ArticlePDF Available

Multigene phylogeny and morphology reveal a new species, Ophiocordyceps vespulae, from Jilin Province, China

Authors:

Abstract and Figures

Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps vespulae sp. nov. was found as a parasite on wasps (Hymenoptera). The new species is introduced with evidence from morphology and molecular analysis. This species is distinguished from closely related species by white to faint yellow stromata, shorter ascomata and asci, and smaller ascospores. We provide a phylogeny for Ophiocordyceps based on combined LSU, ITS, TEF1α and RPB2 DNA sequence data and the taxonomic status of the species is briefly discussed.
Content may be subject to copyright.
Phytotaxa 478 (1): 033–048
https://www.mapress.com/j/pt/
Copyright © 2021 Magnolia Press Article PHYTOTAXA
ISSN 1179-3155 (print edition)
ISSN 1179-3163 (online edition)
Accepted by Eric McKenzie: 26 Nov. 2020; published: 5 Jan. 2021
https://doi.org/10.11646/phytotaxa.478.1.2
33
Licensed under Creative Commons Attribution-N.C. 4.0 International https://creativecommons.org/licenses/by-nc/4.0/
Multigene phylogeny and morphology reveal a new species, Ophiocordyceps
vespulae, from Jilin Province, China
FENG-YAO LONG1, 2, 6, LI-WU QIN3, 7, YUAN-PIN XIAO2, 4, 8, KEVIN D. HYDE4, 9, SHAO-XIAN WANG3, 10* &
TING-CHI WEN1, 2, 5, 11*
1 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China.
2 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang
550025, Guizhou, China.
3 Changbai Mountain Academy of Sciences, Jilin Provincial Joint Key Laboratory of Changbai Mountains Biocoenosis & Biodiversity,
Erdaobaihe 133613, Jilin, China.
4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand.
5Mushroom Research Institute,Guizhou University,Guiyang,550025,China
6
282512635@qq.com; https://orcid.org/0000-0002-5818-694X
7
278778656@qq.com; https://orcid.org/0000-0002-5586-2885
8
emmaypx@gmail.com; https://orcid.org/0000-0003-1730-3545
9
kdhyde3@gmail.com; https://orcid.org/0000-0002-2191-0762
10
32436012@qq.com; https://orcid.org/0000-0002-0921-1790
11
10740826@qq.com; https://orcid.org/0000-0003-1744-5869
*Corresponding author
Abstract
Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps
and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain
unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps
vespulae sp. nov. was found as a parasite on wasps (Hymenoptera). The new species is introduced with evidence from
morphology and molecular analysis. This species is distinguished from closely related species by white to faint yellow
stromata, shorter ascomata and asci, and smaller ascospores. We provide a phylogeny for Ophiocordyceps based on combined
LSU, ITS, TEF1 and RPB2 DNA sequence data and the taxonomic status of the species is briefly discussed.
Keywords: 1 new species, Changbai Mountains, molecular phylogeny, Ophiocordyceps, taxonomy
Introduction
Ophiocordyceps species associated with insects comprise one of the most remarkable and interesting relationships
between microbes and animals (Araújo et al. 2018). They are commonly found in tropical forests worldwide, with
relatively few records from temperate ecosystems (Araújo et al. 2018). The genus Ophiocordyceps was described
by Petch (1931) to accommodate a species of Cordyceps having clavate thick-walled asci and ascospores that do
not disarticulate into part-spores. Ophiocordyceps is the type genus of Ophiocordycipitaceae (Hypocreales), which
was separated from Cordycepitaceae based on the morphology and phylogenetic analyses (Sung et al. 2007a). Most
species of this genus are parasitic on insects (Sung et al. 2007a, Maharachchikumbura et al. 2015, Wijayawardene et
al. 2017). Ophiocordyceps is estimated to have arisen about 100 million years ago (Sung et al. 2008) and since then
has colonized ten orders of insects (Sanjuan et al. 2015, Araújo & Hughes 2016). Ophiocordyceps is the most speciose
genus in Ophiocordycipitaceae with over 200 accepted species (Index Fungorum, accessed 14 November 2019), with
more than 30 species described recently (Wen et al. 2013, 2014, 2016, Ban et al. 2015, Sanjuan et al. 2015, Khonsanit
et al. 2019, Araújo et al. 2018, Xiao et al. 2018, 2019).
Most
Ophiocordyceps species have darkly pigmented or brightly coloured stromata that are pliant to wiry or
fibrous, with immersed, ordinal or obliquely arranged perithecia (Sung et al. 2007a). The asexual morphs were reported
as Hirsutella Pat. 1892, Hymenostilbe Petch 1931 and Paraisari Samson & B.L. Brady 1983 (Quandt et al. 2014,
LONG ET AL.
34 Phytotaxa 478 (1) © 2021 Magnolia Press
Maharachchikumbura et al. 2015, 2016). The asexual morphs in most species have hirsutella-like and hymenostilbe-
like features (Kepler et al. 2013, Maharachchikumbura et al. 2015, 2016).
The present study introduces a new species, Ophiocordyceps vespulae with a description, photographs, illustrations
and a multigene phylogeny and compares it with similar taxa.
Materials and methods
Sample collection and morphological characteristic examination
Two fresh specimens were collected from the Changbai Mountain, China in July 2017. Macro-morphological characters
were described based on fresh material, and on the photographs provided here. Fresh specimens were used to isolate the
fungus by tissue culture method in potato dextrose agar (PDA) medium. Specimens were dried and placed separately
in plastic bags. The materials and living culture were deposited at Guizhou University (GACP) and Kunming Institute
of Botany, Chinese Academy of Sciences (KUN). For micro-morphological examination fruiting bodies and living
culture mycelium were examined with a stereo dissecting microscope (Motic SMZ 168 series). Sections were cut with
a razor blade, mounted in water, and fungal structures were observed, measured, and illustrated using a compound
microscope (Nikon ECLIPSE 80i) equipped with a camera (Canon 600D). Measurements were made using Tarosoft
(R) Image Frame Work v. 0.9.7. The Facesoffungi number is provided as explained in Jayasiri et al. (2015).
DNA extraction, PCR amplification and determination of DNA sequences
Dried samples of fruiting bodies were used to extract genomic DNA using an EZgene TM Fungal gDNA Kit (Biomiga,
CA, USA) according to the manufacturer instructions. DNA concentrations were estimated visually in agarose gel
by comparing band intensity with a DNA ladder 1Kb (Invitrogen Biotech). Reaction mixtures (50 l) contained 2
l template DNA (ca. 10 ng), 19 l distilled water, and 2 l (10 M) of each primer and 25 l 2x BenchTopTM Taq
Master Mix (Biomigas). Amplification conditions were 40 cycles of 95 °C for 30 s, 59 °C for 30 s and 72 °C for 1 min,
followed by a final extension at 72 °C for 10 min for all DNA fragments. The primers used in PCR amplification were:
ITS4/ITS5 for internal transcribed spacer gene region (ITS) (White et al. 1990), LROR/LR5 for partial large subunit
rDNA gene region (LSU) (Vilgalys & Hester 1990). 983F/2218R for partial translation elongation factor 1-alpha gene
region (TEF-1) (Sung et al. 2007b), RPB2-5F/RPB2-5R for partial RNA polymerase II second largest subunit gene
region (RPB2) (Castlebury et al. 2004). Amplified PCR products were verified by 1% agarose gel electrophoresis
stained with ethidium bromide in 1x TBE. The PCR products were sequenced with primers mentioned above by
GenScript Biotechnology Co., Nanjing, China.
Sequence alignment and phylogenetic analyses
The taxon information and GenBank accession numbers used in the molecular analyses are listed in Table 1. Quality of
the newly obtained sequences for the Ophiocordyceps specimens from Jilin Province, China was checked by observing
the chromatogram with BioEdit (Hall et al. 2011) and by examining BLAST search results according to Nilsson et al.
(2012). All the other sequences were retrieved from GenBank (Table 1) based on ITS BLAST searches (Benson et al.
2018) and recently published data. Sequences that had possibly been contaminated by micro-fungi or other unnamed
species (such as those with aff. in the species name) were discarded, ambiguous regions were excluded and gaps were
treated as missing data in the analysis (Nilsson et al. 2012). Eighty-seven nucleotide sequences representing 81 species
of Ophiocordycipitaceae from worldwide were retrieved from GenBank and those of the newly generated sequences
were aligned with MAFFT v.7 (Katoh & Standley 2013) onlined at (http://mafft.cbrc.jp/alignment/server/). The
resulting alignment was improved manually when necessary using BioEdit (Hall et al. 2011). BioEdit 7.2.0 software
was used to combine datasets of multiple genes. The maximum likelihood (ML) analyses were performed using
RAxML-HPC2 (Stamatakis 2014) on the CIPRES Science Gateway V. 3.3 (Miller & Blair 2009), with default settings
except that the number of bootstrap replicates was set to 1,000. For Bayesian analysis (BY), the GTR+I+G model of
nucleotide evolution was selected with the help of MrModeltest 2.2 (Nylander 2004) as the best-fit model and posterior
probabilities (PP) (Rannala & Yang 1996) were determined by Markov chain Monte Carlo sampling (BMCMC) using
MrBayes v3.1.2 (Ronquist et al. 2012). BY analyses were conducted with six simultaneous Markov chains and trees
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 35
were summarized every 100th generation. The analyses were stopped after 5,000,000 generations when the average
standard deviation of split frequencies was below 0.01. The convergence of the runs was checked using TRACER
v1.6 (Rambaut et al. 2013). The first 25% of the resulting trees were discarded as burn-in, and PP were calculated
from the remaining sampled trees. In both ML and BY analyses, Tolypocladium inflatum and T. ophioglossoides were
selected as outgroup taxa (Kepler et al. 2012, Schoch et al. 2012). ML bootstrap values and BY posterior probabilities
greater than or equal to 50% and 0.95, respectively, were considered as significant support. The phylogenetic tree was
visualized with FigTree version 1.4.0 (Rambaut 2012) available at http://tree.bio.ed.ac.uk/software/figtree/.
