Article

A flexible self-recovery finger joint for a tendon-driven robot hand

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

This paper presents a new biomimetic soft finger joint with elastic ligaments for enhanced restoration capability. A hemisphere-shaped flexible finger joint is designed to secure omnidirectional restoration and guarantee a reliable recovery function. Joint design comparative studies for enhancing restoration are presented with joint mechanisms and potential energy formulation analyses. A ligament design that enables an efficient grasping mode switch from power to pinch grasping is also considered. By using the presented joint and ligament, a tendon-driven robot hand is assembled. For the finger’s biomimetic features, the hand provides a reasonably secure grasping operation for various complicated objects with minimum controls. The impact test and grasping experiments confirmed that the fabricated hand has the right amount of passive compliance in all directions as designed, and the restoration to the original state is also stably performed.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Soft compliant grasping is essential in delicate manipulation tasks typically required in manufacturing and/or medical applications to prevent stress concentration at the point of contact. In comparison with their rigid counterparts, the intrinsic compliance of soft grippers offers simpler control and planning of the grasping action, especially where robots are faced with a number of objects varying in shape and size. However, quantitative analysis is rarely utilized in the design and fabrication of soft grippers, due to the fact that significant and complex deformation occurs once the soft gripper is in contact with external objects. In this paper, we demonstrate the design of a soft gripper using our novel bimorph-like pneumatic bending actuators. The gripper was modelled through finite element analysis to reflect its gripping capability during interaction with certain targeted objects. The proposed systematic design and analytical model was validated via experiments. The system’s gripping capability was evaluated with objects of different weight and dimension. In addition, compliance testing has proved that the proposed soft gripper is able to grip objects of 60 g from the side, without causing exceeding concentration stress on the targeted object.
Article
Full-text available
The usefulness and versatility of a robotic end-effector depends on the diversity of grasps it can accomplish and also on the complexity of the control methods required to achieve them. We believe that soft hands are able to provide diverse and robust grasping with low control complexity. They possess many mechanical degrees of freedom and are able to implement complex deformations. At the same time, due to the inherent compliance of soft materials, only very few of these mechanical degrees have to be controlled explicitly. Soft hands therefore may combine the best of both worlds. In this paper, we present RBO Hand 2, a highly compliant, underactuated, robust, and dexterous anthropomorphic hand. The hand is inexpensive to manufacture and the morphology can easily be adapted to specific applications. To enable efficient hand design, we derive and evaluate computational models for the mechanical properties of the hand’s basic building blocks, called PneuFlex actuators. The versatility of RBO Hand 2 is evaluated by implementing the comprehensive Feix taxonomy of human grasps. The manipulator’s capabilities and limits are demonstrated using the Kapandji test and grasping experiments with a variety of objects of varying weight. Furthermore, we demonstrate that the effective dimensionality of grasp postures exceeds the dimensionality of the actuation signals, illustrating that complex grasping behavior can be achieved with relatively simple control.
Article
Full-text available
In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extension.
Article
Full-text available
This paper details the design and fabrication process of a fully integrated soft humanoid robotic hand with five finger that integrate an embedded shape memory alloy (SMA) actuator and a piezoelectric transducer (PZT) flexure sensor. Several challenges including precise control of the SMA actuator, improving power efficiency, and reducing actuation current and response time have been addressed. First, a Ni-Ti SMA strip is pretrained to a circular shape. Second, it is wrapped with a Ni-Cr resistance wire that is coated with thermally conductive and electrically isolating material. This design significantly reduces actuation current, improves circuit efficiency, and hence reduces response time and increases power efficiency. Third, an antagonistic SMA strip is used to improve the shape recovery rate. Fourth, the SMA actuator, the recovery SMA strip, and a flexure sensor are inserted into a 3D printed mold which is filled with silicon rubber materials. The flexure sensor feeds back the finger shape for precise control. Fifth, a demolding process yields a fully integrated multifunctional soft robotic finger. We also fabricated a hand assembled with five fingers and a palm. We measured its performance and specifications with experiments. We demonstrated its capability of grasping various kinds of regular or irregular objects. The soft robotic hand is very robust and has a large compliance, which makes it ideal for use in an unstructured environment. It is inherently safe to human operators as it can withstand large impacts and unintended contacts without causing any injury to human operators or damage to the environment.
