Chapter

Invasive Species Impacts and Management

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Fruits (follicles) of Hakea salicifolia and Hakea sericea (Proteaceae) are characterised by pronounced lignification and open via a ventral suture and the dorsal side. The opening along both sides is unique within the Proteaceae. Both serotinous species are obligate seeders, whose spreading benefits from bush fire events. The different tissues and the course of the vascular bundles must allow the opening mechanism. While their 2D-arrangements are known to some extent from light-microscopy images of cross-sections, this work presents their three-dimensional structures and discusses their contribution to the opening of Hakea fruits. For this purpose, 3D greyscale images, reconstructed from µCT-projection data of both fruits are segmented, assisted by a deep learning algorithm (AI algorithm). 3D renderings from these segmentations show strongly interconnected vascular bundles that build a double-dome shaped network in each valve of H. salicifolia and a dome shaped honeycomb-structure in each valve of H. sericea. However, the vascular bundles of both species show no interconnection between the two lateral valves of the fruit but leave gaps for predetermined fracture tissues on the ventral and dorsal side. The opening of the fruits after a fire or after separation from the mother plant can be explained by the anisotropic shrinkage in the two valves of the fruit.
Article
Full-text available
The identification of effects of invasive species is challenging owing to their multifaceted impacts on native biota. Negative impacts are most often reflected in individual fitness rather than in population dynamics of native species and are less expected in low-biodiversity habitats, such as urban environments. We report the long-term effects of invasive rose-ringed parakeets on the largest known population of a threatened bat species, the greater noctule, located in an urban park. Both species share preferences for the same tree cavities for breeding. While the number of parakeet nests increased by a factor of 20 in 14 years, the number of trees occupied by noctules declined by 81%. Parakeets occupied most cavities previously used by noctules, and spatial analyses showed that noctules tried to avoid cavities close to parakeets. Parakeets were highly aggressive towards noctules, trying to occupy their cavities, often resulting in noctule death. This led to a dramatic population decline, but also an unusual aggregation of the occupied trees, probably disrupting the complex social behaviour of this bat species. These results indicate a strong impact through site displacement and killing of competitors, and highlight the need for long-term research to identify unexpected impacts that would otherwise be overlooked.
Article
Full-text available
Invasive apex predators have profound impacts on natural communities, yet the consequences of these impacts on the transmission of zoonotic pathogens are unexplored. Collapse of large- and medium-sized mammal populations in the Florida Everglades has been linked to the invasive Burmese python, Python bivittatus Kuhl. We used historic and current data to investigate potential impacts of these community effects on contact between the reservoir hosts (certain rodents) and vectors of Everglades virus, a zoonotic mosquito-borne pathogen that circulates in southern Florida. The percentage of blood meals taken from the primary reservoir host, the hispid cotton rat, Sigmodon hispidus Say and Ord, increased dramatically (422.2%) from 1979 (14.7%) to 2016 (76.8%), while blood meals from deer, raccoons and opossums decreased by 98.2%, reflecting precipitous declines in relative abundance of these larger mammals, attributed to python predation. Overall species diversity of hosts detected in Culex cedecei blood meals from the Everglades declined by 40.2% over the same period (H(1979) ¼ 1.68, H(2016) ¼ 1.01). Predictions based upon the dilution effect theory suggest that increased relative feedings upon reservoir hosts translate into increased abundance of infectious vectors, and a corresponding upsurge of Everglades virus occurrence and risk of human exposure, although this was not tested in the current study. This work constitutes the first indication that an invasive predator can increase contact between vectors and reservoirs of a human pathogen and highlights unrecognized indirect impacts of invasive predators. © 2017 The Author(s) Published by the Royal Society. All rights reserved.
Article
Full-text available
Invasive Alien Species (IAS) are a growing threat to Europe's biodiversity. The implementation of European Union Regulation on IAS can benefit from the involvement of the public in IAS recording and management through Citizen Science (CS) initiatives. Aiming to tackle issues related with the use of CS projects on IAS topics, a dedicated workshop titled “Citizen Science and Open Data: a model for Invasive Alien Species in Europe” was organized by the Joint Research Centre (JRC) and the European Cooperation in Science and Technology (COST Association). Fifty key stakeholders from all Europe, including two Members of the European Parliament, attended the workshop. With a clear focus on IAS, the workshop aimed at addressing the following issues: a) CS and policy, b) citizen engagement, and c) CS data management. Nine short presentations provided input on CS and IAS issues. Participants discussed specific topics in several round tables (“world café” style) and reported back their conclusions to the audience and full assembly moderated discussions. Overall, the workshop enabled the sharing of ideas, approaches and best practices regarding CS and IAS. Specific opportunities and pitfalls of using CS data in the whole policy cycle for IAS were recognized. Concerning the implementation of the IAS Regulation, CS data could complement official surveillance systems, and contribute to the early warning of the IAS of Union concern after appropriate validation by the Member States’ competent authorities. CS projects can additionally increase awareness and empower citizens. Attendees pointed out the importance for further public engagement in CS projects on IAS that demonstrate specific initiatives and approaches and analyze lessons learned from past experiences. In addition, the workshop noted that the data gathered from different CS projects on IAS are fragmented. It highlighted the need for using an open and accessible platform to upload data originating from CS sources or to mirror validated data into a single, easy-to-use web service, in line with the EU Open Science Strategic Priority. The workshop provided ten key recommendations of best practices for CS projects on IAS, addressed to researchers, policy makers and implementing authorities, indicating future research and policy directions and opportunities.
