ArticlePDF Available

Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic steppes in Ukraine

Authors:

Abstract and Figures

989Nine hundred and eight-nine relevés of from calcareous petrophytic steppes in Ukraine and its adjacent territories were assessed, with the help of expert systems, to determine the syntaxonomic affiliation of the plant communities at class and order levels. At least 488 relevés belonging to the class Festuco-Brometea class were analyzed using the TWINSPAN algorithm, and 8 distinguished distinctive clusters were obtained, recognized as alliances of the order Stipo pulcherrimae-Festucetalia pallentis order. The A new alliance, – Bromopsido cappadocicae-Asphodelinion tauricae, was ascribed to the Crimean Mountains and the presence of two alliances, Diantho lumnitzeri-Seslerion albicantis and Genisto tetragonae-Seselion peucedanifoliae, wasere confirmed as new for this vegetation in Ukraine. However, uUnlike in the Pannonian Bbasin, the Bromo pannonici-Fectucion csikhegyensis alliance communities mentioned in the literature do not occur in Ukraine. Centaureo carbonatae-Koelerion talievii has been preliminarily provisionally transferred from the Festucetalia valesiacae to the order Stipo pulcherrimae-Festucetalia pallentis order. Furthermore, we distinguished alliances by their geographic locations, and depending oftheir climatic (thermoregime, cryoregime, light in communities) and edaphic features (carbonate content, salinity, and acidity) features.
Content may be subject to copyright.
1
Abstract
Nine hundred and eight-nine relevés from calcareous petrophytic steppes in
Ukraine and its adjacent territories were assessed with the help of expert systems
to determine the syntaxonomic aliation of the plant communities at class
and order levels. At least 488 relevés belonging to the class Festuco-Brometea
were analyzed using the TWINSPAN algorithm, and 8 distinctive clusters were
obtained, recognized as alliances of the order Stipo pulcherrimae-Festucetalia
pallentis. A new alliance, Bromopsido cappadocicae-Asphodelinion tauricae, was
ascribed to the Crimean Mountains and the presence of two alliances, Diantho
lumnitzeri-Seslerion albicantis and Genisto tetragonae-Seselion peucedanifoliae,
was conrmed as new for this vegetation in Ukraine. Unlike in the Pannonian
Basin, Bromo pannonici-Festucion csikhegyensis alliance communities mentioned
in the literature do not occur in Ukraine. Centaureo carbonatae-Koelerion talievii
has been provisionally transferred from Festucetalia valesiacae to the order Stipo
pulcherrimae-Festucetalia pallentis. Furthermore, we distinguished alliances by
their geographic locations and their climatic (thermoregime, cryoregime, light in
communities) and edaphic (carbonate content, salinity, and acidity) features.
Izvleček
S pomočjo ekspertnih sistemov smo ovrednotili devetsto oseminosemdeset
popisov apneniške petrotske stepe v Ukrajini in sosednjih območjih in tako
določili sintaksonomsko pripadnost teh rastlinskih združb na nivoju razreda in
reda. Vsaj 488 popisov, ki pripadajo razredu Festuco-Brometea, smo analizirali s
TWINSPAN algoritmom in dobili 8 ločenih klastrov, ki jih lahko opredelimo
kot zveze reda Stipo pulcherrimae-Festucetalia pallentis. V Krimskem gorovju smo
opisali novo zvezo Bromopsido cappadocicae-Asphodelinion tauricae in potrdili novo
pojavljanje dveh zvez v vegetaciji Ukrajine: Diantho lumnitzeri-Seslerion albicantis
in Genisto tetragonae-Seselion peucedanifoliae. V nasprotju s Panonskim bazenom
združbe zveze Bromo pannonici-Festucion csikhegyensis ne uspevajo v Ukrajini, kot
se navaja v literaturi. Zvezo Centaureo carbonatae-Koelerion talievii smo začasno
premestili iz reda Festucetalia valesiacae v red Stipo pulcherrimae-Festucetalia
pallentis. Nadalje smo zveze ločili glede na geografski položaj, klimatske
(toplota, kriorežim, svetloba) in edafske (vsebnost karbonatov, slanost in kislost)
značilnosti.
Key words: calcareous bedrocks,
petrophytic steppes, Stipo
pulcherrimae-Festucetalia pallentis,
syntaxonomy, Ukraine, vegetation
classication.
Ključne besede: apnenčasta
podlaga, petrotska stepa, Stipo
pulcherrimae-Festucetalia pallentis,
sintaksonomija, Ukrajina,
klasikacija vegetacije.
Received: 6. 8. 2020
Revision received: 21. 11. 2020
Accepted: 4. 1. 2021
1 M. G. Kholodny Institute of Botany NAS of Ukraine, Tereshchenkivska Str., 2, MSP-1, Kyiv, 01601, Ukraine. E-mail: ya.didukh@gmail.com,
olgachusova28@gmail.com
2 Vasyl’ Stus Donetsk National University, 500th Anniversary Str., 21, Vinnytsia, 21000, Ukraine. E-mail: arrhenatherum@gmail.com
* Corresponding author
Yakiv Didukh¹, Iuliia Vasheniak²,* & Olga Chusova¹
DOI: 10.2478/hacq-2021-0004
Spo pulcherrimae-Festucetalia pallens
Pop 1968 of calcareous petrophyc
steppes in Ukraine
2
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Introducon
Calcareous petrophytic steppes are characterized by a
signicant occurrence of chamaephyte and hemicryp-
tophyte plants, in contrast to pure steppes, the coe-
notic structure of which is formed predominantly by
turf graminoids, with short and brous rhizal plants
(Lavrenko 1940). e presence of graminoids is usually
relatively low, with low coverage, but they are important
as subdominant species in these communities. Calcar-
eous petrophytic steppe communities are developed on
short-proled, shallow and skeletal soils (rendzic lepto-
sols, gypsols) on carbonate sediments. Plants occupy-
ing such an environment have adapted to this rocky
substrate by forming a strong, rod caudex type of root
system to enhance growth. In terms of behavioral strat-
egy, these plants are S-stress tolerators (Grime 1977). A
characteristic feature of the ora of these communities is
the presence of specic adaptive traits, because of which
many, even dominant genera have vicarious races that
are endemic to certain regions and indicate the identity
and progressive nature of the development of these com-
munities. Such living conditions and structural features
of coenoses limit short-term uctuation and medium-
term succession processes, and the dening process of
coenoses development is microevolutionary changes that
are manifested in species formation (Litvinov 1891).
Petrophytic steppes communities are unique: on the
one hand they have high coenotic diversity, mosaic struc-
ture, oristic specicity and are characterized by extreme
living conditions; and, on the other hand, they border
communities with graminoids or mesophytic species
dominance, which can spread to the petrophytic steppes’
coenotic structure. Based on these criteria, the classica-
tion of these types of communities is extremely compli-
cated, causing heated discussions among scientists for
both dominant and oristic classication methods.
Lavrenko (1940), leader and undisputed expert on Eur-
asian steppes, considered petrophytic steppes to be veg-
etation with a dominance of xerophytic graminoids, but
when chamaephytic species dominated in grasslands, he
classied them as “thymiannyk” (derived from the genera
name ymus – the characteristic species).
Lavrenko (1973, 1980), Lavrenko et al. (1991) and
Takhtandzhyan (1937, 1940) assumed these petrophytic
steppes to be analogues of Mediterranean tomillars or as
a part of Tragacantha grasslands phrygana with hemi-
spheric cushion plants, and more widespread mountain-
xerophytic vegetation – phryganoids (Yaroshenko 1956,
Gulisashvili et al. 1975, Kamelin 1979, Didukh 1981).
However, Tragacantha and ymus grasslands are distrib-
uted only in the steppe zone and are dierentiated from
Mediterranean communities by their steppic characteris-
tics (Tomollares substepposus) (Didukh 1992).
e ecological and oristical determination of these
communities gives rise to some complex and debatable is-
sues for several reasons. Firstly, diagnostic features such as
boundaries between dominant species are blurred. More-
over, the rich oristic diversity, high level of endemism
and the presence of specic calcephilous plants causes the
occurrence of numerous syntaxa with a local distribution.
e latter is further complicated by the fact that many en-
demic plants are ranked on a taxonomical level according
to Ukrainian taxonomical literature (Klokov 1973, 1974,
Mosyakin & Fedoronchuk 1999), from subspecies to spe-
cies, which then inuences the vegetation classication.
Secondly, xerophytic conditions cause the penetration
of pure steppe species that may be diagnostic in other
steppe syntaxa. Moreover, diagnostic and characteristic
species identied for rocky grasslands of Western Europe
that have spread to more aridic and continental condi-
tions, show dierent specicity in Ukraine. All this to-
gether complicates classication of these communities.
Today, herbaceous vegetation occurring on calcareous
substrata in Ukraine is represented mainly by the class
Festuco-Brometea Br.-Bl. et Tx. ex Soo 1947; in particu-
lar by the order Stipo pulcherrimae-Festucetalia pallentis
Pop 168, but communities occurring on developed sod-
carbonate soils are also known and are classied within
the orders Brachypodietalia pinnati Korneck 1974, Fes-
tucetalia valesiacae Soó 1947 and Tanaceto achilleifolii-
Stipetalia lessingianae Lysenko et Mucina 2016 (Mucina
et al. 2016). In addition, cretophilous communities on
chalk with poor oristic composition, and associated
with the Central Russian Uplands, are described as a
separate class, Helianthemo-ymetea (Romashchenko et
al. 1996, Didukh 1996, Didukh et al. 2018), and com-
munities occurring in the highlands are treated as the
class Elyno-Seslerietea Br.-Bl. 1948 (Mucina et al. 2016).
Specic communities of spring ephemerals and suc-
culents, in which a signicant proportion of species are
bryophytes, are also associated with calcareous bedrocks.
ey belong to the class Sedo-Scleranthetea Br.-Bl. 1955
(order Alysso-Sedetalia Moravec 1967). ere are commu-
nities of the class Drypidetea spinosae Quezel 1964, order
Onosmo polyphyllae-Ptilostemonetalia Korzhenevski 1990,
in the Crimea Mountains. Such diversity of communities
requires appropriate comparative analysis and evaluation
of the classication of the order Stipo pulcherrimae-Festuc-
etalia pallentis.
Communities of the order Stipo pulcherrimae-Festuce-
talia pallentis occur mainly on undeveloped soils formed
on rock complexes of various geology, both sedimentary
and crystalline. In particular, in Western and Central
3
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Europe, the alliance Alysso-Festucion pallentis Moravec in
Holub et al. 1967, as well as Asplenio-Festucion pallentis
Zólyomi 1936 corr. 1966, have been noted in the East-
ern Alps and northern part of the Pannonian Basin, com-
munities of which occur on silicate outcrops and Silurian
limestones of Hercynian outcrops (Chytrý et al. 2007).
e communities of Bromo pannonici-Festucion csikhegy-
ensis rst described by Zólyomi (1966) also occupy the
northern fringes of the Pannonian Basin (Chytrý et al.
2007, Janišová et al. 2014, Mucina et al. 2016) and occur
on calcareous substrata. On the other hand, communi-
ties of Chrysopogono-Festucion dalmaticae Borhidi 1996
occupy the southern fringes of the Pannonian Basin and
occur on calcareous substrata. e alliances Saturejion
montanae Horvat in Horvat et al. 1974 and Pimpinello-
ymion zygoidi Dihoru et Donita 1970, are endemic to
Balkan countries (Aćić et al. 2015, Vassilev & Apostolova
2013) and also occur on calcareous substrata. It should be
added that dealpine relic communities described as the
alliances Diantho lumnitzeri-Seslerion (Soó 1971) Chytrý
et Mucina in Mucina et Kolbek 1993 and Seslerion rigi-
dae Zólyomi 1936, mainly occur on calcareous substrata
in Central Europe and the Eastern Carpathian Moun-
tains (Janišová & Dúbravková 2010, Dengler et al. 2012,
Janišová et al. 2014).
is type of vegetation has thus been well described
for Western and Central Europe but barely mentioned
for Ukraine, only on class and order levels (Willner et al.
2017). Mucina et al. (2016) provided endemic alliances
belonging to the order Stipo puclherrimae-Festucetalia pal-
lentis as Potentillo arenariae-Linion czernjajevii described
by Krasova & Smetana (1999), occurring on Pontic lime-
stone substrata in the southern Ukraine and Androsaco
tauricae-Caricion humilis Didukh in Mucina et Didukh
2014, on Jurassic limestones in the Crimea Mountains.
Mucina et al (2016) also noted that communities of the
alliance Bromo pannonici-Festucion csikhegyensis occupy
calcareous substrata of Ukrainian Podillia. Didukh &
Vasheniak (2018) discussed the presence of the alliance
Bromo pannonici-Festucion csikhegyensis in Ukrainian
Podillia and proposed an endemic alliance of the Podil-
lia region as the alliance Galio campanulati-Poion versi-
coloris. Dubyna et al. (2019) conrmed the presence of
the alliance Bromo pannonici-Festucion csikhegyensis and
mentioned the association Poetum versicoloris within this
alliance.
However, the existing fragmentary syntaxonomic clas-
sication does not reect the diversity of petrophytic
steppe vegetation on calcareous substrata, especially in
Ukraine, since there is a signicant variety characterized
by dierent chemical compositions formed in dierent
geological periods.
Taking into account the discussed syntaxonomy of cal-
careous petrophytic steppes of Ukraine and the rich diversi-
ty of calcareous bedrocks, we aimed to revise the vegetation
data of Ukrainian petrophytic steppes with a comparison
of available data from adjacent territories and to analyze
the syntaxonomy and ecology at the alliance level.
Study area
e research was carried out on the territory of Ukraine
and adjacent territories (Figure 1) on outcrops of calcare-
ous bedrock. On the basis of the structure of the sedi-
ments, the vegetation of the Ukrainian part of the study
region can be grouped into four types.
e rst type represents outcrops of chalk scree slopes
distributed in the following three regions: Volyn-Podillia
(forest-steppe zone), Central Russian Upland (forest-
steppe and steppe zones) and Crimean foothills. e veg-
etation is characterized by a lack of obligatory endemic
calcephilous plants in calcephilous communities within
the humid climates of forest-steppe and steppe zones
with sucient hydration of the chalk substrate, but a
wide range of facultative calcephilous plants are present.
ese communities are rich in meadow-steppe elements
tending toward carbonate substrata and are representives
of the alliance Cirsio-Brachypodion. A signicantly dier-
ent situation is observed in communities in the arid con-
ditions of the steppe zone, where communities contain
many obligatory calcephilous plants and are characterized
by high endemism. is is best seen in the chalk outcrops
of the Central Russian Upland, where peculiar communi-
ties form. Famous geobotanists from the XIX-XXth cen-
turies designated such communities “hysopnik” (Litvinov
1891) and “low alpine communities” (Kozo-Poljanski
1911). According to Litvinov (1891), “hysopnik” includ-
ed species of Cretaceous ora origin.
e second type of calcareous substrata is miocenic
gypsum, which occurs only in Ukraine’s Western Podil-
lia (Opillia). ese are solid sediments that appear on
the surface in the form of clis, ridges and karst funnels.
