis, and G.marianae as junior
synonyms of E.ventrosum.
Bolina girodi Étallon, 1859 (Bathonian, France; Fig. 5H,)
and Eryma greppini (Oppel, 1861) (Bathonian, Switzerland;
Fig. 5I-J) exhibit characteristics similar to those previously
listed. Charbonnier etal. (2014b) pointed out the presence
of a pair of dorsal domes in the posterior part of the gastric
region in E.greppini (Fig. 5L). ey considered this mor-
phological feature taxonomically signicant, and supported
the reinstauration of the species, previously considered as
a synonym of E.bedeltum (Förster 1966). We noticed the
presence of this pair of domes on the syntype of B.girodi
(Fig. 5K) and some dorsally well-preserved specimens of
E.ventrosum (Fig. 3E). So, considering these elements
(carapace groove pattern, ornamentation, morphology of
P1 chelae), we also add B.girodi and E.greppini to the
synonymy of E.ventrosum.
e erymids from the La Voulte Lagerstätte were usu-
ally identied as E.mandelslohi (Van Straelen 1922; Vialle
1948; Martill 1991; Charbonnier 2009; Charbonnier 2010;
Charbonnier etal. 2010; Charbonnier etal. 2014a). How-
ever, they are here assigned to E.ventrosum considering
both carapace groove pattern and ornamentation. Indeed,
there are tubercles on the carapace of these specimens and
E.mandelslohi is covered by depressions (Devillez& Char-
bonnier 2019).
Beurlen (1933) identied as Eryma cf. bedelta a specimen
found in Late Jurassic deposits of Tanzania (Fig. 5M). e
carefull examination of the specimen, stored in the collec-
tions of the MFN, reveals a carapace groove pattern and
an ornamentation very similar to those of E.ventrosum.
So, we assigned this African specimen to this species. It
is the most southern occurrence of E.ventrosum, the only
one out of Europe.
Erymaventrosum has very slightly curved postcervical and
branchiocardiac grooves with non-convergent trajectories
contrary to E.georgeii, E.mandelslohi, E.modestiforme,
E.quadriverrucatum, and E.westphali. e ventral exten-
sion of the postcervical groove in E.ventrosum is absent in
E.lerasi and E.quadriverrucatum. en, the ornamentation
of E.ventrosum is made of tubercles and depressions while
that of E.jungostrix, E.major, E.mandelslohi, and E.vel-
theimii is only made of tubercles or depressions. Moreover,
E.ventrosum has both antennal and orbital row of tubercles
contrary to E.jungostrix, E.lerasi, E.mandelslohi, E.modes-
tiforme, E.quadriverrucatum, E.veltheimii, and E.westphali.
Eryma lerasi (Étallon, 1861)
(Fig. 6)
Macrourites lerasi Étallon, 1861: 170, pl.1, g.6.
Eryma dutertrei Sauvage, 1891: 91, pl.4, gs7-12.Van Straelen
1925: 270, g.126.— Moret 1946: 51, g.2.— Secrétan 1964:
69.— Förster 1966: 117, g.20, pl.16, gs6-7.Carriol 1991:
223.— Feldmann& Titus 2006: 63.Schweitzer etal. 2010:
23. n. syn.
Eryma gracilimana Lahusen, 1894: 320, pl.1, g.9.— Van Straelen
1925: 272.— Glaessner 1929: 155.— Gerasimov 1955: 25, pl.8,
g.8.— Birshtein 1956: 75.— Förster 1966: 122.— Gerasimov
etal. 1995: 10, 30.Ilyin 2000: 152, 154, table1.— Feldmann&
Titus 2006: 63. n. syn.
Eryma portlandica Woods, 1930: 79, pl.22, gs2-4.— Secrétan
1964: 69. n. syn.
Eryma lerasi – Van Straelen 1925: 276.— Glaessner 1929: 155.—
Schweitzer etal. 2010: 24.
Clytia dutertrei – Glaessner 1929:115.
Eryma bedelta (pars.) – Förster 1966: 99.
Eryma gracilimanum – Schweitzer etal. 2010: 24.
type mAteriAl.— Holotype lost (Förster 1966).
t
ype
locAlity
.— Haut-Rhin departement, Alsace-Lorraine, France.
type Age.— Not precised in original publication. However, con-
sidering the specimens that could be assigned to E.lerasi (see dis-
cussion below), all from Late Jurassic deposits, and the absence of
sediments corresponding to the end of the Kimmeridgian-Tithonian
in Haut-Rhin department (Skrzypek etal. 2008), it is reasonable to
consider that the lost holotype was probably found in Late Jurassic
deposits (Oxfordian-Kimmeridgian).
D
Carapace
Sub-cylindrical carapace; very narrow post-orbital area;
deep and wide cervical groove, curved dorsally, subvertical
ventrally, joined to dorsal margin and to antennal groove;
deep antennal groove; short, deep gastro-orbital groove,
38 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
ABC
DE F
GH
IJ
KL
PoA
b
b1
i
e1e
d
c
a
fig. 6. — Eryma lerasi (Étallon, 1861): A, original gure of Étallon (1861: pl. 1, g. 6) of the holotype (Haut-Rhin, France); B, original gure of Lahusen (1894: pl. 1,
g. 9) of the holotype of Eryma gracilimanum (Tithonian, Mnevniki, Russia); C-E, original gures of Sauvage (1891: pl. 4, gs 7-8, 10) of syntypes of Eryma dutertrei
(Kimmeridgian, Boulogne-sur-Mer, France); F, specimen NHMUK 2045 (Kimmeridgian, Portland, United Kingdom); G-J, syntypes of Eryma portlandica Woods, 1930
(Tithonian, United Kingdom): NHMUK In.27136 from Weymouth (G), In.27141 from Portland (H), NHMUK I.2835 from Preston (I), NHMUK In.27140 from Portland (J);
K, L, specimen NHMUK I.7494 (Kimmeridgian, Weymouth, United Kingdom). Abbreviations: a, branchiocardiac groove; b, antennal groove; b1, hepatic groove; c, post-
cervical groove; d, gastro-orbital groove; e1e, cervical groove; i, inferior groove; PoA, post-orbital area. Photographs and line drawing: J. Devillez. Scale bars: 1 cm.
39
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
originating as a median inexion of cervical groove; deep
postcervical groove, slightly curved, joined to dorsal margin
and to branchiocardiac groove; deep and narrow branchio-
cardiac groove, subparallel to postcervial groove, inected
towards its junction to hepatic groove, strongly inclined,
joined to dorsal margin and to hepatic groove; deep and
narrow hepatic groove, concavo-convex, joined to cervical
groove; at ω and χ areas; deep and wide inferior groove.
oracic appendages
Chelate P1; P1 propodus subrectangular, wide, strongly
compressed dorso-ventrally; narrow dactylar bulge, slightly
inated, posteriorly delimited by a groove; thin, elongated
ngers, equal in length, almost straight or slightly curved
inward; occlusal margins with short and widely spaced conical
teeth; P1 carpus short, subtriangular; elongated P1 merus.
Ornamentation
Carapace with a heterogeneous ornamentation; carapace
covered by small rounded tubercles preceded by crescent-
shaped depressions, depressions wider and deeper in branchial
region; P1 propodus, ngers and carpus densely covered by
small tubercles preceded by shallow depressions.
discussion
Macrourites lerasi Étallon, 1861 was described on a P1 chela
currently lost. It was assigned to Eryma by Van Straelen
(1925). is assignation is supported by the subrectangular
propodus, compressed dorso-ventrally, with elongated thin
ngers curved inward, and a narrow dactylar bulge. Later,
Förster (1966) integrated Eryma lerasi into the synonymy
of Eryma bedeltum (Quenstedt, 1857). is synonymy is
not maintained here because the P1 ngers of E.lerasi are
thinner and its P1 propodus is clearly subrectangular and
not trapezoidal.
e shape of the propodus, its ne and dense ornamenta-
tion, its thin ngers, their slight curvature and the narrow
dactylar bulge are morphological features that E.lerasi
shares with Eryma portlandica Woods, 1930 (Tithonian,
United Kingdom; Fig. 6G-J). So, E.portlandica is here
considered as a junior synonym of E.lerasi. e illustra-
tion of Eryma gracilimanum Lahusen, 1894 (Tithonian,
Russia; Fig. 6B), an isolated P1 chela, exhibits the same
morphological features. So, this species is also considered
here as a junior synonym of E.lerasi. Contary to E.lerasi
and E.gracilimanum, the type material of E.portlandica
includes carapaces. Eryma dutertrei Sauvage, 1891 (Kim-
meridgian, France; Fig. 6C-E) and the carapace identied
as Eryma cf. boloniensis Sauvage, 1891 (Kimmeridgian,
United Kingdom; Fig. 6K, L) by Förster (1966) share simi-
lar characteristics: the cervical groove is strongly inected
at carapace mid-height and curved dorsally, the junction
between the postcervical and branchiocardiac grooves is
low on the carapace, the ornamentation is dense, made of
tubercles separated by well-marked depressions. So, we also
add E.dutertrei and the specimen of E.cf. boloniensis of
Förster (1966) within the synonymy of E.lerasi.
e carapace groove pattern of E.lerasi exhibits some
characteristics distincts from other species of the genus.
Indeed, the junction between the postcervical and bran-
chiocardiac grooves is clearly lower than in E.georgeii,
E.jungostrix, E.mandelslohi, E.modestiforme, E.ventrosum,
and E.westphali. ere is no ventral extension of the post-
cervical groove in E.lerasi contrary to E.georgeii, E.jun-
gostrix, E.mandelslohi, E.modestiforme, E.ventrosum, and
E.westphali. e morphology of the P1 chelae of E.lerasi
are thinner than that of E.georgeii, E.major, E.veltheimii,
and E.westphali. Finally, the ornamentation of E.lerasi,
made of tubercles and depressions, diers from that of
E.jungostrix, E.major, E.mandelslohi, and E.veltheimii,
covered only by tubercles or depressions.
Eryma major Oppel, 1861
(Fig. 7A-C)
Eryma major Oppel, 1861: 358; 1862: 37, pl.8, g.3.— Sch-
weitzer etal. 2010: 24.— Devillez etal. 2016: 524.
Erymastacus major – Schweigert etal. 2000: 8, pl.3, gs4-5.—
Dietl& Schweigert 2001:54, g.88.Schweigert& Garassino
2003: 178, g.2B.— Hyžný etal. 2015: 375, 376.
type mAteriAl.— Holotype SMNS 3682.
type locAlity.— Nusplingen, Baden-Württemberg, Germany.
type Age.— Kimmeridgian.
description
oracic appendages
Chelate P1; elongated P1 propodus, subrectangular, dorso-
ventrally compressed, with a longitudinal bulge on ventral
surface; narrow dactylar bulge, slightly bulged, not posteriorly
delimited by a groove; slender, elongated ngers, almost
straight; occlusal margins with wide conical teeth, regularly
spaced; P1 carpus short, subtriangular; elongated P1 merus.
Ornamentation
P1 propodus and ngers densely covered by ne tubercles.
discussion
is species is only known by some isolated P1, mainly
from the lithographic limestones of southern Germany. e
subrectangular, dorso-ventrally compressed propodus with
long and narrowing ngers justies the assignation to Eryma.
Eryma major is only known by some fragments of P1, so
the comparisons are restricted to the species for which the P1
are also known (E.georgeii, E.jungostrix, E.lerasi, E.man-
delslohi, E.modestiforme, E.quadriverrucatum, E.veltheimii,
E.ventrosum, E.westphali). e straight ngers of E.major are
clearly distinct from the curved ones of E.georgeii, E.lerasi,
E.mandelslohi, E.veltheimii, E.ventrosum, and E.westphali. e
propodus of E.major is also shorter than that of E.veltheimii
and E.westphali. e propodus of E.major is covered by
tubercles while that of E.veltheimii and E.westphali is smooth
and that of E.modestiforme is covered by small depressions.
40 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Eryma veltheimii (Münster, 1839)
(Fig. 7D-F)
Glyphea veltheimii Münster, 1839: 22, pl.10, g.1.— Fraas 1855:
94.— Glaessner 1929: 159.Woods 1930: 80, pl.22, gs5-6.—
Van Straelen 1936: 9.— Förster 1966: 124, g.23, pl.17, gs2,
4.— Taylor 1979: 34.— Feldmann& Titus 2006: 64.— Karasawa
etal. 2013: table1.
Eryma veltheimii – Bronn 1849: 579.— Oppel 1861: 358; 1862:
36, pl.7, g.5.— Beurlen 1928: 156.— Schweigert etal. 2000:
7, g.1c, pl.4, gs1-3.— Garassino& Schweigert 2006: 8, g.8,
pl.1, g.2, pl.11, gs3-4.Feldmann& Titus 2006: 64.
Fürsich etal. 2007a: table2.— Odin etal. 2019: 652.
Clytia veltheimii – Beurlen 1928: 170.
Galicia veltheimii – Schweitzer etal. 2010: 25.— Charbonnier&
Garassino 2012: 864.— Audo etal. 2014: 462.Schweigert
2015: g.544.
type mAteriAl.— Holotype BSPG AS VII 186.
type locAlity.— Kapfelberg quarry near Kelheim, Bavaria, Germany.
type Age.— Kimmeridgian.
description
Carapace
Short, spiny rostrum; fusiform intercalated plate; elongated
cephalic region, representing almost half of the length of the
carapace; wide, deep cervical groove, strongly inclined, joined
to dorsal margin; deep gastro-orbital groove, elongated and
oblique; postcervical groove not identied; wide, deep bran-
chiocardiac groove, strongly inclined.
Pleon and uropods
Somites with subtriangular pleurites; telson with a median
line and two longitudinal crests along its lateral margins,
crests ended by a small spine; uropods as long as telson, with
a small spine on the external margin; uropodal endopods with
a longitudinal carina; uropodal exopods with a diaeresis, and
a longitudinal carina.
oracic appendages
Chelate P1; P1 propodus subrectangular, strongly elongated,
dorso-ventrally compressed; presence of a strong spine at the
inner distal extremity of the propodus, above the dactylus;
slender ngers, progressively narrowing to their distal extrem-
ity, slightly curved inward; occlusal margin without teeth; P1
carpus short, subtriangular; thin P2-P5.
Ornamentation
Carapace covered by small tubercles; intercalated plate cov-
ered by small tubercles; oblique orbital row of tubercles in
cephalic region; presence of a strong antennal spine; smooth
P1 propodus and ngers.
discussion
is species is known by some specimens, mainly from the
Kimmeridgian plattenkalks of Wattendorf (Audo etal. 2014).
Because of the compression of the holotype, it is dicult to
clearly identify the grooves of the carapace. Indeed, only the
cervical, gastro-orbital and branchiocardiac grooves are well-
marked. However, the assignation to Eryma is supported by
the gastro-orbital groove wich is not divided in two branches
and by the shape of the P1 chelae (elongated subrectangular
propodus; elongated ngers, curved inward and narrowing
to their distal extremity).
e diculty to identify the carapace grooves does not
allow the comparison with that of other species. e presence
of a spine at the distal extremity of the inner margin of the
propodus (Fig. 7D) is characteristic of this species. Moreover,
the lack of ornamentation on the P1 chelae is a characteristic
only found in E.veltheimii and E.westphali. A spiny rostrum
like in E.veltheimii is not found in E.mandelslohi, E.mod-
estiforme, and E.ventrosum. Garassino& Schweigert (2006)
pointed out the absence of spines on the margin of the telson,
contrary to E.modestiforme. However, the careful examina-
tion of the type specimen shows that two marginal spines are
present (Fig. 7F). Finally, the carapace of E.veltheimii is only
covered by tubercles, contrary to E.georgeii, E.mandelslohi,
E.quadriverrucatum, E.ventrosum, and E.westphali.
Eryma westphali Schweigert, Dietl& Röper, 2000
(Fig. 7G-J)
Eryma westphali Schweigert, Dietl& Röper, 2000: 6, pl.3, gs1-3.—
Dietl& Schweigert 2001:53, 110, g.85.Garassino& Sch-
weigert 2006: 8.— Feldmann& Titus 2006: 64.
Galicia westphaliSchweitzer etal. 2010: 25.— Hyžný etal.
2015: 375.
type mAteriAl.— Holotype SMNS 24227.
type locAlity.— Nusplingen, Baden-Württemberg, Germany.
type Age.— Kimmeridgian.
description
Carapace
Short, spiny rostrum; fusiform intercalated plate; deep, wide
cervical groove, joined to dorsal margin and to antennal
groove; deep antennal groove; short, sub-horizontalgastro-
orbital groove; postcervical groove slightly curved forward,
not joined to dorsal margin, joined to branchiocardiac groove
at carapace mid-height, with a short ventral extension; bran-
chiocardiac groove dorsally deep, narrowing in its ventral
part, not joined to dorsal margin, joined to hepaticgroove;
hepatic groove concavo-convex.
Pleon and uropods
Somites with subtriangular pleurites, with a bulge on their
basis; wide rounded uropods; uropodal endopods with a
longitudinal carina; uropodal exopods with a small spine on
external margin.
oracic appendages
Chelate P1; P1 propodus subrectangular, narrow and strongly
elongated; P1 ngers shorter than propodus, slender, almost
41
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
A
E F
DC
ip
e1e
a
B
d
as
bb1
ip
e1e
d
c
a
GH
K
I
J
fig. 7. — Eryma major Oppel, 1861, Eryma veltheimii (Münster, 1839) and Eryma westphali Schweigert, Dietl & Röper, 2000 from the Kimmeridgian of Germany:
A, holotype SMNS 3682 of E. major from Egesheimer; B, specimen SMNS 67655 of E. major from Gerhausen; C, specimen SMNS 64371 of E. major from Nusplin-
gen; D-F, holotype BSPG AS VII 186 of E. veltheimii from Kehlheim: part (D), counter-part (E), details of telson and uropods (F); G-J, holotype SMNS 24227 of
E. westphali from Nusplingen: general view (G), schema of the carapace (H), schema of left chela (I), schema of right chela (J); C, specimen SMNS 63733 from
Nusplingen. Abbreviations: a, branchiocardiac; as, antennal spine; b, antennal groove; b1, hepatic groove; c, postcervical; d, gastro-orbital groove; e1e, cervical
groove; ip, intercalated plate. Black arrows show the spines. Photographs and line drawings: J. Devillez. Scale bars: 1 cm.
42 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
straight or slightly curved inward, with a terminal hook;
occlusal margin without teeth; P1 carpus short, subtriangular;
thin P2-P5; P2-P3 chelate.
Ornamentation
Carapace with a dense, heterogeneous ornamentation; gastric
and cardiac regions covered by tubercles; antennal, hepatic,
and branchial regions covered by small rounded depressions;
presence of an orbital spine;tergites and pleurites densely
covered by small rounded depressions; presence of a strong
antennal spine; smooth P1-P5.
discussion
is species is only known by three specimens. It is assigned
to Eryma because of its typical carapace groove pattern(short
gastro-orbital groove, postcervical and branchiocardiac grooves
joined at carapace mid-height, hepatic groove concavo-convex)
and the shape of the P1 chelae (elongated propodus, subrec-
tangular, with slender ngers progressively narrowing to their
distal extremity).
Among the erymid lobsters, Eryma westphali is the only
species with heterochelous P1 chelae on a same specimen.
Left propodus is more elongated and narrower than the right
one, and the left ngers are straight and short while the right
ones are curved and slightly longer (Fig. 7I, J). e strongly
elongated and narrow P1 propodus with relatively short
ngers of E.westphali is characteristic of the species. Only
Erymaveltheimii (Münster, 1839) have P1 with a very long
propodus, but it is clearly wider.
In E.westphali the branchial region is dorsally shorter than
in E.georgeii, E.jungostrix, E.lerasi, E.modestiforme, and
E.ventrosum. Contrary to E.lerasi and E.quadriverrucatum,
E.westphali exhibits a ventral extension of the postcervical
groove. Moreover, the dichotomy of the ornamentation of the
carapace between the gastric and cardiac regions, covered by
tubercles, and the remaining regions of E.westphali, covered
by small depressions, is unique among the genus.
Eryma modestiforme (Schlotheim, 1822)
(Figs 8; 9)
Macrourites modestiformis Schlotheim, 1822: 29, pl.2, g.3.
Astacus leptodactylus Germar, 1827: 100, pl.1, g.4.
Glyphea crassula Münster, 1839: 17, pl.8, g.5.
Glyphea elongata Münster, 1839: 18, pl.8, g.8, 11-12.
Glyphea laevigata Münster, 1839: 20, pl.9, gs5-7.
Palaeastacus poeschli Schweigert& Röper, 2001: 5, gs3-4.Gar-
assino& Schweigert 2006: 11.Schweitzer etal. 2010: 25. n. syn.
Glyphea modestiformis – Münster 1839: 17, pl.8, g.9, pl.9, gs1-3.
Eryma modestiformis – Bronn 1849: 579.— Oppel 1861: 358;
1862: 33, pl.6, gs5-8.— Van Straelen 1925: 271.— Beurlen
1928: 156, 157, 163, 164.— Glaessner 1929: 156.— Roger 1946:
42.— Kuhn 1961: 22.Secrétan 1964: 69.Förster 1965: 138,
g.1, pl.2, g.5.Förster 1966: 118, g.21, pl.16, gs7-8 (non
9), pl.17, g.1.— Schweigert& Garassino 2003: 178.— Fürsich
etal. 2007b: 57.— De Grave etal. 2009: g.1B.— Feldmann&
Schweitzer 2017: g.1c.— Odin etal. 2019: 652, g.6, ap. 1.