Article
Full-text available
There has been an increasing interest in the use of unconventional materials and morphologies in robotic systems because the underlying mechanical properties (such as body shapes, elasticity, viscosity, softness, density and stickiness) are crucial research topics for our in-depth understanding of embodied intelligence. The detailed investigations of physical system-environment interactions are particularly important for systematic development of technologies and theories of emergent adaptive behaviors. Based on the presentations and discussion in the Future Emerging Technology (fet11) conference, this article introduces the recent technological development in the field of soft robotics, and speculates about the implications and challenges in the robotics and embodied intelligence research.
Conference Paper
Full-text available
The first part of this paper describes the development of a humanoid robot hand based on an endoskeleton made of rigid links connected with elastic hinges, actuated by sheath routed tendons and covered by continuous compliant pulps. The project is called UB Hand 3 (University of Bologna Hand, 3rd version) and aims to reduce the mechanical complexity of robotic end effectors yet maintaining full anthropomorphic aspect and a good level of dexterity. In the second part this paper focuses on the early experiences of the UB Hand 3 in performing manipulation tasks.
Conference Paper
Full-text available
An anthropomorphic hand arm system using variable stiffness actuation has been developed at DLR. It is aimed to reach its human archetype regarding size, weight and performance. The main focus of our development is put on robustness, dynamic performance and dexterity. Therefore, a paradigm change from impedance controlled, but mechanically stiff joints to robots using intrinsic variable compliance joints is carried out. Collisions of the rigid joint robot at high speeds with stiff objects induce the energy too fast for an active controller to prevent damages. In contrast, passively compliant robots are able to temporarily store energy. In this case the resulting internal forces applied to the robot structure and the drive trains are reduced. Furthermore, the energy storage allows to outperform the dynamics of stiff robots. The hand drives and the electronics are completely integrated within the forearm. Extremely miniaturized electronics have been developed to drive the 52 motors of the system and interface their sensors. Several variable stiffness actuation principles used in the arm joints and the hand are presented. The paper highlights the different requirements that they have to fulfill. A first test of the systems robustness and dynamics has been performed by driving nails with a grasped hammer and is demonstrated in the attached video.
Conference Paper
Full-text available
This paper presents a new developed multisensory five-fingered dexterous robot hand: the DLR/HIT Hand II. The hand has an independent palm and five identical modular fingers, each finger has three DOFs and four joints. All the actuators and electronics are integrated in the finger body and the palm. By using powerful super flat brushless DC motors, tiny harmonic drivers and BGA form DSPs and FPGAs, the whole fingerpsilas size is about one third smaller than the former finger in the DLR/HIT Hand I. By using the steel coupling mechanism, the phalanx distalpsilas transmission ratio is exact 1:1 in the whole movement range. At the same time, the multisensory dexterous hand integrates position, force/torque and temperature sensors. The hierarchical hardware structure of the hand consists of the finger DSPs, the finger FPGAs, the palm FPGA and the PCI based DSP/FPGA board. The hand can communicate with external with PPSeCo, CAN and Internet. Instead of extra cover, the packing mechanism of the hand is implemented directly in the finger body and palm to make the hand smaller and more human like. The whole weight of the hand is about 1.5Kg and the fingertip force can reach 10N.