Even though they are in the humid climatic zone, the
ora and plant communities are more specic and diverse
here (Herenchuk 1979). e clis are characterized by
communities with a dominance of succulents and tero-
phytes (Alysso-Sedetalia), and chasmophytic (Asplenion
rutae-murariae) and lichen communities (Verrucarietea
nigriscentis).
e third type includes Tertiary Pontic and Sarmatian
limestones that occur in Ukraine in various zones: forest
(Mizockyi Ridge), forest-steppe and steppe zones. Lime-
stone sediments with porous structures rise to the surface
4
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
in the form of several meter high vertical walls (Heren-
chuk 1980). e forest zone vegetation of this substrata
type lacks specic communities, but further south there
are typical Asplenion rutae-murariae and Alysso alyssoidis-
Sedion alliances (Onyshchenko 2001), while in the arid
steppe zone, communities with the presence of Parietaria
judaica (Cymbalario-Parietariatea) grow in an environ-
ment with low precipitation conditions.
e fourth type relates to the Crimean Mountains,
which are a northeastern massif of the folded-block sys-
tem of the Mediterranean Geosynclinal Belt and consist
of Upper Jurassic limestones and shales that emerge on the
surface at varying heights of 3 to 1450 meters (Roman-
Kish Mountain) a.s.l. (Didukh 1981). e diverse altitu-
dinal conditions are reected in the vegetation dieren-
tiations by the presence of separate vegetation types for
each altitude zone. Petrophytic communities are specic
in relation to other types of vegetation and are character-
ized by a number of species that grow on this extensive
altitude range, as well as lichen communities (Verrucari-
etea nigrescentis, Protoblastenietea immersae and Collemate-
ae cristati). However, height specicity is also observed
(Didukh 1992, Khodosovtsev 2002). In contrast to the
Western Carpathians, Ukrainian Carpathian limestone
bedrocks occur in the Svydovets Massif and Marmarosh
clis; in Transcarpathia only in the Velyka Uholka and
Kuziy tracts (Herenchuk 1981). Such a diverse picture
indicates a high variability of calcareous communities in
Ukraine and requires more detailed comparative analy-
sis. To understand the complete picture, we analyzed the
available data from Ukraine, as well as from nearby ter-
ritories with available databases of vegetation, in particu-
Figure 1: Study area of Ukraine and adjacent territories. e Ukrainian territory is presented by coloring of the geobotanical zoning, according
to Didukh & Shelyag-Sosonko (2003) as follows: I – Eastern European Province of pine-deciduous and deciduous forests; II – Eastern European
Forest-Steppe Province of oak forests, steppe meadows and meadow steppes; III – Pontic Steppe Province; IV – Central European Forest-Steppe
Province of deciduous forests; V – Carpathian-Alpine Mountain Province of forests and alpine vegetation; VI – Pannonian Forest-Steppe Province
of heliophilic and nemoral forests, steppe meadows and meadow steppes; VII – Mediterranean Zone of deciduous forests, “pseudomaquis”,
“shyblyak” and “tomillars”.
Slika 1: Preučevano območje Ukrajine in sosednjih območij. Teritorij je obarvan v skladu z geobotanično conacijo po Didukh & Shelyag-Sosonko
(2003): I – vzhodnoevropska provinca borovo-listopadnih in listopadnih gozdov; II – vzhodnoevropska gozdno-stepska provinca hrastovih gozdov,
stepskih travišč in travnatih step; III – provinca pontske stepe; IV – srednjeevropska gozdno-stepska provinca listopadnih gozdov; V – karpatsko-
alpska gorska provinca gozdov in alpinske vegetacije; VI – panonska gozdno-stepska provinca svetloljubnih gozdov zmernega pasu, stepskih travišč
in traviščnih step; VII – mediteranska cona listopadnih gozdov, “psevdomakija”, “šibljak” in “tomilar”.
5
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
lar from the Pannonian region (Slovak Karst Mountains,
North Hungarian Mountains), where Mesozoic lime-
stones, dolomites, sandstones and shales emerge and form
rock complexes with the occurrence of the alliance Bromo
pannonici-Festucion csikhegyensis (Dubravková & Janišová
2010). e valleys of the river terraces of the Moravian
Gate in southern Poland are composed of Miocene lime-
stones and loesses, and the Kraków-Częstochowa Upland
and Małoposlka Upland are composed of Jurassic chalk
limestones (Kondracki 1965). e most similar to the
Ukrainian geological structure is the Moldavian Plateau,
Transnistria Upland, which is actually a continuation of
the Volyn-Podillia Upland, composed of ancient sedi-
ments, and Sarmatian limestones, sandstones and Torto-
nian gypsum come to the surface (Pinzaru 1997).
Materials and methods
Vegetaon data collecon
We used our own phytosociological relevés, collected
from Ukraine in 1975–2014 (plot size 10 m2) and in
2016–2019 (plot size 10 m2), and relevés obtained from
adjacent territories extracted from the EVA database
(Chytrý et al. 2016), including Poland, Hungary and the
Slovak Republic, and also from Moldova (Pinzaru 2006,
2015a, 2015b, 2015c) and Russia (Didukh et al. 2018)
(Table 1), with assigned syntaxonomical status. e cri-
terion for choosing data from adjacent territories was lit-
erature conrmation (Janišová et al. 2014, Mucina et al.
2016, Dubyna et al. 2019) of the presence of the same
communities as in Ukraine.
Vegetaon data analysis
e data were analysed in JUICE software (Tichý 2002).
We used a TWINSPAN modied algorithm (Hill 1979):
three pseudospecies cut level – 0, 5 and 25, Whittaker’s
method for distinguishing clusters. Diagnostic species for
individual clusters were estimated based on the phi-co-
ecient (threshold of delity of more than 25%), tested
by Fisher’s exact test (p≥0.01) (Chytrý et al. 2002), with
all groups standardized to an equal size (Tichý & Chytrý
2006). For the determination of highly constant species,
we used a threshold of constancy of more than 50%, and
for constant species of more than 25%. Identication at
class and order levels was done using EVCL 2016 (Mu-
cina et al. 2016) and EC-orders-v2-c (Willner et al. 2017)
expert systems, respectively. e nal cluster identica-
tion and aliation at the alliance level was made based on
Source Region
Ukraine Number of
relevés Plot size
(m2)
UDG (Kuzemko 2012) Ukraine: Dniester Canyon, Gologory-Krements Ridge,
Totry Ridge, Khotyn Upland 247 10
Didukh et al. 2018 Ukraine, Russia: Central Russian Upland 233 10
Didukh Y.P. (unpublished relevés) Ukraine: Crimean Mountains,
Gologory-Kremenets Ridge 81 100*
Didukh Y.P. (unpublished relevés) Ukraine: Dnieper Upland, Black Sea Lowland 60 10
Vasheniak I.A. (unpublished relevés) Ukraine: Svydovets Massif, Marmarosh Massif
(Marmarosh Clis), Dnieper Upland, Black Sea Lowland 56 10
Dubyna et al. 2019 Ukraine: Kuialnyk Estuary 26 10
Adjacent territories (nearby territories with available vegetation data)
Pinzaru 1997, Pinzaru 2006 Moldova: Moldavian Plateau, Transnistria Upland,
Dniester River valley 155 20*
EVA (Chytrý et al. 2016), Polish Database (Kącki
& Śliwiński 2012) Poland: Małoposlka Upland,
Kraków-Częstochowa Upland, Moravian Gate) 84 10
EVA (Chytrý et al. 2016) Hungary: North Hungarian Mountains 26 10
EVA (Chytrý et al. 2016) Slovak Republic: Slovak Karst Mountains
Ukraine: Skolivski Beskydy 21 10
Table 1: Sources of vegetation data used. * An asterisk indicates approximate size of the plots.
Tabela 1: Uporabljeni viri vegetacijskih podatkov. * Zvezdica predstavlja približno velikost popisnih ploskev.
6
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
literature sources (Kukovytsia et al. 1994, Pinzaru 1997,
Mucina et al. 2016). Additionally, we used the Slovak
expert system (Janišová et al. 2007) for identication of
some clusters at the alliance level with questionable syn-
taxonomy.
e vascular plant species nomenclature is according
the Euro+Med Database checklist (http://www.emplant-
base.org). If species were interpreted as synonyms or sub-
species according to the Euro+Med Database checklist,
we combined them as species aggregates (Appendix 1).
At the rst stage of data preparation, the complete ar-
ray of data from 989 relevés was interpreted subjectively
as petrophytic calcareous steppes, according to their o-
ristic composition and substantiated by the EVCL2016
expert system (Mucina et al. 2016). e following relevés
were omitted: Sedo-Scleranthetea (9 relevés), Carpino-
Fagetea sylvaticae (3 relevés), Trifolio-Geranietea (11 rel-
evés), Asplenietea trichomanis (1 relevé), Elyno-Seslerietea
(1 relevé), Artemisietea vulgaris (6 relevés), Drypidetea spi-
nosae (2 relevés), with additional unclassied records (65
relevés). e expert system conrmed data for 891 relevés
of the class Festuco-Brometea. In the second stage of data
preparation, we used the EC-orders-v2-c expert system
for additional processing (Willner et al. 2017) and the
resulting data was interpreted as the orders Festuceta-
lia valesiacae, Stipo pulcherrimae-Festucetalia pallentis
and Brachypodietalia pinnati. We rejected mesophytic
communities of the order Brachypodietalia pinnati (265
relevés) and cretophilous communities of the class He-
lianthemo-ymetea, which were not recognized by the
expert system but are recognizable by diagnostic species
(138 relevés). Xerophytic communities occurring on cal-
careous substrata of the orders Stipo pulcherrimae-Festuc-
etalia pallentis and Festucetalia valesiacae were retained
based on the expert system results. e nal dataset of
488 relevés was further processed using the TWIN-
SPAN algorithm.
Syntaxa nomenclature followed Kukovytsia et al.
(1994), Pinzaru (1997) and Mucina et al. (2016). e
new syntaxon is described according the rules of the “In-
ternational Code of Phytosociological Nomenclature”
(eurillat et al. 2020).
DCA (Detrended Correspondence Analysis) was con-
ducted in order to assess the impact of environmental
factors on plant communities. Phytoindication scales
of Y. Didukh (Didukh 2011) are comparable to other
environmental indicator values (Ellenberg) and reect
amplitude indices of the species characterized by the fol-
lowing dimensions: soil humidity (Hd – 23 grades), vari-
ability of damping (fH – 11 grades), soil acidity (Rc – 15
grades), total salt regime (Sl – 19 grades), carbonate con-
tent (Ca – 13 grades), nitrogen content (Nt – 11 grades),
aeration of the soil (Ae 15 grades), thermoregime of
the climate (Tm 17 grades), humidity of the climate
(Om – 23 grades), continentality of the climate (Kn – 17
grades), cryoregime of the climate (Cr – 15 grades) and
lightness in the community (Lc – 9 grades). Phytoindica-
tion values were passively projected onto a DCA graph.
We used R programme (R Core Team 2013) to visualize
the DCA.
Additionally, environmental parameter dierences be-
tween alliances were estimated with one-way ANOVA in
the STATISTICA 10.0 program (StatSoft 2010). Tukey’s
HSD post hoc test at α<0.05 was used to identify sig-
nicant dierences among groups. “Box-and-whiskers”
plots of the environmental characteristics of the alliances
were drawn and the results of the post hoc Tukey’s test
were visualized as letters for homogeneous groups.
Results
We obtained a dendrogram of 5 clusters (Figure 2) of
groups of relevés based on oristic similarity and their
geographical position, dened as follows: A (61 relevés)
from Central Europe and Ukrainian Transcarpathia;
B (218 relevés), mainly from the Volyn-Podillia Upland,
Dniester Valley and its tributaries, and the Transnistria
Upland; C (62 relevés) from the Crimean Mountains;
D (124 relevés) from the Dnieper Upland and Black Sea
Lowland; E (144 relevés) communities from the Central
Russian Upland. Clusters A and B include communities
of the humid north-western regions of Ukraine, while
C, D and E are communities of the arid, south-eastern
regions of Ukraine. We did not exclude Festucetalia vale-
siacae relevés because in each group there was also a cer-
tain proportion of Stipo pulcherrimae-Festucetalia pallentis
relevés and we assumed that Willner et al. (2017) did not
include data from the Eastern Ukraine in the meta-analy-
sis and these communities could also belong to the order
Stipo pulcherrimae-Festucetalia pallentis.
e further processing of each group separately re-
sulted in eight clusters, presented in a synoptic table
(Table 2). e rst cluster (group A) includes calcareous
petrophytic communities from Central Europe (Hun-
gary, Slovak Republic, Ukrainian Transcarpathia). Based
on analysis of the oristic composition, we identied it
as Bromo pannonici-Festucion csikhegyensis. e second
cluster was selected from within the same group (A);
it includes only relevés from the Małopolska Upland,
Kraków-Częstochowa Upland and Moravian Gate, was
interpreted as the alliance Diantho lumnitzeri-Seslerion
albicantis and there is no evidence of the presence of these
communities in Ukraine (Figure1). e third cluster was
7
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
A B C D E
Figure 2: Results of TWINSPAN algorithm evaluation.
A – relevés from Central Europe and Transcarpathia; B – relevés
mainly from Volyn-Podillia, Transnistria Uplands and Dniester Can-
yon; C – relevés from the Crimean Mountains; D – relevés from the
Dnieper Upland and Black Sea Lowland; E – releves from the Central
Russian Upland.
Slika 2: Rezultati z TWINSPAN algoritmom.
