ArticlePDF Available

Nanotechnology, Nanoparticles and Nanoscience: A New Approach in Chemistry and Life Sciences

Authors:
Soft Nanoscience Letters, 2020, 10, 17-26
https://www.scirp.org/journal/snl
ISSN Online: 2160-0740
ISSN Print: 2160-0600
DOI:
10.4236/snl.2020.102002 Apr. 30, 2020 17
Soft Nanoscience Letters
Nanotechnology, Nanoparticles and Nanoscience:
A New Approach in Chemistry and Life Sciences
Dan Tshiswaka Dan
Zhejiang Normal University, Jinhua, China
Abstract
Nanotechnologies, nanoparticles and nanomaterials, which are part of every-
day life today, are the subject of intense research activities and
a certain
amount of media coverage. In this article, the concepts of nanotechn
ologies,
nanoparticles and nanosciences are defined and the interest in this scale of
the matter is explained
by specifying in particular the particular properties of
nanoobjects. Large-s
cale applications of nanoparticles, particularly in the field
of chemicals, everyday life and catalysis are presented.
Keywords
Nanoscience and Nanoparticles
1. Introduction
Nano sciences and nanotechnologies have been the subject of numerous works
for more than twenty years, within and at the interface of multiple scientific dis-
ciplines, such as physics, chemistry, biology, engineering sciences or human
sciences and social. Nanotechnology research is raising high hopes because of
the particular properties of matter at the nanoscale that allow new functions
unimagined to be envisaged [1]. Manufacturing, observing and manipulating
nano-objects, studying and understanding their properties and their interactions
with their environment, in particular with living organisms, modeling and si-
mulating them, integrating them into communicating systems, these have been
and still are the major challenges scientists essential to meet in order to develop
numerous and considerable applications, but in a controlled manner. The appli-
cations of nanotechnology are increasingly important in the life of every indi-
vidual, for industry and commerce, for health and society. Today, research and
development work are exploding on the applications of nanotechnologies in the
How to cite this paper:
Dan, D.T. (2020
)
Nanotechnology,
Nanoparticles and Na-
noscience
:
A New Approach in Chemistry
and Life Sciences
.
Soft Nanoscience Letters
,
10
, 17-26.
https://doi.org/10.4236/snl.2020.102002
Received:
March 1, 2020
Accepted:
April 27, 2020
Published:
April 30, 2020
Copyright © 20
20 by author(s) and
Scientific
Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY
4.0).
http://creativecommons.org/licenses/by/4.0/
Open Access
D. T. Dan
DOI:
10.4236/snl.2020.102002 18
Soft Nanoscience Letters
fields of energy, chemistry and sensors, materials, information and communica-
tions, biology and of medicine, of the environment. This rich landscape should
not obscure other aspects, including, as a counterpoint to the advantages, the
new risks of nanotechnologies for health, the environment, respect for private
life, or even further, the evolutions of the species and human. The challenges to
be met are therefore immense and the competition between large countries is
appearing fiercer and fiercer.
Two approaches to nano
From the 1930s to the 1980s, the emergence of powerful imaging methods
made it possible to probe and even manipulate matter on a scale unattainable
with a traditional light microscope. This has aroused a very strong enthusiasm
from various scientific communities. The fabrication and study of small objects
with a few tens to a few thousand atoms then became a major challenge. How-
ever, from the beginning of the 20th century, the tools of chemistry (organic
synthesis and polymerization) and biology (peptide synthesis) routinely manu-
factured objects of a few nanometers, generally carbon-based, by assembling
smaller bricks or molecules (so-called ascending or “bottom-up” route). So, for a
chemist, a nanoparticle, which contains a few thousand atoms, is a big object! At
the origin of Nanotechnology are scientists who have taken the problem back-
wards. They have developed new tools to miniaturize traditional macroscopic
matter: electron, tunneling and atomic force microscopes, nano-lithography [2],
etc. This is the so-called descending or “top-down” path: making a single nano-
metric object such as a small cluster of metallic atoms, then imaging and mani-
pulating it using the technological tool, constitutes the heart of this new science
[3]. The combination of direct imagery that is widely understood by everyone,
with the remote-controlled manipulation, atom by atom, of artificial structures,
has made the notion of nanoparticle concrete and has nourished the imagination
of a whole generation: nano-robots and nano-machines operating in our daily
environment, even inside the human body, are the key dreams of this time. In
practice, the miniaturization of printed circuits, in other words the exponential
increase in the capacities of memories and processors, constitutes the great
technological success of these techniques.
However, making everyday materials often requires more rustic methods.
