PreprintPDF Available

Structure of the RPAP3:TRBP interaction reveals an involvement of the HSP90/R2TP chaperone complex in dsRNA pathways

Authors:

Abstract

MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly requires cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 cochaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. Specifically, the RPAP3-TPR1 domain interacts with the TRBP-dsRBD3 and the 1.5 Å resolution crystal structure of this complex is presented. We identify key residues involved in the interaction and show that binding of TRBP to RPAP3 or Dicer is mutually exclusive. In contrast, RPAP3 can simultaneously bind TRBP and HSP90. Interestingly, AGOs and Dicer are sensitive to HSP90 inhibition and TRBP becomes sensitive in absence of RPAP3. These data indicate that the HSP90/R2TP chaperone is an important cofactor of proteins involved in dsRNA pathways.
A preview of the PDF is not available
... In mammals, R2TP is composed of a heterodimer between PIH1D1 and RPAP3, which associates with a heterohexamer of RUVBL1 and RUVBL2 (Fig. 1a). PIH1D1 and RPAP3 are both involved in substrate recognition 4,5 while RPAP3 also recruits the chaperones HSP90 and HSP70 6,7 . RUVBL1 and RUVBL2 are related AAA+ ATPases that also have chaperone activity 8,9 . ...
Article
Full-text available
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation. RPAP3 is a subunit of the R2TP complex, a co-chaperone of HSP90, with substrate proteins involved in transcription, ribosome biogenesis, DNA repair and cell growth. Here the authors report that deletion of Rpap3 abrogates cell proliferation and homeostasis in mouse intestine, partly through destabilization of PI3K-like kinases, while elevated RPAP3 levels in colorectal tumors are associated with poor prognosis.
Article
Full-text available
The transactivating response (TAR) RNA-binding protein (TRBP) has been identified as a double-stranded RNA (dsRNA)-binding protein, which associates with a stem-loop region known as the TAR element in human immunodeficiency virus-1 (HIV-1). However, TRBP is also known to be an enhancer of RNA silencing, interacting with Dicer, an enzyme that belongs to the RNase III family. Dicer cleaves long dsRNA into small dsRNA fragments called small interfering RNA or microRNA (miRNA) to mediate RNA silencing. During HIV-1 infection, TAR RNA-mediated translation is suppressed by the secondary structure of 5'UTR TAR RNA. However, TRBP binding to TAR RNA relieves its inhibitory action of translation and Dicer processes HIV-1 TAR RNA to generate TAR miRNA. However, whether the interaction between TRBP and Dicer is necessary for TAR RNA translation or TAR miRNA processing remains unclear. In this study, we constructed TRBP mutants that were unable to interact with Dicer by introducing mutations into amino acid residues necessary for the interaction. Furthermore, we established cell lines expressing such TRBP mutants. Then, we revealed that the TRBP-Dicer interaction is essential for both the TAR-containing RNA translation and the TAR miRNA processing in HIV-1.
Article
Full-text available
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Article
Full-text available
The human R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) is an HSP90 co-chaperone required for the maturation of several essential multiprotein complexes, including RNA polymerase II, small nucleolar ribonucleoproteins, and PIKK complexes such as mTORC1 and ATR-ATRIP. RUVBL1-RUVBL2 AAA-ATPases are also primary components of other essential complexes such as INO80 and Tip60 remodelers. Despite recent efforts, the molecular mechanisms regulating RUVBL1-RUVBL2 in these complexes remain elusive. Here, we report cryo-EM structures of R2TP and show how access to the nucleotide-binding site of RUVBL2 is coupled to binding of the client recruitment component of R2TP (PIH1D1) to its DII domain. This interaction induces conformational rearrangements that lead to the destabilization of an N-terminal segment of RUVBL2 that acts as a gatekeeper to nucleotide exchange. This mechanism couples protein-induced motions of the DII domains with accessibility of the nucleotide-binding site in RUVBL1-RUVBL2, and it is likely a general mechanism shared with other RUVBL1-RUVBL2–containing complexes.
Article
Full-text available