A – popisi iz srednje Evrope in Transkarpatov; B – popisi predvsem z
območja Volyn-Podillia, višavja Transnistria in kanjona reke Dniester;
C – popisi s Krimskega gorovja; D – popisi z višavja Dnieper in
črnomorske nižine; E – popisi s Srednjeruskega višavja.
extracted from group B and consists of communities oc-
curring on Neogene limestones, gypsum and sandstones
of the Volyn-Podillia and Transnistria Uplands; it was
classied as the alliance Genisto tetragonae-Seselion peuce-
danifoliae. e fourth cluster was also taken from group
B and is represented by communities of steep slopes –
the walls of Dniester Canyon, where the climatic eect
of “warm Podillia” is observed (Herenchuk 1980); it was
interpreted as the alliance Galio campanulati-Poion versi-
coloris. Group C, which combines communities from the
Crimean Mountains, was also divided into two clusters:
the fth cluster includes vegetation developed from the
lowlands to 900 m a.s.l., classied in a new alliance – Bro-
mopsido tauricae-Asphodelinion tauricae, while the sixth
cluster represents vegetation from the alpine zone, of the
alliance Androsaco tauricae-Caricion humilis. e seventh
cluster, allocated within group D, includes communities
of the southern forest-steppe zone of the Dnieper Upland
and Black Sea Lowland, which are assigned to the alli-
ance Potentillo arenariae-Linion czernjajevii. e eighth
cluster consists of communities of the alliance Centaureo
carbonatae-Koelerion talievii.
e syntaxonomic diversity of the order can be shown
in the following scheme:
Class Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947
Order Stipo pulcherrimae-Festucetalia pallentis Pop 1968
1. Bromo pannonici-Fectucion csikhegyensis lyomi 1966
corr. Mucina in Di Pietro et al. 2015
2. Diantho lumnitzeri-Seslerion albicantis (Soó 1971)
Chytrý et Mucina in Mucina et Kolbek 1993 (not
conrmed in Ukraine)
3* Genisto tetragonae-Seselion peucedanifoliae Pinzaru 1997
4* Galio campanulati-Poion versicoloris Kukovitsa et al.
1994
5. Bromopsido tauricae-Asphodelinion tauricae all. nova
6. Androsaco tauricae-Caricion humilis Didukh in Didukh
et Mucina 2014
7. Potentillo arenariae-Linion czernjajevii Krasova et Sme-
tana 1999
8* Centaureo carbonatae-Koelerion talievii Romashchenko
et al. 1996
* An asterisk indicates a provisional decision on the syn-
taxonomical status of the alliance
Some examples of communities of distinctive vegeta-
tion types are presented on Figure 3.
Figure 3: Ecological dierences among the eight syntaxa
1 – Bromo pannonici-Fectucion csikhegyensis, 2 – Diantho lumnitzeri-
Seslerion albicantis, 3 – Genisto tetragonae-Seselion peucedanifoliae,
4 – Galio campanulati-Poion versicoloris, 5 – Bromopsido tauricae-
Asphodelinion tauricae, 6 – Androsaco tauricae-Caricion humilis,
7 – Potentillo arenariae-Linion czernjaevii, 8 – Centaureo carbonatae-
Koelerion talievii.
a) Hd – soil humidity, b) fH – variability of damping), c) Rc – soil
acidity, d) Sl – total salt content in soil, e) Ca – calcium/magnesium
content in soil, f) Nt – nitrogen content in soil, g) Ae – soil aeration,
h) Tm – thermal climate, i) Om – ombroregime, j) Kn – continental
climate, k) Cr – cryoclimate, l) Lc – light in the community.
Slika 3: Ekološke razlike med osmimi sintaksoni
1 – Bromo pannonici-Fectucion csikhegyensis, 2 – Diantho lumnitzeri-
Seslerion albicantis, 3 – Genisto tetragonae-Seselion peucedanifoliae,
4 – Galio campanulati-Poion versicoloris, 5 – Bromopsido tauricae-
Asphodelinion tauricae, 6 – Androsaco tauricae-Caricion humilis,
7 – Potentillo arenariae-Linion czernjaevii, 8 – Centaureo carbonatae-
Koelerion talievii.
a) Hd – vlažnost tal, b) fH – variabilnost vlažnosti), c) Rc – kislost tal,
d) Sl – skupna vsebost soli v tleh, e) Ca – vsebnost kalcija/mag-
nezija v tleh, f) Nt – vsebnost dušika v tleh, g) Ae – zračnost tal,
h) Tm – toplota, i) Om – ombrorežim (padavine), j) Kn – kontinental-
nost, k) Cr – krioklima, l) Lc – svetloba v združbi.
8
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Figure 4: Detrended Correspondence Analysis of the distinguished syntaxa. 1 – Bromo pannonici-Fectucion csikhegyensis, 2 – Diantho lumnitzeri-
Seslerion albicantis, 3 – Genisto tetragonae-Seselion peucedanifoliae, 4 – Galio campanulati-Poion versicoloris, 5 – Bromopsido tauricae-Asphodelinion
tauricae, 6 – Androsaco tauricae-Caricion humilis, 7 – Potentillo arenariae-Linion czernjaevii, 8 – Centaureo carbonatae-Koelerion talievii
Acronyms: Hd – soil humidity, fH – variability of damping, Rc – soil acidity, Sl – total salt content in soil, Ca – calcium/magnesium content in
soil, Nt – nitrogen content in soil, Ae – soil aeration, Tm – thermal climate, Om – ombroregime, Kn – continental climate, Cr – cryoclimate,
Lc – light in the community.
Slika4: Korespondenčna analiza z odstranjenim trendom različnih sintaksonov. 1 – Bromo pannonici-Fectucion csikhegyensis, 2 – Diantho lumnitzeri-
Seslerion albicantis, 3 – Genisto tetragonae-Seselion peucedanifoliae, 4 – Galio campanulati-Poion versicoloris, 5 – Bromopsido tauricae-Asphodelinion
tauricae, 6 – Androsaco tauricae-Caricion humilis, 7 – Potentillo arenariae-Linion czernjaevii, 8 – Centaureo carbonatae-Koelerion talievii
Okrajšave: a) Hd – vlažnost tal, b) fH – variabilnost vlažnosti), c) Rc – kislost tal, d) Sl – skupna vsebost soli v tleh, e) Ca – vsebnost kalcija/
magnezija v tleh, f) Nt – vsebnost dušika v tleh, g) Ae – zračnost tal, h) Tm – toplota, i) Om – ombrorežim (padavine), j) Kn – kontinentalnost, k)
Cr – krioklima, l) Lc – svetloba v združbi.
a) Hd b) fH c) Rc
d) Sl
g) Ae
j) Kn
h) Tm
k) Cr
i) Om
l) Lc
e) Ca f) Nt
9
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Environmental characteriscs of
calcareous petrophyc steppes
e DCA (Figure 4) results show that the main factors
aecting the vegetation diversity of studied petrophythic
steppes are related to DCA1, acidity (Rc), cryoregime
(Cr) and light in communities (Lc), the closest to DCA2
is nitrogen content (Nt), and to DCA3 are ombroregime
(Om) and aeration (Ae). Other environmental factors
play a smaller role in dierentiation of the syntaxa. e
right side of the ordination diagram contains alliances
of arid communities: Bromopsido tauricae-Asphodelinion
tauricae, Androsaco tauricae-Caricion humilis, Potentillo
arenariae-Linion czernjaevii, Centaureo carbonatae-Koeler-
ion talievii from the steppe zone of Ukraine. e left side
contains alliances of Central Europe and partly Eastern
Europe: Bromo pannonici-Fectucion csikhegyensis, Diantho
lumnitzeri-Seslerion albicantis, Genisto tetragonae-Seselion
peucedanifoliae, Galio campanulati-Poion versicoloris oc-
curring mainly in the forest-steppe zone of Ukraine. e
alliances Potentillo arenariae-Linion czernjaevii and Cen-
taureo carbonatae-Koelerion talievii occupy a central po-
sition on the ordination diagram and this indicates that
these alliances may be ecologically and oristically similar.
Detailed analysis of variance veried that all alliances
have a minimum dierentiation across one or more factors.
is demonstrates the specicity of the ecospace (econ-
iche) of these types of vegetation (Figure 5). According to
environmental indices, the rst group of four alliances of
the north-humid zone are signicantly dierentiated from
the south-arid zone alliances. e amplitude of soil mois-
ture indicator (Hd) values varies from 7.8 to 9.8, whereby
soils are moistened with slight or moderate wetting by pre-
cipitation of the root-containing layer, which in terms of
the structure of carbonates, determines the moisture de-
cit. e highest humidity indices are for communities of
the western regions of the Carpathians and dier from the
latter, while the lowest values of this index, i.e., more xe-
rophytic conditions, are observed for the alliances Bromop-
sido tauricae-Asphodelinion tauricae and Potentillo arenari-
ae-Linion czernjajevii. With the exception of the rst and
second, the third and fourth, as well as the third and sixth,
all alliances are well dierentiated, since the p-values for
these communities are much less than the allowable value
(p-value≤0.05) e fth and seventh alliances are identical
for these environmental factors (p-value = 0.99).
e amplitude of variability of damping (fH) ranges
from 4.6 to 6.6 points for soil with irregular moisture,
when only the top layer is wet (Didukh 2012). e com-
munities of the rst, fth and sixth alliances have rela-
tively more stable humidication, while the largest uc-
tuations are characteristic of the fourth alliance.
e level of acidity (Rc) uctuates slightly (8.2–9.6
points, from neutrophilic to basophilic). Across acidity
vectors, except for the rst two alliances, there is no dif-
ferentiation among the alliances; for example, for the rst
and second (p-value = 0.78), fth and sixth (p-value =
0.51), and fth and seventh alliances (p-value = 0.10)
(Appendix 2). e indicators of salinity (Sl), on the other
hand, have a much wider amplitude (6.6–9.3 points),
ranging from soils enriched with bicarbonate salts to the
absence of signs of salinity. Extreme positions are occu-
pied by the Central European alliances and the alliances
of the Northern Black Sea Coast. Most alliances are well
dierentiated, although the sixth and eighth (p-value =
0.43) and the fth and seventh (p-value = 0.99), do not
show visible dierentiation. In terms of the carbonate
content, the amplitude uctuates from 8.0 to 10.4 points
(soils enriched with calcium ions), whereby the wettest
substrata of the second alliance have the least impact of
carbonates on ora (Table 1). Communities of the second
alliance are rich in species that are indierent to substrata.
e Crimean substrata (fth and sixth alliances), en-
riched with endemic obligatory calcephilous plants, have
the greatest impact on ora. e most similar are the rst
and third (p-value = 0.99), third and seventh (p-value =
0.88), fth and sixth (p-value = 0.96) and seventh and
eighth (p-value = 0.99) alliances. In terms of nitrogen
content (Nt) and aeration (Ae), there is no observed dif-
ferentiation among the determined alliances, with their
indices uctuating within the 0.6–0.7 range (well aerated
soils poor in mineral contents).
Dierentiation is more pronounced according to cli-
matic indicators. e thermoregime index values uc-
tuate between 8.8 and 10.3 (1842–2156 MJ*m2*year),
which corresponds to the zonal indicators of the south-
ern forest-steppe and steppe zones). e lowest values
are characteristic of the western dry grasslands of Poland,
while the highest values were detected for communities
of the southern lowlands of Crimea. e rst and eighth
(p-value=1.0), rst and third (p-value=0.69) and sixth
and seventh (p-value=0.45) alliances have the highest
degree of similarity. e amplitude breadth of the cryor-
egime indices has a range of 8.0–9.5 and is characterized
by a January mid- temperature of -2 – -6 °C. e coldest
conditions are characteristic of the petrophytic steppes of
the Central Russian Upland, where snow cover is blown by
steppe winds, and the warmest conditions are characteris-
tic of Crimean communities, for which the mean January
temperature isotherm delineates positive values. e most
similar are the rst and third (p-value=0.81), rst and sev-
enth (p-value=0.99) and third and fourth (p-value=1.0)
alliances. e breadth of amplitude of the continental-
ity index (Kn) is wider (7.8–10.2), the hemicontinental
10
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Figure 5: Pictures of calcareous petrophytic communities in Ukraine.
a) Bromo pannonici-Fectucion csikhegyensis, Marmarosh Clis, Ukraine,
photo by R.Gleb; b) Genisto tetragonae-Seselion peucedanifoliae,
Gologory-Krements Ridge, photo by Y.Didukh, c) Galio campanulati-
Poion versicoloris, Dniester Canyon, Ukraine, photo by Y.Vasheniak,
d) Bromopsido tauricae-Asphodelinion tauricae, Crimean Mountains,
Ukraine, photo by Y.Didukh, e) Androsaco tauricae-Caricion humilis,
Crimean Mountains, Ukraine, photo by Y.Didukh, f ) Potentillo
arenariae-Linion czernjaevii, Black Sea Lowland, Ukraine, photo by
Y.Vasheniak, g) Centaureo carbonatae-Koelerion talievii, Central Russian
Upland, photo by O.Chusova.
Slika 5: Slike petrotskih združb na apnencu v Ukrajini.
a) Bromo pannonici-Fectucion csikhegyensis, kli Marmarosh, Ukrajini,
foto R.Gleb; b) Genisto tetragonae-Seselion peucedanifoliae, greben
Gologory-Krements, foto Y.Didukh, c) Galio campanulati-Poion
versicoloris, kanjon Dniester, Ukrajina, foto Y.Vasheniak, d) Bromo psido
ab
cd
f
e
g
tauricae-Asphodelinion tauricae, Krimsko gorovje, Ukrajina, foto Y.Didukh, e) Androsaco tauricae-Caricion humilis, Krimsko gorovje, Ukrajina,
foto Y.Didukh, f) Potentillo arenariae-Linion czernjaevii, črnomorska nižina, Ukrajina, foto Y.Vasheniak, g) Centaureo carbo natae-Koelerion
talievii, Srednjerusko višavje, foto O.Chusova.
11
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
conditions according to the Ivanov continentality value
(1959) are 123–147% and correlate with the isochores of
Ukraine. Carpathian and Małopolska Upland communi-
ties have the lowest values of continentality and the pet-
rophytic steppes of the Black Sea Coast and Middle Rus-
sian Upland have the highest indices. e most similar
are the rst and second (p-value=0.98), third and fourth
(p-value=0.14) and seventh and eighth (p-value=0.57) al-
liances. e ombroregime amplitude, which depends on
the amount of evaporation of precipitation and reects
the hydrothermal regime, uctuates from 10.2 to 12.5
(13.1), whereby the amount of evaporating precipitation
is higher than the amount of precipitation (0 – 600 mm)
(Ivanov 1957). Accordingly, the lowest precipitation de-
cit is characteristic of the Carpathian alliances, on which
1500 mm falls annually, and the highest is the petro-
phytic steppes of the Black Sea Coast and Middle Russian
Upland, where 400 mm falls but, with the average annual
temperature and the porosity of their chalk substrates,
there is a sharp decit of precipitation. According to light
indices (Lc), all petrophytic steppes have high values of
heliophytes, the highest level being characteristic of the
petrophytic steppes of Crimea and the Black Sea Coast,
while the lowest is for Carpathian communities because
of the presence of shrubs (Cotinus coggygria, Cotoneaster
integerrimus agg., Spiraea media, Sorbus aria). Signicant
dierentiation among all alliances can be observed, except
the fth and seventh, and sixth and eighth alliances.