Results
Phylogeny
The combined ITS, LSU, TEF1 and RPB2 dataset consisted of 183 taxa with 3035 characters (801 for LSU, 526 for
ITS, 888 for TEF1, and 820 for RPB2) (Table 1). Tree topology of the RAxML analysis was similar to the Bayesian
analysis. Therefore, only the ML tree is shown (Fig. 1). The best scoring RAxML tree with a final likelihood value of
-60426.083693 is presented (Fig. 1). The matrix had 1,908 distinct alignment patterns, with 40.28% of undetermined
characters or gaps. Parameters for the GTR model of the concatenated data set were as follows: estimated base
frequencies; A = 0.228877, C = 0.289881, G = 0.287771, T = 0.193471; substitution rates AC = 1.175441, AG =
3.584449, AT = 1.200512, CG = 1.1165013, CT = 6.539708, GT = 1.000000; gamma distribution shape parameter
= 0.331985.
Taxonomy
Ophiocordyceps vespulae F.Y. Long, Y.P. Xiao & T.C. Wen, sp. nov. (Fig. 2)
Index Fungorum number: IF556626; Facesoffungi number: FoF 06237
Etymology:The specific epithet refers to the host (Vespula, Hymenoptera).
Holotype:GACP2017079
Sexual morph:Host 1.5–2 × 0.5–1 cm, brown. Stromata 3–7 cm long, 0.3–1 mm diam., single or double, stipitate,
unbranched or branched into 2 fertile heads, arising from the head and thorax of insect. Stipe 2–6.5 cm long, 0.3–0.5
mm diam., yellow, fibrous, cylindrical, often flexuous, with a fertile apex. Fertile head 0.5–1 cm long, 0.5–1 mm
diam., single, cylindrical or elliptical, pale yellow. Ascomata 520–720 × 200–380 m ( = 596 × 260 m, n = 30),
immersed, pale to yellowish, elongated flask-shaped. Asci 320–570 × 5.3–7.5 m ( = 454 × 5.8 m, n = 60), narrow
cylindrical, apex thickened, hyaline; apical cap 6.2–7.9 × 3.4–5.4 m ( = 7.0 × 4.0 m, n = 60), hyaline. Ascospores
almost as long as asci, filiform, hyaline, easily breaking into part-spores. Secondary ascospores 7.5–11.5 × 1.5–3 m
( = 9.1 × 2.1 m, n = 90), fusiform, hyaline, smooth. Asexual morph:undetermined.
Culture characteristics:—on PDA reaching 5 cm diam. after 6 weeks at 25 °C, superficial cottony, white, reverse
yellow; after 10 weeks at 25 °C, reaching 6 mm diam., no conidia observed.
Material examined:—CHINA. Jilin Province: Changbai Mountain, parasitic on wasps (Vespula sp., Hymenoptera),
collected from the underside of leaf litter, 30 July 2013, Fan YG (GACP2017079, holotype); ex-type living culture
GACP2017064.
Discussion
Our study on entomopathogenic fungi led to the discovery of a new species Ophiocordyceps vespulae in Jilin Province,
China. This species lies in a phylogenetic clade with O. tricentri and O. sphecocephala. However, in pairwise nucleotide
sequence comparison, there are sufficient differences to justify O. vespulae as an independent taxon. Ophiocordyceps
vespulae differs from O. tricentri by 24 bp differences in ITS, 23 bp differences in LSU, 29 bp differences in TEF1,
LONG ET AL.
36 Phytotaxa 478 (1) © 2021 Magnolia Press
FIGURE 1. Phylogram of Ophiocordyceps vespulae generated from maximum likelihood (RAxML) analysis of combined ITS, LSU,
TEF1 and RPB2 sequence data. Tolypocladium inflatum and T. ophioglossoides were the outgroup taxa. Maximum likelihood bootstrap
values greater than 75% and posterior probabilities from Bayesian inference 0.90 are given above the nodes as bootstrap values/Bayesian
posterior probabilities. The new species is in red and bold.
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 37
52 bp differences in RPB2, and differs from O. sphecocephala by 23 bp differences in ITS, 34 bp differences in LSU,
41 bp differences in TEF1, 58 bp differences in RPB2. Furthermore, O. vespulae differs from O. oxycephala by 67
bp differences in ITS and 48 bp differences in RPB2.
Morphologically,
Ophiocordyceps vespulae differs from O. tricentri in having a smaller fertile head (3–7 cm
long × 0.3–1 mm diam. vs. 5–6 cm long × 1–1.5 mm diam.), wider ascomata (520–720 × 200–380 m vs. 550–650 ×
110–120 m), and longer and wider asci (320–570 × 5.3–7.5 m vs. 300–320 × 5 m).
The host of Ophiocordyceps tricentri is Cercopidae (Hemiptera), while for O. vespulae, O. sphecocephala and
O. oxycephala it is Vespula spp. (Hymenoptera). Ophiocordyceps vespulae differs from O. sphecocephala in having a
smaller fertile head (3–7 cm long × 0.3–1 mm diam. vs. 5–6 cm long × 1–1.5 mm diam.), smaller ascomata (520–720
× 200–380 m vs. 880–1000 × 200–260m), shorter asci (320–570 × 5.3–7.5 m vs. 700 × 7 m), and shorter part-
spores (7.5–11.5 × 1.5–3 m vs. 10–14 × 1.5–2.5 m) (Hywel-Jones 1995, Shrestha & Sung 2005; Table 2).
Ophiocordyceps oxycephala differs from O. cylindrospora, O. vespulae and O. sphecocephala, in having longer
and thinner secondary spore (Shimizu 1997; Table 2). Ophiocordyceps oxycephala differs from O. fulgoromorphila by
producing smaller perithecia and secondary ascospores without oil drops (Sanjuan et al. 2015; Table 2). There is no
molecular data reported in GenBank for O. elongatistromata, O. humbertii and O. smithii, three other species recorded
on Vespula spp. Ophiocordyceps vespulae produces a shorter stipe, longer ascomata and longer asci than these three
species (Penzig & Saccardo 1897, Mains 1939, Kobayasi 1983; Table 2). Hence, both morphological and molecular
data strongly support O. vespulae as a separate taxonomic entity in Ophiocordyceps. Ophiocordyceps species parasites
in wasps are listed in Table 2.
FIGURE 2. a. Overview of the stromata and the host. b. Fertile head. c. Longitudinal section showing the complete immersed perithecia.
d. Ascomata. e–f. Part asci with apical cap. g–i. Part of ascospores. j, k. Secondary ascospores. l. Upper side of PDA culture. m. Hyphae
in PDA culture. Scale bars a = 1 cm, b, c, l = 2 mm, d = 1 mm, e = 100 m, f, m = 50 m, g–i = 20 m, j–k =10 m.
LONG ET AL.
38 Phytotaxa 478 (1) © 2021 Magnolia Press
TABLE 1. Sources of isolates and GenBank accession numbers.
Species Voucher ITS LSU TEF1αRPB2 References
Ophiocordyceps acicularis OSC 110987 EF468805 EF468744 Sung et al. 2007a
O. acicularis OSC 128580 JN049820 DQ518757 DQ522326 DQ522423 Kepler et al. 201
O. agriotidis ARSEF 5692 JN049819 DQ518754 DQ522322 DQ522418 Ban et al. 2015
O. albacongiuae RC20 KX713670 Araújo et al. 2018
O. amazonica HUA 186113 KJ917572 KM411980 Sanjuan et al. 2015
O. amazonica HUA 186143 KJ917571 KM411989 KM411982 Sanjuan et al. 2015
O. annulata CEM 303 KJ878962 Quandt et al. 2014
O. aphodii ARSEF 5498 DQ518755 DQ522323 DQ522419 Spatafora et al. 2007
O. appendiculata NBRC 106959 JN943325 JN941412 AB968578 AB968540 Ban et al. 2015
O. araracuarensis HUA 186135 KC610769 KC610738 KC610716 Sanjuan et al. 2015
O. arborescens NBRC 105891 AB968398 AB968414 AB968572 AB968534 Ban et al. 2015
O. asiatica BCC 30516 MH754722 MH753675 MK284263 MK214091 Tasanathai et al. 2019
O. australis HUA 186147 KF937351 KC610764 KC610734 Sanjuan et al. 2015
O. australis HUA 186104 KC610763 KC610733 KC610713 Sanjuan et al. 2015
O. barnesii BCC28560 EU418599 Luangsa-ard et al. 2010
O. bispora KVL 606 AF009654 Suhet et al. 1998
O. blakebarnesii MISSOU4 KX713609 KX713685 Araújo et al. 2018
O. blattarioides HUA186093 KJ917570 KM411992 Sanjuan et al. 2015
O. blattarioides HUA 186108 KJ917569 KM411984 Sanjuan et al. 2015
O. brunneinigra BCC 69015 MF614653 MF614637 MF614680 Luangsa-ard et al. 2018
O. brunneiperitheciata BCC 49312 MF614660 MF614642 MF614686 Luangsa-ard et al. 2018
O. brunneipunctata OSC 128576 DQ518756 DQ522324 DQ522420 Spatafora et al. 2007
O. brunneirubra BCC 14384 MH754736 MH753690 GU797121 MK751468 Tasanathai et al. 2019
O. buquetii HMAS 199613 KJ878904 KJ878984 Quandt et al. 2014
O. camponoti-atricipis ATRI3 KX713677 Araújo et al. 2018
O. camponoti-balzani G143 KX713595 KX713690 Araújo et al. 2018
O. camponoti-bispinosi OBIS5 KX713616 KX713693 Araújo et al. 2018
O. camponoti-femorati FEMO2 KX713590 KX713678 Araújo et al. 2018
O. camponoti-floridani Flx2 KX713592 KX713674 Araújo et al. 2018
O. camponoti-hippocrepidis HIPPOC KX713597 KX713673 Araújo et al. 2018
O. camponoti-indiani INDI2 KX713598 Araújo et al. 2018
O. camponoti-nidulantis NIDUL2 KX713611 KX713669 Araújo et al. 2018
O. camponoti-