Astacus modestiformis – Quenstedt 1852: 268; 1867: 320; 1885:
409.— Fraas 1855: 94.
Eryma leptodactylina Oppel 1861: 358; 1862: 35, pl.7, gs1-4.—
Zittel 1885: g.873.— Secrétan 1964: 69.— Garassino& Sch-
weigert 2006: 8.
Eryma leptodactylus – Van Straelen 1925: 273.
Clytia leptodactylina – Beurlen 1928: 170.— Vialle 1948: 65.
Clytia leptodactylus – Glaessner 1929: 116.— Kuhn 1961: 22.
Eryma elongata – Frickhinger 1994: 118, gs201-202.
Eryma modestiformeSchweigert etal. 2000: 4, g.1a, pl.1,
gs1-5.Dietl& Schweigert 2001:53, 110, g.86.Schweigert&
Röper 2001: 2, 7.— Garassino& Schweigert 2006: 6, g.8, pl.1,
g.1, pl.11, gs1-2.— Schweitzer etal. 2010: 24.— Charbon-
nier& Garassino 2012: 864, g.3B-C.— Karasawa etal. 2013:
table1, g.9A.— Hyžný etal. 2015: 375, g.3A.— Schweigert
2015: g.541.Devillez etal. 2016: 518, 524.Devillez&
Charbonnier 2017: table1, g.2a.
type mAteriAl.— Holotype MFN 2236 P1383/2 MB.A.0252.
type locAlity.— Eichstätt, Bavaria, Germany.
type Age.— Kimmeridgian-Tithonian.
description
Carapace
Sub-cylindrical carapace; slightly elongated, spineless rostrum;
fusiform intercalated plate; orbital notch widely curved; nar-
row post-orbital area; elongated cephalic region, representing
almost half of the length of the carapace; deep and wide cervical
groove, almost straight dorsally, strongly inected at carapace
mid-height, joined to dorsal marginand to antennal groove;
deep antennal groove; short, narrow gastro-orbital groove,
oblique, originating as median inexion of cervical groove;
postcervical and branchiocardiac grooves subparallel, slightly
curved, slightly inclined, not joined to dorsal margin; shallow
postcervical groove, joined to branchiocardiac groove, with
a short ventralextension; narrow, shallow branchiocardiac
groove, joined to the posterior extremity of hepatic groove;
hepatic groove concavo-convex, joined to cervical groove;
inferior groove joined to hepatic groove.
Pleon and uropods
Somites with wide, short subtriangular pleurites, with a bulge
on their basis; s2 pleurites wider than others; telson with a
longitudinal median groove and two longitudinal crests along
fig. 8
. — Eryma modestiforme (Schlotheim, 1822) and its synonyms from the Kimmeridgian – Tithonian of Germany: A, B, holotype MFN 2236 P1383/2 MB.A.0252
from Eichstätt: general view (A), schema (B); C, original gure of Garassino & Schweigert (2006: pl. 11, g. 2) of the holotype of Astacus leptodactylus Germar,
1827 from Solnhofen; D, syntype BSPG AS VI 188 of Glyphea elongata Münster, 1839 from Solnhofen; E, F, syntypes of Glyphea laevigata Münster, 1839 from
43
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
e1e
d
ca
s1
e
ip s2 s3 s4 s5 s6
PoA
b1
i
b
C
D
E F
GHI
Solnhofen: specimen BSPG AS VII 198 (C), AS VII 194 (D), AS VII 197 (E); G, holotype BSPG AS VII 193 of Glyphea crassula Münster, 1839 from Solnhofen;
H, holotype SMNS 64520 of Palaeastacus poeschli Schweigert & Röper, 2001 from Mülheim. Abbreviations: a, branchiocardiac groove; b, antennal groove;
b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; e, eye; e1e, cervical groove; i, inferior groove; ip, intercalated plate; PoA, postorbital area;
s1-s6, pleonal somites. Photographs and line drawing: J. Devillez. Scale bars: 1 cm.
44 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Mxp3
a1
a2
ep
md
ne
sc
as
di
CD
E
AB
ip
fig. 9. — Additionnal specimens of Eryma modestiforme (Schlotheim, 1822) from the Kimmeridgian–Tithonian of Germany: A, B, specimen BSPG AS VI 15 from
Eichstätt: general view (A), schema of ventral side of cephalic region (B); C, specimen SMNS 64260 from Solnhofen; D, specimen MB.A2880 from Solnhofen;
E, specimen BSPG AS VIII 79 from Eichstätt. Abbreviations: a1, antennulae; a2, antenna; as, antennal spine; di, diaeresis; ep, epistom; ip, intercalated plate;
md, mandible; Mxp3, third maxilliped; ne, nephridiopore; sc, scaphocerite. Photographs and line drawing: J. Devillez. Scale bars: 1 cm.
45
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
lateral margins; uropods as long as telson; uropodal endopods
with a longitudinal carina; uropodal exopods with a diaeresis,
and a longitudinal carina.
Cephalic appendages
Last segment of antennular peduncles (basipodite) articulated
with two agella, agella made of numerous and short cylin-
drical articles; antennas made of numerous and short cylin-
drical articles; short, triangular scaphocerite;wide epistome,
with a linear contact with the carapace; wide, subrectangular
mandibles (Fig. 9A-C).
oracic appendages
Elongated Mxp3; chelate P1; P1 propodus subrectangular;
slender, straight P1 ngers, longer than propodus, equal in
length, sometimes with a small distal hook; occlusal margin
without teeth; P1 carpus short, subtriangular; elongated P1
merus; P2-P3 chelate.
Ornamentation
Carapace with a homogeneous ornamentation; carapace densely
covered by small tubercles and depressions; gastric region with
an orbitalspine; antennal region with an antennalspine; ple-
onal tergites and pleurites densely covered by small rounded
depressions; telson covered by small depressions; P1 covered
by small depressions; smooth P2-P5.
discussion
Eryma modestiforme is known by numerous specimens, almost
complete. is is the most common erymoid of the litho-
graphic limestones of southern Germany.
e type materials of Astacus leptodactylus Germar, 1827
(Fig. 8C), Glyphea crassula Münster, 1839 (Fig. 8H), Gly-
phea elongata Münster, 1839 (Fig. 8D), Glyphea laevigata
Münster, 1839(Fig. 8E-G) and Palaeastacus poeschli Sch-
weigert& Röper, 2001 (Fig. 8I), from the same formations
than E.modestiforme, share the same characteristics: a sub-
rectangular propodus bearing longer ngers, these ngers are
slender and straight, without teeth on their occlusal margins,
the carapace ornamentation is dense, made of small tubercles
and depressions. ese characteristics support the integration
of A.leptodactylus, G.crassula, G.elongata, G.laevigata and
P.poeschli into the synonymy of E.modestiforme.
e ventral extension of the cervical groove seen on
E.modestiforme is absent in E.lerasi and E.quadriverruca-
tum. e morphology of the P1 is also distinct from some
other representatives of the genus. Indeed, the propodus
is rectangular in E.modestiforme while it is trapezoidal
in E.georgeii and E.mandelslohi. It is also relatively nar-
rower than the propodus of E.georgeii, E.mandelslohi and
E.quadriverrucatum. e almost straight P1 ngers of
E.modestiforme contrast with the curved ones of E.geor-
geii, E.lerasi, E.veltheimii, E.ventrosum, and E.westphali.
Finally, the ne ornamentation of E.modestiforme, made
of tubercles and depressions, is clearly distinct from the
ornamentation of E.georgeii, E.jungostrix, E.mandelslohi,
E.veltheimii, and E.westphali.
Eryma punctatum Oppel, 1861
(Fig. 10)
Eryma punctata Oppel, 1861: 359; 1862: 38, pl.8, g.4.— Van
Straelen 1925: 275.— Beurlen 1928: 165.— Glaessner 1929:
158.— Schweigert etal. 2000: 5, g.1b, pl.2, gs1-5.— Feld-
mann& Titus 2006: 64.
Eryma punctatum – Dietl& Schweigert 2001:110, g.141.Sch-
weitzer etal. 2010: 24.— Schweigert 2015: g.542.— Devillez
etal. 2016: 518, 524.
type mAteriAl.— Holotype SMNS 3682.
type locAlity.— Nusplingen, Baden-Württemberg, Germany.
type Age.— Kimmeridgian.
description
Carapace
Sub-cylindrical carapace; short, spineless rostrum; fusiform
intercalated plate; deep and wide cervical groove, curved
dorsally, subvertical and almost straight ventrally, strongly
inected at carapace mid-height, joined to dorsal margin
and to antennal groove; deep antennal groove; short, shallow
gastro-orbital groove originating as strong median inexion
of cervical groove; postcervical and branchiocardiac grooves
convergent, sinuous, slightly inclined, not joined to dorsal
margin; deep postcervical groove, more strongly sinuous than
branchiocardiac groove, joined to branchiocardiac groove
under the level of the gastro-orbital groove; deep branchio-
cardiac groove, joined to the posterior extremity of hepatic
groove; hepatic groove concavo-convex; inferior groove joined
to hepatic groove.
Pleon and uropods
Somites with wide subtriangular pleurites, directed back-
ward, with a bulge at their basis; s2 with elongated pleurites,
subrectangular anteriorly and subtriangular posteriorly;
s5-6 pleurites shorter; telson with a median longitudinal
crest; uropods as long as telson; uropodal endopods with a
longitudinal carina; uropodal exopods with a diaeresis, and
a longitudinal carina.
Cephalic appendages
Last segment of antennular peduncles (basipodite) articu-
lated with two agella, agella made of numerous and short
cylindrical articles; antennas made of numerous and short
cylindrical articles; short, triangular scaphocerite.
oracic appendages
Elongated Mxp3, with small spines on the ventral margin
of each articles excepted the two distal ones; chelate P1; P1
propodus short, subrectangular; narrow, inated dactylar
bulge; P1 ngers usually slightly longer than propodus,
straight dorsally, equal in length, with a distal hook; occlusal
margin with small teeth and a strong one on index proximal
third; P1 carpus short, subtriangular; elongated P1 merus,
with a short process at outer side of its ventral extremity;
P2-P3 chelate.
46 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
AB
C
D
E
F
e1e
d
b
c
a
b1
i
ip
as
Mxp 3
di
fig. 10. — Eryma punctatum Oppel, 1861 from the Kimmeridgian of Nusplingen (Germany): A, holotype SMNS 3682; B, specimen SMNS 66128; C, D, specimen
SMNS 63849: general view (C), schema (D); E, specimen SMNS 63688; F, specimen SMNS 64960. Abbreviations: a, branchiocardiac groove; as, antennal spine;
b, antennal groove; b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; di, diaeresis; e1e, cervical groove; i, inferior groove; ip, intercalated plate;
Mxp3, third maxilliped. Photographs and line drawing: J. Devillez. Scale bars: 1 cm.
47
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
Ornamentation
Carapace densely covered by rounded depressions; gastric
region with an orbital spine; antennal region with an anten-
nalspine; tergites and pleurites of pleonal somites densely
covered by rounded depressions; uropodal exopods with a
spine on external margin, anterior to the diaeresis; P1 propodus
densely covered by small tubercles preceded by crescent-shaped
depressions; P1 carpus densely covered by small tubercles,
coarse tubercles along the distal extremity; P1 merus covered
by small tubercles and strong spines directed forward along
ventral margins; P2-3 and P5 with small and widely spaced
depressions; P4 propodus with posterior spines.
discussion
is species is currently known by some specimens, but it
has been rstly described by Oppel (1861) from an isolated
P1 chela and assigned to Eryma. On the specimens recently
found and preserved with the carapace we can observed the
carapace groove pattern (Fig. 10C). e postcervical and
branchiocardiac grooves are joined and the postcervical groove
is not connected ventrally to hepatic groove. is pattern is
characteristic of Eryma. Most of the specimens of E.punctatum
exhibit short P1 ngers in comparison to their P1 propodus,
which is unusual for the genus.
e ornamentation of the carapace of E.punctatum, only
made of closely spaced depressions, is only shared with
E.mandelslohi among Eryma, so its identication is easy. It
is also the only Eryma with a dactylus clearly inserted under
the level of inner margin, which is strongly prominent above
the basis of the dactylus. e low position of the junction
between postcervical and branchiocardiac grooves and the
absence of ventral extension of the postcervical groove beyond
this junction are two chatacterisitcs which distinguished
E.punctatum from E.georgeii, E.jungostrix, E.mandelslohi,
E.modestiforme, E.ventrosum, and E.westphali. Moreover, the
P1 ngers of E.punctatum are straight, contrary to E.georgeii
and E.ventrosum. ey are also usually shorter than P1 ngers
of E.georgeii, E.lerasi, E.major, and E.ventrosum.
Eryma quadriverrucatum Trautschold, 1866
(Fig. 11)
Eryma quadriverrucata Trautschold, 1866: 20, pl.3, g.5.
Quenstedt 1885: 410.— Lahusen 1894: 313, 316, 318, pl.1,
gs2-5.— Van Straelen 1925: 274, g.127.— Glaessner 1929:
158.— Gerasimov 1955: 24, pl.8, gs1-3.— Birshtein 1956: 74,
75.— Secrétan 1964: 70.Förster 1966: 121.Gerasimov etal.
1996: 9, 30, pl.6, gs1-3.Ilyin 2000: 151.Feldmann&
Titus 2006: 64.
Eryma mosquensis Lahusen, 1894: 318, pl.1, gs6-8.Van
Straelen 1925: 244, 276.— Glaessner 1929: 157.— Gerasimov
1955: 25, pl.8, gs5-7.— Birshtein 1956: 75.— Secrétan 1964:
70, 74.— Förster 1966: 122.Gerasimov etal. 1995: 9, 30, pl.4,
gs8-10.— Ilyin 2000: 152, 154, table1.— Feldmann& Titus
2006: 64.— Schweitzer etal. 2010: 24. n. syn.
Eryma mosquensis pustulifera – Glaessner 1929: 157.
Eryma a. quadriverrucata – Gerasimov 1955: 64, pl.8, g.9.
Eryma guadriverrucata – Ilyin 2000: 151, table1.
Eryma quadriverrucatum – Schweitzer etal. 2010: 24.
t
ype
mAteriAl
.— Holotype stored in the Museum of Paleontology
and Stratigraphy of the University of Saint Petersburg (not examined).
type locAlity.— Choroshowo, Podmoskovié, Russia.
type Age.— Tithonian.
description
Carapace
Sub-cylindrical carapace; fusiform intercalated plate; narrow
post-orbital area; deep and wide cervical groove, strongly
inclined and curved dorsally, subvertical ventrally, joined to
dorsal margin and to antennal groove; deep and narrow anten-
nal groove; short, deep gastro-orbital groove, originating as a
median inexion of cervical groove; deep postcervical groove,
curved, not joined to dorsal margin, joined to branchiocardiac
groove under the level of the gastro-orbital groove, without
ventral extension; deep branchiocardiac groove, strongly
inclined, strongly curved, with a strong inexion towards
its junction to hepatic groove, not joined to dorsal margin,
joined to hepatic groove; shallow and narrow hepatic groove,
concavo-convex, joined to cervical groove; inated ω and χ
areas; deep and wide inferior groove, joined to hepatic groove.
Pleon and uropods
Somites with subrectangular tergites; somites with subtrian-
gular pleurites, directed backward, with a rounded bulge on
their basis.
oracic appendages
Chelate P1; P1 propodus trapezoidal, compressed dorso-
ventrally, with a ventral surface inated medially, median
bulge bordered by a depression parallel to inner margin;
narrow dactylar bulge, posteriorly delimited by a shallow
and narrow groove; wide basis of the index; elongated P1
merus; thin P2-P5.
Ornamentation
Carapace densely covered by small tubercles surrounded by
irregular depressions; intercalated plate with a row of small
tubercles; cephalic region with an oblique orbital row of
tubercles ended by an orbital spine; antennal region with an
antennal spine; pleonal tergites and pleurites covered by small
depressions; P1 propodus densely covered by small tubercles;
smooth P1 merus; smooth P2-P5.
discussion
Trautschold’s (1866) description of Eryma quadriverrucatum
is supported by an isolated carapace from the Tithonian of
Russia. He assigned it to Eryma because of the short gastro-
orbital groove, the junction between the postcervical and
branchiocardiac grooves and the sinuosity of the hepatic
groove typical of the genus.
Eryma mosquensis Lahusen, 1894 (Tithonian, Russia;
Fig. 10E-F) was described on a fragment of P1 chela showing
48 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
AB
CD
EF
G IH
fig. 11. — Eryma quadriverrucatum Trautschold, 1866 and its synonyms from the Tithonian of Russia: A, B, original gures of Trautschold (1866: pl. 3, g. 5) of
the holotype from Choroshowo: lateral view (A), dorsal view (B); C, original gure of Gerasimov (1955: pl. 8, g. 3) from Ryazan; D, original gure of Gerasimov
(1955: pl. 8, g. 1) from Ryazan; E, F, original gures of Lahusen (1894: pl. 1, g. 6) of one of the syntypes of Eryma mosquensis from Mneviki: dorsal view (E),
ventral view (F); G, original gure of Gerasimov et al. (1995: pl. 4, g. 9) from Moscow; H, original gure of Gerasimov et al. (1995: pl. 4, g. 8) from Moscow;
I, original gure of Gerasimov et al. (1995: pl. 4, g. 10) from Moscow. Scale bars: 1 cm.
49
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
a subrectangular propodus, compressed dorso-ventrally and
bearing thin, elongated ngers characteristics of Eryma. Ger-
asimov etal. (1995) later assigned to this species a carapace
with convergent postcervical and branchiocardiac grooves,
joined in the inferior half of the carapace, and with a ne
ornamentation that gives a granular aspect to the carapace.
E.quadriverrucatum exhibits very similar features. So, we
consider E.mosquensis as a junior synonym of E.quadriv-
errucatum.
e junction of the postcervical and branchiocardiac
grooves of Erymaquadriverrucatum is located very low
on the carapace. It is very uncommon in Eryma, this
junction is usually located at carapace mid-height, more
or less at the level of the gastro-orbital groove, like in
E.georgeii, E.jungostrix, E.mandelslohi, E.modestiforme,
E.ventrosum, and E.westphali. Moreover, contrary to
E.georgeii, E.jungostrix, E.mandelslohi, E.modestiforme,
E.ventrosum, and E.westphali, the postcervical groove
of E.quadriverrucatum does not have a ventral exten-
sion under its junction with the branchiocardiac groove.
Both ω and χ areas are inated in E.quadriverrucatum,
while only one or none of them is inated in E.georgeii,
E.jungostrix, E.lerasi, E.mandelslohi, and E.ventrosum.
e P1 propodus of E.quadriverrucatum is wider than
that of E.jungostrix, E.lerasi, E.major, E.mandelslohi,
E.modestiforme, E.veltheimii, E.ventrosum, and E.west-
phali. It is also subrectangular while that of E.georgeii,
and E.mandelslohi is trapezoidal.
FRAGMENTS ATTRIBUTED TO ERYMA
remArks
In the literature, many fragments of Eryma were reported
without identication at specic level. Krause (1891) right-
eously assigned to Eryma sp. a carapace from the Oxfordian
of Listringen (Germany). e description mentions explicitly
the junction between the postcervical and branchiocardiac
grooves at carapace mid-height.
Förster (1966) assigned to Eryma stricklandi (Phillips,
1871) a carapace and some fragments of P1 propodi from
the Oxfordian of Blauen and Chatillon (Switzerland), stored
in the collections of the NMB (NMB 253, 93). ese fossils
exhibits the characteristics of Eryma, but are too incomplete
to be identied at the specic level. Indeed, the carapace is
strongly deformed and damaged in its dorsal part and the
propodus does not have particular features, so we consider
these fragments as Eryma sp.
Carpentier etal. (2006) identied as Eryma sp. a fragment
of P1 chela found in the Kimmeridgian of Bure (France).
Only the distal part of the propodus and the proximal part
of the ngers are preserved. ese elongated ngers and the
ornamentation made of small tubercles, and the presence
of other fossils of Eryma in the same locality, suggest that
this fragment belongs to the same genus.
In Fukushima prefecture (Japan), Kato etal. (2010:
764, g.3) reported a fragment of a P1 chela from the
Kimmeridgian-Tithonian boundary. Its subrectangular
propodus, elongated, dorso-ventrally compressed, with an
inated dactylar bulge and a long and thin index justify
the identication as Eryma sp.
Gerasimov etal. (1995: pl.4, gs14, 18) assigned to
Glypheopsis vosinskyi (Lahusen, 1894) and gured two frag-
ments of P1 chelae from the Tithonian of Moscow (Russia).
e propodi are subrectangular, elongated, dorso-ventrally
compressed, with an inated dactylar bulge and a thin
index curved inward. ese P1 chelae are typical of Eryma.
Genus Palaeastacus Bell, 1850
(Fig. 1F-G)
Palaeastacus Bell, 1850: 344.— Zittel 1885: 695.Beurlen
1928: 180.— Förster 1966: 126.— Glaessner 1969: 626.
Aguirre-Urreta& Ramos 1981: 606.— Aguirre-Urreta 1989:
509.— Schweitzer& Feldmann 2001: 174.— Feldmann etal.
2015: 3.— Hyžný etal. 2015: 375.Devillez etal. 2016: 525,
g.1G-H.— Devillez etal. 2017: 782.