Discussion
Based on comparative analysis and ecological assessment,
we classied communities formed on carbonate dense
(not mobile) substrata, with low-capacity soils or the ab-
sence thereof, to the order Stipo pulcherrimae-Festucetalia
pallentis. e herb layer (hemicryptophyte and chamae-
phyte plants) varies considerably (from 20 to 80%). With
increasing soil depth in dry conditions, these plants are
replaced by communities of Festucetalia valesiacae (Festu-
cion valesiacae, Stipion lessingianae) and, in wetter con-
ditions, with a predominance of xeromesophytes and
mesoxerophytes – communities of Brachypodietalia pin-
nati. Communities with a higher share of therophytes,
and lichen communities in the absence of soil, belong
to the class Sedo-Scleranthetea (Alysso alyssoides-Sedion).
e communities of chamaephytes of the Central Rus-
sian Upland on mobile chalk substrata belong to ymo
cretacei-Hyssopetalia cretacei and, on the southern coast of
Crimea, to Drypidetea.
e specicity of communities of the order Stipo pul-
cherrimae-Festucetalia pallentis is due to soil deciency,
so the possibility of serial and uctuational changes is
very limited in Ukraine. Carbonates, which are sedimen-
tary rocks of extinct organisms, are a substrate of active
morphogeny and speciation, as evidenced by the high
endemism of the ora and variability of morphological
features, especially in xerophytic conditions. eir de-
velopment and dynamics are thus accompanied by phy-
logenetic processes that we interpret as synevolutionary
(Didukh 2019). Willner suggests (2020) considering the
alliance to be the result of synevolution of characteristic
species that have a high constancy in the communities.
e alliance Bromo pannonici-Festucion csikhegyensis has
been reported for Ukraine (Mucina et al. 2016; Dubyna
et al. 2019) and is represented by a single association,
Poetum versicoloris. It should be emphasized that Poetum
versicoloris was rst described from the Dniester Valley
within the alliance Galio campanulati-Poion versicoloris of
the order Stipo pulcherrimae-Festucetalia pallentis (Kuko-
vytsia et al. 1994), but was then transferred to the alliance
Artemisio marschalliani-Elytrigion intermediae of the or-
der Festucetalia valesiacae (Korotchenko 2004) and there
is a questionable presence of the alliance Bromo pannon-
ici-Festucion csikhegyensis in the Dniester Valley (Didukh
& Vasheniak 2018). It should be noted that diagnostic
species of Bromo pannonici-Festucion csikhegyensis (Doryc-
nium pentaphyllum, Fumana procumbens, Jovibarba globif-
era, Poa badensis) do not occur in the Volyn-Podillia Up-
land, but only in Central Europe and Pannonia (Janišo
& Dúbravková 2010, Hegedüšová et al. 2014, Chytrý et
al. 2017). e Pannonian Province, in terms of geobot-
anical zoning of Ukraine (Figure 1) reaches only to Tran-
scarpathia, so it is quite logical that relevés made on the
Marmarosh clis at altitudes from 427 m to 998 m, on
limestone slopes of dierent steepness (15–70°), grouped
into the cluster recognized by the Slovak expert system
(Janišová et al. 2007) as the alliance Bromo pannonici-
Festucion csikhegyensis (78% relevés). ese communities
have been recognized as the association Seslerietum heu-
erianae (Table 1) with a herb layer cover of 50–60%,
rich in hemicryptophyte (Carex humilis, Saxifraga panicu-
lata, Sesleria heuerana) and low growing phanerophyte
plants (Cotoneaster integerrimus agg., Sorbus aria, Spiraea
media). ey are currently at a stage of succession and
have been transferred to the alliance Diantho lumnitzeri-
Seslerion albicantis (Janišová & Dúbravková 2010), but
the syntaxonomical aliation of these communities must
be checked by supra-regional analysis, including the data
from Ukraine.
Additionally, we have added the data designated “Bro-
mo pannonici-Festucion csikhegyensis alliance” extracted
from the Polish database to check our hypothesis about
the presence of this alliance in the remaining parts of
12
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Ukraine, especially in the Volyn-Podillia Upland. As a re-
sult, these relevés were combined within the second clus-
ter and recognized by the Slovak expert system (Janišová
et al. 2007) as the alliance Diantho lumnizeri-Seslerion
albicantis (53% relevés). It should be noted that the pres-
ence of this alliance on the territory of Poland was con-
rmed by Kącki et al. (2013), although none of the rel-
evés from the Volyn-Podillia Upland were included in the
cluster with Polish relevés.
e alliance Genisto tetragonae-Seselion peucedanifoliae
(Pinzaru 1997) is similar in oristic composition and
ecological conditions to the alliance Galio campanulati-
Poion versicoloris, and further doubts are raised about its
syntaxonomic aliation: it was originally assigned to
Stipo pulcherrimae-Festucetalia pallentis (Pinzaru 1997),
and later to the order Helinthemo–ymetalia cretacei
(Rushchuk et al. 2005), which, in our opinion, is un-
justied, since many diagnostic cretophilous species for
this order (Artemisia hololeuca, A.salsoloides, Euphorbia
petrophila, Hyssopus cretaceous, Matthiola fragrans, y-
mus calcareus) are absent, although communities are
dominated by chasmophyte plants (ymus sp.), rather
than hemicryptophytes. We observed such communities
on Neogene outcrops of the Volyn-Podillia Upland and
Transnistria Upland, particularly on Sarmatian lime-
stones, sandstones, Tortonian gypsum, on slopes of dif-
ferent aspect (N, NW) and steepness (10–65°) and some
of them are similar to Brachypodietalia pinnati commu-
nities in oristic composition, since they often occupy
adjacent areas. e cover of such communities can reach
80%, often dominated by hemicryptophytes (Aster amel-
lus, Astragalus pseudoglaucus, Carex humilis, Helictotri-
chon desertorum, Inula ensifolia).
Didukh & Vasheniak (2018) consider communities of
the alliance Galio campanulati-Poion versicoloris to occur
on outcrops of Neogene limestones and sandstones, but
these communities occur mainly on well-eroded slopes,
where more ancient Paleozoic and Mesozoic rocks
(sandstones, marls, chalk, siltstones, shales, limestones)
crop out, and are formed on washed-o leptosols, of
various aspect and steepness (1–70°). e cover in such
communities can reach 60%, and Allium podolicum,
Carex humilis, Poa versicolor, Seseli hippomarathrum and
Stipa pulcherrima dominate. ey are mainly distributed
in the valley of the Dniester River and its tributaries,
and are mostly formed in canyon-like landscapes on the
middle and lower terraces of canyons, consisting of walls
and shelves.
Given that communities of the alliances Genisto tetrago-
nae-Seselion peucedanifoliae and Galio campanulati-Poion
versicoloris occur mainly in the Eastern European (Sar-
matian) forest-steppe and partly Pontic steppe provinces
(Figure 1), most species from Pannonia gradually disap-
pear from west to east and the proportion of Pontic and
endemic species increases (Zaverucha 1985). e results
of the Slovak expert system (Janišová et al. 2007) evalua-
tion showed that Bromo pannonici-Festucion csikhegyensis
communities compose only 26% of relevés. It has to be
added that, according to the theory of Willner (2020,
neoendemic species of the Volyn-Podillia and Transn-
istria Uplands (Krytsjka 2010), which are connected
to the Eastern European Pleistocene steppes (Astragalus
pseudoglaucus, Seseli rigidum subsp. peucedanifolium), can
be considered to be characteristic species of the alliance
Genisto tetragonae-Seselion peucedanifoliae. On the other
hand, neoendemic species with Eastern-European and
sub-Mediterranean genesis connections (Allium podoli-
cum, Poa versicolor), which frequently occur (Table 1) in
the Dniester Valley, can be considered to be characteristic
species of the alliance Galio campanulati-Poion versicolo-
ris. In view of these arguments, we provisionarily propose
considering these alliances to be eastern vicariants of the
alliance Bromo pannonici-Festucion csikhegyensis but the
nal syntaxonomical decision should be accepted on the
basis of supra-regional analysis.
e alliance Androsaco tauricae-Caricion humilis was
considered by Didukh (1981) to be within the order Fes-
tucetalia valesiacae, but it was later transferred to Bromop-
sidetalia cappadocicae Didukh in Saitov et Mirkin 1991,
which was not validly described (Korzhenevskii 1990,
Saitov & Mirkin 1991), and was later included in Stipo
pulcherrimae-Festucetalia pallentis (Didukh & Mucina
2014, Mucina et al. 2016). ese are communities of
petrophytic meadow steppes of table-like peaks of the
Crimean Mountains (called “Yaila”), which are distribut-
ed at an altitude of 900–1450 m a.s.l. with a moderately
cool climate (+ 5.7 °C), with an average temperature in
January of –3.9 °C and in July of +15.4 °C, and an aver-
age annual precipitation of 650–1050 mm (Ved 2000).
ey develop on outcrops of dense or crushed Upper
Jurassic limestones on gentler slopes (up to 300 m) and
on convex peaks with smooth or dierentiated microre-
liefs, whereby low-strength, sod-carbonate rendzina, or
washed-o soils accumulate. Herb layer coverage is from
30 to 80%, while its base is formed by tall (Bromopsis
taurica, Stipa erocaulis subsp. lithophila) or dense turf
(Carex humilis, Festuca rupicola) hemicryptophytes, or
low (5–30 cm) chamaephytes (dominated by Asperula su-
pina, Cytisus polytrichum, Genista albida, G.depressa, He-
lianthemum stevenii, Pimpinella tragium subsp. lithophila,
Sideritis taurica, ymus callierii, Teucrium chamaedrys,
T.jailae, .tauricus).
Although a number of obligate petrophytic species oc-
cur at all altitudes of the Crimean Mountains (Asphodeline
13
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
lutea, Bromopsis taurica, Fepulaca rupacales, F. callierii, He-
lianthemum stevenii, Pimpinella lithophila, Stipa erocaulis
subsp. lithophila, ymus callierii, Teucrium chamaedrys
and .tauricus), the communities of the lower belts are
signicantly dierent from the highlands and are rich in
sub-Mediterranean elements, so we assigned them to a
new alliance, Bromopsido tauricae-Asphodelinion tauricae.
e petrophytic steppes of the previously mentioned alli-
ance are formed on dense limestone outcrops of the low-
altitude belt of the Crimean Mountains and on the plain
(Kerch and Tarkhankut peninsulas) in continental climatic
conditions with an average temperature in July of 22–24°
and average precipitation of 300–550 mm (Ved 2000).
ey occur on dry, shallow, undeveloped and washed soils
that accumulate in microdepressions of the relief (Dragan
2004). Petrophytic chamaephyte plants dominate in these
communities (Artemisia lanuginosa (caucasica), Ephedra
distachya, Fumana procumbens, Helianthemum stevenii, Ju-
rinea stoechadifolia, Medicago rupestris, Pimpinella lithoph-
ila, Salvia scabijsifolia, Satureja taurica, ymus callierii,
Teucrium chamaedrys and .tauricus) with co-dominant
graminoides (Bromopsis taurica, Festuca callieri, Melica cili-
ata, Stipa lessinana ssp. braunerii). It should be noted that
we decided to distinguish the new alliance from the ex-
isting alliance Veronico multidae-Stipion ponticae because
the majority of the releves (73%) were identied as being
from the order Stipo pulcherrimae-Festucetalia pallentis.
According to Arts. 2b & 5 of the International Code of
Phytosociological Nomenclature (eurillat et al. 2020),
we propose the holotypus of the new alliance as the Bro-
mopsido tauricae-Asphodelinetum tauricae association type
that was formerly considered (Didukh & Mucina 2014)
within the alliance Veronico multidae-Stipion ponticae.
It should be mentioned that the characteristic species
of the alliance Bromopsido tauricae-Asphodelinion tauricae
are Asphodeline taurica, Medicago rupestris, Salvia scabi-
osifolia and Saturejataurica, which have sucient indices
of constancy (Table 1) and the characteristic species of
the alliance Androsaco tauricae-Caricion humilis are Draba
cuspidata, Stipa eriocaulis subsp. lithophila, Veronica tau-
rica, Cerastium biebersteinii and ymus tauricus, the evo-
lution of which has been related to the Pleistocene glacial
period (Didukh 1992). e species Carex humilis and An-
drosace villosa, as elements of the Pleistocene steppes, have
isolated exclaves in the Crimea Mountains and can also
be considered to be characteristic species of the alliance
Androsaco tauricae-Caricion humilis.
e alliance Potentillo arenariae-Linion czernjajevii
belonged to the order Festucetalia valesiacae, which was
adopted in the “Prodrome of the vegetation of Ukraine
(Dubina et al. 2019), while Mucina et al. (2016) includ-
ed it in the order Stipo pulcherrimae-Festucetalia pallentis.
ese communities are classic petrophytic steppes com-
munities, forming on peaks and slopes (1–40°) of low
clis of river valleys that are subject to erosion, and Pon-
tic limestone outcrops. Cover can reach 80–100%, and
Genista scythica, Jurinea stoechadifolia agg., Linum avum
agg., Pimpinella tragium subsp. lithophila, Stipa lessingi-
ana and ymus dimorphus dominate. In these communi-
ties there are many diagnostic species of the alliance Sti-
pion lessingianae of the order Festucetalia valesiacae (Salvia
nutans, Stipa lessingiana).