novogranadensis Mal63 KX713603 Araújo et al. 2018
O. camponoti-renggeri ORENG KX713617 KX713671 Araújo et al. 2018
O. camponoti-rufipedis G177 KX713596 KX713680 Araújo et al. 2018
O. cf acicularis NHJ10418 01 GU723765 GU797116 Luangsa-ard et al.2011
......continued on the next page
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 39
TABLE 1. (Continued)
Species Voucher ITS LSU TEF1αRPB2 References
O. citrina TNS F18537 KJ878903 KJ878983 Quandt et al. 2014
O. clavata NBRC 106961 JN943327 JN941414 AB968586 AB968547 Schoch et al. 2012
O. clavata CEM1762 KJ878882 KJ878963 Quandt et al. 2014
O. coccidiicola NBRC 100682 AB968404 AB968419 AB968583 AB968545 Ban et al. 2015
O. cochlidiicola HMAS 199612 KJ878884 KJ878965 Quandt et al. 2014
O. coenomyia NBRC 108993 AB968396 AB968412 AB968570 AB968532 Ban et al. 2015
O. communis BCC 1842 MH754726 MH753680 MK284266 MK214096 Tasanathai et al. 2019
O. cossidarum MFLU 17 0752 MF398187 Hyde et al. 2017
O. crinalis HIMGD17327 EU149926 Zhang et al. 2007
O. curculionum OSC 151910 KJ878885 Quandt et al. 2014
O. cylindrospora MFLU 17 1961 MG553635 MG553652 MG647029 Hyde et al. 2018
O. daceti MF01 KX713604 KX713667 Araújo et al. 2018
O. desmidiospora SJS3Des MH536514 MN785129 Saltamachia et al.2020
O. dipterigena MRCIF71 EU573346 Freire 2015
O. dipterigena OSC 151912 KJ878887 KJ878967 Quandt et al. 2014
O. dipterigena HUA 186102 KJ917568 KC610715 Quandt et al. 2014
O. dipterigena MY621 GU723764 GU797126 Luangsa-ard et al. 2011
O. elongata OSC 110989 EF468808 EF468748 Sung et al. 2007a
O. emeiensis G96031 AJ309347 Liu et al. 2002
O. entomorrhiza KEW 53484 JN049850 EF468809 EF468749 EF468911 Quandt et al. 2014
O. evansii HUA 186159 KP200889 KC610770 KC610736 Sanjuan et al. 2015
O. formicarum TNS F18565 KJ878888 KJ878968 KJ878946 Quandt et al. 2014
O. formicarum BCMU CF 02 AB222679 Freire 2015
O. formosana TNM F13893 KJ878956 KJ878943 Quandt et al. 2014
O. formosana MFLU 15 3888 KU854949 Li et al. 2016
O. forquignonii OSC 151902 KJ878876 KJ878945 Quandt et al. 2014
O. forquignonii OSC 151908 KJ878889 KJ878947 Quandt et al. 2014
O. fulgoromorphila QCNE 186286 KC610759 Luangsa-ard et al. 2011
O. fulgoromorphila HUA 186139 KC610760 KC610729 KC610719 Sanjuan et al. 2015
O. geometridicola TBRC 8095 MF614648 MF614632 MF614679 Luangsa-ard et al. 2018
O. globiceps MFLUCC 18 0495 MH725815 MH725829 MH727387 Xiao et al. 2019
O. globiceps MFLU 18 0661 MH725816 MH725830 MH727388 Xiao et al. 2019
O. gracilioides HUA 186095 KM411994 Araújo et al. 2018
O. gracilioides HUA 186092 KJ130992 Araújo et al. 2018
O. gracilis OSC 151906 KJ878890 KJ878969 Quandt et al. 2014
O. gracilis EFCC 8572 JN049851 EF468811 EF468751 EF468912 Kepler et al. 2012
O. gracillima HUA 186132 KF937353 KC610768 KC610744 Sanjuan et al. 2015
......continued on the next page
LONG ET AL.
40 Phytotaxa 478 (1) © 2021 Magnolia Press
TABLE 1. (Continued)
Species Voucher ITS LSU TEF1αRPB2 References
O. granospora BCC 82255 MH028143 MH028156 MH028183 MH028177 Araújo et al. 2018
O. hemisphaerica FLOR 59525 KX197233 Hyde et al. 2016
O. heteropoda EFCC 10125 JN049852 EF468812 EF468752 EF468914 Kepler et al. 2012
O. heteropoda OSC 106404 AY489722 AY489617 Castlebury et al. 2004
O. highlandensis HKAS83207 2 KM581281 Yang et al. 2015
O. highlandensis HKAS83206 1 KM581278 Yang et al. 2015
O. houaynhangensis BBC82809 MH092892 MH092908 MH092899 Crous et al. 2018
O. houaynhangensis TBRC8428 MH092891 MH092902 MH092894 Crous et al. 2018
O. irangiensis BCC 82793 MH028141 MH028185 MH028173 Araújo et al. 2018
O. irangiensis OSC 128578 JN049833 DQ518770 DQ522345 DQ522445 Spatafora et al. 2007
O. irangiensis OSC 128577 JN049823 DQ518760 DQ522329 DQ522427 Spatafora et al. 2007
O. irangiensis OSC 128579 EF469076 EF469060 EF469107 Sung et al. 2007a
O. irangiensis NBRC 101400 JN943335 JN941426 Schoch et al. 2012
O. issidarum MFLU 17 0751 MF398185 MF398188 Hyde et al. 2017
O. karstii MFLU 15 3884 KU854945 Li et al. 2016
O. khokpasiensis BCC 48071 MH754728 MH753682 MK284269 Tasanathai et al. 2019
O. khokpasiensis BCC 1764 MH754730 MH753684 MK284271 MK214098 Tasanathai et al. 2019
O. kimflemingiae SC30 KX713622 KX713699 Araújo et al. 2018
O. kimflemingiae SC100 KX713624 KX713696 Araújo et al. 2018
O. kimflemingiae SJS4Oph MH536516 MN785130 Saltamachia et al. 2020
O. kniphofioides HUA 186148 KC610739 KC610717 Sanjuan et al. 2015
O. konnoana EFCC 7295 EF468915 Sanjuan et al. 2015
O. konnoana EFCC 7315 EF468753 EF468916 Sung et al. 2007a
O. lanpingensis YHOS0707 KC417461 KC417463 Chen et al. 2013
O. lanpingensis YHOS0705 KC417460 KC417462 KC456333 Chen et al. 2013
O. lloydii HUA 186164 KP200892 KC610741 Sanjuan et al. 2015
O. lloydii OSC 151913 KJ878891 KJ878970 KJ878948 Quandt et al. 2014
O. longissima EFCC 6814 EF468817 EF468757 Kepler et al. 2012
O. longissima NBRC 108989 AB968407 AB968421 AB968585 Sanjuan et al. 2015
O. longissima HMAS 199600 KJ878972 KJ878949 Quandt et al. 2014
O. macroacicularis BCC 22918 MF614655 MF614639 MF614675 Araújo et al. 2018
O. macroacicularis NBRC 105888 AB968401 AB968417 AB968575 AB968537 Ban et al. 2015
O. melolonthae OSC 110993 DQ518762 DQ522331 Spatafora et al. 2007
O. monacidis MF74C KX713606 Araújo et al. 2018
O. monacidis MF74 KX713605 Araújo et al. 2018
O. mosingtoensis BCC 30904 MH754732 MH753686 MK284273 MK214100 Tasanathai et al. 2019
O. mosingtoensis BCC 36921 MH754731 MH753685 MK284272 MK214099 Tasanathai et al. 2019
......continued on the next page
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 41
TABLE 1. (Continued)
Species Voucher ITS LSU TEF1αRPB2 References
O. multiperitheciata BCC 22861 MF614656 MF614640 MF614683 Araújo et al. 2018
O. multiperitheciata BCC 69008 MF614657 MF614641 MF614682 Luangsa-ard et al. 2018
O. myrmecophila ARSEF 11864 JX566954 JX566965 JX566973 Simmons et al. 2015
O. myrmecophila MY 163 GU723759 GU797132 Luangsa-ard et al. 2011
O. myrmecophila CEM 1710 KJ878974 Quandt et al. 2014
O. myrmecophila TNS 27120 KJ878895 KJ878975 Quandt et al. 2014
O. myrmecophila MFLU 16 2912 MF351726 MF372585 MF372759 Xiao et al. 2017
O. myrmecophila MFLU 16 2913 MF351727 MF372586 Xiao et al. 2017
O. myrmicarum ARSEF11864 JX566954 JX566965 JX566973 Simmons et al. 2015
O. naomipierceae DAWKSANT KX713589 Araújo et al. 2018
O. neovolkiana OSC 151903 KJ878896 KJ878976 Quandt et al. 2014
O. nigra TNS 16252 KJ878906 KJ878986 Quandt et al. 2014
O. nigra TNS 16250 KJ878987 Quandt et al. 2014
O. nigrella EFCC 9247 JN049853 EF468818 EF468758 EF468920 Sung et al. 2007a
O. nutans NBRC 101749 AB968408 JN941429 AB968589 AB968550 Ban et. al. 2015
O. odonatae TNS F18563 AB104725 KJ878877 Ito & Hirano 1997
O. oecophyllae OECO1 Araújo et al. 2018
O. ootakii J13 KX713600 KX713681 Araújo et al. 2018
O. pauciovoperitheciata TBRC 8096 MF614649 MF614636 MF614672 Luangsa-ard et al. 2018
O. ponerinarum HUA 186140 KC610740 Sanjuan et al. 2015
O. pruinosa NHJ 12994 EU369041 EU369024 EU369084 Johnson et al. 2009
O. pseudoacicularis TBRC 8101 MF614645 MF614629 MF614676 Luangsa-ard et al. 2018
O. pseudocommunis BCC 16757 MH754733 MH753687 MK284274 MK214101 Tasanathai et al. 2019
O. pseudolloydii MFLUCC 15 0689 MF351725 MF372758 Xiao et al. 2017
O. pseudolloydii LHC KX714602 KX714603 Chung et al. 2017
O. pseudorhizoidea BCC 48879 MH754720 MH753673 MK284261 MK214089 Tasanathai et al. 2019
O. pulvinata TNS F 30044 GU904209 Quandt et al. 2014
O. purpureostromata TNS F18430 KJ878897 KJ878977 Quandt et al. 2014
O. ramosissimum GZUHHN8 KJ028007 KJ028014 We n et al. 2014
O. ravenelii OSC 110995 DQ518764 DQ522334 DQ522430 Spatafora et al. 2007
O. rhizoidea NHJ 12522 JN049857 EF468825 EF468764 EF468923 Sung et al. 2007a
O. robertsii KEW 27083 EF468826 EF468766 Sung et al. 2007a
O. rubiginosiperitheciata NBRC 100946 JN943341 JN941436 AB968581 AB968543 Ban et al. 2015
O. ryogamiensis NBRC 101751 KF049633 KF049688 Kepler et al. 2013
O. satoi J7 KX713599 KX713683 Araújo et al. 2018
O. satoi J19 KX713601 KX713684 Araújo et al. 2018
O. sinensis ARSEF 6282 KM652173 KM652126 KM652009 Araújo et al. 2018
......continued on the next page
LONG ET AL.