Enoploclytia Palaeastacus – Mertin 1941: 161.— Glaessner 1969: 455.
type species.— Astacus sussexiensis Mantell, 1824, by subsequent
designation of Glaessner (1929).
d
iAgnosis
by
Devillez & Charbonnier (2019). Fusiform
intercalated plate; deep cervical groove, joined to dorsal margin
and to antennal groove; short gastro-orbital groove, originating
as a slight median inexion of the cervical groove; postcervical
and branchiocardiac grooves subparallel, joined to hepatic groove;
hepatic groove concavo-convex, joined to cervicalgroove; inferior
groove convex posteriorly, joined to hepatic groove; chelate P1;
P1 propodus short, thick, slightly globose, with a narrow dactylar
bulge; P1 ngers usually wide, slightly longer than propodus,
progressively narrowing to their distal extremity, occlusal margin
curved at the basis of the index.
Palaeastacus rothgaengerae Schweigert& Röper, 2001
(Fig. 12A, B)
Palaeastacus rothgaengerae Schweigert& Röper, 2001: 4, g.2.—
Garassino& Schweigert 2006: 11.— Schweitzer etal. 2010: 25.
type mAteriAl.— Holotype BSPG 1993 XVIII-200.
type locAlity.— Quarry near Brunn, Bavaria, Germany.
type Age.— Kimmeridgian.
description
oracic appendages
Chelate P1; P1 propodus subrectangular; wide P1 ngers,
straight, equal in length, as long as propodus; P1 carpus short,
subtriangular; P1 merus short, subrectangular.
Ornamentation
P1 propodus covered by small tubercles; inner margin with a
row of strong spines directed forward; ngers without orna-
mentation; P1 carpus covered by small tubercles and with
strong spines directed forward on inner margin; P1 merus
with strong spines directed forward on dorsal margin.
50 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
discussion
Palaeastacus rothgaengerae is known by a very few isolated
P1 with chelae characteristic of Palaeastacus: short and sub-
rectangular propodus, short and wide ngers, and strongly
spiny ornamentation.
P.rothgaengerae is clearly distinct among the other species
of Palaeastacus by the particular shape of P1 ngers, which
gives its characteristic appearance to the chelae. Indeed, the
ngers are very wide with strongly rounded inner margin of
dactylus and outer margin of index.
Palaeastacus fuciformis (Schlotheim, 1822)
(Fig. 12)
Macrourites fuciformis Schlotheim, 1822: 30, pl.2, g.2.
Glyphea fuciformis – Münster 1839: 16, pl.8, gs1-2.
Glyphea intermedia – Münster 1839: 17, pl.8, g.6-7.
Glyphea crassula – Münster 1839: 17, pl.8, g.4 (non 5).
Glyphea elongata – Münster 1839: 18, pl.8, g.11-12 (non gs8-10).
Eryma fuciformis – Bronn 1849: 579.Oppel 1861: 359.Oppel
1862: 41, pl.9, gs2-6.— Beurlen 1928: 164.— Glaessner 1929:
154.— Vialle 1948: 61.— Kuhn 1961: 22.— Secrétan 1964: 68.
Astacus fuciformis – Quenstedt 1852: 268, pl.20, g.14.— Quenstedt
1867: 320, pl.25, g.14.— Quenstedt 1885: 409, pl.32, g.7.
Eryma elongata – Oppel 1861: 358.— Oppel 1862: 37, pl.8, gs1-2.
Enoploclytia fuciformis – Van Straelen 1925: 285.
Clytia elongata – Beurlen 1928: 170.
Palaeastacus fuciformis – Förster 1966: 130, g.25.— Förster&
Rieber 1982: 774, 777.— Frickhinger 1994:122, gs218-219.
Schweigert etal. 2000: 5.— Schweitzer& Feldmann 2001: 174.—
Schweigert& Röper 2001: 8, g.5.Garassino& Schweigert
2006: 9, g.8, pl.1, g.3, pl.11, g.5.— Schweitzer etal. 2010:
25.— Charbonnier& Garassino 2012: 859, 864, g.3d.— Kara-
sawa etal. 2013: 102, table1.— Audo etal. 2014: 463.— Odin
etal. 2019: 654, g.7A-C, ap. 1.
type mAteriAl.— Holotype MFN 2236 P1383/8 MB.A.0251.
type locAlity.— Solnhofen area, Bavaria, Germany.
type Age.— Tithonian.
description
Carapace
Sub-cylindrical carapace; short, spiny rostrum; fusiform
intercalated plate; orbital notch widely curved; narrow
post-orbital area; elongated cephalic region; wide deep
cervical groove, slightly sinuous, joined to dorsal mar
-
gin and to antennal groove; deep antennal groove; short,
shallow gastro-orbital groove, joined to cervical groove
at carapace mid-height; postcervical and branchiocardiac
grooves subparallel, then converging under the level of
the gastro-orbital groove and diverging before their junc-
tion with hepatic groove, slightly inclined, not joined to
dorsal margin; wide, deep postcervical groove, joined to
hepatic groove; shallow branchiocardiac groove, joined to
the posterior extremity of hepatic groove; hepatic groove
concavo-convex, joined to cervicalgroove; deep inferior
groove, joined to hepatic groove.
Pleon and uropods
Somites with wide subtriangular pleurites, with a bulge on
their basis; telson with two longitudinal crests along the
lateral margin; uropods as long as telson; uropodal endo-
pods with a longitudinal carina; uropodal exopods with a
diaeresis, and with a longitudinal carina.
Cephalic appendages
Last segment of antennular peduncles (basipodite) articu-
lated with two agella, agella made of numerous and short
cylindrical articles; antennas made of numerous and short
cylindrical articles; short, triangular scaphocerite.
oracic appendages
Elongated Mxp3, with small spines on the ventral margin
of each article excepted the two distal ones; chelate P1; P1
propodus short, subrectangular; wide P1 ngers, as long
as propodus, straight dorsally, slightly curved downward,
equal in length, with a distal hook; occlusal margin with
very small teeth, closely spaced; P1 carpus short, subtrian-
gular; elongated P1 merus; P2-P3 chelate.
Ornamentation
Carapace with a heterogeneous ornamentation; branchial,
hepatic and pterygostomial regions densely covered by small
tubercles, cardiac region covered by small tubercles and
some spiny tubercles directed forward, cephalic region with
strong and widely spaced spines directed forward and small
tubercles; intercalated plate covered by a row of tubercles;
presence of an antennal spine; tergites and pleurites of ple-
onal somites covered by small depressions; telson with two
small spines on external margin; uropodal endopods with
two small spines on external margin; uropodal exopods with
a spine on external margin anterior to the diaeresis; P1 pro-
podus covered by longitudinal rows of strong spines directed
forward; inner margin with a row of strong spines directed
forward; P1 carpus covered by rows of strong spines directed
forward; P1 merus covered by small tubercles and strong
spines directed forward along dorsal and ventral margins;
P2-P3 and P5 with small and widely spaced depressions;
P4 propodus with posterior spines.
discussion
Palaeastacus fuciformis is known by many subcomplete
specimens. Its assignation to Palaeastacus is based on its
typical carapace groove pattern and shape of P1 chelae:
short gastro-orbital groove, both postcervical and bran-
chiocardiac grooves joined to the sinuous hepatic groove,
short and subrectangular P1 propodus, wide, short and
straight ngers.
51
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
PoA
e1e
d
c
a
i
b1
b
Mxp3
AB
FG
pl
di
a1
a2
e
E
C
D
fig. 12. —Palaeastacus rothgaengerae Schweigert & Röper, 2001 and Palaeastacus fuciformis (Schlotheim, 1822) from Germany: A, B, holotype BSPG 1993 XXVIII
200 of P. rothgaengerae from the Kimmeridgian of Brunn quarry: general view (A), schema (B); C, D, holotype MFN 2236 P1383/8 MB.A.0251 of P. fuciformis from
the Tithonian of Solnhofen: general view (C), schema of the carapace (D); E, specimen MFN 2236 P1383/7 MB.A.2985 from the Tithonian of Eichstätt; F-G, specimen
MFN 2236 P1383/7 MB.A.2992 from the Tithonian of Solnhofen: general view (F), schema (G). Abbreviations: a, branchiocardiac groove; a1, antennulae; a2, antenna;
b, antennal groove; b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; di, diaeresis; e, eye; e1e, cervical groove; i, inferior groove; ip, intercalated
plate; Mxp3, third maxilliped; pl, pleopod; PoA, postorbital area. Photographs: C, E, F, J. Devillez; A, G. Schweigert. Line drawings: J. Devillez. Scale bars: 1 cm.
52 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Except Palaeastacus argoviensis Förster& Rieber, 1982
from the Aalenian, Palaeastacus fuciformis is the only spe-
cies of the genus to have a sinuous cervical groove. e
trajectories of the postcervical and branchiocardiac grooves
are also particular: they are convergent under the level of
the gastro-orbital groove and become divergent above their
junctions to the hepatic groove. Similar trajectories of these
grooves are only found in Palaeastacus terraereginae from the
Barremian. Another characteristic is the presence of strong
spines in the cephalic region while the remaining parts of
its carapace are covered by small tubercles. None of other
representatives of Palaeastacus exhibits such ornamenta-
tion. at of Palaeastacus sussexiensis (Mantell, 1824) from
the Cretaceous is very close but P.fuciformis does not have
oblique rows of strong spines in its cardiac region (Dev-
illez etal. 2016, 2017). e P1 propodus of P.fuciformis
is ornamented by longitudinal rows of spines contrary to
most of the other species for which the P1 chelae are known.
Genus Pustulina Quenstedt, 1857
(Fig. 1H-I)
Pustulina Quenstedt, 1857: 807.— Glaessner 1969: 481.
Feldmann etal. 2015: 3.Devillez etal. 2016: 531, g.1K-
L.— Devillez etal. 2017: 792.
Phlyctisoma Bell, 1863: 34.— Zittel 1885: 695.Glaessner
1929: 314.— Secrétan 1964: 74.Förster 1966: 135.—
Glaessner 1969: 626.
type species.— Pustulina suevica Quenstedt, 1857, by monotypy.
emended diAgnosis by Devillez et al. (2016).— Fusiform in-
tercalated plate; inated hepatic, cardiac and branchial regions;
deep cervical groove, joined to dorsal margin and to antennal
groove; deep, long gastro-orbital groove, originating as a slight
median inexion of the cervical groove, with two divergent, curved
branches, delimiting two gastro-orbital lobes; strongly inclined
postcervical groove, inected before joining hepatic groove, not
joined to dorsal margin; short and shallow branchiocardiac groove,
joined to dorsal margin and not joined to postcervical groove;
concave hepatic groove, joined to cervical groove; shallow cardiac
groove, straight, inclined forward, rising from postcervical groove,
joined to dorsal margin; cephalic region with strongly tuberculate
antennal row and distal antennal spine; carapace with tubercu-
late ornamentation; chelate P1-P3; P1 with strongly tuberculate
ornamentation; short P1 propodus with ngers barely longer; P1
dactylus longer than P1 index.
Pustulina suevica Quenstedt, 1857
(Figs 13; 14)
Pustulina suevica Quenstedt, 1857: 807, pl.99, g.30.— Van
Straelen 1925: 289.Beurlen 1928: 200, g.24a (non 24b).—
Schweigert etal. 2000: 9, pl.5, gs1-3.— Dietl& Schweigert
2001:53, 54, g.87.— Schweitzer etal. 2010: 26.
Eryma fraasi Oppel, 1861: 359; 1862: 39, pl.9, g.1.
Enoploclytia perroni Étallon, 1861: 161, pl.9, g.1.— Van Straelen
1925: 279.— Glaessner 1929: 148.— Secrétan 1964: 70. n. syn.
Palaeastacus solitarius Oppel, 1862: 46, pl.11, g.1.— Sch-
weitzer etal. 2010: 25.
Eryma pseudobabeaui Dollfus, 1863: 36, pl.1, gs1-2.Sauvage
1891: 94, pl.4, g.5 (non 4).— Glaessner 1929: 158.— Car-
riol 1991: 225. n. syn.
Enoploclytia edwardsi Sauvage, 1891: 87, pl.3, gs1-4.— Va n
Straelen 1925: 282.— Glaessner 1929: 146.— Schweitzer etal.
2010: 22. n. syn.
Enoploclytia dorsetensis Woods, 1930: 81, pl.23, gs1-3. n. syn.
Eryma perroni – Oppel 1861: 358; 1862: 33.Woodward 1900:
9.— Whiteaves 1903: 322.— Beurlen 1928: 157, 164, 278.—
Mertin 1941: 160.— Charbonnier etal. 2012b: 558, g.18E-F.
Eryma suevica – Oppel 1861: 359; 1862: 38, pl.8, g.9.
Enoploclytia pseudo-babeaui – Van Straelen 1925: 280.
Phlyctisoma perroni – Förster 1965: 140; 1966: 141, pl.18,
g.6.— Taylor 1979: 24.
Phlyctisoma pseudobabeaui – Förster 1966: 141, pl.18, g.6.
Phlyctisoma sp.— Förster 1966: 142, pl.18, g.7.
Pustulina edwardsi – Carriol 1991: 224.
Pustulina perroniSchweitzer etal. 2010: 26.
Pustulina pseudobabeauiSchweitzer etal. 2010: 26.
type mAteriAl.— Holotype GPIT without number.
type locAlity.— Nusplingen, Baden-Württemberg, Germany.
type Age.— Kimmeridgian.
description
Carapace
Sub-cylindrical carapace; short, spiny rostrum; dorsal mar-
gin of cephalic region curved downward; fusiform interca-
lated plate; orbital notch slightly curved; inated cardiac,
hepatic and branchial regions; deep cervical groove, almost
straight and sub-vertical, joined to dorsal margin and to
antennal groove; deep, wide antennal groove; elongated
gastro-orbital groove, joined to cervical groove at carapace
mid-height, with two divergent branches delimiting two
gastro-orbital lobes; deep postcervical groove, inected at
carapace mid-height, strongly inclined dorsally, not joined
to dorsal margin; shallow branchiocardiac groove, almost
straight, not joined to dorsal margin and interrupted in
branchial region; shallow cardiac groove, straight, slightly
inclined forward, joined to the postcervical groove and to
dorsal margin.
fig. 13
. — Pustulina suevica Quenstedt, 1857 and its synonyms. A, holotype GPIT without number (Kimmeridgian,Nusplingen, Germany); B, holotype SMNS
3682-1 of Eryma fraasi Oppel, 1862 (Kimmeridgian, Nusplingen, Germany); C, holotype SMNS 3682-4 of Palaeastacus solitarius Oppel, 1862 (Kimmeridgian,
Nusplingen, Germany); C, D, syntype MNHN.F.B12485 of Enoploclytia perroni (Oxfordian, Frasne, France): general view (C), line drawing (D); F, G, type material
of Enoploclytia dorsetensis Woods, 1930 (Oxfordian, Weymouth, United Kingdom): holotype NHMUK In.27137 (F), paratype NHMUK 33414 (G); H-I, holotype of
53
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
ABC
Mxp3
ne
a1
a2
H
I
JK
ip
c
cd
b
i
d
e1e
DE
FG
b1
e
sc
Eryma pseudobabeaui Dollfus, 1863 (Kimmeridgian, Le Havre, France): original gures of Dollfus (1863: pl. 1, gs 1-2); J-K, syntypes of Enoploclytia edwardsi
Sauvage, 1891 (Kimmeridgian, Boulogne-sur-Mer, France): original gures of Sauvage (1891: pl. 3, gs 1-2). Abbreviations: a1, antennulae; a2, antenna; b, anten-
nal groove; b1, hepatic groove; c, postcervical groove; cd, cardiac groove; d, gastro-orbital groove; e, eye; e1e, cervical groove; i, inferior groove; ip, intercalated
plate; Mxp3, third maxilliped; ne, nephridiopore; sc, scaphocerite. Photographs and line drawing: J. Devillez. Scale bars: 1 cm.
54 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
AB
CD
E
fig. 14. — Additionnal specimens of Pustulina suevica Quenstedt, 1857 and reconstruction: A, specimen SMNS 60159 (Kimmeridgian, Bisingen-Ochsenwang);
B, specimen NHMUK In.61550 (United Kingdom); C, specimen SMNS 70489 (Kimmeridgian, Nusplingen, Germany); D, specimen MFN 2236 P1383/5 MB.A.1538
(Oxfordian, Dollnstein, Germany); E, reconstruction of P. suevica. Photographs and drawing: J. Devillez. Scale bars: 1 cm.
55
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
Pleon and uropods
Somites with narrow subtriangular pleurites, with a rounded
bulge on their basis.
Cephalic appendages
Last segment of antennular peduncles (basipodite) articu-
lated with two agella, agella made of numerous and short
cylindrical articles; antennas made of numerous and short
cylindrical articles.
oracic appendages
Elongated Mxp3, made of cylindrical spineless segments; che-
late P1; P1 propodus short, as long as wide; narrow, inated
dactylar bulge; short, wide P1 ngers, straight dorsally, slightly
curved downward, equal in length; occlusal margin without
teeth; P1 carpus short, subtriangular; elongated P1 merus,
with a short process at outer side of its ventral extremity;
P2-P3 chelate.
Ornamentation
Carapace densely covered by rounded tubercles, smaller
in ventral part of branchial region and in pterygostomial
region; intercalated plate covered by tubercles; row of
tubercles parallel to the intercalated plate in gastric region;
oblique row of tubercles ended by an orbital spine in gastric
region; antennal row of coarse tubercles; tergites of pleonal
somites covered by small rounded depressions, mainly on
their posterior part; pleurites of pleonal somites covered by
small depressions; P1 propodus densely covered by coarse
tubercles organised in longitudinal rows on both ventral and
dorsal surfaces; P1 ngers covered by rounded depressions;
P1 carpus covered by coarse tubercles; P1 merus covered by
small tubercles on dorsal margin,and with a row of spines
along the extern ventral margin; smooth P2-P5.
discussion
Because the species was described from a single isolated P1
chela from the Kimmeridgian of Nusplingen (Germany),
Pustulina suevica was recognized as an erymoid lobster
only recently. Indeed, Schweigert etal. (2000) pointed out
the strong similiraties between the holotype of P.suevica
and the P1 chelae of the holotypes of Eryma fraasi Oppel,
1861 (Fig. 13B) and Palaeastacus solitarius Oppel, 1862
(Fig. 13C), from the same locality. ese species share a
subrectangular P1 propodus bearing wide and short n-
gers, ornamented by longitudinal rows of coarse tubercles.
Considering these elements, Schweigert etal. (2000) con-
cluded that E.fraasi and P. solitarius are junior synonyms
of P.suevica. Moreover, the carapace of E.fraasi is mostly
preserved. is allowed Schweigert etal. (2000) to point
out the similarities of the carapace groove pattern of Pus-
tulina and Phlyctisoma Bell, 1863. So, Phlyctisoma became
a junior synonym of Pustulina, and we concur with the
conclusions of Schweigert etal. (2000).
Étallon (1861) described Enoploclytia perroni from the
Oxfordian of Frasne (France; Fig. 13D-E). In the liter-
ature, this species was assigned to Eryma (Oppel 1861,
1862; Woodward 1900; Whiteaves 1903; Beurlen 1928;
Mertin 1941; Charbonnier etal. 2012b), Phlyctisoma
(Förster 1965; Förster 1966; Taylor 1979) or Pustulina
(Schweitzer etal. 2010). Examination of the syntype of
E.perroni shows a carapace groove pattern and P1 chela
typical of Pustulina: the elongated gastro-orbital groove
with two divergent branches, the concave hepatic groove,
the inected postcervical groove joined to the posterior
extremity of the hepatic groove, the presence of the car-
diac groove, the short and subrectangular propodus with
its short and wide ngers. e ornamentation of E.perroni
made of coarse rounded tubercles, becoming smaller ven-
trally, is also identical to that of P.suevica. So, we consider
E.perroni as another junior synonym of P.suevica. For the
same reasons than E.perroni, Eryma pseudobabeaui Doll-
fus, 1863 (Kimmeridgian, Le Havre, France; Fig. 13H,
I), Enoploclytia edwardsi, Sauvage, 1891 (Kimmeridgian,
Boulogne-sur-Mer, France; Fig. 13J, K) and Enoploclytia
dorsetensis Woods, 1930 (Oxfordian, Weymouth, United
Kingdom; Fig. 13F, G) are considered as junior synonyms
of P.suevica. We noticed that E.edwardsi has already been
considered as a synonym of Phlyctisoma pseudobabeaui and
E.dorsetensis as a synonym of P.perroni by Förster (1966).
Among the crustacean faunas of the Oxfordian-Kim-
meridgian, Pustulina suevica is a typical species with a wide
distribution in Western Europe. Fossils of this species are
reported from many localities in France, Germany and
United Kingdom. Moreover, it is the only erymoid species
from the lithographic limestones of southern Germany to
have been reported out of this country.