Communities of the alliance Centaureo carbonati-
Koelerion talievii develop on dense outcrops of chalk, con-
ned to gentle slopes (2–30°) of the riverbanks of the Cen-
tral Russian Upland, where shallow soil can accumulate.
e position of this alliance in the classication of steppe
vegetation is entirely debatable. In the initial description,
Romashchenko et al. (1996) included this alliance in the
class Helianthemo-ymetea, while Didukh & Korotchen-
ko (1997), Mucina et al. (2016) and Dubyna et al. (2019)
classied it in the order Festucetalia valesiacae due to a sig-
nicant share of steppe species in its oristic composition
and an insignicant participation or absence of typical
obligate calcephilous species, such as Artemisia hololeuca,
A.nutans, A.salsoloides, Diplotaxis cretacea, Hyssopus cre-
taceus, Linaria cretacea, Matthiola fragrans, Scrophularia
cretacea etc. Didukh et al. (2018) considered the alliance
Centaureo carbonatae-Koelerion talievii, together with al-
liances of typical tomillares, to be in the order ymo
cretacei-Hyssopetalia cretacei but suggested that it may be-
long to the order Stipo pulcherrimae-Festucetalia pallentis.
e dualism of this alliance is explained by its ecological
and oristic features. In contrast to typical communities
of the class Helianthemo-ymetea, petrophytic steppes
of the alliance Centaureo carbonatae-Koelerion talievii are
characterized by a rich species composition (20–40 spe-
cies) with a moderately dense cover, in which a signicant
proportion are steppe species (Festuca valesiaca, Medicago
falcata, Salvia nutans, Stipa capillata, Teucrium polium), as
well as facultative calcephilous plants of a wide-ranging
ecology (Androsace villosa, Bupleurum falcatum, Carex
humilis, C.pediformis, Hedysarum grandiorum, Odontar-
rhena tortuosa, Onosma simplicissima, Psephellus marschal-
lianus, Silene supina). Typical petrophytic chamaephyte
plants (Asperula tephrocarpa, Helianthemum canum, Pimp-
inella tragium subsp. lithophila, ymus calcareus), together
with steppe species, are dominant. e similarity of o-
ristic composition and ecological features, as well as the
structural likeness of this alliance to the alliance Potentillo
arenariae-Linion czernjajevii allows us to consider them to
be vicarious and syntaxonomically related.
In general, communities of the order Stipo pulcherri-
mae-Festucetalia pallentis are characterized by dierent
14
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
ecological conditions than surrounding communities,
and the main factor is their connement to outcrops of
calcareous rocks, which determine the chemical proper-
ties, high thermal regime and lack of soil moisture, which
causes these communities to adapt physiologically to dry-
ness. Analyzing the distribution of the characterized al-
liances in geographical terms, it can be concluded that,
within Ukraine (from west to east), their "neighborhood"
changes from the steppe communities of Cirsio-Brachy-
podion, Festucion valesiacae, Stipion lessingianae, Veronico
multidae-Stipion ponticae on developed soils, to Elyno-
Seslerietea, Sedo-Scleranthetea (Alysso-Sedetalia), Helian-
themo-ymetea, Drypidetea on petrophytic substrata. All
these surrounding communities aect the specic struc-
ture of the alliances of the order Stipo pulcherrimae-Festuc-
etalia pallentis, which determines their specicity.
Conclusions
Calcareous steppes of the order Stipo pulcherrimae-Festuc-
etalia pallentis in Ukraine are diverse. is phenomenon
is caused by the types of petrophytic substrata (chalk,
gypsum, limestone, and shale), their geographical loca-
tion, which determines the chemical properties, struc-
ture, capacity, humidity decit and nutrient deciency of
the soils. ese factors determine the specicity of plant
communities, which often have a loose structure, as well
as terrestrial and underground adaptations to such con-
ditions. e coenotic base consists of chamaephytes and
hemicryptophytes with a strong root system, but often-
times the co-dominants are grass. A characteristic feature
of the ora is high systematic dierentiation into small
races, which are expressed in increased endemism for
certain regions and indicates the distinctive nature of the
development of these communities.
Based on a critical analysis of the literature, processing
of phytosociological relevés, comparative assessment of
coenoses by oristic composition and indicators of the
main environmental factors, the syntaxonomic structure
and patterns of dierentiation at the level of alliances
were established. e order Stipo pulcherrimae-Festuceta-
lia pallentis in Ukraine is represented by seven alliances
(Diantho lumnizeri-Seslerion albicantis, Genisto tetrago-
nae-Seselion peucedanifoliae, Galio campanulati-Poion
versicoloris, Bromopsido tauricae-Asphodelinion tauricae,
Androsaco tauricae-Caricion humilis, Potentillo arenar-
iae-Linion czernjajevii, Centaureo carbonatae-Koelerion
talievii) for which the relevant characteristics are given.
Communities of calcareous petrophytic steppes of the
lower belts of the Crimean Mountains were therefore
allocated to a new alliance Bromopsido tauricae-Aspho-
delinion tauricae. e results indicate the uniqueness
and great scientic value of petrophytic steppes, which
requires further in-depth study of their structure and
taxonomic composition.
Acknowledgements
We are sincerely grateful to Grzegorz Swacha and Ilona
Knollova for the data from Central Europe (Poland,
Hungary, Slovak Republic) extracted from the EVA Data-
base (including data from the Polish database) and Pavel
Pinzaru for the data from Moldova. We are grateful to the
Editor-in-Chief Urban Šilc and two anonymous review-
ers for valuable comments and suggestions. We also thank
Martin Cregeen, Gabrielle Oke and Deborah Oke for
linguistic improvements of the manuscript. e research
was carried out within the projects “Functional, syntaxo-
nomical and phylogenetic diversity of Ukrainian steppes
as a basis for an evaluation of their ecosystem services”
and “Grass habitats of Ukraine of European importance:
current status, scale of losses and conservation strategy in
the context of global climate change and anthropogenic
transformation of the environment”.
Yakiv Didukh
hps://orcid.org/0000-0001-7619-0283
Iuliia Vasheniak
hps://orcid.org/0000-0003-1020-3007
Olga Chusova
hps://orcid.org/0000-0002-8081-9918
References
Aćić, S., Šilc, U., Petrović, M., Tomović, G. & Dajić Stevanović, Z.
2015: Classication, ecology and biodiversity of Central Balkan dry
grasslands. Tuexenia 35: 329–353. doi:10.14471/2015.35.007
Vassilev, K, Apostolova, I. 2013: Bulgarian steppic vegetation – an
overview. In: Baumach, H., Pfützenreuter, S. (eds) Steppenlebensräume
Europas – Gefährung, Erhaltungsmassnahmen und Schutz.: 191–200.
Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I.,
Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H., Aćić, S., Agrillo,
E., Ambarli, D., Angelini, P., Apostolova, I., Attorre, F., Berg, C.,
Bergmeier, E., Biurrun, I., Botta-Dukát, Z., Brisse, H., Campos, J.A.,
Carlón, L., Čarni, A., Casella, L., Csiky, J., Ćušterevska, R., Dajić
Stevanović, Z., Danihelka, J., deBie, E., deRuray, P., deSanctis, M.,
Dickoré, W.B., Dimopoulos, P., Dubyna, D., Dziuba, T., Ejrnaes,
R., Ermakov, N., Ewald, J., Fanelli, G., Fernández-González, F.,
Fitzpatrick, Ú., Font, X. & García 2016: European Vegetation Archive
(EVA): An integrated database of European vegetation plots. Applied
Vegetation Science 19 (1): 173–180. doi:10.1111/avsc.12191
Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. 2002: Determina-
tion of diagnostic species with statistical delity measures. Journal of
Vegetation Science. 13: 79–90. doi.org/10.1111/j.1654-1103.2002.
tb02025.x
Chytrý, M. (ed.) 2007: Vegetace České Republiky 1. Travinná a
keříčková vegetace. Academia, Praha, 526 pp. (in Czech).
15
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Dengler, J., Becker, T., Ruprecht, E., Szabó, A., Becker, U., Beldean,
M., Bita-Nicolae, C., Dolnik, C., Goia, I., Peyrat, J., Sutclie, L.M.E.,
Turtureanu, P.D. & Uğurlu, E. 2012: Festuco-Brometea communities
of the Transylvanian Plateau (Romania) – a preliminary overview on
syntaxonomy, ecology, and biodiversity. Tuexenia 32: 319–359.
Didukh, Y.P. 1981: TomilyaryHirskohoKrymu. Ukrainskyi
botanichnyi zhurnal 38 (4): 18–23 (in Ukrainian).
Didukh, Y.P. 1992: Rastitelnyi pokrov Gornogo Kryma. Naukova
dumka, Kyiv. 256 pp. (in Russian).
Didukh, Y.P. & Shelyag-Sosonko, Y.R. 2003: Geobotanichne
rayonuvannia Ukrainy ta sumizhnykh terytoriy. Ukrainskyi
botanichnyi zhurnal 60 (1): 6–17 (in Ukrainian).
Didukh, Y.P. 2011: e ecological scales for the species of Ukrainian o-
ra and their use in synphytoindication. Phytosociocentre, Kyiv, 176 pp.
Didukh, Y.P. 2012: Osnovybioindykatsii. Naukova dumka, Kyiv. 342
pp. (in Ukrainian).
Didukh, Y.P. & Mucina, L. 2014: Validation of names of some
syntaxa of the Crimean vegetation. Lazaroa 35: 181–190. doi:10.5209/
rev_LAZA.2014.v35.47069
Didukh, Y.P., Chusova, O. & Demina, O. 2018: Syntaxonomy of
chalk outcrop vegetation of the order ymo cretacei-Hyssopetalia
cretacei. Hacquetia 17(1): 85–109. doi:10.1515/hacq-2017-0013
Didukh, Y.P., Vasheniak, Y. A. 2018: Vegetation of limestone
outcrops in Western and Central Podilla (Ukraine). Tuexenia 38: 1–26.
doi:10.14471/2018.38.023
Didukh, Y.P. 2019: Epitni briotsenozy v biotopakh nemoralnykh
lisiv. Ukrainskyi botanichnyi zhurnal 60 (1): 132–143 (in Ukrainian).
doi:10.15407/ukrbotj76.02.132
Dragan, N.A. 2004: Pochvennye resursy Kryma. Dolya, Simferopol,
208 pp. (in Russian).
Dubyna, D.V., Dziuba, T.P., Iemelianova, S.M., Bagrikova, O.V.,
Borisova, O.V., Borsukevych, L.M., Vynokurov, D.S., Gapon, S.V.,
Davydov, D.A., Dvoretskyi, T.V., Didukh, Y.P., Zhmud, O.I.,
Kozyr, M.S., Konishchuk, V.V., Kuzemko, A.A., Pashkevych, N.A.,
Ry, L.E., Solomakha, V.A., Felbaba-Klushyna, L.M., Fitsailo, T.V.,
Chorna, G.A., Chorney, I.I., Shelyag-Sosonko, Y.R., Yakushenko,
D.M. 2019: Prodrome of the vegetation of Ukraine. Naukova dumka,
Kyiv, 747 pp. (in Ukrainian).
Dubyna, D.V., Ennan, A.A.-A., Dziuba, T.P., Vakarenko, L.P., Shy-
khaleyeva, G.M. 2019: New syntaxa of steppe vegetation of the Kuial-
nyk Estuary (Odesa Region, Ukraine). Ukrainskyi botanichnyi zhurnal
76 (3): 220–235 (in Ukrainian). doi:10.15407/ukrbotj76.03.220
Euro+Med 2006: Euro+Med PlantBase – the information resource for
Euro-Mediterranean plant diversity. Online: http://ww2.bgbm.org/
EuroPlusMed/22.10.2017 [11.05.2020].
Gulisashvili, V.Z., Makhatadze, L.B., Prylypko, L.I. 1975:
RastytelnostKavkaza. Nauka, Moscow, 233 pp. (in Russian).
Grime, J.P. 1977: Evidence for the Existence of ree Primary
Strategies in Plants and Its Relevance to Ecological and Evolutionary
eory. e American Naturalist 111 (982): 1169–1194.
Hegedüšová Vantarová, K. & Škodová, I. (eds.) 2014: Vegetácia
Slovenska. Rastlinné spoločenstvá Slovenska 5. Travinno-bylinná
vegetácia. Veda1 581 pp. (in Slovakian).
Herenchuk, K.I. 1979: Pryroda Ternopilskoi oblasti. Vyshcha shkola,
Lviv, 167 pp. (in Ukrainian).
Herenchuk, K.I. 1980: Pryroda Khmelnytskoi oblasti. Vyshcha shkola,
Lviv, 152 p.p. (in Ukrainian).
Herenchuk, K.I. 1981: Pryroda Zakarpatskoi oblasti. Vyshcha shkola,
Lviv, 156 pp. (in Ukrainian).
Hill, M.O. 1979: TWINSPAN – A FORTRAN program for
arranging multivariate data in an ordered two-way table by
classication of the individuals and attributes. Cornel University,
Ithaca, NY, 90 pp.
Janišová, M. (ed.) 2007: Travinnobylinná vegetácia Slovenska -
elektronický expertný systém na identikáciu syntaxónov. Botanický
ústav SAV, Bratislava, 263 pp. (in Slovakian).
Janišová, M. & Dúbravková, D. 2010: Formalized classication of
rocky Pannonian grasslands and dealpine Sesleria-dominated grasslands
in Slovakia using hierarchical expert system. Phytocoenologia 40 (4):
267–291. doi:10.1127/0340-269X/2010/0040-0444
Kącki, Z. & Śliwiński, M. 2012: e Polish Vegetation Database:
structure, resources and development. Acta Societatis Botanicorum
Poloniae 81 (2): 72–79. doi:10.5586/asbp.2012.014
Kącki, Z., Czarnecka, M., Swacha, G. 2013: Statistical determination
of diagnostic, constant and dominant species of the higher vegetation
units of Poland. Monogr. Bot., Vol.103, 267 pp.
Janišová, M., Bauer, N., Botta-Dukát, Z., Čarni, A., Chytrý, M.,
Coldea, G., Csiky, J., Dúbravková, D., Fenesi, A., Igic, R., Kącki, Z.,
Kish, R., Korzeniak, J., Krstivojevic, M., Krstonošić, D., Bita-nicolae,
C., Rédei, T., Ruprecht, E., Stančić, Zvjezdana, Škodová, I., Tichý,
L.& Willner, W. 2014: Rocky grassland vegetation (Stipo-Festucetalia)
of the Pannonian Basin and the Carpathian Mts – biogeographical
patterns revealed by semi-supervised classication. – Oral presentation
at the 23rd Workshop of European Vegetation Survey Ljubljana,
Slovenia.
Kamelin, R.V. 1979: Kukhistanskiy okrug gornoy Sredney Azii.
Nauka, Leningrad, 117 pp. (in Russian).
Khodosovtsev, O.Y. 2002: Likhenotsenotychnielementy u likhenoori
kamyanystykh vidslonenKrymskoho pivostrova. Y.D.Kleopov ta
problemy botanichnoi nauky. Fitosotsiotsentr, Kyiv: 299–314 (in
Ukrainian).
Klokov, M.V. 1973: Raznoobrazie v rode timyanovymusL. na
territorii Sovetskogo Soyuza. Naukova dumka, Kyiv, 192 pp. (in
Russian).
Klokov, M.V. 1974: Geogracheskaya rasa kak istoricheskoe yavlenie.