42 Phytotaxa 478 (1) © 2021 Magnolia Press
TABLE 1. (Continued)
Species Voucher ITS LSU TEF1αRPB2 References
O. sinensis EFCC7287 JN049854 EF468827 EF468767 EF468924 Sung et al. 2007a
O. sobolifera KEW 78842 JN049855 EF468828 EF468925 Kepler et al. 2012
O. sobolifera TNS F18521 KJ878898 KJ878979 Quandt et al. 2014
Ophiocordyceps sp. Gh41 KX713668 Araújo et al. 2018
Ophiocordyceps sp. TNS F18495 KJ878901 Quandt et al. 2014
Ophiocordyceps sp. OSC 151904 KJ878899 KJ878980 Quandt et al. 2014
Ophiocordyceps sp. OSC 151905 KJ878981 KJ878951 Quandt et al. 2014
Ophiocordyceps sp. OSC 151909 KJ878900 KJ878982 KJ878952 Quandt et al. 2014
Ophiocordyceps sp. FMF147 KX197238 Freire 2015
Ophiocordyceps sp. OSC 110997 EF468774 EF468929 Quandt et al. 2014
O. spataforae BCC 86480 MG831747 MG831746 MG831749 Luangsa-ard et al. 2018
O. spataforae OSC 128575 JN049845 EF469079 EF469064 EF469110 Sung et al. 2007a
O. sphecocephala OSC 110998 DQ518765 DQ522336 DQ522432 Kepler et al. 2012
O. sphecocephala NBRC 101753 JN943350 JN941446 AB968592 AB968553 Ban et al. 2015
O. sporangifera MFLUCC 18 0492 MH725818 MH725832 MH727390 Xiao et al. 2019
O. sporangifera MFLU 18 0658 MH725817 MH725831 MH727389 Xiao et al. 2019
O. stylophora OSC 110999 EF468837 EF468777 EF468931 Sung et al. 2007
O. stylophora OSC 111000 JN049828 DQ518766 DQ522337 DQ522433 Spatafora et al. 2007
O. superficialis MICH 36253 Sung et al. 2007a
O. termiticola BCC 1920 MH754724 MH753678 MK284265 MK214094 Tasanathai et al. 2019
O. termiticola BCC 1770 GU723780 MH753677 MK284264 MK214093 Tasanathai et al. 2019
O. thanathonensis MFU 16 2910 MF850375 MF850378 MF872614 Xiao et al. 2017
O. thanathonensis MFU 16 2909 MF850376 MF850377 MF872613 Xiao et al. 2017
O. tiputini QCNE 186287 KC610773 KC610745 Kepler et al. 2012
O. tricentri NBRC 106968 AB968410 AB968423 AB968593 AB968554 Ban et al. 2015
O. unilateralis SERI1 KX713626 KX713675 Araújo et al. 2018
O. unilateralis HUA 186161 KC610742 KC610718 Sanjuan et al. 2015
O. unilateralis OSC 128574 DQ518768 DQ522339 DQ522436 Spatafora et al. 2007
O. variabilis ARSEF 5365 DQ518769 DQ522340 DQ522437 Kepler et al. 2012
O. variabilis OSC 111003 EF468839 EF468779 EF468933 Sung et al. 2007a
O. vespulae GACP2017064 MN044857 MN044858 MN117075 MN107547 This study
O. vespulae GACP2017079 MN044859 MN117076 MN107548 This study
O. xuefengensis GZUH2012HN11 KC631800 KC631791 Wen et al. 2013
O. yakusimensis HMAS 199604 KJ878902 KJ878953 Quandt et al. 2014
Tolypocladium inflatum OSC 71235 JN049844 EF469077 EF469061 EF469108 Kepler et al. 2012
T. ophioglossoides NBRC 106332 JN943322 JN941409 Schoch et al. 2012
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 43
TABLE 2. Ophiocordyceps species parasites in Vespula spp.
Species Stromata Fertile heads Perithecia (m) Asci (m) Secondary ascospores (m) References
O. cylindrospora Capitate, 50–90 × 0.5–1.5 mm Fusiform, yellow, 3–3.2 ×
1–1.2 mm
Oblique, flask-shaped, 551–638
× 261–327 Cylindrical, 248–313 × 5–7 Cylindrical, 3.1–3.9 × 1.6–2 Hyde et al. 2018
O. elongatistromata Single or double, pale brown,
6–12 cm
White, 2–3 parts, 15–20 ×
1.7–2 mm Immersed 7–10 × 1.5 Kobayasi & Shimizu 1983
O. fulgoromorphila Capitate, 87–110 mm, branched
in secondary bicolored stroma
Cylindrical, brownish yellow
to brownish orange, 7–25 ×
2–3.5 mm
Immersed, ellipsoid, 780–1100
× 280–380 Cylindrical, 300–600 × 5–6 9–12 × 1–2 (with oil drops) Sanjuan et al. 2015
O. humbertii Two, clavate, emerging from host
on both sides of thorax Immersed Somavilla et al. 2020
O. oxycephala
Up to 6 cm long, capitate with
cylindric heads, 7-5 mm long,
0.5-1 mm thick, with short acute
sterile apices
Thick stipe and central core of
the head, 0.2-0.3 mm
Conoid, 800–900 × 170–210,
brown walls Uncertain Fusoid, 8–10 × 1.5 Mains 1959
O. smithii. Capitate, 4-5 cm long Narrow ovoid, reddish brown
heads Ovoid, 240–260 × 140–160 Clavate, 90–120 × 8–9 Absent Mains 1958
O. sphecocephala Single stroma, from head and
thorax, 45 × 1.4–1.8 mm
Terminal, variable size and
shape, cream-yellow Oblique 880–1000 × 200–260 Filiform, 700 × 7 Fusoid, 10–14 × 1.5–2.5 Hywel-Jones 1995
O. vespulae Capitate, 30–70 × 0.3–1 mm Yellow, 5–10 × 0.5–1 mm Immersed, 520–720 × 200–380 320–570 × 5.3–7.5 7.5–11.5 × 1.5–3 This study
LONG ET AL.
44 Phytotaxa 478 (1) © 2021 Magnolia Press
Acknowledgments
This work was jointly supported by the National Natural Science Foundation of China (No. 31760014) and the Open
Fund of Changbai Mountain Academy of Sciences (2016007).
References
Araújo, J.P.M. & Hughes, D.P. (2016) Diversity of entomopathogenic fungi: which groups conquered the insect body? Advances in
Genetics 94: 1–39.
https://doi.org/10.1016/bs.adgen.2016.01.001
Araújo, J.P.M., Evans, H.C., Kepler, R. & Hughes, D.P. (2018) Zombie-ant fungi across continents: 15 new species and new combinations
within Ophiocordyceps. I. Myrmecophilous hirsutelloid species. Studies in Mycology 90: 119–160.
https://doi.org/10.1016/j.simyco.2017.12.002
Ban, S., Sakane, T. & Nakagiri, A. (2015) Three new species of Ophiocordyceps and overview of anamorph types in the genus and the
family Ophiocordyceptaceae. Mycological Progress 14 (1): 1–12.
https://doi.org/10.1007/s11557-014-1017-8
Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K.D. & Sayers, E.W. (2018) GenBank. Nucleic Acids
Research 46 (D1): D41–D47.
https://doi.org/10.1093/nar/gkx1094
Castlebury, L.A., Rossman, A.Y., Sung, G.H., Hyten, A.S. & Spatafora, J.W. (2004) Multigene phylogeny reveals new lineage for
Stachybotrys chartarum, the indoor air fungus. Mycological Research 108 (8): 864–872.
https://doi.org/10.1017/S0953756204000607
Chen, Z.H., Dai, Y.D., Yu, H., Yang, K., Yang, Z.L., Yuan, F. & Zeng, W.B. (2013) Systematic analyses of Ophiocordyceps lanpingensis
sp. nov., a new species of Ophiocordyceps in China. Microbiological Research 168 (8): 525–532.
http://dx.doi.org/10.1016/j.micres.2013.02.010
Chung, T.Y., Sun, P.F., Kuo, J.I., Lee, Y.I., Lin, C.C. & Chou, J.Y. (2017) Zombie ant heads are oriented relative to solar cues. Fungal
Ecology 25: 22–28.
https://doi.org/10.1016/j.funeco.2016.10.003
Crous, P.W., Luangsa-ard, J.J., Wingfield, M.J., Carnegie, A.J., Hernandez-Restrepo, M., Lombard, L., Roux, J., Barreto, R.W., Baseia,
I.G., Cano-Lira, J.F. & Martín, M.P. (2018) Fungal Planet description sheets: 785–867. Persoonia 41: 238.
https://doi.org/10.3767/persoonia.2018.41.12
Freire, F.M. (2015) Taxonomia e distribuição de Ophiocordyceps dipterigena (Ophiocordycipitaceae, Hypocreales). Repositório
Institucional da UFSC, 1–128.