P.suevica is distinct from some other species of the genus
by its ornamentation. Indeed, there are no depressions as
in P.calloviensis (Förster, 1966) and P.elegans (Förster,
1966), the tubercles of P.suevica are coarser than those of
P.trisulcata (Schweitzer& Feldmann, 2001), there are no
small tubercles between the coarse ones as in P.tuberculata
(Bell, 1863), and there is a strong antennal row in P.suevica
contrary to P.calloviensis, P.cretacea (Roger, 1946), P.elegans,
P.minuta, and Pustulina victori Devillez, Charbonnier,
Hyžný& Leroy, 2016. Pustulina suevica is also the only
species with P.elegans to have an oblique orbital row. Like
P.minuta, the cervical groove of P.suevica is almost straight
contrary to P.calloviensis, P.colossea Devillez, Charbonnier,
Hyžný& Leroy, 2016, P.elegans, and P.occitana Devillez,
Charbonnier, Hyžný& Leroy, 2016. e gastro-orbital
groove is also sub-horizontal while that of P.calloviensis,
P.colossea, P.elegans, P.occitana, P.spinulata (Secrétan,
1964), and P.tuberculata is oblique. Moreover, the P1 n-
gers of P.suevica are sometimes ended by a hook contrary
to P.minuta and P.tuberculata. Finally, the pleurites of the
pleon are narrower than that of P.minuta and P.trisulcata.
Pustulina minuta (Schlotheim, 1822)
(Fig. 15)
Macrourites minutus Schlotheim, 1822: 28, pl.3, g.3.
56 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Glyphea verrucosa Münster, 1839: 21, pl.9, g.11 (non 12).
Fraas 1855: 94.
Astacus minutus – Germar 1827: 102.
Glyphea minuta – Münster 1839: 20, pl.9, gs8-10.
Eryma minuta – Bronn 1849: 579.— Oppel 1861: 356; 1862:
39, pl.8, gs6-8.— Beurlen 1928: 164.Vialle 1948: 61.
Secrétan 1964: 68.
Enoploclytia minuta – Van Straelen 1925: 284.— Glaessner 1929:
154 (pars.).
Enoploclytia fuciformis – Van Straelen 1925: 285 (pars.).— Glaess-
ner 1929: 156 (pars.).
Phlyctisoma minuta – Förster 1965: 140; 1966: 142, pl.18, g.9.—
Frickhinger 1994: 126, g.224.
Pustulina minutaFeldmann& Titus 2006: 64.— Garassino&
Schweigert 2006: 11, 36, g.8, pl.2, g.1, pl.11, g.6, pl.12,
gs1-2.Schweitzer etal. 2010: 26.Charbonnier& Garassino
2012: 864, 865, g.3E.Schweigert 2015: g.545.Odin
etal. 2019: 654, g.7D, ap. 1.
Eryma verrucosa – Oppel 1861: 359; 1862: 38, pl.8, g.5.— Feld-
mann& Titus 2006: 64.— Schweitzer etal. 2010: 26.
type mAteriAl.— Holotype MFN 2236 P1383/5 MB.A.0254.
type locAlity.— Eichstätt, Bavaria, Germany.
type Age.— Tithonian.
description
Carapace
Sub-cylindrical carapace; short, spiny rostrum; fusiform
intercalated plate; orbital notch slightly curved; deep cervi-
cal groove, almost straight and sub-vertical, joined to dor-
sal margin and to antennal groove; deep antennal groove;
elongated gastro-orbital groove, joined to cervical groove at
carapace mid-height, with two divergent branches delim-
iting two gastro-orbital lobes; deep postcervical groove,
inected at carapace mid-height, inclined dorsally, not
joined to dorsal margin; shallow branchiocardiac groove,
not joined to dorsal margin and interrupted in branchial
region; narrow and shallow cardiac groove, straight, strongly
inclined forward, joined to the postcervical groove and to
dorsal margin.
Pleon and uropods
Somites with wide subtriangular pleurites, becoming shorter
from s4 to s6, with a slightly rounded posterior margin, with
a strongly inated and rounded bulge on their basis; telson
with a median groove and two longitudinal crests; uropods
as long as telson; uropodal endopods with a longitudinal
carina; uropodal exopods with a diaeresis.
Cephalic appendages
Last segment of antennular peduncles (basipodite) articu-
lated with two agella, agella made of numerous and short
cylindrical articles; antennas made of numerous and short
cylindrical articles; short, triangular scaphocerite.
oracic appendages
Elongated Mxp3, with two cylindrical distal segments
lacking of spines; chelate P1; P1 propodus short, as long as
wide; narrow, slightly inated dactylar bulge; short, wide
P1 ngers, straight dorsally, slightly curved downward,
equal in length; occlusal margin without teeth; P1 carpus
short, subtriangular; elongated P1 merus; P2-P3 chelate.
Ornamentation
Carapace densely covered by rounded tubercles, smaller
and closer in branchial region; intercalated plate covered
by tubercles; tergites and pleurites of pleonal somites
covered by small depressions; longitudinal crest of the
telson bearing a row of tubercles;telson covered by thin
tubercles and with two small spines on its external mar-
gin; uropodal endopods covered by thin tubercles; P1
propodus densely covered by coarse tubercles; P1 ngers
with irregular carina and rounded depressions; P1 carpus
densely covered by coarse tubercles; P1 merus with coarse
tubercles in its distal part; smooth P2-P3 and P5; P4 pro-
podus with posterior spines.
discussion
e assignation to Pustulina is based on the typical groove
pattern: the wide and long gastro-orbital groove with two
divergent branches, the inected postcervical groove, joined
to the posterior extremity of the hepatic groove, the con-
cave hepatic groove, and the presence of a cardiac groove.
After the original description by Schlotheim (1822),
Münster (1839) described Glyphea verrucosa based on an
isolated P1 chela from the same locality. Later, Glaessner
(1929), followed by Förster (1966) and Garassino&
Schweigert (2006), established the synonymy between
M. minutus and G.verrucosa, while Schweitzer etal.
(2010) reported Eryma verrucosa as Incertae sedis in
Erymidae section. The lectotype of G.verrucosa is a
true chelae, so it cannot be maintained within Glyphea
Meyer, 1835, because glypheid lobsters have subchelate
P1-P3. Moreover, comparisons with the specimens of
Pustulinaminutashow strong similarities in both forms:
rectangular propodus with short and wide fingers typical
of Pustulina; a propodus densely and irregularly covered
by coarse rounded tubercles and fingers with depressions
and irregular carina. These similarities support the syn-
onymy between P.minuta and G. verrucosa previously
established by Glaessner (1929).
e compression of the specimens of Pustulina minuta
makes dicult comparisons with other species. e cer-
vical groove is almost straight while that of P.callovien-
sis, P.colossea, and P.elegans is clearly curved or sinuous.
Moreover, contrary to P.colossea, P.occitana, P.spinulata,
P.suevica, and P.tuberculata, there is no well-marked
antennal row in P.minuta. ere is also no row in the
gastric region contrary to P.trisulcata and no depressions
contrary to P.calloviensis and P.elegans. Finally, the P1
ngers of P.minuta do not have a terminal hook contrary
to P.cretacea and some specimens of P.suevica.
57
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
A
C
B
D
a
c
cd
b
d
ib1
e1e
ip
E F
G
fig. 15. — Pustulina minuta (Schlotheim, 1857) from the Tithonian of Germany and Pustulina sp.: A, holotype MFN 2236 P1383/5 MB.A.0254 of P. minuta from
Eichstätt; B, lectotype BSPG AS VII 182 of Glyphea verrucosa Münster, 1839 from Eichstätt; C, D, specimen MFN 2236 P1383/5 MB.A.1119 of P. minuta from
Solnhofen: general view (C), schema of the carapace (D); E, specimen 2236 P1383/5 MB.A.2863 of P. minuta from Solnhofen; F, specimen BSPG AS VIII 78 of
P. minuta from Solnhofen; G, specimen BSPG 1952 XV 570 of P. sp. (Kimmeridgian, Nagelsberg near Heubach, Germany). Abbreviations: a, branchiocardiac
groove; b, antennal groove; b1, hepatic groove; c, postcervical groove; cd, cardiac groove; d, gastro-orbital groove; e1e, cervical groove; i, inferior groove; ip, in-
tercalated plate. Photographs and line drawing: J. Devillez. Scale bars: 1 cm.
58 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
FRAGMENTS ATTRIBUTED TO PUSTULINA
remArks
Förster (1965) reported a P1 chela from the Tithonian of
Unterhausen near Neuburg a. d. Donau (Germany). It exhibits
a shape of propodus and ngers and a coarse ornamentation
close to that of P.minuta and P.suevica.
Another P1 propodus from the Kimmeridgian of Nägels-
berg near Heubach (Germany) is stored in the collections of
the BSPG (Fig. 15G). It is subrectangular, short with a well-
marked coarse ornamentation typical of Pustulina.
Genus Stenodactylina Beurlen, 1928
(Fig. 1J-L)
Stenodactylina Beurlen, 1928: 175.— Glaessner 1969: 456.— Sch-
weigert 2013: 411.— Devillez etal. 2016: 522, gs1D-F.
Erymastacus Beurlen, 1928: 171 (pars.).— Secrétan 1964: 71.—
Glaessner 1969: 456 (pars.).— Hyžný etal. 2015: 375.
t
ype
species
.— Stenodactylina liasina Beurlen, 1928, by monotypy.
d
iAgnosis
by
Devillez & Charbonnier (2019).Fusiform interca-
lated plate; narrow post-orbital area; deep, very wide cervical groove,
joined to dorsal margin and to antennal groove; short gastro-orbital
groove originating as a slight median inexion of cervical groove;
postcervical and branchiocardiac grooves nearly parallel; narrow
postcervical groove, not joined to branchiocardiac groove and inter-
rupted in hepatic region; branchiocardiac groove strongly inclined,
joined to hepatic groove; hepatic groove concavo-convex, joined to
cervical groove; inferior groove convex posteriorly, joined to hepatic
groove; chelate P1; P1 propodus rectangular or trapezoidal, with inner
margin more compressed than outer margin, with a wide dactylar
bulge; P1 with extremely long and slender ngers, equal in length;
P1 chela (form I; Fig. 1K) with strong, rectangular or trapezoidal
propodus, bearing straight or sinuous ngers, strongly narrowing
immediately after their basis; outer margin convex at the basis of
the index; P1 chela (form II; Fig. 1L) with trapezoidal propodus,
outer margin straight or convex, straight ngers, narrowing gradu-
ally to their distal extremity.
Stenodactylina insignis (Oppel, 1862)
(Fig. 16A-C)
Eryma insignis Oppel, 1862: 33, pl.10, g.1.Van Straelen 1925:
264.— Förster 1966: 110.
Eryma anisodactylus Krause, 1891: 207, pl.13, g.4.Van Straelen
1925: 270.— Förster 1966: 116.
Eryma ornata – Étallon 1861: 166, pl.8, g.2.
Erymastacus insignis – Beurlen 1928: 175.— Glaessner 1929:
162.— Secrétan 1964: 74.— Hyžný etal. 2015: 376.
Erymastacus anisodactylus – Beurlen 1928: 175.— Glaessner 1929: 162.
Eryma anisodactylum – Schweitzer etal. 2010: 23.
Erymastacus anisodactylina – Hyžný etal. 2015: 376.
Stenodactylina insignis – Devillez etal. 2016: 524, table1.
type mAteriAl.— Cast of the holotype MNHN.F.A24613.
type locAlity.— Unknown locality, Haute-Saône departement,
Bourgogne, France.
type Age.— Oxfordian.
description
oracic appendages
Chelate P1; elongated P1 propodus, trapezoidal, slightly
globose medially; inated dactylar bulge; elongated P1 n-
gers;dactylus progressively narrowing in its proximal half,
inected at mid-length, slender in its distal half, with a ter-
minal hook; index with a wide basis, progressively narrow-
ing in its proximal third, strongly inected at its proximal
third, slender and sinuous distally; occlusal margin with
short conical teeth.
Ornamentation
Propodus and ngers covered by small tubercles.
discussion
e holotype of Eryma insignis is a P1 chela currently lost,
but a cast is stored in the MNHN collections. In the literatur,
some authors assigned this species to Eryma (Van Straelen
1925; Förster 1966), while others assigned it to Erymasta-
cus (Beurlen 1928; Glaessner 1929; Secrétan 1964; Hyžný
etal. 2015), which was established to group erymid chelae
showing particularly elongated ngers. Later, Devillez etal.
(2016) considering the elongated propodus with the long,
slender, inected and sinuous ngers, integrated E.insignis
into Stenodactylina.
Like E.insignis, Eryma anisodactylus Krause, 1891 (Fig. 16B)
has a complex history. Sometimes regarded as a species of Eryma
(Van Straelen 1925; Förster 1966; Schweitzer etal. 2010) or
Erymastacus (Beurlen 1928; Glaessner 1929; Secrétan 1964;
Hyžný etal. 2015), Devillez etal. (2016) nally pointed out
the similarities between these two species. Indeed, they are
synonyms because of the shape of the P1 propodus and the
length and shape of the ngers.
Stenodactylinainsignis is only known by isolated P1 chelae,
so comparisons to other species are limited. e wide basis
of the index and its inexion are diagnostic of the species.
Moreover, the ornamentation lacking of coarse tubercles and
spines on the propodus is distinct from S.armata (Secrétan,
1964), S.australis (Secrétan, 1964), S.falsani (Dumortier,
1867), S.lagardettei (Hyžný, Schlögl, Charbonnier, Sch-
weigert, Rulleau& Gouttenoire, 2015), S.liasina Beurlen,
1928, S.rogerfurzei Schweigert, 2013, S.spinosa (Étallon,
1861), S.strambergensis (Bachmayer, 1959), and S.triglypta
(Stenzel, 1945).
fig. 16. — Stenodactylina insignis (Oppel, 1862), Stenodactylina shotoverigiganti n. sp. and Stenodactylina granulifera (Secrétan, 1964): A, holotype of S. insignis
(Oxfordian, Haute-Saône, France); B, holotype MFN 2236 P1383/2 MB.A.1536 of Eryma anisodactylus Krause, 1891 (Kimmeridgian, Holzen, Germany); C, speci-
men IRSNB without number of S. insignis (Kimmeridgian, La Rochelle, France); D-G, holotype NHMUK 24559 of S. shotoverigiganti n. sp. (Oxfordian, Shotover,
59
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
A
C
E
H
B
D
I
e1e
d
b
b1i
a
c
ip
ip
ω
F
G
J
e1e
da
c
ωχ
b1
b
ip
i
United Kingdom): right lateral view (D), left lateral view (E), schema (F), dorsal view (G); H-J, holotype MNHN.F.R03975 of S. granulifera (Kimmeridgian, Antsalova,
Madagascar): lateral view (H), schema (J); C, D, holotype MNHN.F.R03974 of Eryma madagascariensis Secrétan, 1964 (Kimmeridgian, Antsalova, Madagascar).
Abbreviations: a, branchiocardiac groove; b, antennal groove; b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; e1e, cervical groove; i, inferior
groove; ip, intercalated plate; χ, attachment site of adductor testis muscle; ω, attachment site of mandibular muscle. Photographs: A, L. Cazes; B-E, G, J. Devillez;
H, J, C. Lemzaouda. Line drawings: J. Devillez. Scale bars: 1 cm.
60 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Stenodactylina shotoverigiganti n. sp.
(Fig. 16D-G)
urn:lsid:zoobank.org:act:E2B19293-97D9-41F9-AF43-4B03CA6F7E2F
Eryma cf. bedelta – Woods 1930: pl.21, g.2.
type mAteriAl.— Holotype NHMUK 24559.
e
tymology
.e specic epithet comes from the Latin “gigantes”,
meaning giant, associated to the name of the type locality, Shotover.
It refers to the giant of Shotover, a geoglyph, mentioned during the
17th century by Jean Aubrey, that has disappeared now.
type locAlity.— Shotover, Oxfordshire, United Kingdom.
type Age.— Oxfordian.
description
Carapace
Sub-cylindrical carapace; fusiform intercalated plate; elongated
cardiac region; deep and wide cervical groove, becoming wider
ventrally, slightly sinuous at its median inexion, joined to
dorsal margin and to antennal groove; deep and very wide
antennal groove; short, shallow gastro-orbital groove, oblique,
originating as a slight median inexion of cervical groove;
subparallel postcervical and branchiocardiac grooves, slightly
curved; deep and wide postcervical groove, not joined to dor-
sal margin and interrupted in hepatic region; deep and wide
branchiocardiac groove, becoming wider towards its junction
to the hepatic groove, joined to dorsal margin, joined to the
posterior extremity of the hepatic groove; wide hepatic groove,
concavo-convex, joined to the cervical groove; slightly inated
ω area, ventrally delimited by a shallow depression extending
between cervical and hepatic grooves; at χ area; deep and
wide inferior groove, joined to hepatic groove.
Ornamentation
Carapace covered by rounded tubercles;intercalated plate
with small tubercles irregularly spaced; gastric region with an
oblique row of tubercles ended by an orbital spine.
discussion
Stenodactylinashotoverigiganti n. sp. is known by a unique
carapace previously mentionned and gured by Woods (1930)
as Eryma cf. bedelta. Careful examination of the specimen
shows the absence of junction between postcervical and
branchiocardiac grooves, and the interruption of the post-
cervical groove in hepatic region while the branchiocardiac
groove is joined to the hepatic groove. is groove pattern
is diagnostic of Stenodactylina. Moreover, some morpholog-
ical features allow the distinction of this specimen from all
other representatives of the genus for which the carapace is
known. Indeed, the postcervical groove is shorter than that
of S.australis, S.delphinensis (Moret, 1946), S.deslongc-
hampsi (Van Straelen, 1925), S.granulifera, S.lagardettei,
S.pseudoventrosa, and S.walkerae (Feldmann& Haggart,
2007). It is also slightly curved contrary to S.burgundiaca
(Crônier& Courville, 2004), S.delphinensis, S.granulif-
era, S.triglypta, and S.walkerae. Only the ω area is inated
while it is at in some species (S.australis, S.delphinensis,
S.deslongchampsi) or both ω and χ areas are inated in some
others (S.burgundiaca, S.granulifera, S.guisei (Wright,
1881), S.lagardettei). e ornamentation of the specimen
is thin and only made of tubercles contrary to S.australis,
S.burgundiaca, S.delphinensis, S.granulifera, S.guisei,
S.lagardettei, and S.pseudoventrosa. Finally, there is an
orbital row, which is absent in S.australis, S.burgundiaca,
S.delphinensis, S.deslongchampsi, S.guisei, and S.triglypta.
Considering all these elements, we consider this specimen as
a representative of a new species of erymid lobsters: Steno-
dactylina shotoverigiganti n. sp.
Stenodactylina granulifera (Secrétan, 1964)
(Fig. 16H-J)
Eryma granulifera Secrétan, 1964: 64, pl.1, g.1, pl.3, g.1.
Förster 1966: 125.— Garassino& Schweigert 2006: 8.Feld-
mann& Titus 2006: 64.— Schweitzer etal. 2010: 24.
Eryma madagascariensis Secrétan, 1964: 61, pl.3, gs2-3.— Förster
1966: 116, 125, 162.— Taylor 1979: 36.— Förster& Seyed-Ema-
mi 1982: 44.— Garassino& Schweigert 2006: 8.— Feldmann&
Titus 2006: 64.— Schweitzer etal. 2010: 24.
Eryma cf. bedelta – Beurlen 1933: 89, g.1.
Stenodactylina granulifera – Devillez etal. 2016: 524, table1.
type mAteriAl.— Holotype MNHN.F.R03975.
t
ype
locAlity
.— East of Antsalova, Maintirano region, Tulear
province, Madagascar.
type Age.— Kimmeridgian.
description
Carapace
Sub-cylindrical carapace; fusiform intercalated plate; narrow
post-orbital area; wide cephalic region; deep and wide cer-
vical groove, strongly inclined, joined to dorsal margin and
to antennal groove; deep and narrow antennal groove; short,
shallow gastro-orbital groove, oblique, originating as a slight
median inexion of cervical groove; inferior gastro-orbital
lobe slightly inated; postcervical and branchiocardiac grooves
subparallel; deep postcervical groove, strongly inclined and
curved forward, joined to dorsal margin and interrupted in
hepatic region; deep branchiocardiac groove, slightly curved
forward, joined to dorsal margin and to hepatic groove;
hepatic groove concavo-convex, joined to cervical groove;
ω and χ areas slightly inated; deep, wide inferior groove,
joined to hepatic groove.
Pleon and uropods
Somites with subtriangular pleurites, with a longitudinal
bulge on their basis.
oracic appendages
Elongated P2-P5 merus.
61
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
Ornamentation
Carapace densely covered by small tubercles preceded by
depressions, the tubercles are coarser along the intercalated
plate; pleonal somites densely covered by small rounded
depressions; P2-P5 merus covered by small rounded and
widely spaced depressions.
discussion
is species was described from a carapace rstly assigned to
Eryma (Secrétan 1964). A second species, E.madagascariensis
Secrétan, 1964, based on a carapace connected to a fragment
of pleon was also described (Fig. 16J). e review of the deca-
pod crustaceans of Madagascar by Charbonnier etal. (2012a)
concluded to the synonymy between Eryma granuliferum and
E.madagascariensis because of their very close carapace groove
pattern. Later, Devillez etal. (2016) assigned E.granuliferum to
Stenodactylina because of the absence of junction between the
postcervical and branchiocardiac grooves and the interruption
of the postcervical groove in hepatic region. In addition to the
carapace groove pattern, the slight ination of ω and χ areas,
and the ornamentation made of small tubercles preceded by
depressions support the synonymy between S.granulifera and
E.madagascariensis.