Pryrodnaya obstanovka i fauny proshlogo 8: 105–111 (in Russian).
Kondracki, J. 1965: Geograa zyczna Polski. Państwowe Wyd.
Naukowe, 463 pp. (in Polish).
Korotchenko, I.A. & Didukh, Y.P. 1997: e steppe vegetation of the
southern part of the LeftBank Forest-Steppe of the Ukraine. II. Class
Festuco-Brometea. Ukrainskyi totsenolohichnyi zbirnyk, Ser. A 1 (6):
20–39 (in Ukrainian).
Korotchenko, I.A. 2004: Stepova roslynnist’ pivdennoi chastyny
Natsional’nogo pryrodnogo parku “Podil’ski Tovtry”. Naukovyi visnyk
Chernivetskoho universytetu. Biolohiia (Biolohichni systemy) 223:
197–221 (in Ukrainian).
16
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Korzhenevskii, V.V. 1990: Sintaksonomicheskii sostav rastitel’nosti
yshebogo nizkogor’ya yugo-istochnogo kryma. Sborn. Nauch. Trud.
yalta 110: 80–90 (in Russian).
Krasova, O & Smetana, M. 1999: Stepova roslynnist balky kobylnoi.
Ukrainskyi totsenolohichnyi zbirnyk, Ser. A 1-2 (12-13): 21-30 (in
Ukrainian).
Krytsjka, L.I. 2010: Osnovni rysy rozvytku ory stepiv ta
vapnyakovykh vidslonenPravoberezhnoho Zlakovoho Stepu
(Pivnichno-Zakhidne Prychornomor'ya). Proceedings of the Natural
Museum of Natural History 8: 89–98 (in Ukrainian).
Kukovytsia, H.S., Movchan, Y.I., Solomakha, V.A. & Shelyag-
Sosonko, Y.R. 1994: Syntaksonomiya luchnykh stepiv Zakhidnogo
Podillya. Ukrainskyi botanichnyi zhurnal 51 (2-3): 35–48 (in
Ukrainian).
Kuzemko A.A. 2012: Ukrainian Grasslands Database. Biodivers. &
Ecol. 4: 430–430. doi:10.7809/B-E.00217
Lavrenko, E.M. 1940: Stepi SSSR. Rastitelnost SSSR. V.2.: 1–265 (in
Russian).
Lavrenko, E.M. 1973: O razvitii nekotorykh tsenoticheskikh tipov
ory Drevnego Sredizemya v svyazi s alpiyskim orogenezom. Trudy
Tashkentskoho unyversyteta 187: 17–27 (in Russian).
Lavrenko, E.M. 1980: Petrotnaia rastitelnostv lesostepi i stepi (vne
gornykh system). RastitelnostEvropeiskoi chasti SSSR: 281–284 (in
Russian).
Lavrenko, E.M., Karamysheva, E.M., Nikulina, R.I. 1991: Stepi
Evrazii. Leningrad, Nauka. 146 pp. (in Russian).
Litvinov, D.I. 1891: Geobotanicheskie zametki o ore Evropeyskoy
Rossii. ByulletenMoskovskogo obshchestva ispytateley prirody 4 (3):
322–434 (in Russian).
Mucina, L., Bültmann, H., Dierßen, K., eurillat, J.-P., Dengler, J.,
Čarni, A., Šumberová, K., Raus, T., di Pietro, R., Gavílan García, R.,
Chytrý, M., Yakushenko, D., Schaminée, J.H.J., Bergmeier, E., Santos
Guerra, A., Daniëls, F.J.A., Ermakov, N., Valachovic, M., Pignatti, S.,
Rodwell, J.S., Pallas, J., Capelo, J., Weber, H.E., Lysenko, T., Didukh,
Y.P., Capelo, J., Weber, H., Solomesh, A., Dimopolous, P., Aguiar,
C., Freitag, H., Hennekens, S.M. & Tichý, L. 2016: Vegetation of
Europe: hierarchical oristic classication system of vascular plant,
bryophyte, lichen and algal communities. Applied Vegetation Science
19 (Supplement 1): 3–264. doi:10.1111/avsc.12257
Mosyakin, S.L. & Fedoronchuk, M.M. 1999: Vascular Plants of
Ukraine. A nomenclature Checklist. Kiev, 345 pp.
Onyshchenko, V.A. 2001: Roslynnist’ karbonatnykhvidslonen
pryrodnogozapovidnyka “Medobory”. Ukrainskyi totsenolohichnyi
zbirnyk Ser. A, 1 (17): 86–104 (in Ukrainian).
Pinzaru, P. 1997: Genisto-Seselion peucedanifolii – alianta noua in
vegetatia calcarelor Sarmatianului Mediu din Republica Moldova. Dep.
Chisinaua 1469-M.: 29 p. (in Romanian).
Pinzaru, P. 2006: Tipurile asociaţiilor noi din vegetaţia de stîncării
din interuviu NistruPrut // Aspecte ştiinţico-practice a dezvoltării
durabile a sectorului forestier din Republica: 242–250 (in Romanian).
Pop, I. 1968: Conspectul associstiilor ierboase de pe masivele
calcaroase din cuprinsul Carpatilor Romaneşti. Contribuţii Botanice
12: 267–273 (in Romanian).
R Core Team 2013: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Online: http: // www.R-project.org/
Romaschenko, K., Didukh, Y., Solomakha, V. 1996: Syntaksonomia
klasu Helianthemo-ymetea cl. nov. roslynnosti kreidyanykh vidslonen
pivdenno-shidnoi Ukrainy. Ukrainskyi totsenolohichnyi zbirnyk, Ser.
A, 1. – 49–62 (in Ukrainian).
Rushchuk, A.D., Pinzaru, P.Y., Rushchuk, V.D., Khlebnikov, V.F.
2005: Soyuz Genisto tetragonae-Seselion peucedanifoliae Pinzaru 1997
na territorii levoberezhya Dnestra v Moldove. Geoekologicheskie i
bioekologicheskie problemyi severnogo Prichernomorya: 63–66 (in
Romanian).
StatSoft Inc. 2010: Electronic statistic textbook. Statsoft, Tusla.
Online: http://www.statsoft.com/text-book/stathme.html
Takhtandzhyan, A.L. 1937: Kserotnaia rastitelnostskeletnykh gor
Armenii. Trudy Armianskogo liala AN SSSR. Ser. Biol. 2: 24–38 (in
Russian).
Takhtandzhyan, A.L. 1940: Botaniko-geogracheskiy ocherk Armenii.
Trudy Botanicheskogo instituta Armianskogo liala AN SSSR
2: 1–180.
Tichý, L & Chytrý, M. 2006: Statistical determination of diagnostic
species for site groups of unequal size. Journal of Vegetation Science
17: 809–818. doi:10.1111/j.1654-1103.2006.tb02504.x
Ved, I.P. 2000: Klimaticheskiy atlas Kryma. Tavria plus, Simferopol,
119 pp. (in Russian).
eurillat, J.-P., Willner, W., Fernándes-González, F., Bültman, H.,
Čarni, A., Gigante, D., Mucina, L., Weber, H. 2020. International
Code of Phytosociological Nomenclature. 4th edition. Applied
Vegetation Science. doi.org/10.1111/avsc.12491
Willner, W., Kuzemko, A.A., Dengler, J., Chytrý, M., Bauer, N.,
Becker, T., Biţă-Nicolae, C., Botta-Dukat, Z., Čarni, A., Csiky, J.,
Igić, R., Kącki, Z., Korotchenko. I., Kropf, M., Krzystojević Ćuk,
M., Krstonošić, D., Rédei, T., Ruprecht, E., Schratt-Ehrendorfer, L.,
Semenishchenkov, Iu., Stančic, Z., Vasheniak, Iu., Vynokurov, D.
& Janišová, M. 2017: A higher-level classication of the Pannonian
and Western Pontic steppe grasslands (Central and Eastern Europe).
Applied Vegetation Science 20 (1): 143–158. doi:10.1111/avsc.12265
Willner, W. 2020: What is an alliance? Vegetation Classication and
Survey 1: 139–144. doi.org/10.3897/VCS/2020/56372
Yaroshenko, P.D. 1956: Smeny rastitelnogo pokrova Zakavkazya v
ikh svyazi s pochvenno-klimaticheskimi izmeneniyami i deyatelnostyu
cheloveka. Izdatelstvo AN URSR, Moscow, Leningrad, 242 pp. (in
Russian).
Zaverukha, B.V. 1985: Flora Volyno-Podolii i ee genesis. Naukova
dumka, Kyiv, 190 pp. (in Russian).
Zólyomi, B. 1966: Neue Klassi kation der Felsen-vegetation im
Pannonischen Raum und der angrenzenden Gebiete. Bot. Közlem.
53/1: 49 – 54.
17
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Table 2: Synoptic table of petrophytic calcareous communities of Ukraine and adjacent territories, showing the constancy of
species, expressed by their percentage frequency in the respective eight-level clusters. Shaded species are ranked by decreasing
constancy: dark shading ≥50%, light shading ≥25%. Phi coecient values are not shown but species with a phi-value greater than
0.25 are accepted as dierential for the alliances. Species of each syntaxon with a 15% constancy and less, as well as other taxa with
a 15% constancy and less, are not shown in the table.
Tabela 2: Sinoptična tabela pertotskih združb na apnencu v Ukrajini in sosednjih območjih. Prikazana je stalnost vrst kot odstotna
frekvenca v posameznem klastru. Zasenčene vrste so razporejene po padajoči stanlosti: temno zasenčeno ≥ 50 %, svetlo zasenčeno
≥ 25 %. Vrednosti phi koecienta niso prikazane, a so vrste s phi vrednostjo, večjo od 0,25, opredeljene kot razlikovalnice zvez.
Značilne vrste za posamezen sintakson s stalnostjo 15 % ali manj in vse ostale vrste s stalnostjo 15 % ali manj, v tabeli niso prikazane.
No. of relevés 14 47 45 173 26 36 124 23
Cluster No. 1 2 3 4 5 6 7 8
TWINSPAN Group A B C D E
All. Bromo pannonici-Fectucion csikhegyensis
Sesleria heuerana 100 . 4 10 . . . .
Seseli osseum 64 . .. . .. .
Asplenium trichomanes 57 15 . 3 . . . .
Galium mollugo 57 13 16 16 . . 3 .
Saxifraga paniculata 50 19 .. . . . .
Sorbus aria 43 . . . . . . .
Pulsatilla vulgaris subsp. grandis 43 . 4 . . . . .
Aconitum anthora 36 . . . . . . .
alictrum foetidum 29 . . . . . . .
All. Diantho lumnitzeri-Seslerion albicantis
Allium lusitanicum . 68 18 21 . . . .
Poa compressa . 64 2 15 . . 3 13
Campanula rotundifolia . 51 . 2 . . . .
Galium album . 51 2 . 12 42 2 .
ymus pulegioides . 49 . . . . . .
Pilosella ocinarum . 49 18 5 . . . 9
Sanguisorba minor agg. . 49 7 3 19 14 44 .
Juniperus communis 7 40 . . . . . .
Seseli libanotis 14 45 . 10 . . . .
Achillea millefolium agg. . 45 7 17 4 6 5 30
Centaurea stoebe agg. . 38 20 42 . . 2 13
Arabis hirsuta . 36 . 6 . . . .
Silene nutans agg. . 36 11 2 . . 1 .
Hypericum perforatum 7 34 7 5 8 6 1 9
Galium cracoviense . 34 . . . . . .
Linum catharticum . 34 11 1 . . . .
Pimpinella saxifraga . 34 31 3 . . 2 .
Artemisia campestris agg. . 34 20 31 . . 2 4
Erysimum odoratum . 32 4 5 . . . .
Sedum sexangulare . 30 . 5 . . . .
Potentilla pusilla . 28 . . . . . .
Medicago lupulina . 28 . 6 . . . .
Fragaria vesca . 26 . . . . . .
Helianthemum nummularium agg. 7 26 18 1 12 19 4 .
Common dierential species in group A
Asplenium ruta-muraria 79 77 . 23 . . . .
Euphorbia cyparissias 50 89 24 60 . . . 4
Festuca pallens 71 83 11 10 . . . .
Jovibarba globifera agg. 71 91 . . . . . .
18
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
No. of relevés 14 47 45 173 26 36 124 23
All. Genisto tetragonae-Seselion peucedanifoliae
Anthericum ramosum 21 9 89 24 . . 5 13
Inula ensifolia 21 6 76 19 23 25 8 .
alictrum minus . . 49 8 19 17 10 57
Aster amellus . . 42 15 . 6 5 4
Adonis vernalis . . 33 5 4 3 9 22
Anemone sylvestris . . 29 . . . . 4
Echium vulgare . 9 29 17 . . 1 .
Hieracium virosum . . 29 9 . 3 6 22
Campanula glomerata . . 27 . . . 2 .
Astragalus pseudoglaucus . . 27 . . . 3 .
Lembotropis nigricans . . 27 6 . . . .
Pulsatilla pratensis . . 27 2 . . 2 4
Taraxacum serotinum . . 27 . . . 9 4
All. Galio campanulati-Poion versicoloris
Sedum acre . 43 4 60 15 . 2 .
Clinopodium acinos . 57 11 47 8 11 2 4
Arenaria serpyllifolia agg. . 32 4 46 15 17 15 .
Botriochloa ischaemum . . 22 32 12 . 16 4
Poa versicolor . . 4 29 . . . .
Alyssum alyssoides . 2 . 25 . . 3 .
Elytrigia intermedia agg. . . 16 25 . . 1 13
Common dierential species in group B
Asperula cynanchica . 19 53 58 . . 25 .
Potentilla incana 14 34 78 60 . . 36 9
Salvia verticillata . 30 40 28 . . 1 4
ymus pannonicus agg. 7 4 40 54 . . 8 .
All. Bromopsido tauricae-Asphodelinion tauricae
Fumana procumbens . . . . 58 3 . .
Iris pumila . . . 1 58 . 10 13
Leontodon biscutellifolius . . 11 1 54 11 10 .
Jurinea roegneri . . . . 50 6 . .
Onobrychis arenaria agg. . . 11 1 50 . 3 30
Veronica multida . . . . 46 . . .
Agropyron ponticum . . . . 46 . . .
Carex caryophyllea . 9 . . 42 8 1 .
Odontarrhena muralis . . 9 . 42 17 2 .
Onosma rigida . . . . 42 . . .
Eryngium campestre . . 27 11 38 . 23 9
Asphodeline taurica . . . . 38 . . .
Asperula tenella . . . . 35 8 2 .
Poa sterilis . . . . 31 6 6 .