Article
Full-text available
Insects have presented human society with some of its greatest development challenges by spreading diseases, consuming crops and damaging infrastructure. Despite the massive human and financial toll of invasive insects, cost estimates of their impacts remain sporadic, spatially incomplete and of questionable quality. Here we compile a comprehensive database of economic costs of invasive insects. Taking all reported goods and service estimates, invasive insects cost a minimum of US$70.0 billion per year globally, while associated health costs exceed US$6.9 billion per year. Total costs rise as the number of estimate increases, although many of the worst costs have already been estimated (especially those related to human health). A lack of dedicated studies, especially for reproducible goods and service estimates, implies gross underestimation of global costs. Global warming as a consequence of climate change, rising human population densities and intensifying international trade will allow these costly insects to spread into new areas, but substantial savings could be achieved by increasing surveillance, containment and public awareness.
Article
Full-text available
Significance Invasive mammalian predators are arguably the most damaging group of alien animal species for global biodiversity. Thirty species of invasive predator are implicated in the extinction or endangerment of 738 vertebrate species—collectively contributing to 58% of all bird, mammal, and reptile extinctions. Cats, rodents, dogs, and pigs have the most pervasive impacts, and endemic island faunas are most vulnerable to invasive predators. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.
Article
Full-text available
Rats (brown –or Norway- and black : Rattus norvegicus and Rattus rattus, respectively) are very invasive rodents. They are originated from South-East Asia and are present now everywhere in the world, exploiting their extraordinary capacity to proliferate in close contact with human populations. Rats, and particularly the brown one, take advantage of conditions raised by overpopulation in cities, lack of hygiene and poverty. Beside the significant damage caused by their presence in rural and urban ecosystems, rats are also dangerous carriers of numerous pathogens transmissible to humans. Among these pathogens, leptospira and hantaviruses (particularly Seoul virus or SEOV) are the most important. Seoul virus belongs to the virus family Bunyaviridae and genus Hantavirus, has a worldwide distribution, and causes hemorragic fever with renal syndrome (HFRS) in humans. Leptospira and particularly L interrogans, serogroup L icterohaemorrhagiae, are zoonotic bacteria very frequently borne and excreted by rats and cause severe disease –leptospirosis- both in humans and domestic animals. Next generation sequencing confirmed that rats can carry many other microbes and parasites for which the zoonotic capacity is not always determined. The importance of rats as pests and carriers of numerous pathogens must encourage the fight against their proliferation, specially in urban environnments. The use of rodenticides such as anticoagulants is one pillar of prevention. However, increasing levels of rodenticide resistance can often render this means of control as ineffective. The second and absolutely necessary pillar of prevention involves the control of all environnmental factors which favour the establishment and proliferation of rats : age of housing, density of dwellings, defective drains/sewers, poor structural maintenance, proximity to food sources and poor hygiene.
Article
Full-text available
Plant species that growth close to or under the canopy of Acacia dealbata Link (Fabaceae, subfamily: Mimosoideae) within its non-native range, survive with difficulty or not at all, especially if they are native. This phenomenon has been attributed to allelopathy; one of the strategies used by A. dealbata to trigger an invasion process. Native species Quillaja saponaria Molina (tree) and Helenium aromaticum (Hook.) H.L. Bailey (herb), share A. dealbata’s range in South-central Chile. This study was performed on the Mediterranean Biobío Region of Chile. We evaluated the effect of leaves, flowers, pods and seeds of A. dealbata on the germination and early growth of these native species. Biological assays were carried out under laboratory conditions, based on aqueous extracts and the direct effect of plant material. Leaf litter prevented the germination of both species and seeds of the invasive species impeded the germination of Q. saponaria. Other plant parts from A. dealbata also induced reductions of hypocotyl and radicle lengths in the native species, reaching over 50 % in some treatment values. All plant parts caused radicle necrosis, preventing the formation of root hairs and, consequently, jeopardizing the survival possibility of the recipient species. The results show that A. dealbata can interfere with the establishment of pioneer herbaceous species in ecological succession and can also affect trees if they are reached by the invasion front.
Article
Full-text available
Studies on the impacts of invasive plants are common but most are short term and fail to consider the temporal context of invasion. The present work investigated particular invasions on two different time scales and asked: (1) Do the impacts of an invasive tree on plant communities change after decades of invasion? (2) Are patterns of impacts dynamic over a period of five years? (3) Can multiple parameters reveal impacts that are unnoticed when single-value parameters are measured alone? Contrasting plant communities (long invaded, recently invaded and non-invaded) of a Portuguese coastal dune were compared during a 5-year period to assess the impacts of the invasive Acacia longifolia. Plant diversity, richness, cover, plant traits, indicator species analysis, similarity between areas and species turnover were analysed to reveal spatial and temporal patterns of change. Native species richness declined in both invaded areas. As invasion time increased, species shared with natural habitats decreased along with native plant cover, diversity and species turnover. Many species typical of dunes were replaced by generalists and exotics species, and richness of species with some level of nitrophily increased, particularly in recently invaded areas. Life form spectrum was radically transformed in invaded areas with several small-sized life forms being replaced by one single microphanerophyte. Germination of A. longifolia was greatest in long invaded areas. Findings show that modification of plant communities intensifies with invasion time and that invasion promotes a diversity of structural and functional changes which are dynamic over a few years (medium-term scale) but which tend to stabilize after several decades (long-term scale). An analysis of parameters in combination revealed changes that were not apparent when the same parameters were considered separately.
Article
Full-text available
The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.