Both ω and χ areas are inated in Stenodactylinagranulifera,
contrary to S.australis, S.delphinensis, S.deslongchampsi, S.sho-
toverigiganti n. sp., S.triglypta, and S.walkerae. S.granulifera
is one of the species within the genus, with S.walkerae, to
exhibit an inated gastro-orbital lobe. Its thin ornamentation
is also distinct from that of S.australis, S.granulifera, S.lagar-
dettei, S.pseudoventrosa, S.shotoverigiganti n. sp., S.triglypta,
and S.walkerae.
Stenodactylina pseudoventrosa (Beurlen, 1928) n. comb.
(Fig. 17A, B)
Eryma pseudoventrosa Beurlen, 1928: 158; 1933: 90.Schweitzer
etal. 2010: 24.
Eryma modestiformis (pars.) – Förster 1966: 118.
type mAteriAl.— Holotype GPIT Ar/294/3.
type locAlity.— Hülben, Baden-Würrtemberg, Germany.
type Age.— Kimmeridgian.
description
Carapace
Sub-cylindrical carapace; spiny rostrum; fusiform intercalated
plate; narrow post-orbital area; deep and wide cervical groove,
strongly inclined dorsally, inected at carapace mid-height,
joined to dorsal margin and to antennal groove; deep and wide
antennal groove; short, wide gastro-orbital groove, deep and
oblique, originating as a median inexion of cervical groove;
postcervical and branchiocardiac grooves subparallel, slightly
curved, very close; deep postcervical groove, not joined to dorsal
margin and interrupted in hepatic region; deep branchiocar-
diac groove, strongly inclined, not joined to dorsal margin.
Ornamentation
Carapace covered by small tubercles preceded by crescent-
shaped depressions; cephalic region with an oblique orbital
row of tubercles.
discussion
Known by a single cast of carapace, this species was originally
assigned to Eryma (Beurlen 1928), and then regarded as a
synonym of Eryma modestiforme (see Förster 1966). Careful
examination of the holotype clearly shows the absence of
junction between postcervical and branchiocardiac grooves
and the interruption of the postcervical in the hepatic region.
is groove pattern is diagnostic of Stenodactylina. So, the
new combination Stenodactylina pseudoventrosa, n. comb. is
here proposed.
e strong proximity of the postcervical and branchiocardiac
grooves allows the distinction of S.pseudoventrosa, n.comb.
from S.burgundiaca and S.delphinensis. Moreover, the ven-
tral extremity of the postcervical groove of S.pseudoventrosa,
n.comb. is lower than in S.burgundiaca, S.guisei, S.sho-
toverigiganti n. sp., S.triglypta, and S.walkerae. Contrary to
S.australis, S.burgundiaca, S.delphinensis, S.deslongchampsi,
S.granulifera, S.guisei, and S.triglypta, an orbital row is pres-
ent in S.pseudoventrosa. ere are also depressions and no
coarse elements in its ornamentation contrary to S.australis,
S.deslongchampsi, S.lagardettei, S.shotoverigiganti n. sp.,
S.triglypta, and S.walkerae.
Stenodactylina australis (Secrétan, 1964)
(Fig. 17C-F)
Erymastacus australis Secrétan, 1964: 72, pl.1, gs2-6, pl.2,
gs1-5.— Förster 1966: 135.— Taylor 1979: 36.— Schweitzer
etal. 2010: 23.— Hyžný etal. 2015: 376.
Palaeastacus australis – Förster& Rieber 1982: 377.
Eryma australe – Charbonnier etal. 2012a: 327, g.11.
Stenodactylina australis – Devillez etal. 2016: 524, table1.
type mAteriAl.— Holotype MNHN.F.R03972; three paratypes
MNHN.F.A31660, A33207, R03971.
t
ype
locAlity
.— Nord of Analavelona Massif, Sikily region, Tulear
province, Madagascar.
type Age.— Tithonian.
description
Carapace
Sub-cylindrical carapace; elongated cardiac region; deep cervi-
cal groove, strongly inclined, joined to dorsal margin and to
antennal groove; shallow and narrow antennal groove; short,
shallow gastro-orbital groove, oblique, originating as a slight
median inexion of cervical groove; postcervical and bran-
chiocardiac grooves subparallel; postcervical groove deep and
wide dorsally, narrowing and shallowing ventrally, strongly
inclined and inected forward, joined to dorsal margin and
interrupted in hepatic region; shallow and narrow branchio-
62 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
cardiac groove, not joined to dorsal margin, joined to hepatic
groove; shallow and narrow hepatic groove, concavo-convex,
joined to cervical groove; at ω and χ areas; narrow inferior
groove, joined to hepatic groove.
oracic appendages
Chelate P1; P1 propodus elongated, subrectangular, slightly
globose; inner margin more compressed than outer margin;
deviation of outer margin at the basis of the index; wide,
inated dactylar bulge; slender, elongated P1 ngers; curved
downward; occlusal margin with short conical teeth regularly
spaced.
Ornamentation
Carapace densely covered by tubercles preceded by depres-
sions, the tubercles are coarser and the depressions are wider
and deeper in the dorsal third of the carapace; P1 propodus
covered by rounded tubercles; inner margin with an irregular
row of strong subspiny tubercles, directed forward; basis of
inner margin of the dactylus with two strong spines.
discussion
Secrétan (1964) assigned this species, described from frag-
ments of P1, to Erymastacus Beurlen, 1928. Later, Devillez
etal. (2016) assigned this species to Stenodactylina because of
its subrectangular P1 propodus, the inated dactylar bulge,
the deviation of the outer margin at the basis of the index
and the slender ngers. A cast of a carapace has been recently
found in the MNHN collections. It comes from the same
stage than the type material of Stenodactylina australis and
from a locality where one paratype was found. is carapace
exhibits the typical groove pattern of Stenodactylina: short
gastro-orbital groove, sinuous hepatic groove, postcervical and
branchiocardiac grooves not joined, postcervical groove inter-
rupted in hepatic region, and branchiocardiac groove joined
to posterior extremity of hepatic groove. e correlation of
the groove pattern and the shape of P1 chelae, characteris-
tics of Stenodactylina, and the stratigraphic and geographic
arguments lead us to consider the cast of the carapace as a
specimen of S.australis.
Stenodactylinaaustralis is one of the rare species of the
genus, with S.burgundiaca, S.deslongchampsi, S.lagardettei,
and S.triglypta, for which both carapace and P1 chelae
are known. e carapace of S.australis is distinct from all
other species by its shallow postcervical and branchiocar-
diac grooves. ese grooves are also clearly more inclined
than those of S.burgundiaca, S.pseudoventrosa, S.triglypta,
and S.walkerae. e at ω area of S.australis is also distinct
from S.burgundiaca, S.granulifera, S.guisei, S.lagardettei,
S.shotoverigiganti n. sp., S.triglypta, and S.walkerae. More-
over, S.australis is the only species, with S.triglypta, to have
a coarser ornamentation on the dorsal part of the the cara-
pace. ere is also no antennal row, contrary to S.lagardettei,
S.pseudoventrosa, S.shotoverigiganti n. sp., and S.walkerae.
e P1 chelae of S.australis are clearly distinct from those of
S.armata, S.falsani, S.lagardettei, S.liasina, S.rogerfurzei,
S.spinosa, S.strambergensis, and S.triglypta because of their
ner ornamentation without rows of coarse tubercles on
dorsal and ventral surfaces. e P1 propodus of S.australis
has a row of spines on its inner margin, this row is absent
in S.australis, S.burgundiaca, S.deslongchampsi, S.falsani,
and S.insignis.
Stenodactylina strambergensis (Bachmayer, 1959)
(Fig. 17G-I)
Erymastacus strambergensis Bachmayer, 1959: 940, pl.2, g.2.
Phlyctisoma strambergensis – Förster 1966: 144, pl.18, g.8.
Eryma strambergensis – Schweitzer etal. 2010: 24.
Stenodactylina strambergensis – Devillez etal. 2016: 524.
type mAteriAl.— Holotype NMW 344/1959.
type locAlity.— Stramberg, Moravian-Silesian, Czech Republic.
type Age.— Tithonian.
description
oracic appendages
Chelate P1; P1 propodus sub-rectangular, slightly globose
dorso-ventrally; inner margin strongly compressed; rounded
outer margin with a slight deviation at the basis of the index;
slender index; wide and inated dactylar bulge.
Ornamentation
P1 propodus covered by rounded, coarse and widely spaced
tubercles; inner margin with a row of spines.
discussion
is species is known by some P1 propodi. Initially included
within Erymastacus, then moved into Phlyctisoma (see Förster
1966) and Eryma (see Schweitzer etal. 2010), and nally to
Stenodactylina by Devillez etal. (2016). is assignment is
supported by the stronger compression of the inner margin
than that of outer margin, the presence of a row of coarse
tubercles on inner margin (present in most of the species of
the genus), the strongly inated dactylar bulge, and the ne
basis of the index.
Because only the P1 propodus of this species is known, the
comparisons with other species of Stenodactylina are limited.
Stenodactylinastrambergensis has the particularity to have
a relatively short propodus. Moreover, the ornamentation
of S.strambergensis is homogeneous – only made of coarse
tubercles – contrary to other species, except S.armata and
S.triglypta.
fig. 17
. — Stenodactylina pseudoventrosa (Beurlen, 1928) n. comb., Stenodactylina australis (Secrétan, 1964) and Stenodactylina strambergensis (Bachmayer, 1959):
A, B, holotype GPIT Ar/294/3 of S. pseudoventrosa, n. comb. (Kimmeridgian, Hülben, Germany): general view (A), schema (B); C, D, holotype MNHN.F.R03972
of S. australis (Tithonian, north of Analavelona Massif, Madagascar): ventral view (C), dorsal view (D); E, F, specimen MNHN.F.A33228 of S. australis (Tithonian,
63
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
AB
e1e
d a
c
CD
E F
e1e
d
b
b1
i
a
c
G IH
Marolalitra, Madagascar): general view (E), schema (F); G, H, original gures of Bachmayer (1959: pl. 2, g. 2b, c) of the holotype of S. strambergensis (Tithonian,
Stramberg, Czech Republic); I, original gure of Bachmayer (1959: pl. 2, g. 2a) of the paratype of S. strambergensis (Tithonian, Stramberg, Czech Republic).
Abbreviations: a, branchiocardiac groove; b, antennal groove; b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; e1e, cervical groove; i, inferior
groove. Photographs: A, J. Devillez; C, D, C. Lemzaouda; C, L. Cazes. Line drawings: J. Devillez. Scale bars: 1 cm.
64 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
OTHER SPECIES OF STENODACTYLINA
RECENTLY DESCRIBED
remArks
Recently, Schweigert & Härer (2020) have described two
species from the Solnhofen-type lithographic limestones
based on isolated P1 chelae. e holotype of Stenodactylina
devillezi Schweigert & Härer, 2020 from the Kimmeridgian
of Nusplingen was previously gured as Erymastacus sp. by
Schweigert & Garassino (2003: g. 2B). e second species,
Stenodactylina geigerae Schweigert & Härer, 2020, was found
in the lower Tithonian of Marxheim.
Genus Enoploclytia M’Coy, 1849
(Fig. 1M-N)
Enoploclytia M’Coy, 1849: 330; 1854: 137.Zittel 1885: 694.—
Fritsch& Kafka 1887: 27.— Van Straelen 1925: 278.Beurlen
1928: 164.— Rathbun 1926: 128.— Secrétan 1964: 81.Förster
1966: 146.— Taylor 1979: 25.— Aguirre-Urreta 1989: 514.—
Feldmann etal. 2015: 3.— Devillez etal. 2016: 530, g.1I-J;
2017: 786, g.4A-B; 2018: 144, g.2A-B.
Enoploclytia Enoploclytia – Mertin 1941: 160.Glaessner 1969: 455.
type species.— Astacus leachii Mantell, 1822, by original designation.
d
iAgnosis
by
Devillez et al. (2018). Fusiform intercalated
plate; wide, deep cervical groove, joined to dorsal margin and
to antennal groove; long, wide gastro-orbital groove originating
as a median inexion of cervical groove, delimiting two gastro-
orbital lobes; sinuous postcervical groove, joined to dorsal mar-
gin and to hepatic groove, with ventral extension at carapace
mid-height; short branchio-cardiac groove, interrupted in upper
part of carapace, joined to dorsal margin, not joined to postcer-
vical groove; concavo-convex hepatic groove, joined to cervical
groove; prominent ω and χ bulges; inferior groove convex pos-
teriorly, joined to hepatic groove; carapace with heterogeneous
coarse ornamentation; massive globose P1 propodus, rounded in
transversal section; long and thin P1 ngers (straight in dorsal
view); occlusal margins armed with sharp and slender tooth; P1
merus with strong, prominent distal process at extern side of its
ventral extremity.
discussion
Recently, Devillez etal. (2018) reported a specimen iden-
tied as Enoploclytia sp. from the Oxfordian of France
(Fig. 18). Despite its poor preservation, this fossil exhibits
the typical carapace groove pattern of the genus: elongated
gastro-orbital groove, with two divergent distal branches,
a sinuous postcervical groove joined to the posterior
extremity of the hepatic groove and not joined to the
branchiocardiac groove, which is short and interrupted
in the branchial region (Fig. 18C). is specimen is the
oldest occurrence of Enoploclytia, and the only known in
the Jurassic. Indeed, Enoploclytia is more typical of the
Cretaceous.
CONCLUSIONS
After this study of the the Late Jurassic erymoid lobsters,
23species within four of the six erymoid genera (Eryma,
Palaeastacus, Pustulina, Stenodactylina) are identied. Enop-
loclytia is also present with its oldest representative. Except-
ing Eryma mandelslohi, which is present in Late Jurassic but
with a type age in Middle Jurassic (recent description in
Devillez& Charbonnier 2019) and the recently described
Stenodactylina devillezi and S. geigerae, all the Late Jurassic
species are described here.
With 11 species, Eryma is the most diversied genus in
the Late Jurassic and, considering the numerous specimens
of E.ventrosum and E.modestiforme, it is also the most
common genus. Moreover, due to its abundance and to its
stratigraphic extension running from Bathonian to Kim-
meridgian, E.ventrosum can be considered as an emblem-
atic lobster of the Middle-Late Jurassic of Western Europe.
Moreover, the only Late Jurassic erymoid occurrence of
North America belongs to Eryma: E.jungostrix Feldmann&
Titus, 2006 (Oxfordian). en, no erymoids are reported
d
b
i
e1ec a
b1
as
A
B
C
fig. 18
. — Enoploclytia sp. from the Oxfordian of Cricqueboeuf (France): A, spec-
imen MNHN.F.A66892; B, detail of the carapace whitened with ammonium chlo-
ride; C, schema of the carapace. Abbreviations: a, branchiocardiac groove; as,
antennal spine; b, antennal groove; b1, hepatic groove; c, postcervical groove;
d, gastro-orbital groove; e1e, cervical groove; i, inferior groove. Photographs:
A, P. Loubry; B, L. Cazes. Line drawing: J. Devillez. Scale bars: 1 cm.
65
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
there until the Albian (Devillez etal. 2017). Other gen-
era are less common than Eryma, and Palaeastacus is only
known in the Lithographic limestones of Germany. In this
Lagerstätte, P.fuciformis is the most abundant erymoid after
E.modestiforme.
is review also points out the spectacular richness of the
erymoid fauna of the German lithographic limestones in
which four genera (Eryma, Palaeastacus, Pustulina, Stenod-
actylina) and 11 species are reported.
Finally, with the example of a specimen of E.ventrosum,
this study also illustrates the strong eect of decortication on
the erymoids ornamentation. Considering the importance
of this feature, the dierences between the internal mould
and the remaining cuticle can lead to taxinomic complica-
tions. So, the state of decortication of these lobsters should
be carefully examined in any taxonomic study.
Acknowledgements
e authors are grateful to Philippe Courville and Damien
Gendry (University of Rennes 1, Rennes, France), Laurent
Picot and omas Meschine (Paléospace l’Odyssée, Villers-
sur-Mer, France), Sandra Delaunay and ibault Keinerknecht
(Musée Aquarium, Nancy, France), Annelise Folie (Institut
Royal des Sciences naturelles de Belgique, Bruxelles, Belgium)
Claire Mellish (Natural History Museum, London, United
Kingdom), Liz Harper and Matt Riley (Sedgwick Museum,
Cambridge, United Kingdom), Christian Neumann and
Andreas Abele (Museum für Naturkunde, Berlin, Germany),
Günter Schweigert (Staatliches Museum für Naturkunde,
Stuttgart, Germany), Ingmar Werneburg (Eberhard Karls
Universität, Tübingen, Germany) and Walter Etter (Naturhis-
torisches Museum, Basel, Switzerland) for the access to the
fossils housed in the collections of their respective institutions.
We wish to address special thanks to Mike Reich and Bork
Ilsemann (Bayerische Staatsammlung für Paläontologie und
Geologie, Munich, Germany) who allowed us to examine
the numerous historical fossils fom the Bavarian Plattenkalk
which are of great importance in this paper.
We greatly thank omas Jorstad, Matthew Miller and
Laurence O’Reilly (Department of Paleobiology, Smith-
sonian Institution, Washington, D.C, United States) for
searching and supplying photographs of the specimens
stored in the collections of their institution. We are also
grateful to Jean-Philippe Pezy who granted access to some
specimens of its private collection.
We also wish to express our thanks to Lilian Cazes, Chris-
tian Lemzaouda and Philippe Loubry (CNRS-MNHN,
Paris, France), and D. Becker (Musée jurassien des sciences
naturelles, France) for the photographs of some gured
specimens.
Finally, this paper has been improved thanks to the con-
structive reviews of Günter Schweigert and Francisco Vega
(Universidad Nacional Autónoma de México, Mexico, Mexico)
who gave some of their time to examine this long article.
e MNHN gives access to the collections in the frame-
work of the RECOLNAT national Research Infrastructure.
REFERENCES
A
guirre
-u
rretA
m. b. 1982.Crustáceós Decápodós Bar-
remianos de la región del Tucu-Tucu, Provincia de Santa Cruz.
Revista de la Asociación Paleontológica Argentina 19 (3-4): 303-
317. http://www.ameghiniana.org.ar/index.php/ameghiniana/
article/view/1716
Aguirre-urretA m. b. 1989.— e Cretaceous decapod Crus-
tacea of Argentina and the Antarctic Peninsula. Palaeontology
32 (3): 499-552.
Aguirre-urretA m. b. & rAmos v. A. 1981. Crustáceós
Decápodós del Cretácico Inferior de la Cuenca Austral, Provincia
de Santa Cruz, Argentina. Comité Sudamericano del Jurásico y
Cretácico: Cuencas sedimentarias del Jurásico y Cretácico de Amé-
rica del Sur 2: 599-623.
Audo d., chArbonnier s., schweigert g. & sAint mArtin
J.-p. 2014.— New eryonid crustaceans from the Late Jurassic
Lagerstätten of Cerin (France), Canjuers (France), Watten-
dorf (Germany) and Zandt (Germany). Journal of Systematic
Palaeontology 12 (4): 459-479. https://doi.org/10.1080/1477
2019.2013.777809
b
AchmAyer
F. 1959. Neue Crustaceen aus dem Jura von
Stramberg (ČSR). Sitzungsberichte der Österreichischen Akademie
der Wissenschaften, mathematisch-naturwissenschaftliche Klasse,
Abteilung 1. Biologie, Mineralogie, Erdkunde, und verwandte
Wissenschaften 168: 937-944.
bell t. 1850. Notes on the Crustacea of the Chalk Forma-
tion, in dixon F. (ed.), e Geology and Fossils of the Tertiary
and Cretaceous Formations of Sussex. Longman, Brown, Green
and Longmans, Londres: 344-345. https://doi.org/10.5962/
bhl.title.14790
bell t. 1863.— Crustacea of the Gault and Greensand, A mono-
graph of the fossil malacostracous Crustacea of Great Britain, Part
II. Palaeontographical Society Monograph, Londres, 40 p.
https://doi.org/10.5962/bhl.title.11701
beurlen k. 1928.Die Decapoden des Schwäbischen Jura mit
Ausnahme der aus den oberjurassischen Plattenkalken stam-
menden. Palaeontographica 70: 115-278.
beurlen k. 1933.Crustacea Decapoda aus den Tendaguru-
Schichten. Palaeontographica Suppl.7 (2): 89-94.
b
irshtein
J. A. 1956.Desyatinogie rakobrznye paleogena Fergany.
Byulleten’ Moskovskogo Obshchestva ispytatelei prirody 61: 63-75.
b
irshtein
J. A. 1958. Ein Vertreter der ältesten Ordo der
Crustacea Decapoda Protoclytiopsis antiqua gen. nov. sp. nov.
aus dem Permo West-Sibiriens. Doklady Akademii Nauk, SSSR
122: 477-480.
b
rAvi
s., g
ArAssino
A., b
Artiromo
A., A
udo
d., c
hArbon
-
nier s., schweigert g., thévenArd F. & longobArdi c.
2014.— Middle Jurassic Monte Fallano Plattenkalke (Campania,
southern Italy): rst report on terrestrial plants, decapod crusta-
ceans and shes. Neues Jahrbuch für Geologie und Paläontologie
Abhandlungen 272 (1): 79-107. https://doi.org/10.1127/0077-
7749/2014/0398
bronn h. g. 1849.— Index Palaeontologicus oder Übersicht
der bis jetzt bekannten fossilen Organismen. Schweizerbart,
Stuttgart, 980 p. https://doi.org/10.5962/bhl.title.102095
bronn h. g. 1851-1852.Vierte Periode. Kreide-Gebirge, in
bronn h. g. & roemer F. (eds), Lethaea Geognostica oder
Abbildung und Beschreibung der für die Gebirgs-Formationen
bezeichendstein Versteinerungen. Part.4. E. Schweizerbart,
Stuttgart, 412 p. https://doi.org/10.5962/bhl.title.25536
c
Arpentier
c., b
reton
g., h
uAult
v. & l
Athuilière
b.