Satureja taurica . . . . 31 . . .
Phlomis herba-venti agg. . . 2 . 31 22 3 .
Stipa pontica . . . . 27 . . .
Medicago rupestris . . . . 27 . . .
Galium glaucum . . 4 18 27 11 1 .
Melica transsilvanica 7 11 4 15 27 14 5 .
All. Androsaco tauricae-Caricion humilis
Anthyllis vulneraria agg. . 49 9 5 23 72 . .
Potentilla recta agg. . . 4 3 8 69 19 .
19
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
No. of relevés 14 47 45 173 26 36 124 23
ymus tauricus . . . . 19 67 . .
Filipendula vulgaris . . 29 . 8 64 1 26
Androsace villosa agg. . . . . . 58 . 43
Stipa eriocaulis subsp. lithophila . . . . 4 56 . .
Koeleria brevis agg. . . . . 15 50 19 .
Veronica taurica . . . . . 44 . .
Alyssum montanum . . 2 5 8 42 2 .
Cerastium biebersteinii . . . . . 39 . .
Tephroseris integrifolia subsp. jailicola . . . . . 36 . .
Pulsatilla halleri subsp. taurica . . . . 4 36 . .
Onobrychis jailae . . . . 4 36 . .
Iberis saxatilis . . . . 8 36 . .
Convolvulus calvertii subsp. calvertii . . . . 23 31 . .
Elytrigia strigosa . . . . . 28 . .
Alopecurus vaginatus . . . . . 28 . .
Euphorbia agraria . . 11 . 4 28 4 .
Cytisus hirsutus agg. . . . . . 25 . .
Common dierential species in group C
Asperula supina . . . . 38 64 . .
Cruciata taurica . . . . 31 39 . .
Bromopsis taurica . . . . 88 97 . .
Euphorbia petrophila agg. . . . . 65 25 3 .
Genista scythica . . . . 27 81 23 4
Helianthemum stevenii . . . . 73 83 . .
Minuartia setacea agg. . . 9 21 27 28 23 .
Paronychia cephalotes . . . . 46 75 8 .
Potentilla astracanica agg. . . . . 69 39 27 .
ymus dimorphus . . . 2 54 50 46 .
Scorzonera crispa . . . . 35 56 . .
Sideritis taurica . . . . 38 56 . .
All. Potentillo arenariae-Linion czernjajevii
Odontarrhena tortuosa . . . . 12 . 49 .
Stipa lessingiana . . 2 . 12 . 42 .
Poa bulbosa . . . 17 12 . 40 .
Jurinea stoechadifolia agg. . . 16 . 31 . 37 .
Astragalus pallescens . . . . . . 31 9
Linum austriacum agg. . . . . 23 . 31 4
Linum avum agg. . 2 13 10 27 . 31 65
Cephalaria uralensis . . . 9 . . 31 4
All. Centaureo carbonatae-Koelerion talievii
Gypsophila oligosperma . . . . . . . 83
Salvia nutans . . 18 1 4 . 52 83
Polygala sibirica . . 20 1 . . 3 74
Astragalus austriacus . . 27 1 . . 2 70
Euphorbia seguieriana . . 11 7 4 3 31 65
Bromopsis riparia . . . 1 . . 44 57
Viola ambigua . . 9 7 . 17 28 48
esium arvense . . 7 1 35 3 19 48
Nonea pulla agg. . . 4 2 . . 2 43
Koeleria macrantha . . 7 27 15 17 20 43
Potentilla humifusa . . . . . 6 . 43
20
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
No. of relevés 14 47 45 173 26 36 124 23
Linum hirsutum agg. . . . 1 12 . 3 43
Veronica spicata agg. . 17 24 27 . 11 13 39
Euphorbia nicaeensis agg. . . 24 3 8 . 37 35
ymus calcareus . . . . . . 4 35
Reseda lutea . . 16 7 4 . 20 30
Silene supina 7 . . . . . 5 30
Galatella villosa . . 4 . 8 . 20 30
Elytrigia repens . . 7 5 . 3 3 26
Stipa pulcherrima . . 7 8 12 . 14 26
Asperula tephrocarpa . . . . . 28 . 39
Genista tinctoria agg. 7 . . . 4 3 . 35
Helichrysum arenarium . 4 11 9 . . 3 30
Onosma simplicissima . . . . . . . 39
Psephellus marschallianus agg. . . 9 3 . . 27 26
Festuco-Brometea class
Bupleurum falcatum . 15 58 16 . 28 1 26
Campanula sibirica 7 . 51 21 15 36 16 57
Carex humilis 29 . 53 25 . 97 3 70
Festuca valesiaca agg. . 2 31 66 73 69 51 74
Jurinea mollis agg. . . 31 8 . . 31 30
Linum tenuifolium . . 38 . 46 25 27 4
Medicago falcata agg. . 23 47 36 31 19 21 52
Pimpinella tragium agg. . . . . 42 44 22 52
Scabiosa ochroleuca . 64 56 35 . . 2 9
Securigera varia . 32 29 17 4 3 5 57
Stachys recta 21 21 38 32 23 . 20 57
Stipa capillata . . 42 23 31 . 34 61
Teucrium polium . . 13 2 81 3 65 91
Teucrium chamaedrys 71 . 80 38 62 58 31 .
Teucrium montanum agg. . 26 44 37 . 83 4 .
Vincetoxicum hirundinaria 64 66 27 6 4 8 10 74
Other species with low frequency
Cystopteris fragilis 21 4 . 1 . . . .
Digitalis grandiora 21 13 . 1 . . . .
Geranium robertianum 14 21 . 1 . . . .
Viola rupestris . 21 . . . . . .
Hieracium murorum . 21 . . . . . .
Viola hirta . 21 18 2 . . 2 .
Erysimum witmannii . 19 . . . . . .
Viola tricolor agg. . 19 . 1 . . . .
Campanula rapunculoides . 19 . 2 . . . .
Teucrium botrys . 17 . . . . . .
Chrysanthemum zawadskii . 17 . . . . . .
Aster alpinus . 17 . . . . . .
Cerastium arvense . 17 . 2 . . . .
Ajuga genevensis . 19 4 . . . . .
Dianthus carthusianorum agg. 7 17 . 1 . . . .
Phleum phleoides . 19 2 . 8 3 . .
Arabidopsis arenosa 7 17 . 14 . . . .
Pilosella echioides . . 24 9 8 . 2 4
Seseli rigidum agg. . . 22 1 . . 8 .
21
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
No. of relevés 14 47 45 173 26 36 124 23
Linaria genistifolia . . 22 22 4 . 7 4
Plantago media . 9 22 5 . . 5 22
Cytisus ruthenicus . . 20 1 12 . 3 4
Cytisus austriacus . . 18 2 . . 3 .
Asyneuma canescens . . 18 3 . . 2 .
Echinops ritro subsp. ruthenicus . . 18 . . . 3 .
Fragaria viridis 7 2 18 3 . . . .
Salvia pratensis . 4 18 8 . . 1 .
Salvia pratensis . 4 18 8 . . 1 .
Melampyrum arvense agg. . . 18 12 4 3 . 4
Helictotrichon desertorum 16
Peucedanum cervaria . . 16 1 . . . .
Centaurea orientalis . . 16 2 12 . 3 9
Cleistogenes serotina agg. . . 9 24 19 . 22 .
Lappula squarrosa . . . 24 4 . 1 .
Seseli hippomarathrum . . . 22 . . . .
Silene eugeniae . . . 21 . . . .
Allium podolicum . . . 21 . . . .
Aurinia saxatilis . 9 . 21 . . . .
Melilotus ocinalis . . 4 17 . . . .
Agropyron cristatum agg. . . . 16 23 11 15 .
Salvia scabiosifolia . . . . 23 . . .
Scabiosa columbaria . . . 1 23 6 . .
Cephalaria coriacea . . . . 23 8 2 .
Erysimum cuspidatum . . . . 23 19 . .
Paeonia tenuifolia . . . . 19 . . .
Inula oculus-christi . . . . 19 . 2 .
Ajuga chamaepytis agg. . . . 5 19 . 9 17
Sideritis montana agg. . . 4 14 19 . 10 .
Hypericum tauricum . . . . . 22 . .
Galium verum . . 7 9 8 22 7 .
Ranunculus breyninus agg. . . 9 . . 17 . .
Haplophyllum suaveolens . . . . 8 . 20 .
Onosma visianii . . 2 . . . 20 .
Astragalus vesicarius . . . . . . 20 17
Tanacetum millefolium . . . . . . 16 .
Dianthus pseudoarmeria . . . . 8 . 18 .
Ephedra distachya . . . 2 8 . 12 .
Convolvulus lineatus . . . . 8 . 15 .
Oxytropis pilosa . . . 1 4 . 3 22
Carex pediformis . . . . . . . 22
Hypericum elegans . . 4 5 . . 7 17
Shrubs
Cornus mas (juv.) 21 . 7 . . . . .
Cotinus coggygria 43 . 16 . 4 . 4 .
Cotoneaster integerrimus agg. 36 11 . 6 . 11 . .
Spiraea media 71 . . . . . . .
22
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Appendix 1: e list of aggregate species. Original names of the species are provided according to the Mosyakin &
Fedoronchuk (1999)
Achillea millefolium agg.: Achillea collina, Achillea millefolium, Achillea pannonica, Achillea setacea, Achillea submillefolium.
Agropyron cristatum agg.: Agropyron cristatum, Agropyron pectinatum.
Ajuga chamaepytis agg.: Ajuga chamaepitys, Ajuga chia.
Allium angulosum agg.: Allium angulosum, Allium avescens.
Allium paniculatum agg.: Allium paniculatum, Allium rupestre.
Androsace villosa agg.: Androsace koso-poljanskii, Androsace taurica.
Odontarrhena tortuosa agg.: Alyssum gymnopodum, Alyssum tortuosum.
Anthyllis vulneraria agg.: Anthyllis biebersteiniana, Anthyllis macrocephala, Anthyllis taurica.
Arenaria serpyllifolia agg.: Arenaria leptoclados, Arenaria serpyllifolia.
Artemisia campestris agg.: Artemisia campestris, Artemisia marschalliana.
Asparagus ocinalis agg.: Asparagus ocinalis, Asparagus polyphyllus.
Centaurea stoebe agg.: Centaurea biebersteinii, Centaurea pseudomaculosa, Centaurea stoebe.
Psephellus marschallianus agg.: Centaurea carbonata, Centaurea marschalliana.
Cytisus hirsutus agg.: Chamaecytisus polytrichus, Chamaecytisus supinus.
Cleistogenes serotina agg.: Cleistogenes bulgarica, Cleistogenes serotina.
Cotoneaster integerrimus agg.: Cotoneaster integerrimus, Cotoneaster melanocarpus.
Dianthus carthusianorum agg.: Dianthus carpaticus, Dianthus carthusianorum.
Crataegus monogyna agg.: Crataegus leiomonogyna, Crataegus monogyna, Crataegus praearmata.
Elytrigia intermedia agg.: Elytrigia intermedia, Elytrigia trichophora.
Brassica elongata agg.: Erucastrum armoracioides, Erucastrum cretaceum.
Euphorbia petrophila agg.: Euphorbia cretophila, Euphorbia petrophila.
Euphorbia nicaeensis agg.: Euphorbia glareosa, Euphorbia stepposa.
Euphrasia stricta agg.: Euphrasia stricta, Euphrasia pectinata.
Festuca valesiaca agg.: Festuca pseudodalmatica, Festuca pseudovina, Festuca rupicola, Festuca saxatilis, Festuca valesiaca.
Genista tinctoria agg.: Genista depressa, Genista tinctoria.
Helianthemum nummularium agg.: Helianthemum chamaecystus, Helianthemum nummularium subsp. obscurum,
Helianthemum nummularium.
Iris aphylla agg.: Iris aphylla, Iris hungarica.
Jovibarba globifera agg.: Jovibarba globifera, Jovibarba hirta subsp. glabrescens, Jovibarba sobolifera.
Jurinea mollis agg.: Jurinea arachnoidea, Jurinea calcarea, Jurinea mollissima.
Jurinea stoechadifolia agg.: Jurinea brachycephala, Jurinea stoechadifolia.
Koeleria brevis agg.: Koeleria brevis, Koeleria lobata.
Linum austriacum agg.: Linum austriacum, Linum marschallianum.
Linum avum agg.: Linum basarabicum, Linum czerniaevii, Linum avum.
Linum hirsutum agg.: Linum hirsutum, Linum lanuginosum.
Marrubium peregrinum agg.: Marrubium peregrinum, Marrubium praecox.
Medicago falcata agg.: Medicago glutinosa, Medicago romanica, Medicago sativa subsp. falcata.
Melampyrum arvense agg.: Melampyrum argyrocomum, Melampyrum arvense.
Minuartia setacea agg.: Minuartia aucta, Minuartia euxina, Minuartia leiosperma, Minuartia thyraica.
Nonea pulla agg.: Nonea pulla, Nonea rossica.
Onobrychis arenaria agg.: Onobrychis arenaria, Onobrychis miniata.
Ononis spinosa agg.: Ononis arvensis, Ononis spinosa.
Peucedanum alsaticum agg.: Peucedanum alsaticum, Peucedanum lubimenkoanum.
Peucedanum ruthenicum agg.: Peucedanum ruthenicum, Peucedanum tauricum.
Phlomis herba-venti agg.: Phlomis pungens, Phlomis taurica.
Pimpinella tragium agg.: Pimpinella lithophila, Pimpinella titanophila.
Polygala comosa agg.: Polygala comosa, Polygala podolica.
Potentilla astracanica agg.: Potentilla astracanica, Potentilla callieri.
Potentilla recta agg.: Potentilla obscura, Potentilla pilosa, Potentilla recta.
23
Yakiv Didukh, Iuliia Vasheniak & Olga Chusova
Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic
steppes in Ukraine
Sanguisorba minor agg.: Poterium polygamum, Poterium sanguisorba.
Prunus spinosa agg.: Prunus spinosa, Prunus stepposa.
Pyrus communis agg.: Pyrus communis, Pyrus pyraster.
Ranunculus breyninus agg.: Ranunculus oreophilus, Ranunculus zapalowiczii.
Salvia nemorosa agg.: Salvia nemorosa, Salvia tesquicola.
Draba podolica agg.: Schivereckia mutabilis, Schivereckia podolica.
Scorzonera hispanica agg.: Scorzonera hispanica, Scorzonera stricta.
Tephroseris integrifolia agg.: Senecio integrifolius, Senecio jailicola.
Seseli rigidum agg.: Seseli peucedanifolium, Seseli tortuosum.