Hall, T., Biosciences, I. & Carlsbad, C. (2011) BioEdit: an important software for molecular biology. GERF Bulletin of Biosciences 2 (1):
60–61.
Hyde, K.D., Hongsanan, S., Jeewon, R., Bhat, D.J., McKenzie, E.H.C., Jones, E.B.G., Phookamsak, R., Ariyawansa, H., Boonmee, S.,
Zhao, Q., Abdel-Aziz, F., Abdel-Wahab, M., Banmai, S., Chomnunti, P., Cui, B.K., Daranagama, D.A., Das, K., Dayarathne, M., De,
Silva, N.L., Dissanayake, A.J., Doilom, M., Ekanayaka, A.H., TB, G., Góes-Neto, A., Huang, S.K., Jayasiri, S., Jayawardena, R.S.,
Konta, S., Lee, H.B., Li, W.J., Lin, C.G., Liu, J.K., Lu, Y.Z., Luo, Z.L., Manawasinghe, I., Manimohan, P., Mapook, A., Niskanen, T.,
Norphanphoun, C., Papizadeh, M., Perera, R.H., Phukhamsakda, C., Richter, C., Santiago, A., Drechsler-Santos, E.R., Senanayake,
I., Tanaka, K., TMDS, T., Thambugala, K., Tian, Q., Tibpromma, S., Thongbai, B., Vizzini, A., Wanasinghe, D.N., Wijayawardene,
N., Wu, H.X., Yang, J., Zeng, X.Y., Zhang, H., Zhang, J.F., Bulgakov, T., Erio, C., Bahkali, A., Amoozegar, M.A., Araujo-Neta, L.S.,
Amimirati, Joe, Baghela, A., Bhatt, R., Bojantchew, S., Buyck, B., Silva, G.A., De, lima, C.L.F., Oiliverira, R., De, Souza, C.A.F.,
Dai, Y.C., Dima, B., Duong, T.T., Ercole, E., Freire, F.M., Ghosh, A., Hashimoto, A., Kamolhan, S., Kang, J.C., Karunarathna, S.,
Kirk, P.M., Kytövuori, I., Lantieri, A., Liimatainen, K., Liu, Z.Y., Liu, X.Z., Lücking, R., Medardi, G., Mortimer, P.E., Nguyen,
T.T.T., Promputtha, I., Raj, K.N.A., Reck, M.A., Lumyong, S., Shahzadeh-Fazeli, S.A., Stadler, M., Soudi, M.R., Su, H., Takahashi,
T., Tangthirasunun, N., Uniyal, P., Wang, Y., Wen, T.C., Xu, J., Zhang, Z.K., Zhao, Y., Zhou, J.L. & Zhu, L. (2016) Fungal diversity
notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80 (1): 1–270.
https://doi.org/10.1007/s13225-016-0373-x
Hyde, K.D., Norphanphoun, C., Abreu, V.P., Bazzicalupo, A., Chethana, K.T., Clericuzio, M., Dayarathne, M.C., Dissanayake, A.J.,
Ekanayaka, A.H., He, M.Q., Hongsanan, S., Huang, S.K., Jayasiri, S.C., Jayawardena, R.S., Karunarathna, A., Konta, S., Kušan,
I., Lee, H., Li, J., Lin, C.G., Liu, N.G., Lu, Y.Z., Luo, Z.L., Manawasinghe, I.S., Mapook, A., Perera, R.H., Phookamsak, R.,
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 45
Phukhamsakda, C., Siedlecki, I., Soares, A.M., Tennakoon, D.S., Tian, Q., Tibpromma, S., Wanasinghe, D.N., Xiao, Y.P., Yang,
J., Zeng, X.Y., Abdel-Aziz, F.A., Li, W.J., Senanayake, I.C., Shang, Q.J., Daranagama, D.A., de, Silva, N.I., Thambugala, K.M.,
Abdel-Wahab, M.A., Bahkali, A.H., Berbee, M.L., Boonmee, S., Bhat, D.J., Bulgakov, T.S., Buyck, B., Camporesi, E., Castañeda-
Ruiz, R.F., Chomnunti, P., Doilom, M., Dovana, F., Gibertoni, T.B., Jadan, M., Jeewon, R., Jones, E.B.G., Kang, J.C., Karunarathna,
S.C., Lim, Y.W., Liu, J.K., Liu, Z.Y., Plautz, Jr., H.L., Lumyong, S., Maharachchikumbura, S.S.N., Matoec, N., McKenzie, E.H.C.,
Meši, A., Miller, D., Pawowska, J., Pereira, O.L., Promputtha, I., Romero, A.I., Ryvarden, L., Su, H.Y., Suetrong, S., Tkalec,
Z., Vizzini, A., Wen, T.C., Wisitrassameewong, K., Wrzosek, M., Xu, J.C., Zhao, Q., Zhao, R.L. & Mortimer, P.E. (2017) Fungal
diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87 (1): 1–235.
https://doi.org/10.1007/s13225-017-0391-3
Hyde, K.D., Chaiwan, N., Norphanphoun, C., Boonmee, S., Camporesi, E., Chethana, K.W.T., Dayarathne, M.C., de Silva, N.I.,
Dissanayake, A.J., Ekanayaka, A.H. & Hongsanan, S. (2018) Mycosphere notes 169–224. Mycosphere 9 (2): 271–430.
https://doi.org/10.5943/mycosphere/9/2/8
Hywel-Jones, N., Li, Z. & Luangsa-ard, J.J. (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales)
with new combinations in Tolypocladium. IMA fungus 5 (1): 121–134.
https://doi.org/10.5598/imafungus.2014.05.01.12
Index Fungorum (2019) Available from: www.indexfungorum.org. (accessed 26 December 2019)
Ito, Y. & Hirano, T. (1997) The determination of the partial 18 S ribosomal DNA sequences of Cordyceps species. Letters in Applied
Microbiology 25 (4): 239–242.
https://doi.org/10.1046/j.1472-765X.1997.00203.x
Jayasiri, S.C., Hyde, K.D., Ariyawansa, Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I., Jeewon, R., Jones,
E.B.G., Bahkali, A.H., Karunarathna, S.C., Liu, J.K., Luangsa-Ard, J.J., Lumbsch, H.T., Maharachchikumbura, S.S.N., McKenzie,
E.H.C., Moncalvo, J.M., Ghobad-Nejhad, M., Nilsson, H., Pang, K.L., Pereira, O.L., Phillips, A.J.L., Raspe, O. Rollins, A.W.,
Romero, A.I., Etayo, J., Selcuk, F., Stephenson, S.L., Suetrong, S., Taylor, J.E., Tsui, C.K.M., Vizzini, A., Abdel-Wahab, M.A., Wen,
T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S., Jayawardena,
R.S., Li, W.J., Perera, R.H., Phookamsak, R., De Silva, N.I., Thambugala, K.M., Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao,
Q., Kang, J.C. & Promputtha, I. (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human
impacts. Fungal Diversity 74 (1): 3–18.
https://doi.org/10.1007/s13225-015-0351-8
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Molecular Biology and Evolution 30 (4): 772–780.
https://doi.org/10.1093/molbev/mst010
Kepler, R.M., Sung, G.H., Ban, S., Nakagiri, A., Chen, M.J., Huang, B., Li, Z. & Spatafora, J.W. (2012) New teleomorph combinations in
the entomopathogenic genus Metacordyceps. Mycologia 104 (1): 182–197.
https://doi.org/10.3852/11-070
Kepler, R.M., Ban, S., Nakagiri, A., Bischoff, J., Hywel-Jones, N., Owensby, C.A. & Spatafora, J.W. (2013) The phylogenetic placement
of hypocrealean insect pathogens in the genus Polycephalomyces: an application of One Fungus One Name. Fungal Biology 117
(9): 611–622.
https://doi.org/10.1016/j.funbio.2013.06.002
Khonsanit, A., Luangsa-ard, J.J., Thanakitpipattana, D., Kobmoo, N. & Piasai, O. (2019) Cryptic species within Ophiocordyceps
myrmecophila complex on formicine ants from Thailand. Mycological Progress 18 (1–2): 147–161.
https://doi.org/10.1007/s11557-018-1412-7
Kobayasi, Y. & Shimizu, D. (1983) Cordyceps species from Japan. 6. Bulletin of the National Science Museum Tokyo 9: 1–21.
Li, G.J., Hyde, K.D., Zhao, R.L., Hongsanan, S., Abdel-Aziz, F., Abdel-Wahab, M., Alvarado, P., Alves-Silva, G., Ammirati, J., Ariyawansa,
H., Baghela, A., Bahkali, A., Beug, M.W., Bhat, D.J., Bojantchev, D., Boonpratuang, T., Bulgakov, T., Erio, C., Boro, M.C., Ceska,
O., Chakraborty, D., Chen, J.J., Kandawatte, T.C., Chomnunti, P., Consiglio, G., Cui, B.K., Dai, D.Q., Dai, Y.C., Daranagama,
D.A., Das, K., Dayarathne, M., Crop, E.D., Oliveira, R., Fragoso, de, Souza, C.A., Ivanildo, de, Souza, J., Dentinger, B.T.M.,
Dissanayake, A.J., Doilom, M., Drechsler-Santos, E.R., Ghobad-Nejhad, M., Gilmore, S.P., Góes-Neto, A., Gorczak, M., Haitjema,
C.H., Hapuarachchi, K., Hashimoto, A., He, M.Q., Henske, J.K., Hirayama, K., Iribarren, M.J., Jayasiri, S., Jayawardena, R.S., Jeon,
S.J., Jerônimo, G.H., Lucia, de, Jesus, A., Jones, E.B.G., Kang, J.C., Karunarathna, S.C., Kirk, P.M., Konta, S., Kuhnert, E., Langer,
E.J., Lee, H.S., Lee, H.B., Li, W.J., Li, X.H., Liimatainen, K., Lima, D., Lin, C.G., Liu, J.K., Liu, X., Liu, Z.Y., Luangsa-Ard, J.J.,
Lücking, R., Lumbsch, T., Lumyong, S., Leano, E., Marano, A.V., Matsumura, M., McKenzie, E.H.C., Mongkolsamrit, S., Mortimer,
P.E., Nguyen, T.T.T., Niskanen, T., Norphanphoun, C., O’Malley, M.A., Parnmen, S., Pawowska, J., Perera, R.H., Phookamsak,
R., Phukhamsakda, C., Zottarelli, C., Raspé, O., Reck, M.A., Rocha, S.C.O., Santiago, A., Senanayake, I., Setti, L., Shang, Q.J.,
Singh, S., Sir, E.B., Solomon, K.V., Song, J., Srikitikulchai, P., Stadler, M., Suetrong, S., Takahashi, H., Takahashi, T., Tanaka, K.,
LONG ET AL.