2006.Crustacés décapodes du Kimméridgien de Bure (Lor-
raine, France). Geobios 39: 617-629. https://doi.org/10.1016/j.
geobios.2005.06.004
cArriol r.-p. 1991.— Types et gurés de crustacés fossiles du
Muséum d’Histoire naturelle de Boulogne-sur-Mer. Bulletin de
la Société académique du Boulonnais 2 : 222-225.
66 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
c
Arter
J. e. 1886. On the Decapod Crustaceans of the Oxford
Clay. e Quaterly Journal of the Geological Society of London 42:
542-559. https://doi.org/10.1144/GSL.JGS.1886.042.01-04.55
c
hArbonnier
s. 2009.— Le Lagerstätte de La Voulte un envi-
ronnement bathyal au Jurassique. Muséum national d’Histoire
naturelle, Paris, 272 p. (Mémoires du Muséum national d’Histoire
naturelle ; 199).
c
hArbonnier
s. 2010. Les gisements à conservation excep-
tionnelle dans les collections : l’exemple de La Voulte et de
Montceau-les-Mines (France), in s
Aint
m
Artin
J.-p. , s
Aint
mArtin s., oAie g., seghedi A. & grigorescu d. (eds), Le
patrimoine paléontologique – des trésors du fond des temps. Institut
national de géologie et géoécologie marine, Bucarest, 296p.
c
hArbonnier
s. & g
ArAssino
A. 2012.— e marine arthropods
from the Solnhofen Lithographic Limestones (Late Jurassic,
Germany) in the collections of the Muséum national d’Histoire
naturelle, Paris. Geodiversitas 34 (4): 857-871. https://doi.
org/10.5252/g2012n4a8
chArbonnier s., vAnnier J., hAntzpergue p. & gAillArd c.
2010.— Ecological signicance of the arthropod fauna from the
Jurassic (Callovian) La Voulte Lagerstätte. Acta Palaeontologica
Polonica 55 (1): 111-132. https://doi.org/10.4202/app.2009.0036
chArbonnier s., gArAssino A. & pAsini g. 2012a.— Revision
of Mesozoic decapod crustaceans from Madagascar. Geodiversitas
34 (2): 313-357. https://doi.org/10.5252/g2012n2a5
c
hArbonnier
s., p
érès
d. & l
etenneur
c. 2012b.Exception-
ally preserved crustaceans from the Oxfordian of eastern France
(Terrain à Chailles Formation, Haute-Saône). Geodiversitas 34
(3): 531-568. https://doi.org/10.5252/g2012n3a5
chArbonnier s., Audo d., cAze b. & biot v. 2014a.— e
La Voulte-sur-Rhône Lagerstätte (Middle Jurassic, France).
Comptes Rendus Palevol 13 : 369-381. https://doi.org/10.1016/j.
crpv.2014.03.001
chArbonnier s., gArAssino A., schweigert g., Audo d. &
FernAndez s. 2014b.— New look at the lobster Eryma grep-
pini, Oppel, 1861 (Crustacea, Decapoda, Erymidae) from the
Middle Jurassic of France and Switzerland. Neues Jahrbuch für
Geologie und Paläontologie – Abhandlungen 272 (3): 331-339.
https://doi.org/10.1127/0077-7749/2014/0411
c
hArbonnier
s., A
udo
d., b
Arriel
v., g
ArAssino
A., s
ch
-
weigert g. & simpson m. 2015.— Phylogeny of fossil and
extant glypheid and litogastrid lobsters (Crustacea, Decapoda)
as revealed by morphological characters. Cladistics 31: 231-249.
https://doi.org/10.1111/cla.12088
c
hArbonnier
s., A
udo
d., g
ArAssino
A. & h
yžný
m. 2017.—
Fossil Crustacea of Lebanon. Muséum national d’Histoire naturelle,
Paris, 252 p. (Mémoires du Muséum national d’Histoire naturelle ;
210)
c
rônier
c. & c
ourville
p. 2004.— A rich and highly endemic
decapod crustacean fauna from the Middle Jurassic of north-east
France. Palaeontology 47 (4): 999-1014. https://doi.org/10.1111/
j.0031-0239.2004.00393.x
d
e
g
rAve
s., p
ontcheFF
n. d., A
hyong
s. t., c
hAn
t.-y.,
c
rAndAll
k. A., d
worschAk
p. c., F
elder
d. l., F
eldmAnn
r. m., FrAnsen c. h. m., goulding l. y. d., lemAitre r.,
low m. e. y., mArtin J. w., ng p. k. l., schweitzer c. e.,
tAn s. h., thsudy d. & wetzer r. 2009.— A classication
of living and fossil genera of decapod crustaceans. e Raes
Bulletin of Zoology, supplement 21: 1-109. http://hdl.handle.
net/10088/8358
d
e
g
regorio
A. 1884. — Nuovi Decapodi titonici. Il Natu-
ralista Siciliano 3: 134. https://www.biodiversitylibrary.org/
page/11564576
d
evillez
J. & c
hArbonnier
s. 2017.— e genus Eryma Meyer,
1840 (Crustacea: Decapoda: Erymidae): new synonyms, sys-
tematic and stratigraphic implications. Bulletin de la Société
géologique de France 188 (3) : 1-10. https://doi.org/10.1051/
bsgf/2017178
devillez J. & chArbonnier s. 2019.Review of the Early and
Middle Jurassic erymid lobsters (Crustacea: Decapoda). Bulletin
de la Société géologique de France – Earth Sciences reviewBulletin
188 (3): 15. https://doi.org/10.1051/bsgf/2017178
devillez J., chArbonnier s., hyžný m. & leroy l. 2016.
Review of the Early Cretaceous erymid lobsters (Crustacea:
Decapoda) from the Western Tethys. Geodiversitas 38 (4): 515-
541. https://doi.org/10.5252/g2016n4a4
d
evillez
J., c
hArbonnier
s., k
ocová
v
eselská
m. & p
ezy
J.-p.
2017.— Review of the Late Cretaceous erymid lobsters (Crus-
tacea: Decapoda) from the Western Tethys. Proceedings of the
Geologists’ Association 128: 779-797. https://doi.org/10.1016/j.
pgeola.2017.08.006
d
evillez
J., c
hArbonnier
s. & p
ezy
J.-p. 2018.— First Jurassic
occurrence of Enoploclytia M’Coy, 1849 (Crustacea: Decapoda:
Erymidae). Annales de Paléontologie 104 : 143-148. https://doi.
org/10.1016/j.annpal.2018.01.003
dietl g. & schweigert g. 2001.Im Reich der Meerengel: der
Nusplinger Plattenkalk und seine Fossilien. F. Pfeil, München, 144 p.
dollFus A. 1863.— La faune kimméridgienne du Cap de la Hève,
essai d’une révision paléontologique. Savy, Paris, 102 p.
d
umortier
e. 1867. Études paléontologique sur les dépôts
jurassiques du Bassin du Rhône. Deuxième partie. Lias Inférieur.
F.Savy, Paris, 252 p.
é
tAllon
A. 1857. Esquisse d’une description géologique du
Haut-Jura et en particulier des environs de St-Claude avec une
carte géologique et une planche de coupes. J.-B. Baillière et ls,
Paris, 108 p.
é
tAllon
A. 1859. Description des crustacés fossiles de la
Haute-Saône et du Haut-Jura. Bulletin de la Société géologique
de France, série 2, 16: 169-205. https://www.biodiversitylibrary.
org/page/54770667
étAllon A. 1861.— Notes sur les crustacés jurassiques du bassin
du Jura. Recueil agronomique, industriel et scientique publié par
la Société d’Agriculture de la Haute-Saône 9: 129-171.
é
tAllon
A. & t
hurmAnn
J. 1862.Lethea Bruntrutana ou
études paléontologiques et stratigraphiques sur le Jura bernois et en
particulier les environs de Porrentruy. Schwartz, Luxeuil, 500 p.
etter w. 2004.— Decapod crustaceans from the Middle Juras-
sic Opalinus Clay of northern Switzerland, with comments on
crustacean taphonomy. Eclogae Geologicae Helvetiae 97: 381-392.
https://doi.org/10.1007/s00015-004-1137-2
etheridge Jr. r. 1914.e genus Enoploclytia in the Creta-
ceous rocks of Queensland. Records of the Australian Museum 10:
271-273. https://doi.org/10.3853/j.0067-1975.10.1914.902
F
eldmAnn
r. m. & c
opelAnd
m. J. 1988. A new species
of erymid lobster from Lower Jurassic strata (Sinemurian/
Pliensbachian), Fernie Formation, Southwestern Alberta. Con-
tributions to Canadian paleontology 379: 93-101. https://doi.
org/10.4095/126974
FeldmAnn r. m. & hAggArt J. w. 2007.— A new species of
lobster (Astacidea, Erymidae) from the Smithers Formation (Mid-
dle Jurassic) of British Columbia, Canada. Canadian Journal of
Earth Sciences 44: 1791-1796. https://doi.org/10.1139/e07-058
FeldmAnn r. m. & mcpherson c. b. 1980.— Fossil decapod
crustaceans of Canada. Geological Survey of Canada Paper 79-16:
1-20. https://doi.org/10.4095/106636
FeldmAnn r. m. & schweitzer c. e. 2017.— Collecting fos-
sil decapods and other large crustaceans. Journal of Crustacean
Biology 37 (2): 220-227. https://doi.org/10.1093/jcbiol/rux013
FeldmAnn r. m., schweitzer c. e. & kArAsAwA h. 2015.—
Crustacea, in s
elden
P. A. (ed.), Treatise Online. Part R (Revised).
Arthropoda 4 (1), chapter 8I: 1-28. https://doi.org/10.17161/
to.v0i0.5028
FeldmAnn r. m. & titus A. l. 2006.— Eryma jungostrix n.sp.
(Decapoda; Erymidae) from the Redwater Shale of the Stump
Formation (Jurassic; Oxfordian) of Utah. Journal of Crustacean
Biology 26 (1): 63-68. https://doi.org/10.1651/S-2644.1
67
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
Ferry m. de 1865.Note sur les crustacés et les spongiaires de la base
de l’étage bathonien des environs de Mâcon. Bulletin de la Société
linnéenne de Normandie 9: 365-376. https://www.biodiversitylibrary.
org/page/33929322
F
ischer
J. c. 2003.Invertébrés remarquables du Callovien inférieur
de la Voulte-sur-Rhône (Ardèche, France). Annales de Paléontolo-
gie 89: 223-252. https://doi.org/10.1016/j.annpal.2003.09.001
Förster r. 1965.— Decapoden der Neuburger Bankkalke (Mittel-
Tithon) von Neuburg an der Donau. Mitteilungen der Bayerische
Staatssammlung für Paläontologie und historische Geologie5: 137-149.
https://www.biodiversitylibrary.org/page/28730032
Förster r. 1966.— Über die Erymiden, eine alte konservative
Familie der mesozoischen Dekapoden. Palaeontographica, Abt.A,
125 (4-6): 61-175.
Förster r. & rieber h. 1982.— Der älteste Vertreter der Gattung
Palaeastacus (Crustacea, Decapoda), Palaeastacus argoviensis n.
sp., aus dem unteren Dogger der Nordschweiz. Eclogae geologicae
Helvetiae 75 (3): 773-778. https://doi.org/10.5169/seals-165252
Förster r. & seyed-emAmi k. 1982.First occurrence of Eryma
bedelta (Q) (Crustacea, Decapoda) from the Aalenian of
Iran. Mitteilungen der Bayerischen Staatssammlung für Paläontologie
und historische Geologie 22: 41-45. https://www.biodiversitylibrary.
org/page/28728676
FrAAs o. 1855.Beiträge zum obersten weissen Jura in Schwaben.
Jahreshefte des Vereins für vaterländische Naturkunde in Würtemberg
11: 77-107. https://www.biodiversitylibrary.org/page/8002503
Frickhinger k. A. 1994.— Die Fossilen von Solnhofen (e Fossils
of Solnhofen). Goldschneck, Korb, 336 p.
F
ritsch
A. & k
AFkA
J. 1887.— Die Crustaceen der Böhmischen Krei-
deformation. Prague, 53 p. https://doi.org/10.5962/bhl.title.10148
F
ürsich
F. t., m
äuser
m., s
chneider
s. & w
erner
w. 2007a.—
Sedimentology, taphonomy, and palaeoecology of a laminated
plattenkalk from the Kimmeridgian of the northern Franconian
Alb (southern Germany). Palaeogeography, palaeoclimatology, Palaeo-
ecology 243: 92-117. https://doi.org/10.1016/j.palaeo.2006.07.007
F
ürsich
F. t., m
äuser
m., s
chneider
s. & w
erner
w. 2007b.—
e Wattendorf Plattenkalk (Upper Kimmeridgian) – a new con-
servation lagerstätte from the northern Franconian Alb, southern
Germany. Neues Jahrbuch für Geologie und Paläontologie, Abh. 245:
45-58. https://doi.org/10.1127/0077-7749/2007/0245-0045
g
ArAssino
A. 1994.— e macruran decapod crustaceans of the
Upper Cretaceous of Lebanon. Paleontologia Lombarda, nuova
serie 3: 1-27.
g
ArAssino
A. 1996.— e family Erymidae Van Straelen, 1924
and the superfamily Glypheoidea Zittel, 1885 in the Sinemurian
of Osteno in Lombardy (Crustacea, Decapoda). Atti della Società
italiana di Scienze naturali e del Museo civico di Storia naturale
in Milano 135: 333-373. https://www.biodiversitylibrary.org/
page/58416402
gArAssino A. & krobicki m. 2002.Galicia marianae n. gen., n.
sp. (Crustacea, Decapoda, Astacidea) from the Oxfordian (Upper
Jurassic) of the Southern Polish Uplands. Bulletin of the Mizunami
Fossil Museum 29: 51-59.
g
ArAssino
A. & s
chweigert
g. 2006. e Upper Jurassic
Solnhofen decapod crustacean fauna: review of the types from
old descriptions. Part I. Infraorders Astacidea, alassinidea and
Palinura. Memorie della Società italiana di Scienze naturali e del
Museo civico di Storia naturale di Milano 34 (1): 1-64. https://www.
biodiversitylibrary.org/page/58176047
gerAsimov p. A. 1955.e Principles Fossils of the Mesozoic in the
Central Region of the European Part of the USSR. Partie2. Maison
d’édition scientique et technique gouvernementale sur la géologie
et la protection nucléaire, Moscou, 89 p.
gerAsimov p. A., mittA v. v. & kochAnovA m.d. 1995.— Fos-
siles de l’étage Volgien de Russie centrale. Vnigni, Moscou, 114 p.
gerAsimov p. A., mittA v. v., kochAnovA m.d. & tesAkovA e.
m. 1996.— Fossiles de l’étage callovien de Russie centrale. Vnigni,
Moscou, 126 p.
germAr e. F. 1827.— Ueber die Versteinerungen von Solenhofen.
Teutschland geognostisch-geologisch dargestellt und mit Charten
und Zeichnungen erläutert. Keferstein, Weimar: 89-110.
glAessner m. F. 1929. Crustacea Decapoda, in pompeckJ
J. F. (ed.), Fossilium Catalogus. I. Animalia. Pars 41: 1-464.
glAessner m. F. 1931.Eine Crustaceenfauna aus den Lunzer
Schichten Niederösterreichs. Jahrbuch der Geologischen Bundes-
anstalt 81 (3-4): 467-486.
g
lAessner
m. F. 1969. — Decapoda, in m
oore
R. C. (ed.),
Treatise on Invertebrate Paleontology, Part R, Arthropoda 4 (2):
399-533.
hée A. 1924.— Catalogue critique des crustacés jurassiques du
Calvados et de l’Orne. Bulletin de la Société linnéenne de Nor-
mandie 7 (6): 126-157.
hyžný m., schlögl J., chArbonnier s., schweigert g., rul-
leAu l. & gouttenoire m. 2015.— Intraspecic variation
and taphonomy of a new erymid lobster (Crustacea: Decapoda)
from the Middle Jurassic of Belmont (Beaujolais, France). Geobios
48: 371-384. https://doi.org/10.1016/j.geobios.2015.07.006
ilyin i. v. 2000.— Histoire de l’étude des décapodes fossiles du
Cénozoïque et du Mésozoïque de l’Eurasie du Nord, in Proceed-
ings of the Undergraduate and Postgraduate Student International
Conference on Fundamental Sciences. Vol. 5: 151-156.
JAgt w. m. & FrAAiJe r. h. b. 2002. e erymid lobster
Enoploclytia leachii (Mantell, 1822) from the Upper Campan-
ian of northeast Belgium. Bulletin de l’Institut royal des Sciences
naturelles de Belgique, Sciences de la Terre 72: 91-95.
J
oleAud
l. & h
su
t.-y. 1935.— Crustacés décapodes du Crétacé
de Tanout (Damergou, Niger français). Archives du Muséum
national d’Histoire naturelle, série 6, 113: 99-110. https://www.
biodiversitylibrary.org/page/59773778
kArAsAwA h., ohArA m. & kAto h. 2008.— New records for
Crustacea from the Arida Formation (Lower Cretaceous, Bar-
remian) of Japan. Boletín de la Sociedad Geológica Mexicana 60
(1): 101-110. https://doi.org/10.18268/BSGM2008v60n1a7
kArAsAwA h., schweitzer c. e. & FeldmAnn r. m. 2013.—
Phylogeny and systematics of extant and extinct lobsters.
Journal of Crustacean Biology 33 (1): 78-123. https://doi.
org/10.1163/1937240x-00002111
k
Ato
h., t
AkAhAshi
t. & t
AirA
m. 2010. Late Jurassic
decapod crustaceans from northeast Japan. Palaeontology 53 (4):
761-770. https://doi.org/10.1111/j.1475-4983.2010.00960.x
krAuse h. p. g. 1891.— Die Decapoden des norddeutschen Jura.
Zeitschrift der Deutschen Geologischen Gesellschaft 43: 171-225.
https://www.biodiversitylibrary.org/page/43538995
kuhn o. 1961.— Die Tier- und Panzenwelt des Solnhofener
Schiefers mit vollständigem Artem- und Schriftenverzeichnis.