Even if atomic manipulation has progressed immensely over the past 30 years,
culminating in the making of the smallest film in the world (“A Boy and His
Atom” [4]), this century will probably not reach mass production of nano-robots
functional with these tools, for many reasons. First, atomic manipulation only
gives access to one object at a time and requires a lot of time and effort. Then,
the objects are manufactured in conditions far from the ambient conditions (low
temperature and low pressure) to avoid any interference with the environment
and are often not stable outside their place of manufacture. It is therefore more
of a proof of conceptvery elegantthan a technological solution.
The two paths to the nano world, top-down and bottom-up, are sometimes
D. T. Dan
DOI:
10.4236/snl.2020.102002 19
Soft Nanoscience Letters
taken together to lead to original structures. For example, to manufacture na-
no-cars and other molecular machines, organic chemistry is used to prepare,
from small molecules, the building blocks (wheels, axle, etc.). Then the pieces are
assembled into “supramolecular” objects (the pioneers of this approach are none
other than J.M-Lehn and J.P. Sauvage [5], both Nobel Prize winners in Chemi-
stry). These assemblies are then studied using top-down imaging tools, for ex-
ample atomic force microscopy. This can give rise to unusual sporting events,
such as nano-car races, to the delight of all [6]!
2. Nanotechnology in Daily Life
The nanoparticles and nanomaterials found today on the market and in industry
are produced by large-scale methods, directly related to the manufacturing
processes of macroscopic materials: materials with high mechanical quality,
cosmetics, smart glasses, etc. lithium battery electrodes, etc. In terms of tonnage,
these mainly concern the following products (examples of application fields are
given in brackets): silica nanoparticles (food additive, tire reinforcement), tita-
nium dioxide (cosmetics), alumina (food additive, adjuvant in the medical field),
zinc oxide (cosmetic) and cerium (paint), carbon nanotubes (mechanical rein-
forcement for sporting goods), fullerenes and carbon black (inks, battery elec-
trodes in lithium), silver nanoparticles (anti-bacterial, low energy loss glasses)
and iron (soil decontamination), dendrimer [7] (therapeutic) and nano-clays
(absorbents). For all of these products, the raw material used is common wheth-
er it is a mineral material (e.g. silica) or an organic molecule. It is the nanoscale
shaping that is the key to the new application. For example, the fiber structures
of carbon nanotubes give rise to new mechanical properties, which do not exist
in graphite [8] (Figure 1). Likewise, the use of titanium dioxide as an absorber of
ultraviolet radiation in sunscreens requires submicron particles to preserve the
texture and appearance of the cream.
Thus, the nanoscopic nature does not make it possible to identify, on its own,
the potential of nanotechnologies nor the new risks associated with nanomate-
rials currently on the market. We must remember both the idea of small size and
that of the presence of a new property as a consequence of this reduced size.
Moreover, this is how most operational and institutional definitions proceed.
Figure 1. Carbon in two forms: graphite (sheet) and nanotube (source: illustration
adapted from Wikipedia France).
D. T. Dan
DOI:
10.4236/snl.2020.102002 20
Soft Nanoscience Letters
Nanotechnologies have an impact in many areas of everyday life: food, energy,
environment, health, safety, transport, etc. Without creating a pervert-style cat-
alog, we will cite its main applications:
Automotive: reinforced and lighter materials; exterior paints with color ef-
fects, brighter, anti-corrosion, anti-scratch, and anti-dirt; fuel additives im-
proving their combustion; more durable and recyclable tires
Aeronautics and space: sensors for optimizing engine performance; ice de-
tectors on airplane wings etc.
Electronics and telecommunications: high density memories; miniaturized
processors; light sensors, handheld computers; super-fast computers and
programs; wireless technologies; flat screens etc.
Chemistry and materials: pigments; ceramic powders; corrosion inhibitors;
fillers in polymers; catalysts; antibacterial or ultra-resistant textiles and coat-
ings etc.
Construction: self-cleaning and anti-pollution cements, self-cleaning and
anti-dirt windows; paintings; varnish; glues; sealants etc.
Food industry: coloring agents, anti-caking agents, emulsifiers; active pack-
aging extending the shelf life etc.
Health: drugs and active agents; anti-allergenic medical adhesive surfaces;
tailor-made drugs targeted to specific organs (or cells); bio-compatible mate-
rials for implants; oral vaccines; medical imaging…
Cosmetics: transparent sun creams; abrasive toothpaste etc.
Leisure: ski wax, rackets and tennis balls etc.
Energy: new generation photovoltaic cells; high storage capacity batteries;
storage of fuel hydrogen; smart windows; more efficient insulating materials
etc.
Defense: detectors of chemical and biological agents; miniaturized surveil-
lance systems; ultra-precise guidance systems; light and/or self-healing tex-
tiles
Environment and ecology: reduction of carbon monoxide emissions by ca-
talysis; desalination of seawater; specific chemical analyzers; etc.
In total, nanotechnologies address a global market that exceeded 1000 billion
dollars in 2015.