46 Phytotaxa 478 (1) © 2021 Magnolia Press
Tang, L.P., Thambugala, K., Thanakitpipattana, D., Theodorou, M., Thongbai, B., Thummarukcharoen, T., Tian, Q., Tibpromma, S.,
Verbeken, A., Vizzini, A., Vlasák, J., Voigt, K., Wanasinghe, D.N., Wang, Y., Weerakoon, G., Wen, H.A., Wen, T.C., Wijayawardene,
N., Wongkanoun, S., Wrzosek, M., Xiao, Y.P., Xu, J.C., Yan, J.Y., Yang, J., Yang, S.D., Hu, Y., Zhang, J.F., Zhao, J., Zhou, L.W.,
Persoh, D., Phillips, A.J..L, Maharachchikumbura, S. & Amoozegar, M.A. (2016) Fungal diversity notes 253–366: taxonomic and
phylogenetic contributions to fungal taxa. Fungal Diversity 78 (1): 1–237.
https://doi: 10.1007/s13225-016-0366-9
Liu, Z.Y., Liang, Z.Q., Liu, A.Y., Yao, Y.J. & Yu, Z.N. (2002) Molecular evidence for teleomorph–anamorph connections in Cordyceps
based on ITS-5.8S rDNA sequences. Mycological Research 106 (9): 1100–1108.
https://doi.org/10.1017/S0953756202006378
Luangsa-ard, J.J., Ridkaew, R., Mongkolsamrit, S., Tasanathaib, K., Hywel-Jones, N.L. (2010) Ophiocordyceps barnesii and its relationship
to other melolonthid pathogens with dark stromata. Fungal Biology 114 (9): 739–745.
https://doi.org/10.1016/j.funbio.2010.06.007
Luangsa-ard, J.J., Ridkaew, R., Tasanathai, K., Thanakitpipattana, D. & Hywel-Jones, N. (2011) Ophiocordyceps halabalaensis: a new
species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal Biology
115 (7): 608–614.
https://doi.org/10.1016/j.funbio.2011.03.002
Luangsa-ard, J.J., Tasanathai, K., Thanakitpipattana, D., Khonsanit, A. & Stadler, M. (2018) Novel and interesting Ophiocordyceps spp.
(Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand. Studies in Mycology 89: 125–142.
https://doi.org/10.1016/j.simyco.2018.02.001
Maharachchikumbura, S.S.N., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Huang, S.K., Abdel-Wahab, M.A., Daranagama, D.A.,
Dayarathne, M., D’souza, M.J., Goonasekara, I.D., Hongsanan, S., Jayawardena, R.S., Kirk, P.M, Konta, S., Liu, J.K., Liu, Z.Y.,
Norphanphoun, C., Pang, K.L., Perera, R.H, Senanayake, I.C., Shang, Q.J, Shenoy, B.D, Xiao, Y.P., Bahkali, A.H., Kang, J.C,
Somrothipol, S., Suetrong, S., Wen, T.C. & Xu, J.C. (2015) Towards a natural classification and backbone tree for Sordariomycetes.
Fungal Diversity 72 (1): 199–301.
https://doi.org/10.1007/s13225-015-0331-z
Maharachchikumbura, S.S.N., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Bhat, D.J., Dayarathne, M.C., Huang, S.K., Norphanphoun,
C., Senanayake, I.C., Perera, R.H., Shang, Q.J., Xiao, Y., D’souza, M.J., Hongsanan, S., Jayawardena, R.S., Daranagama, D.A.,
Konta, S., Goonasekara, I.D., Zhuang, W.Y., Jeewon, R., Phillips, A.J.L., Abdel-Wahab, M.A., Al-Sadi, A.M., Bahkali, A.H.,
Boonmee, S., Boonyuen, N., Cheewangkoon, R., Dissanayake, A.J., Kang, J., Li, Q.R., Liu, J.K., Liu, X.Z., Liu, Z.Y., Luangsa-ard,
J.J., Pang, K.L., Phookamsak, R., Promputtha, I., Suetrong, S., Stadler, M., Wen, T.C. & Wijayawardene, N.N. (2016) Families of
Sordariomycetes. Fungal Diversity 79: 1–317.
http://dx.doi.org/10.1007/s13225-016-0369-6
Mains, E. (1939) Cordyceps from the mountains of North Carolina and Tennessee. Journal of the Elisha Mitchell Scientific Society 55 (1):
117–129.
http://www.jstor.org/stable/24332436.
Mains, E.B. (1958) North American entomogenous species of Cordyceps. Mycologia 50 (2): 169–222.
https://doi.org/10.1080/00275514.1958.12024722
Mains, E.B. (1959) Cordyceps species. Bulletin of the Torrey Botanical Club 86 (1): 46–58.
https://doi.org/10.2307/2482660
Miller, R.E. & Blair, P.D. (2009) Input-output analysis: foundations and extensions. Cambridge University Press.
https://doi.org/10.1017/CBO9780511626982
Nilsson, R.H., Tedersoo, L. & Abarenkov, K. (2012) Five simple guidelines for establishing basic authenticity and reliability of newly
generated fungal ITS sequences. MycoKeys 4: 37–63.
https://doi.org/10.3897/mycokeys.4.3606
Nylander, J.A.A. (2004) MrModeltest v2.2. Program distributed by the author: 2. Evolutionary Biology Centre, Uppsala University 1–2.
Penzig, A.J.O. & Saccardo, P.A. (1897) Diagnoses fungorum novorum in insula Java collectorum. Ser. II. Malpighia 11: 491–530.
https://doi.org/10.5962/bhl.title.4921
Petch, T. (1931) Notes on entomogenous fungi. Transactions of the British Mycological Society 16: 55–75.
https://doi.org/10.1016/S0007-1536(31)80006-3
Quandt, C.A., Kepler, R.M., Gams, W., Araújo, J.P.M., Ban, S., Evans, H.C., Hughes, D., Humber, R., Hywel-Jones, N., Li, Z.Z., Luangsa-
Ard, J.J., Rehner, S.A., Sanjuan, T., Sato, H., Shrestha, B., Sung, G.H., Yao, Y.J., Zare, R. & Spatafora, J.W. (2014) Phylogenetic-
based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5
(1): 121–134.
https://doi.org/10.5598/imafungus.2014.05.01.12
A NEW SPECIES OF OPHIOCORDYCEPS VESPULAE Phytotaxa 478 (1) © 2021 Magnolia Press 47
Rambaut, A. (2012) FigTree version 1.4.0. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 5 January 2021)
Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2013) Tracer version 1.6. University of Edinburgh. [Online]. [Accessed on
19.11.2016] available at http://tree.bio.ed.ac.uk/software/tracer.
Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal
of Molecular Evolution 43: 304–311.
https://doi.org/10.1007/BF02338839
Ronquist, F., Teslenko, M., Van der, M.P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P.
(2012) MrBayes version 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic
Biology 61: 539–542.
https://doi.org/10.1093/sysbio/sys029
Saltamachia, S.J. & Araújo, J.P. (2020) Ophiocordyceps desmidiospora, a basal lineage within the “Zombie-Ant Fungi” clade. Mycologia:
1–13.
https://doi.org/10.1080/00275514.2020.1732147
Sanjuan, T.I., Franco-Molano, A.E., Kepler, R.M., Spatafora, J.W., Tabima, J., Vasco-Palacios, A.M. & Restrepo, S. (2015) Five new
species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps. Fungal Biology 119 (10): 901–
916.
https://doi.org/10.1016/j.funbio.2015.06.010
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Bergeron, M.J., Hamelin, R.C., Vialle, A.
& Fungal Barcoding Consortium. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode
marker for Fungi. Proceedings of the National Academy of Science 109: 6241–6246.
https://doi.org/10.1073/pnas.1117018109
Shimizu, D. (1997) Illustrated vegetable wasps and plant worms in color. Ie-No-Hikari Association, Tokyo, Japan.
Shrestha, B. & Sung, J.M. (2005) Notes on Cordyceps species collected from the central region of Nepal. Mycobiology 33 (4): 235.
https://doi.org/10.4489/myco.2005.33.4.235
Simmons, D.R., Lund, J., Levitsky, T. & Groden, E. (2015) Ophiocordyceps myrmicarum, a new species infecting invasive Myrmica rubra
in Maine. Journal of Invertebrate Pathology 125: 23–30.
https://doi.org/10.1016/j.jip.2014.12.010
Somavilla, A., Barbosa, B.C., Prezoto, F. & Oliveira, M.L. (2020) Infection and behavior manipulation of social wasps (Vespidae: Polistinae)
by Ophiocordyceps humbertii in Neotropical forests: new records of wasp-zombification by a fungus. Studies on Neotropical Fauna
and Environment 55 (1): 23–28.
https://doi.org/10.1080/01650521.2019.1691908
Spatafora, J.W., Sung, G.H., Sung, J.M., Hywel-Jones, N.L. & White, J.J.F. (2007) Phylogenetic evidence for an animal pathogen origin
of ergot and the grass endophytes. Molecular Ecology 16 (8): 1701–1711.
https://do i.org/10.1111/j.1365-294X.2007.03225.x
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:
1312–1313.
https://doi.org/10.1093/bioinformatics/btu033
Suh, S.O., Spatafora, J.W., Ochiel, G.R., Evans, H.C. & Blackwell, M. (1998) Molecular phylogenetic study of a termite pathogen
Cordycepioideus bisporus. Mycologia 90 (4): 611–617.
https://doi.org/10.1080/00275514.1998.12026950
Sung, G.H., Hywel-Jones, N.L., Sung, J.M., Luangsa-ard, J.J., Shrestha, B. & Spatafora, J.W. (2007a) Phylogenetic classification of
Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59.
https://doi.org/10.3114/sim.2007.57.01
Sung, G.H., Sung, J.M., Hywel-Jones, N.L. & Spatafora, J.W. (2007b) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi):
identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44 (3):
1204–1223.
https://doi.org/10.1016/j.ympev.2007.03.011
Sung, G.H., Poinar, G.O. & Spatafora, J.W. (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous
diversification of fungal-arthropod symbioses. Molecular Phylogenetics and Evolution 49: 495–502.
https://doi.org/10.1016/j.ympev.2008.08.028
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several
Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246.
http://dx.doi.org/10.1128/jb.172.8.4238-4246
LONG ET AL.