Geologica Bavarica 48: 5-68.
l
Ahusen
J. 1894. Über die russischen Krebsreste aus den
jurassischen Ablagerungen und der unteren Wolgastufe. Ver-
handlungen der Russischen Kaiserlichen Mineralogischen Gesell-
schaft 31 (2): 313-324.
l
Atreille
p. A. 1802.— Histoire naturelle, générale et particulière
des crustacés et des insectes. Tome 3. Dufart, Paris, 468 p. https://
doi.org/10.5962/bhl.title.15764
l
issAJous
m. 1907.— Sur un crustacé du Bathonien inférieur du
Mâconnais. Bulletin trimestriel de la Société d’Histoire naturelle
de Mâcon 3: 65-67.
mAntell g. A. 1822. e Fossil of the South Downs; or
Illustrations of the Geology of Sussex. Lupton Relfe, Londres,
327p. https://doi.org/10.5962/bhl.title.44924
mAntell g. A. 1824.Outlines of the natural history, of the
environs of Lewes, Appendix 1, in h
orsField
T. W. (ed.),
e History and Antiquities of Lewes and its Vicinity. J. Baxter,
Lewes: 3-24.
mAntell g. A. 1833.— e Geology of the South-East of Eng-
land. Longman, Rees, Orme, Brow, Green& Longman, Londres,
415p. https://doi.org/10.5962/bhl.title.106921
68 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
m
Artill
d. m. 1991. Other invertebrates, in m
Artill
d.
m. & hudson J. d. (eds), Fossils of the Oxford Clay. e Pal-
aeontological Association, Londres: 167-249.
m’c
oy
F. 1849.— On the classication of some British fossil
crustacea, with notices of new forms in the university collec-
tion at Cambridge. Annals and Magazine of Natural History,
including Zoology, Botany, and Geology 4 (2): 330-335. https://
doi.org/10.1080/03745486009494810
m’coy F. 1854.— Contributions to British Palaeontology, or First
Descriptions of ree Hundred and Sixty Species and Several
Genera of Fossil Radiata, Articulata, Mollusca, and Pisces from
the Tertiary, Cretaceous, Oolitic, and Palaeozoic Strata of Great
Britain. Macmillan and co., Cambridge, 272 p. https://doi.
org/10.5962/bhl.title.52150
m
échin
A. 1901.— Sur quelques formes nouvelles du genre Eryma
(Astacomorpha fossiles) du Jurassique de Lorraine. Bulletin des
Séances de la Société des Sciences de Nancy 3 (2): 73-84.
mertens h. 1833.Beobachtungen und Untersuchungen über
die Beroëartigen Akalephen. Mémoires de l’Académie impériale
des Sciences de St.-Pétersbourg, série 6, 2: 479-543. https://www.
biodiversitylibrary.org/page/55630086
mertin h. 1941.Decapode Krebse aus dem subhercynen und
Braunschweiger Emscher und Untersenon. Nova Acta Leopoldina
68 (10): 149-264.
m
eyer
h.
von
1835.Brieiche Mittheilungen. Neues Jahrbuch
für Mineralogie, Geognosie, Geologie und Petrefactenkunde 1835:
328-329. https://www.biodiversitylibrary.org/page/35869394
meyer h. von 1840a.— Brieiche Mittheilungen. Neues Jahrbuch
für Mineralogie, Geognosie, Geologie und Petrefactenkunde 1840:
576-587. https://www.biodiversitylibrary.org/page/35894744
meyer h. von 1840b.Neue Gattungen fossiler Krebse aus
Gebilden vom bunten Sandstein bis in die Kreide. Schweizer-
bart, Stuttgart, 28 p. https://doi.org/10.5962/bhl.title.14798
moret l. 1946.— Eryma delphinensis nouvelle espèce de Crustacé
Décapode du Berriasien de Noyarey (Isère). Travaux du Labo-
ratoire de Géologie, Faculté des Sciences de Grenoble 25: 49-51.
m
orière
J. 1883.— Première note sur les crustacés de l’Oxfordien
trouvés dans le Calvados. Bulletin de la Société linnéenne de
Normandie 3 (6): 161-170. https://www.biodiversitylibrary.
org/page/34626814
morière J. 1888.— Note sur quelques crustacés fossiles. Bulletin
de la Société Linnéenne de Normandie 4 (1): 137-143. https://
www.biodiversitylibrary.org/page/34584171
münster g. & grAF zu 1839.Decapoda Macrura. Abbildung
und Beschreibung der Fossilen langschwänzigen Krebse in den
Kalkschiefern von Bayern. Beiträge zur Petrefaktenkunde 2: 1-88.
odin g. p., chArbonnier s., devillez J. & schweigert
g. 2019. On unreported historical specimens of marine
arthropods from the Solnhofen and Nusplingen Lithographic
Limestones (Late Jurassic, Germany) housed at the Muséum
national d‘Histoire naturelle, Paris. Geodiversitas 41 (17): 643-
662. http://geodiversitas.com/41/17. https://doi.org/10.5252/
geodiversitas2019v41a17
oppel A. 1861.— Die Arten der Gattungen Eryma, Pseudastacus,
Magila und Etallonia. Jahreshefte des Vereins für vaterländische
Naturkunde in Württemberg 17: 355-361. https://www.biodi-
versitylibrary.org/page/8899023
oppel A. 1862. Ueber jurassische Crustaceen (Decapoda
Macrura). Palaeontologische Mittheilungen aus dem Museum des
koeniglich Bayerischen Staates 1: 1-120. https://www.biodiver-
sitylibrary.org/page/33387305
phillips J. 1871. Geology of Oxford and the Valley of the a-
mes. Clarendon, Oxford, 523 p. https://doi.org/10.5962/bhl.
title.32635
Quenstedt F. A. 1850.— Ueber Mecochirus im braunen Jura ζ
bei Gammelshausen und einige andere Krebse. Jahreshefte des
Vereins für vaterländische Naturkunde in Württemberg 6: 186-361.
https://www.biodiversitylibrary.org/page/49710821
Quenstedt F. A. 1852.— Handbuch der Petrefaktenkunde. H.
Laupp, Tübingen, 792 p. https://doi.org/10.5962/bhl.title.15107
Q
uenstedt
F. A. 1856-1857.— Der Jura. H. Laupp, Tübingen, 842 p.
Q
uenstedt
F. A. 1867.— Handbuch der Petrefaktenkunde. 2nd
edition. H. Laupp, Tübingen, 982 p.
Q
uenstedt
F. A. 1885. Handbuch der Petrefaktenkunde. 3
rd
edition. H. Laupp, Tübingen, 1239 p. https://doi.org/10.5962/
bhl.title.30642
rAthbun m. J. 1923.— Decapod Crustaceans from the Upper
Cretaceous of North Carolina. North Carolina Geological and
Economic Survey 5: 403-408.
r
Athbun
m. J. 1926.— e fossil stalk-eyed crustacea of the Pacic
Slope of North America. Smithsonian Institution United States
National Museum Bulletin 138: 1-155. https://doi.org/10.5479/
si.03629236.138.i
rAthbun m. J. 1935.— Fossil Crustacea of the Atlantic and Gulf
Coastal Plain. Geological Society of America Special Papers 2: 1-160.
https://doi.org/10.1130/spe2-p1
reuss A. e. 1854. Über Klytia Leachi, einen langschwänzigen
Decapoden der Kreideformation. Denkschriften der kaiserlichen
Akademie der Wissenschaften 6: 1-10. https://doi.org/10.5962/
bhl.title.46368
r
oger
J. 1946.Les invertébrés des couches à poissons du Crétacé
supérieur du Liban. Mémoires de la Société géologique de France
51: 1-92.
sAuvAge h. e. 1891.— Note sur les crustacés des terrains juras-
siques supérieurs du Boulonnais. Annales des Sciences naturelles
(Zoologie) 7 (13): 83-96.
s
chlotheim
e. F.
von
1822.Beiträge zur näheren Bestimmung
der versteinerten und fossilen Krebsarten, in Nachträge zur Petre-
faktenkunde. Becker, Gotha: 17-37.
s
chrAm
F. r. & d
ixon
c. J. 2004.Decapod phylogeny: addition
of fossil evidence to a robust morphological cladistics data set.
Bulletin of the Mizunami Fossil Museum 31: 1-19.
s
chweigert
g. 2013. A new record of the enigmatic lobster
genus Stenodactylina Beurlen, 1928 (Crustacea: Decapoda: Ery-
midae) from the Middle Jurassic of south-western Germany.
Paläontologische Zeitschrift 87: 409-413. https://doi.org/10.1007/
s12542-013-0163-7
schweigert g. 2015. — Zehnfußkrebse (Decapoda) und andere
Krebstiere, in ArrAtiA g., schultze h.-p., tischlinger h. &
viohl g. (eds), Solnhofen – Ein Fenster in die Jurazeit. Pfeil,
Munich: 271-291.
schweigert g. & gArAssino A. 2003. New studies of decapod
crustaceans from the Upper Jurassic lithographic limestones of
southern Germany. Contributions to Zoology 72: 173-179. https://
doi.org/10.1163/18759866-0720203022
schweigert g. & härer J. 2020 . — New erymid lobsters from the
Nusplingen and Usseltal formations (Upper Jurassic) of southwest
Germany. Geologija 63 (1): 19-27.
schweigert g. & röper m. 2001.— Neue Krebse der Gattung
Palaeastacus (Crustacea: Decapoda: Erymidae) aus oberjuras-
sischen Plattenkalken Süddeutschlands. Stuttgarter Beiträge zur
Naturkunde, Serie B (Geologie und Paläontologie) 313: 1-10.
https://www.biodiversitylibrary.org/page/59777434
schweigert g., dietl g. & röper m. 2000.— Die Panzerkrebse
des Familie Erymidae van Straelen (Crustacea, Decapoda) aus dem
Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb)
im Vergleich mit fränkischen Vorkommen. Stuttgarter Beiträge
zur Naturkunde B (285): 1-25. https://www.biodiversitylibrary.
org/page/59557644
schweitzer c. e. & FeldmAnn r. m. 2001.New Cretaceous
and Tertiary decapod crustaceans from western North America.
Bulletin of Mizunami Fossil Museum 28: 173-210.
s
chweitzer
c. e., F
eldmAnn
r. m., g
ArAssino
A., k
ArAsAwA
h. & schweigert g. 2010.— Systematic list of fossil decapod
crustacean species. Crustaceana Monographs 10: 1-222. https://
doi.org/10.1163/ej.9789004178915.i-222
69
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
s
ecrétAn
s. 1964.— Les Crustacés décapodes du Jurassique supé-
rieur et du Crétacé de Madagascar. Mémoires du Muséum national
d’Histoire naturelle, Nouvelle série, Série C, Sciences de la Terre
14: 1-226. https://www.biodiversitylibrary.org/page/58227347
s
ecrétAn
s. 1984.Présence d’Eryma bedelta (Crustacea Decapoda)
dans le Bajocien du Maroc oriental. Geobios 17 (4) : 515-518.
https://doi.org/10.1016/s0016-6995(84)80024-8
skrzypek e., cruz mermi d., chèvremont p. & ménillet F.
2008.— Carte géologique harmonisée du département du Haut-
RHIN (68). Notice géologique. BRGM/RP-56029-FR, 322 p.
s
tenzel
h. b. 1945.— Decapod Crustaceans from the Cretaceous
of Texas. Texas University Publications 4401: 401-476.
t
Aylor
b. J. 1979.— Macrurous Decapoda from the Lower Creta-
ceous of South-Eastern Alexander Island. British Antarctic Survey
Scientic Reports 81: 1-39. http://nora.nerc.ac.uk/id/eprint/509204
t
rAutschold
h. 1866.— Zur Fauna des russischen Jura. Bulletin
de la Société impériale des Naturalistes de Moscou 39 (1): 1-24.
https://www.biodiversitylibrary.org/page/44324165
vAn strAelen v. 1921. Sur des crustacés du Jurassique de la
Nièvre. Bulletin de la Société belge de Géologie, de Paléontologie et
d’Hydrologie 30: 139-142. https://www.biodiversitylibrary.org/
page/45322812
vAn strAelen v. 1922.— Les crustacés décapodes du Callovien
de la Voulte-sur-Rhône (Ardèche). Comptes Rendus des Séances
de l’Académie des Sciences 175: 1224-1226. https://gallica.bnf.fr/
ark:/12148/bpt6k3128v/f1224.item
vAn strAelen v. 1925. Contribution à l’étude des crustacés
décapodes de la période jurassique. Mémoires de la Classe des Sci-
ences de l’Académie royale de Belgique 7: 1-462.
vAn strAelen v. 1936.— Crustacés décapodes nouveaux ou peu
connus de l’époque crétacique. Bulletin du Musée royal d’Histoire
naturelle de Belgique 12 (45): 1-50.
v
egA
F. J., g
ArAssino
A. & J
Aime
r. z. 2013. Enoploclytia
tepeyacensis n. sp. (Crustacea, Decapoda, Erymidae) from the
Cretaceous (Campanian) of Coahuila, NE Mexico. Boletín de
la Sociedad Geológica Mexicana 65 (2): 207-211. https://www.
jstor.org/stable/24921216
viAlle A. 1948.— Révision des décapodes jurassiques du laboratoire
de géologie. Mémoire de DES présenté à la Faculté des Sciences
de l’Université de Lyon, 70 p.
w
Annier
m. & p
AnchAud
r. 1977. Catalogue des fossiles
originaux conservés dans les collections de l’Ecole cantonale de
Porrentruy et du Progymnase de Delémont. Eclogae geologicae
Helvetiae 70 (3) : 919-932. https://doi.org/10.5169/seals-164649
whiteAves J. F. 1903.On some additional fossils from the Van-
couver Cretaceous, with a revised list of the species therefrom,
in whiteAves J. F., F.g.s., F.r.c.s., & c. (eds), Mesozoic Fos-
sils. Volume 1. Part. V. Geological Survey of Canada, Dawson,
Ottawa: 309-416. https://doi.org/10.1017/S0016756800123921
woods h. 1925-1931.— A Monograph of the Fossil Macrurous Crus-
tacea of England. e Palaeontographical Society, Londres: 1-122.
woods J. t. 1957.— Macrurous Decapods from the Cretaceous
of Queensland. Memoirs of the Queensland Museum 13 (3): 155-
175. https://www.biodiversitylibrary.org/page/48733649
w
oodwArd
h. 1877.A catalogue of British fossil Crustacea with
their synonyms and the range in time of each genus and order.
Taylor and Francis, Londres, 155 p. https://doi.org/10.5962/
bhl.title.8311
woodwArd h. 1900.— Further notes on podophthalmous crus-
taceans from the Upper Cretaceous formation of British Colum-
bia. Geological Magazine 7: 302-401 and 433-435. https://doi.
org/10.1017/S0016756800174515
wright t. 1881.— On a new Astacomorphous crustacean from
the middle coral reef of Leckhampton Hill. Proceedings of the
Cotteswold naturalists’ Field Club 8: 56-59.
zittel k. A. von 1885.— Handbuch der Palaeontologie 1 (2)
(Arthropoda, Decapoda): 523-721. https://doi.org/10.5962/
bhl.title.34265
Submitted on 27 May 2019;
accepted on 15 November 2019;
published on 28 January 2021.
70 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
appenDix 1. — List of the examined material.
Taxa Examined material Ages Localities
Eryma Meyer, 1840
Eryma georgeii Carter, 1886 holotype SM J 3247; paratype SM J 3248 Oxfordian United Kingdom
NMB F501 Switzerland
Eryma jungostrix Feldmann &
Titus, 2006
holotype USNM 530027 Oxfordian United States
Eryma mandelslohi (Meyer, 1840) MNHN.F.A29726; NMB 3525 Oxfordian France, Switzerland
Eryma ventrosum (Meyer, 1835) cast of holotype MNHN.F.B12484 Oxfordian France
syntypes MNHN.F.A29484, A29584, B12479 of Bolina ventrosa
major Étallon, 1861
holotype BSPG 1961 VIII 114 of Eryma radiatum Oppel, 1861 Germany
syntypes MNHN.F.A29727, A29728 of Eryma afnis Ferry, 1865 Bathonian France
syntype MNHN.F.A29783 of Bolina girodi Étallon, 1857
lectotype MJSN Col.Del.475 of Eryma greppini Oppel, 1861;
paralectotype MJSN Col.Del.1 Switzerland
holotype of Eryma cumonti Van Straelen, 1921 stored at the IRNSB
without number Callovian France
cast of holotype MNHN.F.B13231 of Eryma babeaui Étallon, 1861 Kimmeridgian
syntype MNHN.F.A29782 of Bolina thirriae Étallon, 1859
BSPG 1961 VIII 148; 5 specimens stored at the GPIT without
number; IRSNB IST AIE 211 IG 9229, IG 9271, IG 10591, drawer
without number with specimen IG 18657; 3 specimens stored
at the MAN without number; MC-P E v 7, Fo Ev 13, Fr Ev 16, Vi
Ecfv 4; MHNLM 2008.12.613.8, 2008.12.613.16, 2008.12.613.17,
2008.12.613.18; MFN 2236 P1383/2 MB.A.1537;
MNHN.F.A29459, A29461, A29462, A29463, A29464, A29465,
A29466, A29467, A29468, A29469, A29470, A29471, A29472,
A29473, A29474, A29475, A29476, A29477, A29478, A29479,
A29480, A29482, A29483, A29485, A29486, A29487, A29528,
A29549, A29554, A29560, A30217, A30218, A30221, A30222,
A30232, A32390, A32391, A32392, A32394, A59527, A70299,
B12473, B12480, B12481, B14259, S05376, 21 specimens
stored at the MNHN without number; NHMUK In.27134,
In.27135, In.27146; NMB 96, F484, F505, F511; OSUG UJF-ID
1797, 11543, 11544, 11895, 11906, 1 specimens stored at the
OSUG without number; PVM 1842-B0, 2013.1.26, 2013.1.164,
2013.1.186, 2013.1.288 (52 specimens), V1-R (2 specimens),
V1a-R, V1b-R, V234-R, 6 specimens stored at the PVM without
number; FSL 170529, 170597, 170752, 170757, 170758, 170764,
170765, 170770, 170778, 170780, 170779, 501719, 2 specimens
stored at the FSL without number; UR 7 spécimens non
numérotés; 11 specimens from private collections.
Bathonian -
Kimmeridgian
France, Germany,
Switzerland,
Tanzania, United
Kingdom
Eryma lerasi (Étallon, 1861) syntypes NHMUK 2835, In.27136, In.27140, In.27141 of Eryma
portlandica Woods, 1930 Tithonian United Kingdom
NHMUK 2045, I.7494 Kimmeridgian France, United
Kingdom
Palaeastacus punctatus Oppel,
1861
holotype SMNS 3682 Kimmeridgian Germany
GPIT 1866; SMNS 63688, 63727, 63849, 64376, 64681, 64960,
66128, 4 specimens stored at the SMNS without number;
NHMUK I.3480
Eryma veltheimii (Münster, 1839) holotype BSPG AS VII 186 Kimmeridgian Germany
Eryma westphali Schweigert,
Dietl & Röper, 2000
holotype SMNS 24227 Kimmeridgian Germany
SMNS 63733, 63743
Eryma major Oppel, 1861 holotype SMNS 3682 Kimmeridgian Germany
SMNS 62865, 64371, 64403, 67655
71
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
Taxa Examined material Ages Localities
Eryma modestiforme (Schlotheim,
1822)
holotype MFN 2236 P1383/2 MB.A.0252 Kimmeridgian -
Tithonian
Germany
syntypes BSPG AS VII 188, 191 of Glyphea elongata Münster, 1839
holotype BSPG AS VII 193 of Glyphea crassula Münster, 1839
syntypes BSPG AS VII 194, 197, 198 of Glyphea laevigata Münster,
1839
holotype SMNS 64520 of Palaeastacus poeschli Schweigert &
Röper, 2001 Tithonian
BSPG 1957 VI 1244, 1245, 1246, AS VI 15, 16, 17, AS VII 187,
189, 195, 196, AS VIII 79, 81, 82; 6 specimens stored at the
GPIT without number; IRSNB IST AIE 211 IG 9694; MAN
142.A.1; MFN 2236 P1383/2 MB.A.0405, 2236 P1383/2
MB.A.0406, 2236 P1383/2 MB.A.0408, 2236 P1383/2
MB.A.1121, 2236 P1383/2 MB.A.2859, 2236 P1383/2
MB.A.2860, 2236 P1383/2 MB.A.2861, 2236 P1383/2
MB.A.2862, 2236 P1383/2 MB.A.2879, 2236 P1383/2
MB.A.2880, 2236 P1383/2 MB.A.2881, 2236 P1383/2
MB.A.2882, 2236 P1383/2 MB.A.2884, 2236 P1383/2
MB.A.2885, 2236 P1383/3 MB.A.0810, 2236 P1383/3
MB.A.1120, 2236 P1383/3 MB.A.2886, 2236 P1383/3
MB.A.2887, 2236 P1383/3 MB.A.2888, 2236 P1383/3
MB.A.2889, 2236 P1383/3 MB.A.2890, 2236 P1383/3
MB.A.2892, 2236 P1383/3 MB.A.2893, 2236 P1383/3 MB.A.
2894, 2236 P1383/3 MB.A.2895, 2236 P1383/3 MB.A.2896,
2236 P1383/3 MB.A.2897, 2236 P1383/3 MB.A.2898, 2236
P1383/3 MB.A.2900, 2236 P1383/3 MB.A.2901, 2236
P1383/3 MB.A.2902, 2236 P1383/3 MB.A.2903, 2236
P1383/3 MB.A.2904, 2236 P1383/3 MB.A.2905, 2236
P1383/3 MB.A.2906, 2236 P1383/3 MB.A.2907, 2236
P1383/3 MB.A.2908, 2236 P1383/3 MB.A.2909, 2236
P1383/3 MB.A.2910, 2236 P1383/3 MB.A.2911, 2236
P1383/3 MB.A.2912, 2236 P1383/3 MB.A.2913, 2236
P1383/3 MB.A.2914, 2236 P1383/3 MB.A.2915, 2236
P1383/3 MB.I.054.24, 2236 P1383/3 MB.I.054.24, 2236
P1383/4 MB.A.2916, 2236 P1383/4 MB.A.2917, 2236
P1383/4 MB.A.2918, 2236 P1383/4 MB.A.2919, 2236
P1383/4 MB.A.2920, 2236 P1383/4 MB.A.2921, 2236 P1383/4
MB.A.2924, 2236 P1383/4 MB.A.2925, 2236 P1383/4
MB.A.2926, 2236 P1383/4 MB.A.2927, 2236 P1383/4
MB.A.2928, 2236 P1383/4 MB.A.2929, 2236 P1383/4
MB.A.2930, 2236 P1383/4 MB.A.2931, 2236 P1383/4
MB.A.2932, 2236 P1383/4 MB.A.2933, 2236 P1383/4
MB.A.2934, 2236 P1383/4 MB.A.2935, 2236 P1383/4
MB.A.2937, 2236 P1383/4 MB.A.2938, 2236 P1383/4
MB.A.2965, 2236 P1383/8 MB.A.2883; MNHN.F.A32408,
A33507, B13446, B13450, B13452, B13463; NHMUK 44777,
I.3480; NMB F1088, F1094, F1108, R455; SMNS 62575, 62932,
63689, 63747, 64260, 64380, 1 specimen stored at the SMNS
without number; FSL 170771
Kimmeridgian -
Tithonian
Eryma sp. NMB 93, 253 Oxfordian Switzerland
appenDix 1. — Continuation.
72 GEODIVERSITAS • 2021 • 43 (2)
Devillez J.& Charbonnier S.