Article
Full-text available
Invasive species cause ecological, economic and social impacts and are key driver of global change. This is the case for the genus Prosopis (mesquite; Fabaceae) where several taxa are among the world's most damaging invasive species. Many contentious issues ("conflicts of interest") surround these taxa, and management interventions have not yet sustainably reduced the negative impacts. There is an urgent need to better understand the factors that drive invasions and shape management actions, and to compare the effectiveness of different management approaches. This paper presents a global review of Prosopis, focussing on its distribution, impacts, benefits and approaches to management. Prosopis has been introduced to 129 countries globally and many more countries are climatically suitable. All areas with naturalised or invasive Prosopis species at present are suitable for more taxa and many Asian and Mediterranean countries with no records of Prosopis are bioclimaticaly suitable. Several Prosopis species have substantial impacts on biodiversity, ecosystem services, and on local and regional economies in their native and even more so in their invasive ranges; others provide multiple benefits to local communities. Management efforts are underway in only a small part of the invaded range. Countries where more research has been done are more likely to implement formal management than those where little published research is available. Management strategies differ among countries; developed nations use mainly mechanical and chemical control whereas developing nations tend to apply control through utilisation approaches. A range of countries are also using biological control. Key gaps in knowledge and promising options for management are highlighted.
Article
Full-text available
Gambusia affinis and G. holbrooki, introduced worldwide from eastern North America, are collectively the most abundant, widespread freshwater fish in the world, which is not surprising because they tolerate, and sometimes thrive under, an exceptional range of environmental conditions and have high reproductive potential. Some know them as mosquitofish because of a legendary ability to control mosquitoes, and diseases they carry, while others doubt this ability or argue that indigenous fish are equally or more effective. However, rigorous evidence to support these views remains scant, so the legend persists. Some know them as plague minnow because of negative impacts on many native animal species, and abundant evidence exists to support this view. Despite such polarized attitudes toward them, their high abundance and wide distribution, and a large scientific literature devoted to them, many important aspects of their biology remain poorly known.
Article
Full-text available
Domestic goats, Capra hircus, were intentionally introduced to numerous oceanic islands beginning in the sixteenth century. The remarkable ability of C. hircus to survive in a variety of conditions has enabled this animal to become feral and impact native ecosystems on islands throughout the world. Direct ecological impacts include consumption and trampling of native plants, leading to plant community modification and transformation of ecosystem structure. Although the negative impacts of feral goats are well known and effective management strategies have been developed to control this invasive species, large populations persist on many islands. This review summarizes impacts of feral goats on Pacific island ecosystems and management strategies available to control this invasive species.
Article
Full-text available
The domestic cat has been introduced on most islands worldwide, where it has established feral populations and is currently known to be one of the worst invasive mammalian predators. Predation is the strongest deleterious effect of cats on wildlife, inducing a direct negative impact on population size and dynamics, breeding success and changes in species assemblages. Direct predation is not the only damaging impact on native wildlife, since cats can be responsible for other poorly-documented underlying ecological impacts, like competition, hybridization, disease transmission, ecological process alteration, and behavioral change. Here, we pinpoint relevant examples of these ecological impacts, by searching for accurate data from published literature. We used electronic databases covering most of the world islands where the effects of cats were documented. Knowledge of these impacts can be of great importance to preserve insular ecosystem functions and persistence of endangered native species. We emphasize that direct predation processes should not be the only factor considered in the management of invasive cats on islands.
Article
Full-text available
A great part of the Earth's biodiversity occurs on islands, to which humans have brought a legion of invasive species that have caused population declines and even extinctions. The domestic cat is one of the most damaging species introduced to islands, being a primary extinction driver for at least 33 insular endemic vertebrates. Here, we examine the role of feral cats in the context of the island biodiversity crisis, by combining data from reviews of trophic studies, species conservation status reports, and eradication campaigns. The integration of these reviews permits us to identify priority islands where feral cat eradications are likely to be feasible and where cats are predicted to cause the next vertebrate extinctions. Funding agencies and global conservation organizations can use these results to prioritize scarce conservation funds, and national and regional natural resource management agencies can rank their islands in need of feral cat eradication within a global context.
Article
Full-text available
From the past, species have been transferred among ecosystems trough traveling and global trade. The establishment and spread of such invasive species has caused significant damage to the economy, the environment, and human or native species health. This review compiles information on infections or contact with pathogens reported in raccoons (Procyon lotor). Raccoons are opportunistic carnivores native to North America. However, nowadays they are distributed across mainland Europe as a result of escaped pets and introductions. In their native range, raccoons are known to be host to a number of disease agents that could be transmitted to humans, domestic animals and other wildlife. Hence, the increase of raccoon populations and their geographic spread in Europe may result in new disease hazards. Raccoons have been identified as possible sentinels of diseases such as West Nile virus, and they pose a disease-related conservation risk by maintaining circulation of canine distemper virus. They also have the potential to participate in the maintenance of zoonoses including the raccoon roundworm Baylisascaris procyonis. Due its fast expansion and the large list of diseases, we conclude that the introduction of the raccoon has had adverse effects on health in Europe. This might well be the case of other invasive species, too. Hence, studies on invasive species health aspects are urgently needed to assess the risk of disease spread and eventually establish control measures.