48 Phytotaxa 478 (1) © 2021 Magnolia Press
Wen, T.C., Zhu, R.C., Kang, J.C., Huang, M.H., Tan, D.B., Ariyawansha, H., Hyde, K.D. & Liu, H. (2013) Ophiocordyceps xuefengensis
sp. nov. from larvae of Phassus nodus (Hepialidae) in Hunan Province, southern China. Phytotaxa 123 (1): 41–50.
http://dx.doi.org/10.11646/phytotaxa.123.1.2
Wen, T.C., Xiao, Y.P., Li, W.J., Kang, J.C. & Hyde, K.D. (2014) Systematic analyses of Ophiocordyceps ramosissimum sp. nov., a new
species from a larvae of Hepialidae in China. Phytotaxa 161 (3): 227–234.
http://dx.doi.org/10.11646/phytotaxa.161.3.6
Wen, T.C., Xiao, Y.P., Zha, L.S., Hyde, K.D. & Kang, J.C. (2016) Multigene phylogeny and morphology reveal a new species,
Ophiocordyceps tettigonia, from Guizhou Province, China. Phytotaxa 280 (9): 141–151.
https://doi.org/10.11646/phytotaxa.280.2.4
White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics:
PCR-protocols and applications-A laboratory manual. PCR Protocols: A Guide to Methods and Applications: 315–322.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wijayawardene, N.N, Hyde, K.D., Rajeshkumar, K.C., Hawksworth, D.L., Madrid, H., Kirk, P.M., Braun, U., Singh, R.V., Crous, P.W.,
Kukwa, M., Lücking, .R, Kurtzman, C.P., Yurkov, A., Haelewaters, D., Aptroot, A., Lumbsch, H.T., Timdal, E., Ertz, D., Etayo, J.,
Phillips, A.J.L., Groenewald, J.Z., Papizadeh, M., Selbmann, L., Dayarathne, M.C., Weerakoon, G., Jones, E.B.G., Suetrong, S.,
Tian, Q., Castañeda-Ruiz, R.F., Bahkali, A.H., Pang, K.L., Tanaka, K., Dai, D.Q., Sakayaroj, J., Hujslová, M., Lombard, L., Shenoy,
B.D., Suija, A., Maharachchikumbura, S.S.N., Thambugala, K.M., Wanasinghe, D.N., Sharma, B.O., Gaikwad, S., Pandit, G.,
Zucconi, L., Onofri, S., Egidi, E., Raja, H.A., Kodsueb, R., Cáceres, M.E.S., Pérez-Ortega, S., Fiuza, P.O., Monteiro, J.S., Vasilyeva,
L.N., Shivas, R.G., Prieto, M., Wedin, M., Olariaga, I., Lateef, A.A., Agrawal, Y., Fazeli, S.A.S, Amoozegar, M.A., Zhao, G.Z.,
Pfliegler, W.P., Sharma, G., Oset, M., Abdelwahab, M.A., Takamatsu, S., Bensch, K., De, Silva, N.I., De, Kesel, A., Karunarathna,
A., Boonmee, S., Pfister, D.H., Lu, Y.Z., Luo, Z.L., Boonyuen, N., Daranagama, D.A., Senanayake, I.C., Jayasiri, S.C., Samarakoon,
M.C., Zeng, X.Y., Doilom, M., Quijada, L., Rampadarath, S., Heredia, G., Dissanayake, A.J., Jayawardana, R.S., Perera, R.H., Tang,
L.Z., Phukhamsakda, C., Hernándezrestrepo, M., Ma, X.Y., Tibpromma, S., Gusmao, L.F.P., Weerahewa, D. & Karunarathna, S.C.
(2017) Notes for genera: Ascomycota. Fungal Diversity 86 (1): 1–594.
https://doi.org/10.1007/s13225-017-0386-0
Xiao, Y.P., Wen, T.C., Hongsanan, S., Sun, J.Z. & Hyde, K.D. (2017) Introducing Ophiocordyceps thanathonensis, a new species of
entomogenous fungi on ants, and a reference specimen for O. pseudolloydii. Phytotaxa 328 (2): 115–126.
http://dx.doi.org/10.11646/phytotaxa.328.2.2
Xiao, Y.P., Wen, T.C., Hongsanan, S., Jeewon, R., Luangsa-ard, J.J., Brooks, S., Wanasinghe, D.N., Long, F.Y. & Hyde, K.D. (2018)
Multigene phylogenetics of Polycephalomyces (Ophiocordycipitaceae, Hypocreales), with two new species from Thailand. Scientific
Reports 8 (1): 18087.
Xiao, Y.P., Hongsanan, S., Hyde, K.D., Brooks, S., Xie, N., Long, F.Y. & Wen, T.C. (2019) Two new entomopathogenic species of
Ophiocordyceps in Thailand. MycoKeys 47: 53–74.
Yang, Z.L., Qin, J., Xia, C., Hu, Q., Li, Q.Q. & Yang, Z.L. (2015) Ophiocordyceps highlandensis, a new entomopathogenic fungus from
Yunnan, China. Phytotaxa 204 (4): 287–295.
https://doi.org/10.11646/phytotaxa.204.4.5
Zhang, W.M., Wang, L., Tao, M.H., Chen, Y.Q. & Qu, L.H. (2007) Two species of Cordyceps simultaneously parasitic on a larva of
Lepidoptera. Mycosystema 26: 7–21.
... The six trees show limited concordance between them for the relationships between the species and often low bootstrap support or Bayesian posterior probabilities (S1 Fig), which has been observed previously [see for example the phylogeny of Ophiocordyceps by [51]]. Concatenation of five of the regions (i.e. ...
Article
Full-text available
The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis, which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative species are being sought. Ophiocordyceps robertsii, found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis, but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis. The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two (MAT1-2-1, MAT1-2-2) or three (MAT1-1-1, MAT1-1-2, MAT1-1-3) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis, as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand.
... The six trees show limited concordance between them for the relationships between the species and often low bootstrap support or Bayesian posterior probabilities (Fig. S1), which has been observed previously [see for example the phylogeny of Ophiocordyceps by [51]]. Concatenation of five of the . ...
Preprint
Full-text available
The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis , which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative sources are being sought. Ophiocordyceps robertsii , found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis , but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis . The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two ( MAT1-2-1, MAT1-2-2 ) or three ( MAT1-1-1, MAT1-1-2, MAT1-1-3 ) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis , as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand. One sentence summary Ophiocordyceps robertsii is a close relative of O. sinensis and has a large genome but with a heterothallic mating system.
Article
Full-text available
Ophiocordyceps is a species-rich genus in the order Hypocreales ( Sordariomycetes, Ascomycota ) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202–2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nr SSU , nr LSU, tef-1 α, and RPB1 ) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis ; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae , after O. sinensis . The presence of targeted marker components, viz . nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps -like taxa from new locations, thus providing new research avenues.
Article
Full-text available
Ophiocordyceps is the largest genus in the family Ophiocordicipitaceae, including many entomopathogenic species. In recent years, many species have been described in this genus, with a wide range of host insects. Entomopathogenic fungi include ecologically, economically and medicinally important species, but a large portion of their diversity remains to be discovered and described. In this study, a new species, Ophiocordyceps aphrophoridarum sp. nov, parasitising Aphrophoridae sp. (Hemiptera) is proposed from China, based on evidence from morphology and molecular phylogenetic analyses. This species is characterised by fibrous, pigmented stromata, cylindrical asci and filiform ascospores. Compared to its closest relative, O. tricentri , the new species has wider perithecia and longer asci. Molecular phylogenetic analyses of a multilocus dataset (consisting of SSU, ITS, LSU, TEF1, RPB1 and RPB2) confirm its placement in Ophiocordyceps . Ophiocordyceps aphrophoridarum is morphologically described and illustrated with colour photographs. Morphological comparisons with closely-related species are also presented in tabulated format.
Article
Full-text available
The genus Ophiocordyceps contains the most diverse assemblage of fungi that attack ants worldwide and are remarkably well adapted to the specific ecologies of their hosts. Desmidiospora myrmecophila Thaxt. is closely related to other ant-pathogenic species within Ophiocordyceps, possibly specific to queens, but the sheer infrequency of encounters and previously unsuccessful attempts to culture this fungus has precluded any meaningful assessment until now. A new record of Desmidiospora myrme-cophila from Louisiana was found infecting a foundress Camponotus pennsylvanicus queen, the same host species favored by the more common and ubiquitous ant-pathogenic Ophiocordyceps unilateralis clade found in the same geographic locality. To evaluate a long-held assumption that these fungi represent synanamorphs of a single species, we sampled our Desmidiospora specimen along with the local O. unilateralis population for molecular comparison. We are able to present for the first time the in vitro characteristics and morphology of Desmidiospora myrmecophila, as well as a phylogenetic context for this fungus based on combined molecular analysis of representative members of the Ophiocordycipitaceae. Our results place the Desmidiospora myrmecophila lineage within the genus Ophiocordyceps, with a basal affiliation to the Ophiocordyceps unilateralis core clade; thus, in accordance to the "One Fungus-One Name" (1F1N) rule, we propose a new synonym to suppress Desmidiospora in protection of Ophiocordyceps, i.e., O. desmidiospora. These results further implicate this species as an important and quintessential example of cryptic diversity among an already taxonomically diverse and ecologically important group of fungi. ARTICLE HISTORY
Article
Full-text available
Ophiocordyceps is a genus comprised by entomopathogenic fungi known to infect ten orders of insects, including Hymenoptera. Amongst the nearly 250 species described in the genus, few are known to manipulate their hosts, which are most notably ants. These species cause their hosts to die in an exposed position high above the ground while grabbing and/or biting the abaxial surface of leaves or branches, which in turn optimizes the fungus spore production and dispersal. Herein, we report on 14 social wasp species belonging to four genera (Agelaia, Mischocyttarus Polybia, and Pseudopolybia) infected by Ophiocordyceps humbertii, a common wasp pathogen. This study broadens the geographic and host range for O. humbertii and provides the first record of its ability to manipulate its host.