Article
This paper presents a novel three degree-of-freedom (DOF) finger mechanism that features excellent impact absorbing performance, high force, and precision comparable to human hands. Inspired by human fingers, it has a simple structure with a minimum number of rigid components: seven rigid frames, several polymer wires, and flexible sheets. For impact absorption, rolling contact joints with a center ligament, instead of conventional revolute joints with bearings or bushings, were used. While this mechanism can be dislocated in the event of off-axis bending or twisting force and impact, it can return afterwards without degrading precision. To achieve precise manipulation performance, a unique tendon guiding structure, which enables accurate kinematic modeling even though it is composed of soft and flexible materials, is proposed. To prevent loss of precision and robustness against friction, the whole mechanism is covered by an artificial skin and filled with lubrication liquid, which is similar to human synovial fluid. The developed finger mechanism can exert 40 N fingertip force in a straight pose and has 0.2 mm repeatability of fingertip position under multiple impacts. Various experiments including button clicking and wheel rotation of a computer mouse demonstrated the performance and potential usefulness of the proposed mechanism.
Article
In the context of post-stroke patients, suffering of hemiparesis of the hand, robot-aided neuro-motor rehabilitation allows for intensive rehabilitation treatments and quantitative evaluation of patients' progresses. This work presents the design and evaluation of a spring actuated finger exoskeleton. In particular, the spring variables and the interaction forces between the assembly and the hand were investigated, in order to assess the effectiveness of the proposed exoskeleton.
Article
A five-fingered, multi-sensory and biomimetic prosthetic hand is presented in this paper. The HIT-Hand is a multisensory and integrated five fingered hand with in total 11 DOFs. The hand has five fingers and each of them can be driven individually by the embedded actuation and control system fitted in the palm. Each finger has 2 DOFs and two joints, the two joints are mechanically coupled by a cable driving. The thumb has an additional DOF to realize the motion relative to the palm. All actuators are integrated in the finger's base or the finger's body directly, the electronics and communication controllers are fully integrated in the fingertip in order to realize modularity of the hand and minimize weight and amount of cables needed for a hand. The Prosthetic Hand is controlled by a multiprocessor controller based on FPGA/DSP, the control system is composed of finger control system and palm control system, and each finger control system is integrated in the fingertip. This anthropomorphic prosthetic hand controlled by means of myoelectric commands, and the hierarchical shared control strategies is used. The impedance control approach allows the fingers to behave as virtual springs. Experiments showed that users were able to successfully operate the device in the hierarchical control strategies, and that the grasp success increased with more interactive control.
Article
We design, optimize and demonstrate the behavior of a tendon-driven robotic gripper performing parallel, enveloping and fingertip grasps. The gripper consists of two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, for parallel grasps. If the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. We optimize the route of the active flexor tendon and the route and stiffness of a passive extensor tendon in order to achieve this behavior. We show how the resulting gripper can also execute fingertip grasps for picking up small objects off a flat surface, using contact with the surface to its advantage through passive adaptation. Finally, we introduce a method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects, and apply it to a set of common household objects.
Conference Paper
The RBO Hand is a novel, highly compliant robotic hand. It exhibits robust grasping performance, is easy to build and prototype, and very cheap to produce. One of the primary design motivations is the extensive leverage of compliance to achieve robust shape matching between the hand and the grasped object. This effect results in robust grasping performance under sensing, model, and actuation uncertainty. We show the feasibility of our approach to constructing robotic hands in extensive grasping experiments on objects with varying properties, included water bottles, eye glasses, and sheets of fabric. The RBO hand is based on a novel pneumatic actuator, called PneuFlex, which exhibits desirable properties for robotic fingers.
Conference Paper
We design, optimize and demonstrate the behavior of a tendon-driven robotic gripper performing fingertip and enveloping grasps. The gripper consists of two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. We optimize the route of the active tendon and the parameters of the springs providing passive extension forces in order to achieve this behavior. We show how an additional passive tendon can be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. Finally, we introduce a method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects, and apply it to a set of common household objects.