Article
Full-text available
Alien plants are a growing threat to the Galápagos unique biota. We evaluated the impact of alien plants on eight seed dispersal networks from two islands of the archipelago. Nearly 10 000 intact seeds from 58 species were recovered from the droppings of 18 bird and reptile dispersers. The most dispersed invaders were Lantana camara, Rubus niveus and Psidium guajava, the latter two likely benefiting from an asynchronous fruit production with most native plants, which facilitate their consumption and spread. Lava lizards dispersed the seeds of 27 species, being the most important dispersers, followed by small ground finch, two mockingbirds, the giant tortoise and two insectivorous birds. Most animals dispersed alien seeds, but these formed a relatively small proportion of the interactions. Nevertheless, the integration of aliens was higher in the island that has been invaded for longest, suggesting a time-lag between alien plant introductions and their impacts on seed dispersal networks. Alien plants become more specialized with advancing invasion, favouring more simplified plant and disperser communities. However, only habitat type significantly affected the overall network structure. Alien plants were dispersed via two pathways: dry-fruited plants were preferentially dispersed by finches, while fleshy fruited species were mostly dispersed by other birds and reptiles.
Article
Full-text available
We identified 25 species of birds representing nine avian Orders from remains in digestive tracts of 85 Burmese pythons (Python molurus bivittatus) collected in Everglades National Park, Florida, USA, from 2003 to 2008. Four species of birds identified in this study are of special concern in Florida and a fifth, the Wood Stork (Mycteria americana), is listed as federally endangered. This represents the first detailed analysis of the avian component of the diet of the introduced Burmese python, now established in Everglades National Park, Florida and highlights the potential for considerable negative impact of this invasive species on native bird populations.
Article
Full-text available
Over 120,000 non-native species of plants, animals and microbes have invaded the United States, United Kingdom, Australia, South Africa, India, and Brazil, and many have caused major economic losses in agriculture and forestry as well as negatively impacting ecological integrity. Some introduced species, like corn (Zea mays L.), wheat (Triticum spp.), rice (Oryza sativa L.), plantation forests, domestic chicken (Gallus spp.), cattle (Bos taurus), and others, are beneficial and provide more than 98% of the world’s food supply. Precise economic costs associated with some of the most ecologically damaging alien species are not available. Cats (Felis cattus) and pigs (Sus scrofa), for example, are responsible for the extinction of various animal species, however, it is impossible to assign monetary values to species forced to extinction. The estimate is that non-native species invasions in the six nations are causing more than US$ 314 billion per year in damages.
Article
Full-text available
An invasive population of Burmese pythons (Python molurus bivittatus) is established across several thousand square kilometers of southern Florida and appears to have caused precipitous population declines among several species of native mammals. Why has this giant snake had such great success as an invasive species when many established reptiles have failed to spread? We scored the Burmese python for each of 15 literature-based attributes relative to predefined comparison groups from a diverse range of taxa and provide a review of the natural history and ecology of Burmese pythons relevant to each attribute. We focused on attributes linked to spread and magnitude of impacts rather than establishment success. Our results suggest that attributes related to body size and generalism appeared to be particularly applicable to the Burmese python's success in Florida. The attributes with the highest scores were: high reproductive potential, low vulnerability to predation, large adult body size, large offspring size and high dietary breadth. However, attributes of ectotherms in general and pythons in particular (including predatory mode, energetic efficiency and social interactions) might have also contributed to invasion success. Although establishment risk assessments are an important initial step in prevention of new establishments, evaluating species in terms of their potential for spreading widely and negatively impacting ecosystems might become part of the means by which resource managers prioritize control efforts in environments with large numbers of introduced species.
Article
Full-text available
Study of the impacts of biological invasions, a pervasive component of global change, has generated remarkable understanding of the mechanisms and consequences of the spread of introduced populations. The growing field of invasion science, poised at a crossroads where ecology, social sciences, resource management, and public perception meet, is increasingly exposed to critical scrutiny from several perspectives. Although the rate of biological invasions, elucidation of their consequences, and knowledge about mitigation are growing rapidly, the very need for invasion science is disputed. Here, we highlight recent progress in understanding invasion impacts and management, and discuss the challenges that the discipline faces in its science and interactions with society.
Article
Full-text available
Aim The biophysical impacts of invasive Australian acacias and their effects on ecosystem services are explored and used to develop a framework for improved restoration practices. Location South Africa, Portugal and Chile. Methods A conceptual model of ecosystem responses to the increasing severity (density and duration) of invasions was developed from the literature and our knowledge of how these impacts affect options for restoration. Case studies are used to identify similarities and differences between three regions severely affected by invasions of Australian acacias: Acacia dealbata in Chile, Acacia longifolia in Portugal and Acacia saligna in South Africa. Results Australian acacias have a wide range of impacts on ecosystems that increase with time and disturbance, transform ecosystems and alter and reduce ecosystem service delivery. A shared trait is the accumulation of massive seed banks, which enables them to become dominant after disturbances. Ecosystem trajectories and recovery potential suggest that there are important thresholds in ecosystem state and resilience. When these are crossed, options for restoration are radically altered; in many cases, autogenic (self-driven and self-sustaining) recovery to a pre-invasion condition is inhibited, necessitating active intervention to restore composition and function. Main conclusions The conceptual model demonstrates the degree, nature and reversibility of ecosystem degradation and identifies key actions needed to restore ecosystems to desired states. Control and restoration operations, particularly active restoration, require substantial short- to medium-term investments, which can reduce losses of biodiversity and ecosystem services, and the costs to society in the long term. Increasing restoration effectiveness will require further research into linkages between impacts and restoration. This research should involve scientists, practitioners and managers engaged in invasive plant control and restoration programmes, together with society as both the investors in, and beneficiaries of, more effective restoration.