Article
Full-text available
Ophiocordyceps is entomopathogenic and the largest studied genus in the family Ophiocordycipitaceae. Many species in this genus have been reported from Thailand. The first new species introduced in this paper, Ophiocordyceps globiceps, differs from other species based on its smaller perithecia, shorter asci and secondary ascospores and additionally, in parasitising fly species. Phylogenetic analyses of combined LSU, SSU, ITS, TEF1α and RPB1 sequence data indicate that O. globiceps forms a distinct lineage within the genus Ophiocordyceps as a new species. The second new species, Ophiocordyceps sporangifera, is distinguished from closely related species by infecting larvae of insects (Coleoptera, Elateridae) and by producing white to brown sporangia, longer secondary synnemata and shorter primary and secondary phialides. We introduce O. sporangifera based on its significant morphological differences from other similar species, even though phylogenetic distinction is not well-supported.
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corym­ biae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani­betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae­frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Saro­ cladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceaefam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.
Article
Full-text available
Ophiocordyceps is a heterogeneous, species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) that includes invertebrate-pathogenic taxa. In this study, seven new species in Ophiocordyceps producing superficial perithecia infecting various insect hosts (Lepidoptera, Hemiptera) are described from Thailand – Ophiocordyceps brunneinigra, O. brunneiperitheciata, O. geometridicola, O. multiperitheciata, O. pauciovoperitheciata, O. pseudoacicularis and O. spataforae. Phylogenetic analyses based on multigene loci comprising the large subunit of the ribosomal DNA (LSU), partial sequences of elongation factor 1-alpha (TEF) and the largest and second largest subunit of the RNA polymerase (RPB1, PRB2) strongly support these new species of Ophiocordyceps in the Ophiocordycipitaceae. They differ from species previously described species Ophiocordyceps acicularis, O. atewensis, O. cochlidiicola, and O. crinalis, in the shape and sizes of distinguishing characters such as perithecia, ascospores and conidia. We also report a new record of O. macroacicularis in Thailand.
Article
Full-text available
Ophiocordyceps species infecting ants – the so-called zombie-ant fungi – comprise one of the most intriguing and fascinating relationships between microbes and animals. They are widespread within tropical forests worldwide, with relatively few reports from temperate ecosystems. These pathogens possess the ability to manipulate host behaviour in order to increase their own fitness. Depending on the fungal species involved the infected ants are manipulated either to leave the nest or ascend understorey shrubs, to die biting onto vegetation, or descend from the canopy to die at the base of trees. Experimental evidence has demonstrated that the behavioural change aids spore dispersal and thus increases the chances of infection, because of the existing behavioural immunity expressed inside ant colonies that limits fungal development and transmission. Despite their undoubted importance for ecosystem functioning, these fungal pathogens are still poorly documented, especially regarding their diversity, ecology and evolutionary relationships. Here, we describe 15 new species of Ophiocordyceps with hirsutella-like asexual morphs that exclusively infect ants. These, form a monophyletic group that we identified in this study as myrmecophilous hirsutelloid species. We also propose new combinations for species previously described as varieties and provide for the first time important morphological and ecological information. The species proposed herein were collected in Brazil, Colombia, USA, Australia and Japan. All species could readily be separated using classic taxonomic criteria, in particular ascospore and asexual morphology.
Article
Full-text available
This is the sixth in a series of papers where we bring collaborating mycologists together to produce a set of notes of several taxa of fungi. In this study we introduce a new family Fuscostagonosporaceae in Dothideomycetes. We also introduce the new ascomycete genera Acericola, Castellaniomyces, Dictyosporina and Longitudinalis and new species Acericola italica, Alternariaster trigonosporus, Amarenomyces dactylidis, Angustimassarina coryli, Astrocystis bambusicola, Castellaniomyces rosae, Chaetothyrina artocarpi, Chlamydotubeufia krabiensis, Colletotrichum lauri, Collodiscula chiangraiensis, Curvularia palmicola, Cytospora mali-sylvestris, Dictyocheirospora cheirospora, Dictyosporina ferruginea, Dothiora coronillae, Dothiora spartii, Dyfrolomyces phetchaburiensis, Epicoccum cedri, Epicoccum pruni, Fasciatispora calami, Fuscostagonospora cytisi, Grandibotrys hyalinus, Hermatomyces nabanheensis, Hongkongmyces thailandica, Hysterium rhizophorae, Jahnula guttulaspora, Kirschsteiniothelia rostrata, Koorchalomella salmonispora, Longitudinalis nabanheensis, Lophium zalerioides, Magnibotryascoma mali, Meliola clerodendri-infortunati, Microthyrium chinense, Neodidymelliopsis moricola, Neophaeocryptopus spartii, Nigrograna thymi, Ophiocordyceps cossidarum, Ophiocordyceps issidarum, Ophiosimulans plantaginis, Otidea pruinosa, Otidea stipitata, Paucispora kunmingense, Phaeoisaria microspora, Pleurothecium floriforme, Poaceascoma halophila, Periconia aquatica, Periconia submersa, Phaeosphaeria acaciae, Phaeopoacea muriformis, Pseudopithomyces kunmingnensis, Ramgea ozimecii, Sardiniella celtidis, Seimatosporium italicum, Setoseptoria scirpi, Torula gaodangensis and Vamsapriya breviconidiophora. We also provide an amended account of Rhytidhysteron to include apothecial ascomata and a J+ hymenium. The type species of Ascotrichella hawksworthii (Xylariales genera incertae sedis), Biciliopsis leptogiicola (Sordariomycetes genera incertae sedis), Brooksia tropicalis (Micropeltidaceae), Bryochiton monascus (Teratosphaeriaceae), Bryomyces scapaniae (Pseudoperisporiaceae), Buelliella minimula (Dothideomycetes genera incertae sedis), Carinispora nypae (Pseudoastrosphaeriellaceae), Cocciscia hammeri (Verrucariaceae), Endoxylina astroidea (Diatrypaceae), Exserohilum turcicum (Pleosporaceae), Immotthia hypoxylon (Roussoellaceae), Licopolia franciscana (Vizellaceae), Murispora rubicunda (Amniculicolaceae) and Doratospora guianensis (synonymized under Rizalia guianensis, Trichosphaeriaceae) were re-examined and descriptions, illustrations and discussion on their familial placement are given based on phylogeny and morphological data. New host records or new country reports are provided for Chlamydotubeufia huaikangplaensis, Colletotrichum fioriniae, Diaporthe subclavata, Diatrypella vulgaris, Immersidiscosia eucalypti, Leptoxyphium glochidion, Stemphylium vesicarium, Tetraploa yakushimensis and Xepicula leucotricha. Diaporthe baccae is synonymized under Diaporthe rhusicola. A reference specimen is provided for Periconia minutissima. Updated phylogenetic trees are provided for most families and genera. We introduce the new basidiomycete species Agaricus purpurlesquameus, Agaricus rufusfibrillosus, Lactifluus holophyllus, Lactifluus luteolamellatus, Lactifluus pseudohygrophoroides, Russula benwooii, Russula hypofragilis, Russula obscurozelleri, Russula parapallens, Russula phoenicea, Russula pseudopelargonia, Russula pseudotsugarum, Russula rhodocephala, Russula salishensis, Steccherinum amapaense, Tephrocybella constrictospora, Tyromyces amazonicus and Tyromyces angulatus and provide updated trees to the genera. We also introduce Mortierella formicae in Mortierellales, Mucoromycota and provide an updated phylogenetic tree.
Article
Full-text available
Ophiocordyceps pathogens of ants (Hymenoptera) are considered to have a worldwide distribution. Species of Ophiocordyceps have been relatively poorly studied and there is little molecular data available in GenBank. Thus, fresh collections and sequence data are needed to improve the understanding of species in the genus. In this study, infected ant species were collected in northern Thailand and carefully studied. As a result, O. thanathonensis is introduced as a new species. The morphology of O. thanathonensis differs from related species in the genus in having smaller ascomata, shorter asci, shorter ascospores and curved secondary ascospores. A reference specimen for O. pseudolloydii is also designated with sequence data. Phylogenetic analyses using maximum likelihood and Bayesian combined LSU, SSU, ITS, TEF1α and RPB1 sequence data show the placement of O. thanathonensis (new species) and O. pseudolloydii (reference specimen) within the Ophiocordyceps clade.
Article
The Ophiocordyceps myrmecophila complex is composed of pathogens specific to ants, found on the leaf litter or buried in soil and produce Hymenostilbe asexual morph. Species in this complex are morphologically highly similar and can hardly be distinguished macroscopically. To date, it has only been observed on formicine ants of the genera Polyrhachis and Camponotus. In this study, observations were conducted in three sites at Khao Yai National Park of Thailand where three new species are proposed. Molecular phylogenies based on the large subunit of the ribosomal DNA (LSU), partial sequences of translation elongation factor 1-α (TEF), and the largest and second largest subunits of the RNA polymerase Π (PRB1 and RPB2) revealed distinct clades separating these new species, namely Ophiocordyceps megacuculla, Ophiocordyceps khaoyaiensis, and Ophiocordyceps granospora. The morphological features of these three new species are clearly different from Ophiocordyceps thanathonensis, a recently described species of the complex, but mostly overlap between these three. However, they are proposed as distinct species based on molecular phylogenetic relationships, genetic distance, and minor morphological characters related to sexual structures.