In mammals, 2′-O-methylation of RNA is a molecular signature by which the cellular innate immune system distinguishes endogenous from exogenous messenger RNA1–3. However, the molecular functions of RNA 2′-O-methylation are not well understood. Here we have purified TAR RNA-binding protein (TRBP) and its interacting partners and identified a DICER-independent TRBP complex containing FTSJ3, a putative 2′-O-methyltransferase (2′O-MTase). In vitro and ex vivo experiments show that FTSJ3 is a 2′O-MTase that is recruited to HIV RNA through TRBP. Using RiboMethSeq analysis⁴, we identified predominantly FTSJ3-dependent 2′-O-methylations at specific residues on the viral genome. HIV-1 viruses produced in FTSJ3 knockdown cells show reduced 2′-O-methylation and trigger expression of type 1 interferons (IFNs) in human dendritic cells through the RNA sensor MDA5. This induction of IFN-α and IFN-β leads to a reduction in HIV expression. We have identified an unexpected mechanism used by HIV-1 to evade innate immune recognition: the recruitment of the TRBP–FTSJ3 complex to viral RNA and its 2′-O-methylation.
Article
Full-text available
R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.
Article
Full-text available
The R2TP/Prefoldin-like co-chaperone, in concert with HSP90, facilitates assembly and cellular stability of RNA polymerase II, and complexes of PI3-kinase-like kinases such as mTOR. However, the mechanism by which this occurs is poorly understood. Here we use cryo-EM and biochemical studies on the human R2TP core (RUVBL1-RUVBL2-RPAP3-PIH1D1) which reveal the distinctive role of RPAP3, distinguishing metazoan R2TP from the smaller yeast equivalent. RPAP3 spans both faces of a single RUVBL ring, providing an extended scaffold that recruits clients and provides a flexible tether for HSP90. A 3.6 Å cryo-EM structure reveals direct interaction of a C-terminal domain of RPAP3 and the ATPase domain of RUVBL2, necessary for human R2TP assembly but absent from yeast. The mobile TPR domains of RPAP3 map to the opposite face of the ring, associating with PIH1D1, which mediates client protein recruitment. Thus, RPAP3 provides a flexible platform for bringing HSP90 into proximity with diverse client proteins.
Article
Full-text available
Phosphatidylinositol 3-kinase-related kinases (PIKKs), are structurally related to phosphatidylinositol 3-kinase (lipid kinase), but possess protein kinase activities. PIKKs include ATM, ATR, DNA-PK, mTOR and SMG1, key regulators of cell proliferation and genome maintenance. TRRAP, which is devoid of protein kinase activity, is the sixth member of the PIKK family. PIKK family members are gigantic proteins in the range of 300–500 kDa. It has become apparent in the last decade that the stability or maturation of the PIKK family members depends on a molecular chaperone called the Tel2-Tti1-Tti2 (TTT) complex. Several lines of evidence have established a model in which TTT connects to the Hsp90 chaperone through the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex in mammalian and yeast cells. However, recent studies of yeast cells indicate that TTT is able to form different complexes. These observations raise a possibility that several different mechanisms regulate TTT-mediated protein stability of PIKKs.
Article
Full-text available
Transactivation response element RNA-binding protein (TRBP or TARBP2) initially identified to play an important role in human immunodeficiency virus (HIV) replication also has emerged as a regulator of microRNA biogenesis. In addition, TRBP functions in signaling pathways by negatively regulating the interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress. During cellular stress, PKR is activated and phosphorylates the α subunit of the eukaryotic translation factor eIF2, leading to the cessation of general protein synthesis. TRBP inhibits PKR activity by direct interaction as well as by binding to PKR's two known activators, dsRNA and PACT, thus preventing their interaction with PKR. In this study, we demonstrate for the first time that TRBP is phosphorylated in response to oxidative stress and upon phosphorylation, inhibits PKR more efficiently promoting cell survival. These results establish that PKR regulation through stress-induced TRBP phosphorylation is an important mechanism ensuring cellular recovery and preventing apoptosis due to sustained PKR activation.
Article
RPAP3 and PIH1D1 are part of the HSP90 co-chaperone R2TP complex involved in the assembly process of many molecular machines. In this study, we performed a deep structural investigation of the HSP binding abilities of the two TPR domains of RPAP3. We combined 3D NMR, non-denaturing MS, and ITC techniques with Y2H, IP-LUMIER, FRET, and ATPase activity assays and explain the fundamental role played by the second TPR domain of RPAP3 in the specific recruitment of HSP90. We also established the 3D structure of an RPAP3: PIH1D1 sub-complex demonstrating the need for a 34-residue insertion, specific of RPAP3 isoform 1, for the tight binding of PIH1D1. We also confirm the existence of a complex lacking PIH1D1 in human cells (R2T), which shows differential binding to certain clients. These results highlight similarities and differences between the yeast and human R2TP complexes, and document the diversification of this family of co-chaperone complexes in human.