Article
Full-text available
Recent comprehensive data provided through the DAISIE project (www.europe-aliens.org) have facilitated the development of the first pan-European assessment of the impacts of alien plants, vertebrates, and invertebrates in terrestrial, freshwater, and marine environments on ecosystem services. There are 1094 species with documented ecological impacts and 1347 with economic impacts. The two taxonomic groups with the most species causing impacts are terrestrial invertebrates and terrestrial plants. The North Sea is the maritime region that suffers the most impacts. Across taxa and regions, ecological and economic impacts are highly correlated. Terrestrial invertebrates create greater economic impacts than ecological impacts, while the reverse is true for terrestrial plants. Alien species from all taxonomic groups affect "supporting", "provisioning", "regulating", and "cultural" services and interfere with human well-being. Terrestrial vertebrates are responsible for the greatest range of impacts, and these are widely distributed across Europe. Here, we present a review of the financial costs, as the first step toward calculating an estimate of the economic consequences of alien species in Europe.
Article
Full-text available
Invasive species represent a significant threat to global biodiversity and a substantial economic burden. Burmese pythons, giant constricting snakes native to Asia, now are found throughout much of southern Florida, including all of Everglades National Park (ENP). Pythons have increased dramatically in both abundance and geographic range since 2000 and consume a wide variety of mammals and birds. Here we report severe apparent declines in mammal populations that coincide temporally and spatially with the proliferation of pythons in ENP. Before 2000, mammals were encountered frequently during nocturnal road surveys within ENP. In contrast, road surveys totaling 56,971 km from 2003-2011 documented a 99.3% decrease in the frequency of raccoon observations, decreases of 98.9% and 87.5% for opossum and bobcat observations, respectively, and failed to detect rabbits. Road surveys also revealed that these species are more common in areas where pythons have been discovered only recently and are most abundant outside the python's current introduced range. These findings suggest that predation by pythons has resulted in dramatic declines in mammals within ENP and that introduced apex predators, such as giant constrictors, can exert significant top-down pressure on prey populations. Severe declines in easily observed and/or common mammals, such as raccoons and bobcats, bode poorly for species of conservation concern, which often are more difficult to sample and occur at lower densities.
Article
Biological invasions are a major threat to biodiversity and as such understanding their impacts is a research priority. Ecological networks provide a valuable tool to explore such impacts at the community level, and can be particularly insightful for planning and monitoring biocontrol programmes, including the potential for their seldom evaluated indirect non-target effects. Acacia longifolia is among the worst invasive species in Portugal, and has been recently targeted for biocontrol by a highly specific gall-wasp. Here we use an ambitious replicated network approach to: 1) identify the mechanisms by which direct and indirect impacts of A. longifolia can cascade from plants to higher trophic levels, including gallers, their parasitoids and inquilines; 2) reveal the structure of the interaction networks between plants, gallers, parasitoids and inquilines before the biocontrol; and 3) explore the potential for indirect interactions among gallers, including those established with the biocontrol agent, via apparent competition. Over a 15-month period, we collected 31737 galls from native plants and identified all emerging insects, quantifying the interactions between 219 plant-, 49 galler-, 65 parasitoid- and 87 inquiline-species - one of the largest ecological networks to date. No galls were found on any of the 16 alien plant species. Invasion by A. longifolia caused an alarming simplification of plant communities, with cascading effects to higher trophic levels, namely: a decline of overall gall biomass, and on the richness, abundance and biomass of galler insects, their parasitoids, and inquilines. Correspondingly, we detected a significant decline in the richness of interactions between plants and galls. The invasion tended to increase overall interaction evenness by promoting the local extinction of the native plants that sustained more gall species. However, highly idiosyncratic responses hindered the detection of further consistent changes in network topology. Predictions of indirect effects of the biocontrol on native gallers via apparent competition ranged from negligible to highly significant. Such scenarios are incredibly hard to predict, but even if there are risks of indirect effects it is critical to weigh them carefully against the consequences of inaction and invasive species spread. This article is protected by copyright. All rights reserved.
Article
Daniel Simberloff presents an overview of invasive species, their impacts and management in this chapter. Invasive species cause myriad sorts of conservation problems, many of which are complicated, some of which are subtle, and some of which are not manifested until long after a species is introduced. The best way to avoid such problems is to prevent introductions in the first place or, failing that, to find them quickly and eradicate them. However, many established introduced species can be managed by a variety of technologies so that their populations remain restricted and their impacts are minimized.
Article
Biological invasion can be described as a process involving several stages (Fig. 5.1) though delineation of transitions between stages can be quite arbitrary (Cousens and Mortimer 1995; Groves 1999, 2006; Colautti and MacIsaac 2004). Five stages of invasion can be identified: pre-introduction, introduction, naturalization, expansion, and ‘saturation’. The time of initial introduction is followed by naturalization, defined as the stage when a species is able to ‘reproduce consistently and sustain populations over many life cycles without direct intervention by humans’ (Richardson et al. 2000).
Article
It is well known that invasive species are a problem of epidemic proportions around the world, causing economic losses of up to $120 billion per year in the USA alone (Pimentel et al. 2005). As trade and travel across international boundaries increase, so do invasions (Mack and Lonsdale 2001). Early detection and rapid assessment are effective strategies to minimize the impacts that invasive species have on economies and on ecosystems that they invade (Rejmanek and Pitcairn 2002).