Taxa Examined material Ages Localities
Palaeastacus Bell, 1850
Palaeastacus rothgaengerae
Schweigert & Röper, 2001
holotype BSPG 1993 XVIII-200 Kimmeridgian Germany
2 additional specimens from private collections
Palaeastacus fuciformis
(Schlotheim, 1822)
holotype MFN 2236 P1383/8 MB.A.0251 Tithonian Germany
BSPG AS VI 11, AS VI 12, AS VI 13, AS VI 18, AS VII 183, AS
VII 184, AS VII 185, AS VII 192, AS VIII 83; GPIT T32 F7;
IRSNB IST AIE 211 IG 9664; MFN 2236 P1383/7 MB.A.0409,
2236 P1383/7 MB.A.0410, 2236 P1383/7 MB.A.0411, 2236
P1383/7 MB.A.0428, 2236 P1383/7 MB.A.0428, 2236 P1383/7
MB.A.0429, 2236 P1383/7 MB.A.0430, 2236 P1383/7
MB.A.0432, 2236 P1383/7 MB.A.0433, 2236 P1383/7
MB.A.0434, 2236 P1383/7 MB.A.0435, 2236 P1383/7
MB.A.2984, 2236 P1383/7 MB.A.2985, 2236 P1383/7
MB.A.2986, 2236 P1383/7 MB.A.2987, 2236 P1383/7
MB.A.2988, 2236 P1383/7 MB.A.2990, 2236 P1383/7
MB.A.2991, 2236 P1383/7 MB.A.2992, 2236 P1383/7
MB.A.2993, 2236 P1383/7 MB.A.2994, 2236 P1383/7
MB.A.2995, 2236 P1383/7 MB.A.2996, 2236 P1383/7
MB.A.2997, 2236 P1383/7 MB.A.2998, 2236 P1383/7
MB.A.2999, 2236 P1383/8 MB.A.2973, 2236 P1383/8
MB.A.3002, 2236 P1383/8 MB.A.3003, 2236 P1383/8
MB.A.3004, 2236 P1383/8 MB.A.3005, 2236 P1383/8
MB.A.3006, 2236 P1383/8 MB.A.3007, 2236 P1383/8
MB.A.3008, 2236 P1383/8 MB.A.3009, 2236 P1383/8
MB.A.3010, 2236 P1383/8 MB.A.3011, 2236 P1383/8
MB.A.3012, 2236 P1383/8 MB.A.3013, 2236 P1383/8
MB.A.3014, 2236 P1383/8 MB.A.3015, 2236 P1383/8
MB.A.3016, 2236 P1383/8 MB.A.3017, 2236 P1383/8
MB.A.3018, 2236 P1383/8 MB.A.3019, 2236 P1383/8
MB.A.3020, 2236 P1383/8 MB.A.3021, 2236 P1383/8
MB.A.3022, 2236 P1383/8 MB.A.3023, 2236 P1383/8
MB.A.3024, 2236 P1383/8 MB.A.3025, 2236 P1383/8
MB.A.3026, 2236 P1383/8 MB.A.3027, 2236 P1383/8
MB.A.3028; SMNS 3694, 64521; MNHN.F.B13449, MNHN.
GG.2004/8245; FSL 170765, 170769
Pustulina Quenstedt, 1857
Pustulina suevica Quenstedt, 1857holotype stored at the GPIT without number Kimmeridgian Germany
holotype NHMUK In.27137 and paratypes NHMUK 33414 and
NHMUK In.27138 of Enoploclytia dorsetensis Woods, 1930 Oxfordian United Kingdom
syntype MNHN.F.B12485 of Enoploclytia perroni Étallon, 1861 France
holotype SMNS 3682-1 of Eryma fraasi Oppel, 1861 Kimmeridgian Germany
holotype SMNS 3682-4 of Palaeastacus solitarius Oppel, 1862
IRSNB IST AIE 235 IG 9227; MAN 144.A.6; MFN 2236 P1383/5
MB.A.1538; NHMUK 25976, In.61550; SMNS 60159, 64369,
70032, 1 specimen stored at the SMNS without number
Oxfordian,
Kimmeridgian
France, Germany
Pustulina minuta (Schlotheim,
1822)
holotype MFN 2236 P1383/5 MB.A.0254 Tithonian Germany
holotype BSPG AS VII 182 of Glyphea verrucosa Münster, 1839
BSPG AS I 619, AS VII 180, AS VII 181, AS VIII 78; 1 specimen
stored at the GPIT without number; MFN 2236 P1383/5
MB.A.1119, 2236 P1383/5 MB.A.2863, 2236 P1383/5
MB.A.2864, 2236 P1383/5 MB.A.2866, 2236 P1383/5
MB.A.2867, 2236 P1383/5 MB.A.2868, 2236 P1383/5
MB.A.2869, 2236 P1383/5 MB.A.2870, 2236 P1383/5
MB.A.2871, 2236 P1383/5 MB.A.2872, 2236 P1383/5
MB.A.2873, 2236 P1383/5 MB.A.2874, 2236 P1383/5
MB.A.2875, 2236 P1383/5 MB.A.2876, 2236 P1383/5
MB.A.2877, 2236 P1383/5 MB.A.2878; MNHN.F.B13444,
B13445
Pustulina sp. BSPG 1952 XV 570 Kimmeridgian Germany
appenDix 1. — Continuation.
73
Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)
GEODIVERSITAS • 2021 • 43 (2)
Taxa Examined material Ages Localities
Stenodactylina Beurlen, 1928
Stenodactylina insignis
(Oppel, 1862)
cast of the holotype MNHN.F.A24613 Oxfordian France
holotype MFN 2236 P1283/2 MB.A.1536 Kimmeridgian Germany
GPIT 10646, 1 specimen stored in the GPIT without number; 1
specimen stored in the IRSNB without number; NMB F730 Oxfordian-
Kimmeridgian
France, Germany,
Switzerland
Stenodactylina shotoverigiganti
n. sp.
holotype NHMUK 24559 Oxfordian United Kingdom
Stenodactylina granulifera
(Secrétan, 1964)
holotype MNHN.F.R03975 Kimmeridgian Madagascar
holotype MNHN.F.R03913 of Eryma madagascariensis Secrétan,
1964
Stenodactylina pseudoventrosa
(Beurlen, 1928) n. comb.
holotype GPIT Ar/294/3 Kimmeridgian Germany
Stenodactylina australis
(Secrétan, 1964)
holotype MNHN.F.R03972; 3 paratypes MNHN.F.A31660, A33207,
R03971 Tithonian Madagascar
MNHN.F.A33228
Enoploclytia M’Coy, 1849
Enoploclytia sp. MNHN.F.A66892 Oxfordian France
appenDix 1. — Continuation.
... gracilimanum Lahusen, 1894), and the single glypheid taxon were spotted in the Tithonian (regional stage is the Volgian; Rogov, 2014). However, by the latest revision of the erymids (Devillez and Charbonnier, 2021), Eryma mosquensis Lahusen, 1894 is considered to be a junior synonym for E. quadriverrucatum. Another Tithonian species, E. gracilimanum Lahusen, 1894, is included in E. lerasi (Étallon, 1861). ...
... Another Tithonian species, E. gracilimanum Lahusen, 1894, is included in E. lerasi (Étallon, 1861). Finally, Glypheopsis vosinskyi Lahusen, 1894 (Glypheidae), which is the third species mentioned by Gerasimov (1955), was recently attributed to Erymidae (Charbonnier et al., 2013;Devillez and Charbonnier, 2021). In addition, several specimens of erymids and two unidentified species of Prosopidae were found in the late Tithonian of Moscow and the Moscow Region and described by Gerasimov (1955). ...
... Both specimens share features of Eryma von Meyer, 1840 (von Meyer, 1840a): the postcervical groove ventrally joins to the branchiocardiac groove; the branchiocardiac groove ventrally joins to the hepatic groove; the hepatic groove is concavoconvex, forming χ and ω areas; the orbital spine of the orbital row is represented. (For a diagnosis of Eryma, see Devillez et al., 2018;Devillez and Charbonnier, 2021). ...
Article
Full-text available
The decapod crustaceans of Central European Russia have been the subject of studies since the nineteenth century, and the only species, Eryma quadriverrucatum Trautschold, 1866 (Erymidae), has been found in the Callovian to the Oxfordian of that region. The present paper discusses the new exceptional findings of Solenoceridae, Glypheidae, and Mecochiridae from the upper Callovian sites of the Ryazan Region. The previously reported presence of Archeosolenocera sp. is confirmed in detail; Glypheopsis aff. G. etalloni (Oppel, 1861) and Eumorphia sp. are noticed for the first time for this area. Modern identification of erymids is reported: Eryma aff. E. ventrosum (von Meyer, 1835), E. ornatum (Quenstedt, 1858), and Stenodactylina insignis (Oppel, 1862) are noted in addition to E. quadriverrucatum . These findings address the gaps in the fragmented knowledge about the decapod fauna of Central European Russia and exhibit a differentiation of the local Russian decapod assemblage from those of Western Europe. The decapod community of the Ryazan region is considered to be associated with soft substrates of upper sublittoral zone.
... The terminology and taxonomic views adopted herein mainly follow Devillez and Charbonnier (2017, 2021 and . The described erymid lobster chela is kept at the Museum of Palaeontology and Historical Geology at Sofia University "St Kliment Ohridski", Bulgaria. ...
Article
Full-text available
Fossil chela of an erymid lobster from a single locality of the upper Bajocian in the Western Fore-Balkan Mts (NW Bulgaria) was studied. Two segments of the thoracic appendages, probably belonging to one individual, were described: 1) P1 propodus with partially preserved pollex and dactylus; and 2) P1 carpus and P1 merus attached. These elements of the first pair of pereiopods of a lobster were identified as Eryma com-pressum (Eudes-Deslongchamps, 1842). Eryma compressum is a well-known taxon from numerous Jurassic localities in Europe but has not been recorded in Bulgaria to date. Therefore, albeit being an isolated finding with only a few elements, the Bulgarian example contributes to the overall record of European erymid faunas from the Middle Jurassic, and especially in Eastern Europe, from where only a few erymids have been reported.
... Other fossil species: Stenodactylina armata (Secrétan, 1964), Upper Cretaceous (Campanian), Madagascar; S. aus tralis (Secrétan, 1964), Upper Jurassic (Tithonian), Madagascar; S. beardi Feldmann, Schweitzer & Haggart, 2020, Upper Cretaceous (Santonian-Campanian), Canada; S. burgundiaca (Crônier & Courville, 2004), Middle Jurassic (Callovian), France; S. delphinensis (Moret, 1946), Lower Cretaceous (Berriasian), France; S. deslongchampsi (Van Straelen, 1925), Middle Jurassic (Aalenian), France; S. falsani (Dumortier, 1867), Lower Jurassic (Sinemurian), France; S. granulifera (Secrétan, 1964), Upper Jurassic (Kimmeridgian), Madagascar; S. guisei (Wright, 1881), Middle Jurassic (Aalenian-Bajocian), UK and France; S. in signis (Oppel, 1862), Upper Jurassic (Oxfordian), France; S. lagardettei (Hyžný, Schlögl, Charbonnier, Schweigert, Rulleau & Gouttenoire, 2015), Middle Jurassic (Aalenian), France; S. rogerfurzei Schweigert, 2013, Middle Jurassic (Aalenian), Germany; S. shotoverigiganti Devillez & Charbonnier, 2021, Upper Jurassic (Oxfordian), UK; S. spinosa (Étallon, 1861), Lower Jurassic (Toarcian), France; S. strambergensis (Bachmayer, 1959), Upper Jurassic (Tithonian), Germany; S. triglypta (Stenzel, 1945), Upper Cretaceous (Coniacian), USA; S. walkerae (Feldmann & Haggart, 2007), Middle Jurassic (Bajocian-Callovian), Canada. ...
... Nevertheless, this occurrence must be considered as a misidentification. Eryma modestiforme (Schlotheim, 1822) is a Jurassic lobster (Devillez & Charbonnier 2017;Devillez & Charbonnier 2021), but there are no Mesozoic strata exposed in the vicinity of Turnu Roșu. Also, some eschweizerbart_xxx vertebrate taxa (pharyngeal teeth of Eotrigonodon misidentified as Capitodus or crocodile teeth misidentified as a nothosaur remains) are misidentified in the contribution by Akner (1854). ...
... His specimens were originally housed at the regional natural history museum of Besançon, but could not be traced. Van Straelen (1921) described Eryma cumonti from the Callovian of Mont Givre, a hill near Pougues-les-Eaux; the holotype was recently revised by Devillez & Charbonnier (2021) Description: Carapace (cephalothoracic shield). Subcylindrical carapace, laterally compressed; rostrum not preserved; anterior cephalic margin with optical and antennal notches; cephalic region with four longitudinal spiny carinae: parallel orbital, gastro-orbital, supra-antennal and antennal carinae; orbital carina distanced from the others and marked by small aligned spines; gastro-orbital, supraantennal and antennal carinae strongly raised; antennal carina more raised than the others; very deep cervical groove, steeply inclined, intercepting dorsal margin at angle of c. 80° at distance one-third of total length of dorsal margin from anterior; cervical groove ventrally joined to shallow antennal groove, delimiting a very narrow cephalic region; ...
Article
Full-text available
The Late Jurassic (late Oxfordian) fauna from Cricqueboeuf (Normandy, France) is remarkable for its three-dimensionally fossilized crustaceans in carbonate and phosphate nodules, some even preserving eyes and ommatidia network. The crustacean fauna includes four species assigned to the Mecochiridae (Meyeria hurtrelleorum n. sp.), Glypheidae (Glypheopsis trouvillensis), and Erymidae (Eryma ventrosum, Enoploclytia sp.). A quantitative analysis based on 191 specimens shows that the fauna was dominated by Eryma ventrosum (46.6% of specimens) and Meyeria hurtrelleorum n. sp., (40.3%), which makes it unique in the fossil record of the Jurassic crustacean assemblages. Meyeria hurtrelleorum n. sp. is one of the oldest occurrences of the genus and its abundance at Cricqueboeuf is outstanding. The palaeoenvironment is interpreted as subtidal mud flats, where the soft substrate was favorable to the settlement and burrowing of both glypheid, mecochirid, and erymid lobsters. Most of the specimens may actually have been preserved directly inside their own burrow, ultimately infilled by reworking of the muddy bottom during detrital inputs.
Article
Full-text available
The Middle Jurassic (Callovian) fauna from Sainte-Scolasse-sur-Sarthe (Normandy, France) is remarkable for its exceptionally preserved crustaceans in arenaceous limestone beds. The crustacean fauna includes five species assigned to the Glypheidae, Erymidae and Longodromitidae. Glypheid lobsters are the most diversified and abundant group. A new detailed anatomic description leads to the first reconstruction of Glypheadressieri Meyer in Bronn, 1837, and to highlight a marked sexual dimorphism. Similar observations are made in Glyphearegleyana (Desmarest, 1822). A quantitative analysis based on 149 specimens shows two dominant species: Glyphearegleyana (47.0 % of specimens) and G. dressieri (46.3 %). The palaeoenvironment is interpreted as subtidal mud flats largely open to off-shore conditions. More precisely, the sedimentary facies and the associated fauna are indicators of a distal platform setting (upper circalittoral zone). The Sainte-Scolasse fauna is relatively close to that of the Oxfordian of Haute-Saône (eastern France) and thus forms an intermediate assemblage between the communities from the shallow carbonate platforms (e.g., Solnhofen Lithographic Limestone Lagerstätten) and those from the bathyal zone (e.g., La Voulte-sur-Rhône Lagerstätte).
Article
Full-text available
A synthesis of our current knowledge of erymoid lobsters is presented. The superfamily Erymoidea includes two families, Erymidae Van Straelen, 1925 and Enoploclytiidae Devillez, Charbonnier & Barriel, 2019, together encompassing 81 species within six genera. Our examination of the palaeobiodiversity of this group and its evolution has revealed some variations through the Mesozoic with three important peaks, at the boundaries of: 1) Lower-Middle Jurassic; 2) Middle-Upper Jurassic; and 3) Lower-Upper Cretaceous. Whereas the origin of the first peak remains poorly known, the two others coincide with major modifications of the environment: the development of the European Jurassic carbonate platforms and the development of the European Chalk Sea and the partial flooding of North America during the mid- and Late Cretaceous. In addition to a notable peak of diversity, the Cretaceous is an important time interval in the evolutionary history of erymoids because the Early Cretaceous represented a long period of relatively low diversity and during the Late Cretaceous a strong decline of erymoid faunas is observed in Europe. However, the erymoids had already attained a worldwide distribution during the Early Cretaceous with occurrences in all oceans of the time. The analysis of the palaeobiogeographic distribution of these lobsters suggests the presence of important migratory paths, which probably favoured their spread and faunal exchanges between different areas across the globe.
Article
Full-text available
Two new species of Late Jurassic erymid lobsters, Stenodactylina devillezi sp. nov. and Stenodactylina geigerae sp. nov., are described on the basis of isolated, but well-preserved chelipeds from the upper Kimmeridgian of Swabia and the lower Tithonian of Bavaria, respectively. The incomplete nature of the material indicates that these lobsters were not autochthonous elements of the Plattenkalk lagoons, but resulted from predation in nearby shallow-water settings.
Article
Full-text available
Among Erymidae Van Straelen, 1925 (Van Straelen V. 1925. Contribution à l’étude des crustacés décapodes de la période jurassique. Mémoires de la Classe des Sciences de l’Académie royale de Belgique 7: 1–462), typical Mesozoic crustaceans, the genus Eryma Meyer, 1840 (Meyer H. von. 1840a. Briefliche Mittheilungen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefactenkunde 576–587) includes the largest number of species, mainly from Jurassic deposits. However, the lack of clear diagnoses for erymid genera has led to mistakes in generic assignments and to the establishment of redundant genera. The review of the concept of Eryma herein presents an attempt to clarify its diagnosis, mainly supported by the carapace groove pattern and the morphology of chelae of the first pair of pereiopods, and to emphasize its systematic implications. Thus, we maintain the synonymy of Klytia Meyer, 1840, Bolina Münster, 1839 (Münster G. 1839. Decapoda Macrura. Abbildung und Beschreibung der Fossilen Langschwänzigen Krebse in den Kalkschiefern von Bayern. Beiträge zur Petrefaktenkunde 2: 1–88) (sensu Étallon [Étallon A. 1859. Description des crustacés fossiles de la Haute-Saône et du Haut-Jura. Bulletin de la Société géologique de France 16: 169–205]), and Erymastacus Beurlen, 1928 (Beurlen K. 1928. Die Decapoden des Schwäbischen Jura mit Ausnahme der aus den oberjurassischen Plattenkalken stammenden. Palaeontographica 70: 115–278) with Eryma. Moreover, a review of the genera Protoclytiopsis Birshtein, 1958 (Birshtein JA. 1958. Ein Vertreter der ältesten Ordo der Crustacea Decapoda Protoclitiopsis antiqua gen. nov. sp. nov. aus dem Permo West-Sibiriens. Doklady Akademii Nauk, SSSR 122: 477–480), and Galicia Garassino and Krobicki, 2002 (Garassino A, Krobicki M. 2002. Galicia marianae n. gen., n. sp. (Crustacea, Decapoda, Astacidea) from the Oxfordian (Upper Jurassic) of the Southern Polish Uplands. Bulletin of the Mizunami Fossil Museum 29: 51–59), reveals the presence of a junction between the postcervical and branchiocardiac grooves. This feature is diagnostic of Eryma and supports the integration of these genera into the synonymy of Eryma. The addition of Protoclytiopsis to the synonymy of Eryma makes Eryma antiquum (Birshtein, 1958) nov. comb. the oldest representative of the genus and of the family, extending its stratigraphic range to the Late Permian (Changhsingian). Thus, this work also emphasizes that Erymidae crossed the Permian-Triassic boundary.
Article
The Erymidae Van Straelen, 1925 had a worldwide distribution during the Jurassic and the Cretaceous. Twenty-seven species among four genera were reported in the Late Cretaceous, but confusions in diagnoses have led to wrong generic identifications of many erymid species. In the light of recent clarifications of the diagnoses of erymid genera, the Late Cretaceous species are here reviewed. We recognize thirteen of them including three European species which benefit of new descriptions: Palaeastacus sussexiensis (Mantell, 1824), Enoploclytia leachi (Mantell, 1822) and Enoploclytia seitzi Glaessner, 1932. Furthermore, a comparison of the Late Cretaceous erymid fauna with that from the Early Cretaceous emphasizes some changes. A decrease in diversity on genus and species level is noted with the absence of Eryma Meyer, 1840 in the Late Cretaceous and the predominance of Enoploclytia M’Coy, 1849 (including almost half of the species). Despite the scarcity of the fossil record, our palaeobiogeographic interpretations led us to propose hypotheses about the provenance of North American populations in the end of Early Cretaceous and in Late Cretaceous: (1) their supposed absence since the Callovian (Jurassic) is due to collecting and/or reporting bias or (2) they were the result of migrations of European populations. Moreover, the report of a chela assigned to Stenodactylina cf. armata (Secrétan, 1964) in France confirms the existence of migration routes between European and Malagasy faunas during the Late Cretaceous.
Article
Fossil decapod crustaceans have been collected in rocks ranging in age from Late Devonian to Pleistocene in rocks of varying lithologies, typically fine siliciclastic rocks, concretions within fine to coarse siliciclastic rocks, and fine-grained to lithographic limestones. The enclosing lithology dictates the manner in which specimens can be prepared and the degree to which preparation and consolidation is warranted. Collection and preparation of decapod fossils historically has centered on exposing the dorsal carapace. Recent work has demonstrated that, particularly in the case of fossils preserved in concretions, the complexly-layered cuticle tends to separate so that the exposed carapace surface retains the endocuticle whereas the counterpart retains the exocuticle. Valuable information on the morphology of the external cuticular surface is lost if both part and counterpart are not collected. Extremely fine-grained lithographic type limestones preserve specimens in fine detail, which is critical in the study of delicate specimens with thin cuticle, such as shrimps.