Sideritis montana agg.: Sideritis montana, Sideritis comosa.
Silene nutans agg.: Silene dubia, Silene italica subsp. nemoralis, Silene nutans.
Teucrium montanum agg.: Teucrium jailae, Teucrium montanum, Teucrium pannonicum.
ymus dimorphus agg.: ymus dimorphus, ymus roegneri.
ymus pannonicus agg.: ymus marschallianus, ymus pannonicus.
Valeriana stolonifera agg.: Valeriana ocinalis, Valeriana stolonifera.
Valerianella dentata agg.: Valerianella dentata, Valerianella mixta.
Veronica austriaca agg.: Veronica austriaca, Veronica jacquinii, Veronica teucrium.
Veronica verna agg.: Veronica dillenii, Veronica verna.
Veronica spicata agg.: Veronica incana, Veronica spicata.
Viola tricolor agg.: Viola matutina, Viola tricolor
Appendix 2: e Tukey’s HSD post hoc results
Syntaxa ID Hd fH Rc Sl Ca Nt Ae Tm Om Kn Cr Lc
1–2 0.861 0.1*10-4 0.777 0.6*10-2 0.1*10-4 0.017 0.999 0.1*10-4 0.8*10-4 0.989 0.026 0.2*10-3
1–3 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.999 1.000 0.935 0.693 0.1*10-4 0.1*10-4 0.807 0.1*10-4
1–4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.6*10-4 0.988 0.061 1.000 0.1*10-3 0.1*10-4 0.553 0.1*10-4
1–5 0.1*10-4 0.971 0.1*10-4 0.1*10-4 0.8*10-3 0.332 0.1*10-3 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4
1–6 0.1*10-4 0.862 0.1*10-4 0.1*10-4 0.1*10-4 0.658 0.039 0.1*10-4 0.1*10-4 0.7*10-2 0.8*10-3 0.1*10-4
1–7 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 1.000 0.585 0.415 0.1*10-4 0.1*10-4 0.1*10-4 0.999 0.1*10-4
1–8 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.999 0.999 0.998 1.000 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4
2–3 0.1*10-4 0.999 0.1*10-4 0.1*10-4 0.1*10-4 0.5*10-4 0.194 0.1*10-4 0.1*10-4 0.1*10-4 0.394 0.021
2–4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.2*10-3 0.1*10-2 0.1*10-4 0.1*10-4 0.1*10-4 0.178 0.1*10-4
2–5 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.990 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4
2–6 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.569 0.7*10-2 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4
2–7 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.128 0.170 0.1*10-4 0.1*10-4 0.1*10-4 0.4*10-4 0.1*10-4
2–8 0.1*10-4 0.054 0.1*10-4 0.1*10-4 0.1*10-4 0.2*10-3 0.999 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4
3–4 0.852 0.1*10-4 0.1*10-2 0.023 0.1*10-4 0.797 0.1*10-4 0.025 0.324 0.135 1.000 0.014
3–5 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.059 0.1*10-4 0.1*10-4 0.1*10-4 0.892 0.1*10-4 0.1*10-4
3–6 0.464 0.1*10-4 0.1*10-4 0.5*10-2 0.1*10-4 0.205 0.1*10-4 0.1*10-4 0.432 0.2*10-4 0.1*10-4 0.1*10-4
3–7 0.1*10-4 0.1*10-4 0.3*10-2 0.1*10-4 0.888 0.057 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.587 0.1*10-4
3–8 0.1*10-4 0.1*10-4 0.287 0.1*10-4 0.763 0.999 0.168 0.723 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4
4–5 0.1*10-4 0.1*10-4 0.3*10-2 0.1*10-4 0.1*10-4 0.375 0.035 0.1*10-4 0.1*10-4 0.2*10-2 0.1*10-4 0.1*10-4
4–6 0.969 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.810 0.995 0.1*10-4 0.1*10-4 0.7*10-2 0.1*10-4 0.1*10-4
4–7 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.391 0.749 0.1*10-4 0.1*10-4 0.1*10-4 0.014 0.1*10-4
4–8 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.676 0.225 0.999 0.1*10-4 0.1*10-4 0.1*10-4 0.2*10-3
5–6 0.1*10-4 0.999 0.513 0.2*10-4 0.960 0.999 0.641 0.1*10-4 0.1*10-4 0.1*10-4 0.420 0.1*10-2
5–7 0.999 0.1*10-4 0.101 0.999 0.1*10-4 0.989 0.1*10-2 0.1*10-4 0.831 0.1*10-4 0.1*10-4 0.993
5–8 0.435 0.1*10-4 0.286 0.311 0.1*10-2 0.049 0.4*10-3 0.1*10-4 0.999 0.1*10-4 0.1*10-4 0.2*10-4
6–7 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 1.000 0.621 0.454 0.1*10-4 0.1*10-4 0.1*10-4 0.4*10-3
6–8 0.001 0.1*10-4 0.1*10-3 0.432 0.1*10-4 0.166 0.155 0.1*10-4 0.1*10-4 0.1*10-4 0.1*10-4 0.813
7–8 0.023 0.997 0.999 0.021 0.998 0.072 0.874 0.1*10-4 0.999 0.566 0.1*10-4 0.1*10-4
... In our view, these communities lose distinct syntaxonomical affiliation and move to transitional communities, but they retain the floristic core of steppe species and can be classified within Festucion valesiacae alliance, order Festucetalia valesiacae, at this current stage. Moreover, the core of the communities with the occurrence of Festuca pallens is considered as Galio campanulati-Poion versicoloris alliance, which according to Didukh et al. (2021) is vicarious to Bromo pannonici-Fectucion csikhegyensis alliance occurring in the Pannonian province (Svydovets Mountains in Ukraine). Moreover, the highest concentration of relevés from the second cluster was recognized as Bromo pannonici-Fectucion csikhegyensis alliance by the Slovak expert system HES (Janišová et al., 2007), confirming our previous point. ...
... It is noteworthy that communities with the presence of Festuca pallens are more widespread in Central Europe than in Eastern Europe within the Bromo pannonici-Fectucion csikhegyensis and Diantho lumnitzeri-Seslerion albicantis alliance. Although these alliances have been mentioned in Ukraine (Janišová et al., 2014;Didukh et al., 2021), this is probably due to the fact that the communities with Festuca pallens are located at the eastern limit of the range and belong to other alliances that differ in their environmental conditions from the communities within the optimum environment in Central or Southern Europe. ...
Article
Full-text available
This article deals with phytosociological and ecological requirements of the vulnerable species Festuca pallens in Ukraine. Based on the analysis of 51 relevés, we have recognized the occurrence of Festuca pallens in three associations within the Festuco-Brometea class. Some communities where Festuca pallens occurs have transitional stages of succession to forest edge vegetation according to the expert system classification. In addition, we evaluated the ecological differences among occupied habitats using Didukh's phytoindication scales and concluded that the most important ecological factors are soil humidity, nitrogen content, soil aeration, salt regime, carbonate content, thermoregime, and climate continentality. Finally, we evaluated the threats to the existence of these communities with the presence of Festuca pallens, taking into account climate change and other impacts of anthropogenic activities (illegal mining, recreation, afforestation).
Article
Full-text available
The main aim of this article is to characterize vegetation data of dry grassland communities on sedimentary outcrops of the Dniester Canyon (Ukraine) ecologically and to provide their syntaxonomy. For this purpose, we collected 155 relevés, and included published data from Ukrainian and Moldovian literary sources. We used cluster analysis, including the nomenclatural types of previously described relevant associations from the study area and adjacent territories. As a result, we recognized two associations of the order Alysso-Sedetalia and six of the order Stipo pulcherrimae-Festucetalia pallentis. Two associations of pioneer communities with therophytes and succulents were transferred from the endemic alliance Sempervivo ruthenici-Schivereckion of the class Asplenietea trichomanis to the widely spread alliance Alysso-Sedion of the class Sedo-Scleranthetea. Five associations of petrophytic steppes were transferred from different alliances within the classes Festuco-Brometea (Genisto tetragonae-Seselion peucedanifoliae, Festucion valesiacae) and Sedo-Scleranthetea (Alysso-Sedion) to the alliance Galio campanulati-Poion versicoloris within the class Festuco-Brometea. We also described the new association Cephalario uralensis-Agropyretum cristati. Furthermore, we tested for ecological differences between these associations using ecological scales of the Ukrainian flora and measured soil parameters. We conclude that the relief, geological structure, soils, and climate parameters determine the distribution and diversity of the communities as well as their particular floristic features.
Article
Full-text available
The order Thymo cretacei-Hyssopetalia cretacei Didukh 1989 combines chalk outcrop plant communities of the southwestern Central Russian Upland. Its specificity can be attributed to a rather peculiar and heterogeneous flora with a large number of endemic species. The question about its origin has caused a lively discussion, which has been going on since the late nineteenth century. Since 1989 works on the classification of these communities have frequently been carried out, but until today no unanimous decision could be reached. The purpose of our research was to conduct a critical analysis of the syntaxonomical structure of Cretaceous outcrop vegetation and to show its difference from the steppe vegetation of the class Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947. The territory of our research covers the southwestern foothills of the Central Russian Upland and the Donetsk Range, located only within the steppe zone and characterised by Cenomanian chalk outcrops. In total 354 relevés were used for the analysis. The modified TWINSPAN classification was used for the analysis. Our research has shown that the order Thymo cretacei-Hyssopetalia cretacei includes twelve associations belonging to three alliances: Artemisio hololeucae-Hyssopion cretacei Romash-chenko et al. 1996, Euphorbio cretophilae-Thymion cretacei Didukh 1989 and Centaureo carbonatae-Koelerion talievii Romashchenko et al. 1996.
Article
Full-text available
Didukh, y.P. & Ladislav Mucina, L. Validation of the name of some syntaxa of Crimean vegetation. Lazaroa 35: 181-190 (2014). We validate concepts and names of three alliances (Androsaco tauricae-Caricion humilis, Adonido vernalis-Stipion tirsae, Veronico multifidae-Stipion ponticae) of steppe vegetation (Festuco-Brometea) of Crimea as well as two other alliances of sub-mediterranean character (Diantho humilis-Velezion rigidae, Elytrigio nodosae-Rhuion coriariae). We also validate a number of associations, most of them to serve as the holotypes of the alliances.
Article
Full-text available
Dry grasslands are highly diverse vegetation types of great importance for livestock production in rural Balkan areas. We analysed a large data set of phytosociological relevés of dry grasslands (Festuco-Brometea and Festucetea vaginatae classes) in Serbia to produce the first overview of its classification, distribution, environmental conditions and biodiversity patterns. Phytocoenological relevés from relevant literature sources and ourown investigations were stored in the Vegetation Database of Serbia (EU-RS-002) and the Balkan Dry Grassland Database (EU-00-013). After heterogeneity-constrained random resampling, the final dataset contained 1,897 relevés and 1,323 species. Species composition was classified hierarchically by the beta flexible method. We used species ecological indicator values for the estimation of the ecological conditions. Floristic and vegetation diversity and the conservation relevance of various dry grassland types, based on an assessment of endemic and protected species, were analysed. We identified 11 clusters, which werewell characterised by their species composition and ecology. The first three clusters included loess and sand steppe grasslands mostly found in the Pannonian part of Serbia (Festucion rupicolae and Festucion vaginatae). The next three clusters con-sisted of Balkan ultramafic rocky grasslands of the order Halacsyetalia sendtneri, Balkan submediterranean mountain steppe grasslands on calcareous substrates, belonging to the order Astragalo-Potentilletalia and grasslands of the Balkan alliance Saturejion montanae on limestone. The third group of relevés comprised Balkan alliances of dry grasslands on deep soils, the Chrysopogono-Danthonion and sub-continental steppes of the alliance Festucion valesiacae in hilly areas of Serbia, mostly in the thermophilous oak zone. According to ordination analysis (DCA), the main floristic gradient was largely determined by temperature and moisture. The Festuco-Brometea class exhibited high floristic diversity (1,323 plant species) and very high conservation relevance in view ofthe large number of Balkan endemic species (204). A total of 233 species and subspecies protected by national legislation within the studied vegetation were recorded.
Article
Full-text available
The European Vegetation Archive (EVA) has been developed since 2012 by the IAVS Working Group European Vegetation Survey as a centralized database of European vegetation plots. It stores copies of national and regional vegetation-plot databases on a single software platform. Data storage in EVA does not affect the ongoing independent development of the contributing databases, which remain the property of the data contributors. A prototype of the database management software TURBOVEG 3 has been developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their matches to a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA, contributing in total 1 024 236 vegetation plots from 57 countries, 82% of them with geographical coordinates. EVA provides a unique data source for large-scale analyses of European vegetation diversity both in fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database.
Article
Full-text available
Conference Paper
Full-text available
191 Bulgarian steppic vegetation – an overview Kiril Vassilev & Iva Apostolova Zusammenfassung Abstract Primary steppe grasslands in Bulgaria are distributed over a very limited area in the most north-eastern part of the country. Northern Bulgaria was covered by wooded steppe at the beginning of the Atlantic period, but by the end of this period the increasing humidity of the climate resulted in forest expansion. Recent vegetation defined as steppes is semi-natural and substitutes woodlands cleared in historical times. Communities are dominated by Chrysopogon gryllus and Bothriochloa ischaemum, which are the most typical grasses for the steppes in the country. Loess deposits in the Danube plain provide conditions for the development of species rich grasslands, some quite similar to those known in Central Europe. Significant diversity of steppe grasslands is represented by the alliances Festucion valesiacae, Pimpinello-Thymion, Stipion lessingianae and Saturejion montanae. Fragments of steppe vegetation can also be found in the south-eastern parts of the country in the Thracian lowlands. Specific features of these communities are the presence of many Mediterranean species as well as Balkan endemics, defining the vegetation as sub-Mediterranean-subcontinental steppes. Species which play an important role in the steppes are Stipa lessingiana, S. capillata, Fes-tuca valesiaca, Agropyron brandzae, Paeonia tenuifolia, Salvia argentea, S. nutans, Adonis vernalis, Artemisia austriaca. The main threats that have emerged recently are ploughing and scrub encroach-ment as a result of abandonment of traditional management. The ever decreasing territories occupied by steppe grasslands are in need of conservation measures, which in Bulgaria are connected with Na-tura 2000 and the national system of protected areas. Steppic grasslands are fundamental for habitats 6210, 6240, 6250, 6260, 62C0 and 62A0. These habitats occupy together an area of approximately 210,000 ha. Different activities within the Natura 2000 network are envisaged to increase public awareness and support traditional agricultural practice aiming to preserve the steppes in the country.