Article
The early declines in Central Europe and later in Finland took place before the spread of the American mink Mustela vison. On the other hand, the present decline of M. lutreola in Estonia seems to coincide well with the spread of M. vison. The early declines in Central Europe could have been caused by destruction of the natural river ecosystems, especially river banks. The European mink seems to be a much more specialized species than the American mink. Before the arrival of M. vison, the change in the preferred habitat, small sandy brooks, or the crash of the food source, could have been the underlying cause. With the arrival of the American mink, the European one loses even without the environmental change. -from Authors
Article
Five species of invasive Aedes mosquitoes have recently become established in Europe: Aedes albopictus, Aedes aegypti, Aedes japonicus japonicus, Aedes koreicus and Aedes atropalpus. These mosquitoes are a serious nuisance for people and are also competent vectors for several exotic pathogens such as dengue and chikungunya viruses. As they are a growing public health concern, methods to control these mosquitoes need to be implemented to reduce their biting and their potential for disease transmission. There is a crucial need to evaluate methods as part of an integrated invasive mosquito species control strategy in different European countries, taking into account local Aedes infestations and European regulations. This review presents the control methods available or in development against invasive Aedes mosquitoes with a particular focus on those which can be implemented in Europe. These control methods are divided into five categories: environmental (source reduction), mechanical (trapping), biological (e.g. copepods, Bti, Wolbachia), chemical (insect growth regulators, pyrethroids) and genetic (sterile insect technique and genetically modified mosquitoes). We discuss the effectiveness, ecological impact, sustainability and stage of development of each control method. This article is protected by copyright. All rights reserved.
Article
Parties to the Convention on Biological Diversity have agreed that, by 2020, invasion pathways will be identified, prioritized and managed to prevent the introduction of invasive alien species. The challenges facing this target are examined for six primary invasion pathways: assisted colonization as a deliberate release ; escape of pets and aquaria species; parasite and pathogen contaminants of wildlife; stowaways on tourist clothing and equipment; navigation corridors ; and transboundary implications of unaided spread. Economic drivers such as tourism, the pet trade and infrastructure projects will accelerate invasive alien species introductions, particularly in emerging economies. Mitigation requires ‘polluter pays’ legislation combined with improved policy enforcement and compliance. Policy implications . Policymakers require new risk analysis tools to predict the hazards posed by species with no prior invasion history, the vulnerability of native biodiversity to emerging diseases, and the components of regional species pools that become invasive following connection via corridors.
Article
Much as Rachel Carson's "Silent Spring" was a call to action against the pesticides that were devastating bird populations, Charles S. Elton's classic "The Ecology of Invasions by Animals and Plants" sounded an early warning about an environmental catastrophe that has become all too familiar today-the invasion of nonnative species. From kudzu to zebra mussels to Asian long-horned beetles, nonnative species are colonizing new habitats around the world at an alarming rate thanks to accidental and intentional human intervention. One of the leading causes of extinctions of native animals and plants, invasive species also wreak severe economic havoc, causing $79 billion worth of damage in the United States alone. Elton explains the devastating effects that invasive species can have on local ecosystems in clear, concise language and with numerous examples. The first book on invasion biology, and still the most cited, Elton's masterpiece provides an accessible, engaging introduction to one of the most important environmental crises of our time. Charles S. Elton was one of the founders of ecology, who also established and led Oxford University's Bureau of Animal Population. His work has influenced generations of ecologists and zoologists, and his publications remain central to the literature in modern biology. "History has caught up with Charles Elton's foresight, and "The Ecology of Invasions" can now be seen as one of the central scientific books of our century."-David Quammen, from the Foreword to "Killer Algae: The True Tale of a Biological Invasion"
Article
Many coastal dune ecosystems in Portugal are invaded by the leguminous tree Acacia longifolia (Andrews) Willd. This exotic species was first introduced over one hundred years ago in an effort to mitigate dune erosion and loss of coastal landscapes. However, since then A. longifolia has spread to new areas, displacing the native vegetation. These invaded ecosystems contrast with the native dune ecosystems that are typically dominated by herb and shrub communities. This study characterizes belowground changes to the native environment as a result of recent (20 y) by A. longifolia by analyzing a range of chemical and microbial parameters. Both invaded areas accumulated higher litter densities with greater N contents and lower C/N ratios than the native areas, which corresponded to lower C/N ratio and to higher potential rates of nitrification in the invaded soils. Long-term occupation by A. longifolia has significantly altered the soil properties with increased levels of organic C, total N and exchangeable cations resulting in higher microbial biomass, basal respiration, and β-glucosaminidase activity. However, basal respiration and microbial biomass were significantly higher within recent invasion sites when calculated relative to soil organic C. The results from this study show that invasions by A. longifolia have altered the original native ecosystem processes and that the impacts are more pronounced within long-term invaded sites. A positive feedback mechanism is apparent for A. longifolia invading these Mediterranean dunes, which can make the restoration of native plant communities increasingly difficult with time elapsed since invasion.
Article
Much confusion exists in the English-language literature on plant invasions concerning the terms ‘naturalized’ and ‘invasive’ and their associated concepts. Several authors have used these terms in proposing schemes for conceptualizing the sequence of events from introduction to invasion, but often imprecisely, erroneously or in contradictory ways. This greatly complicates the formulation of robust generalizations in invasion ecology. Based on an extensive and critical survey of the literature we defined a minimum set of key terms related to a graphic scheme which conceptualizes the naturalization/invasion process. Introduction means that the plant (or its propagule) has been transported by humans across a major geographical barrier. Naturalization starts when abiotic and biotic barriers to survival are surmounted and when various barriers to regular reproduction are overcome. Invasion further requires that introduced plants produce reproductive offspring in areas distant from sites of introduction (approximate scales: > 100 m over < 50 years for taxa spreading by seeds and other propagules; > 6 m/3 years for taxa spreading by roots, rhizomes, stolons or creeping stems). Taxa that can cope with the abiotic environment and biota in the general area may invade disturbed, seminatural communities. Invasion of successionally mature, undisturbed communities usually requires that the alien taxon overcomes a different category of barriers. We propose that the term ‘invasive’ should be used without any inference to environmental or economic impact. Terms like ‘pests’ and ‘weeds’ are suitable labels for the 50–80% of invaders that have harmful effects. About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed ‘transformers’.