Article
Successful treatment of the injured knee depends on a fundamental understanding of the anatomy andbiomechanical function of the structures that comprise the knee. The major structures of the knee are presented anatomically, followed by a brief review of the biomechanics of each. Normal function, as well as the expected result of injury is presented. This review is intended to assist in clinical diagnosis, as well as treatment planning for the injured knee.
Conference Paper
The inherent uncertainty associated with unstructured grasping tasks makes establishing a successful grasp difficult. Traditional approaches to this problem involve hands that are complex, fragile, require elaborate sensor suites, and are difficult to control. Alternatively, by carefully designing the mechanical structure of the hand to appropriately incorporate features such as compliance and adaptability, the uncertainty inherent in unstructured grasping tasks can be more easily accommodated. These features can reduce the need for complicated sensing and control by passively adapting to the object properties and positioning, making the hand easier to operate and with greater reliability. In this paper, we demonstrate a novel adaptive and compliant grasper that is both simple and robust. The four-fingered hand is driven by a single actuator, yet can grasp objects spanning a wide range of size, shape, and mass. The hand is constructed using polymer-based Shape Deposition Manufacturing (SDM), with joints formed by elastomeric flexures and actuator and sensor components embedded in tough rigid polymers. The hand has superior robustness properties, able to withstand large impacts without damage and capable of grasping objects in the presence of large positioning errors.
Article
The inherent uncertainty associated with unstructured environments makes establishing a successful grasp difficult. Traditional approaches to this problem involve hands that are complex, fragile, require elaborate sensor suites, and are difficult to control. Alternatively, by carefully designing the mechanical structure of the hand to incorporate features such as compliance and adaptability, the uncertainty inherent in unstructured grasping tasks can be more easily accommodated. In this paper, we demonstrate a novel adaptive and compliant grasper that can grasp objects spanning a wide range of size, shape, mass, and position/orientation using only a single actuator. The hand is constructed using polymer-based Shape Deposition Manufacturing (SDM) and has superior robustness properties, making it able to withstand large impacts without damage. We also present the results of two experiments to demonstrate that the SDM Hand can reliably grasp objects in the presence of large positioning errors, while keeping acquisition contact forces low. In the first, we evaluate the amount of allowable manipulator positioning error that results in a successful grasp. In the second experiment, the hand autonomously grasps a wide range of spherical objects positioned randomly across the workspace, guided by only a single image from an overhead camera, using feed-forward control of the hand.
Article
Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.
Article
A biomechanical study has been carried out on 20 cadaveric knees to investigate their load-absorbing mechanism. The impact load was applied using a weight falling onto the transected proximal femur and the force transmitted through the knee was measured at the transected distal tibia using a load transducer. The peak force transmitted increased as, sequentially, meniscus, articular cartilage and subchondral bone were damaged or removed. The most striking result was found in an implanted knee replacement where the transmitted force reached 180% of that in the intact knee. The results show that the joint has an impact-absorbing property in each segment and that in the osteoarthritic knee there is less absorption of shock than in the normal knee. The high impact force in an implanted knee suggests that microfractures of the cancellous bone might be expected and may produce loosening.
Article
This paper presents an anthropomorphic robot hand, called the Gifu hand II, which has a thumb and four fingers, all the joints of which are driven by servomotors built into the fingers and the palm. The thumb has four joints with four-degrees-of-freedom (DOF), the other fingers have four joints with 3-DOF, and two axes of the joints near the palm cross orthogonally at one point, as is the case in the human hand. The Gifu hand II can be equipped with six-axes force sensor at each fingertip, and a developed distributed tactile sensor with 624 detecting points on its surface. The design concepts and specifications of the Gifu hand II, the basic characteristics of the tactile sensor, and the pressure distributions at the time of object grasping are described and discussed herein. Our results demonstrate that the Gifu hand II has a high potential to perform dexterous object manipulations like the human hand.
Rolling contact joint
  • B M Hillberry
  • A S Hall