Article
Invasive species are a major element of global change and are contributing to biodiversity loss, ecosystem degradation, and impairment of ecosystem services worldwide. Research is shedding new light on the ecological and economic consequences of invasions. New approaches are emerging for describing and evaluating impacts of invasive species, and for translating these impacts into monetary terms. The harmful effects of invasions are now widely recognized, and multiscale programs are in place in many parts of the world to reduce current and future impacts. There has been an upsurge in scientific research aimed at guiding management interventions. Among the activities that are receiving the most attention and that have the most promise for reducing problems are risk assessment, pathway and vector management, early detection, rapid response, and new approaches to mitigation and restoration. Screening protocols to reduce new introductions are becoming more accurate and have been shown cost-effective.
Article
Government departments, environmental managers and conservationists are all facing escalating pressure to address and resolve a diversity of invasive alien species (IAS) problems. Yet much research to date is primarily concerned with quantifying the scale of the problem rather than delivering robust solutions and has not adequately addressed all stages of the invasion process, and only a few studies embrace the ecosystem approach. Three successive steps, prevention, eradication and control, form the cornerstones of recommended best practices aimed at managing IAS. The goal of such actions is the restoration of ecosystems to preserve or re‐establish native biodiversity and functions. Prevention is widely promoted as being a more environmentally desirable strategy than actions undertaken after IAS establishment, yet is hindered by the difficulty in separating invasive from non‐invasive alien species. Furthermore, the high number of candidate IAS, the investment required in taxonomic support and inspection capacity, and the expense of individual risk assessments may act against the net benefits of prevention. More rewarding avenues may be found by pursuing neural networks to predict the potential composition of pest assemblages in different regions and/or model introduction pathways to identify likely invasion hubs. Rapid response should be consequent on early detection but, when IAS are rare, detection rates are compromised by low occurrence and limited power to discern significant changes in abundance. Power could be increased by developing composite indicators that track trends in a suite of IAS with similar life histories, shared pathways and/or habitat preferences. The assessment of management options will benefit from an ecosystem perspective that considers the manipulation of native competitors, consumers and mutualists, and reviews existing management practices as well as mitigates other environmental pressures. The ease with which an IAS can be targeted should not only address the direct management effects on population dynamics but also indirect effects on community diversity and structure. Where the goal is to safeguard native biodiversity, such activities should take into account the need to re‐establish native species and/or restore ecosystem function in the previously affected area. Synthesis and applications . A comprehensive approach to IAS management should include consideration of the: (i) expected impacts; (ii) technical options available; (iii) ease with which the species can be targeted; (iv) risks associated with management; (v) likelihood of success; and (vi) extent of public concern and stakeholder interest. For each of these issues, in addition to targeting an individual species, the management of biological invasions must also incorporate an appreciation of other environmental pressures, the importance of landscape structure, and the role of existing management activities and restoration efforts.
Article
The publication, in 1958, of Charles Elton's book The ecology of invasions by animals and plants launched the systematic study of biological invasions. Invasion ecology has grown to become an important multi‐disciplinary subfield of ecology with growing links to many other disciplines. This paper examines the citation history of Elton's book using the Web of Science. We also examine Elton's influence in shaping the current research agenda in invasion ecology, for which we use the 28 papers in a special issue of Diversity and Distributions (Volume 14: 2) as a representative sample. After 50 years, Elton's book remains the most cited single source in the field (> 1500 citations), and is cited more often every year (> 100 times) than any other invasion‐related publication, including influential papers in journals. Most citations to Elton's book refer to particular topics/concepts covered in the book, rather than citing it as a general reference about invasions. The shift in the distribution of topics/concepts cited with reference to Elton over time follows the same trend as for biogeography and ecology in general (increasing emphasis on analytical studies, multi‐scale analyses, multi‐disciplinary studies, etc.). Some topics emphasized by Elton are still the focus of current research (dispersal and spread of invasive organisms, impact on biodiversity, role of disturbance and enemy release) but several prominent themes in modern studies were not addressed by Elton. The emergence of new themes can be attributed to a general change in approach and emphasis underpinning research questions in conservation biogeography and applied ecology over the last half century (risk analysis, multi‐scale comparisons, propagule pressure, experimental approaches) and to the recent emergence and increasing availability of large data sets on the distribution of introduced species and to the emergence of key technologies (e.g. geographic information systems, modelling techniques, including niche‐based modelling, and molecular methods). Half a century after its publication, Charles Elton's book on invasions remains influential, but massive changes in the status of invasions and other environmental issues worldwide, together with advances in technology, are reshaping the game rules and priorities of invasion ecology.
Article
Study of interactions between pairs or larger groups of nonindigenous species has been subordinated in the literature to study of interactions between nonindigenous and native species. To the extent that interactions among introduced species are depicted at all, the emphasis has been on negative interactions, primarily resource competition and interference. However, a literature search reveals that introduced species frequently interact with one another and that facilitative interactions are at least as common as detrimental ones. The population significance of these interactions has rarely been determined, but a great variety of types of direct and indirect interactions among individuals of different nonindigenous species is observed, and many are plausibly believed to have consequences at the population level. In particular, mutualisms between plants and the animals that disperse and/or pollinate them and modification of habitat by both animals and plants seem common and often important in facilitating invasions. There is little evidence that interference among introduced species at levels currently observed significantly impedes further invasions, and synergistic interactions among invaders may well lead to accelerated impacts on native ecosystems – an invasional meltdown process.
Article
Invading alien species in the United States cause major environmental damages and losses adding up to almost $120 billion per year. There are approximately 50,000 foreign species and the number is increasing. About 42% of the species on the Threatened or Endangered species lists are at risk primarily because of alien-invasive species.
Article
Recent work has shown that antagonist (e.g. predator–prey food web) and mutualist (e.g. pollinator–plant) network structure can be altered by global environmental change drivers, and that these alterations may have important ecosystem-level consequences. This has prompted calls for the conservation of network structure, but precisely which attributes of webs should be conserved remains unclear. Further, the extent to which network metrics characterise the spatiotemporally-variable dynamic structure of interacting communities is unknown. Here, we summarise the attributes of web structure that are predicted to confer stability or increased function to a system, as these may be of greatest interest to conservation biologists. However, empirical evaluation of these effects is lacking in most cases, and we discuss whether stability is even desirable in all contexts. The incorporation of web attributes into conservation monitoring requires that changes in these attributes can be recorded (sampled) with relative ease. We contrast the sensitivity of metrics to sampling effort, and highlight those (such as nestedness and connectance) that could easily be incorporated into conservation monitoring. Despite our growing understanding of the characteristics of food webs that confer stability and function, numerous practical challenges need to be overcome before the goal of conserving species interaction networks can be achieved.
Article
The widespread invasive rodents Rattus norvegicus, R. rattus, R. exulans and Mus musculus have been implicated in the decline and extinction of hundreds of island endemic vertebrates, but their effects on island invertebrates are less well-known. Here I present the first global review of the subject, which confirms that large-bodied invertebrates are most at risk from these rodents, and that although a disproportionate number of studies (69%) are from New Zealand, rodent-invertebrate impacts are geographically widespread. Mechanisms of impact are both direct (mediated by predation) and indirect (involving intermediary species). Some studies also suggest knock-on effects on ecosystem properties, and given the diverse ecological functions of invertebrates (as detritivores, primary consumers, predators, prey and pollinators), I suggest that an understanding of the interactions between invasive rodents and invertebrates in island ecosystems is essential for effective conservation management. Currently many reported impacts are unquantified, come from uncontrolled and unreplicated designs, or rely on time-series with inadequate baseline data. In addition to basic improvements in study design, this review highlights a need for studies which investigate mechanisms of impact, or impacts across trophic levels.
Article
Specific pathways of the ecological impact of invasive species remain poorly known. Although the spread of toxic cane toads (Bufo marinus) through tropical Australia is widely believed to have caused extensive mortality of native reptiles and mammals, effects of toad ingestion on native anurans have been virtually ignored. Our studies on the Adelaide River floodplain show that the most numerous vertebrate victims of toad invasion are native tadpoles that die when they attempt to consume toad eggs. We documented 11 episodes of mass mortality, totalling >1300 tadpoles of 10 species, in five waterbodies within a single wet-season shortly after the toads invaded. A causal link between toad breeding and tadpole mortality is supported by observations that: (1) in at least 9 of the 11 waterbodies involved, toads bred immediately prior to mortality events; (2) water quality was indistinguishable from that of control ponds, and tadpoles placed in that water remained healthy; (3) dead tadpoles showed no sign of disease; and (4) laboratory trials showed rapid, 100% mortality in native tadpoles exposed to freshly-laid toad eggs. Despite these high mortality rates, toad invasion does not appear to threaten the viability of anuran populations because frogs often breed in ponds not used by toads, and because density-dependent growth and survival within tadpole communities mean that additional mortality may not reduce the total effective recruitment of metamorph frogs from a waterbody.
Article
Ecology Letters (2012) 15: 484–491 Plant–plant interactions are key processes shaping plant communities, but methods are lacking to accurately capture the spatial dimension of these processes. Isoscapes, i.e. spatially continuous observations of variations in stable isotope ratios, provide innovative methods to trace the spatial dimension of ecological processes at continental to global scales. Herein, we test the usefulness of nitrogen isoscapes (δ15N) for quantifying alterations in community functioning following exotic plant invasion. Nitrogen introduced by an exotic N2-fixing acacia could be accurately traced through the ecosystem and into the surrounding native vegetation by combining native species foliar δ15N with spatial information regarding plant location using geostatistical methods. The area impacted by N-addition was at least 3.5-fold greater than the physical area covered by the invader. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with invasion and in resolving the spatial component of within-community interactions.
Article
Besides a general consensus regarding the negative impact of invasive alien species in the literature, only recently has the decline of native species attributable to biological invasions begun to be quantified in many parts of the world. The cause-effect relationship between the establishment and proliferation of alien species and the extinction of native species is, however, seldom demonstrated. We conducted a meta-analysis of studies in Mediterranean-type ecosystems (MTEs) to examine: (1) whether invasion of alien plant species indeed causes a reduction in the number of native plant species at different spatial and temporal scales; (2) which growth forms, habitat types and areas are most affected by invasions; and (3) which taxa are most responsible for native species richness declines. Our results confirm a significant decline in native species richness attributable to alien invasions. Studies conducted at small scales or sampled over long periods reveal stronger impacts of alien invasion than those at large spatial scales and over short periods. Alien species from regions with similar climates have much stronger impacts, with the native species richness in South Africa and Australia declining significantly more post-invasion than for European sites. Australian Acacia species in South Africa accounted for the most significant declines in native species richness. Among the different growth forms of alien plants, annual herbs, trees and creepers had the greatest impact, whereas graminoids generally caused insignificant changes to the native community. Native species richness of shrublands, old fields and dune vegetation showed significant declines, in contrast to insignificant declines for forest habitats.