And they now have their place in modern manufacturing production, led by a
growing number of industrialized countries, including Germany, Australia,
Canada, China, the United States, France, Japan and the Republic of Korea
3. Usage in Chemistry
3.1. Surface Chemistry on Nanoparticles
To keep the case of gold, a striking example is the ability of gold nanoparticles to
cause chemical reactions between molecules in a gas mixture to which they are
exposed. Solid gold is an extremely inert metal; that is why it is used for preci-
sion work, for standards or to coat other metals more susceptible to oxidation or
D. T. Dan
DOI:
10.4236/snl.2020.102002 21
Soft Nanoscience Letters
corrosion. On the contrary, gold nanoparticles are very reactive. They “catalyze”
the reaction of oxidation of carbon monoxide to carbon dioxide at low tempera-
ture (70˚C), reaction of the equation CO + 1/2 O2 to CO2. This means that they
facilitate and accelerate this reaction which would require otherwise a significant
energy input (heating, etc.) to take place.
This remarkable result dating from the 1980s is at the origin of a new golden
age (it is the case to say it) for catalysis [9]. It is a lesser-known example of the
role of nanoparticles in the development of clean and energy-efficient technolo-
gies. Likewise, platinum nanoparticles are incorporated into car catalytic con-
verters to clean up gaseous emissions from combustion engines by accelerating
the destruction of the most harmful chemical compounds (nitrogen and carbon
monoxides).
3.2. Usage in Catalysis
Catalysis: a field at the heart of nano sciences
In fact, the general public often ignores the role that nanoparticles play in the
field of catalysis, probably because this field itselfhowever essential in terms of
economic and environmental impactis not well understood. Catalytic pheno-
mena are indeed ubiquitous. The enzyme system of living organisms is com-
posed of molecular catalysts at work at all times to carry out chemical reactions
at room temperature, which would be extremely slow without a catalyst, at room
temperature. For example, the photosynthesis of green plants, that is to say the
transformation of carbon dioxide into plant matter, requires breaking bonds
between carbon atoms and oxygen atoms and forming new ones between carbon
atoms to change from gaseous carbon dioxide to organic molecules. The simpli-
fied equation for the transformation of CO2 into glucose by photosynthesis is
written: 6CO2 + 6H2O to C6H12O6 + 6O2.
Similarly, the respiration of mammals, that is to say the consumption of oxy-
gen to produce energy, involves sequences of catalytic reactions perfectly ad-
justed in time and space thanks to millennia of biological evolution. For its part,
the industry has used since its foundation artificial catalystsinspired by organ-
ic systems or notto manufacture products for agriculture (nitrogen fertilizers),
consumer goods (plastics, polymers) or transport (fuels), or for recycling and
depollution.
It is estimated that 90% of the products manufactured in the world have un-
dergone at least one catalytic step during their manufacture. To make the best
use of the energy and raw materials that the planet offers us, manufacturers and
scientists are seeking to improve existing catalysts, to make them more efficient,
less expensive and less toxic. Nanoparticles and nanomaterials are catalysts of
choice because they offer a wide range of compositions and properties, which
can be adjusted at will to the desired reaction. The chemical reactions take place
on the surface of the nano catalysts: their large state of division guarantees
maximum use of the material. In addition, the size of nanoparticles influences
D. T. Dan
DOI:
10.4236/snl.2020.102002 22
Soft Nanoscience Letters
their way of catalyzing chemical reactions. This makes it possible to control
reactions more finely, and in particular, to promote the formation of certain
products over others as required.
For more than a century, many industrial processes have used nanoparticles.
Among the most essential, two of them are described below: they are still at the
heart of very active research to adapt to the ever-increasing constraints on ener-
gy consumption and raw materials.
3.3. Nitrogen to Feed the Planet
Another example showing the weight and the potential of catalysis in energy and
environmental questions is the Haber-Bosch process, dating from 1909. Here, it
is a question of using dinitrogen, the most abundant gas in the atmosphere, and
convert it to ammonia (NH3) which is the source to make nitrogen fertilizers.
The reaction involved has the equation N2 + 3H2 to 2NH3; it therefore requires
breaking the nitrogen-nitrogen triple bond of N2, a very difficult step, and then
reacting the nitrogen atoms with hydrogen atoms (supplied by hydrogen gas).
This process is widely used worldwide because it guarantees crop yields through
the use of synthetic fertilizers. Modern catalysts are nanoparticles of iron or ru-
thenium, deposited on a suitable support (silica, alumina, etc.) and improved by
additives such as potassium: these nanomaterials here also have a very specific
structure, optimized at all stages of the design.
Despite everything, the operating temperatures and pressures are still high for
this process (around 400˚C and 200 bar). By way of comparison, the nitrogenase
enzymes of green plants perform the same transformation at 25˚C and under
atmospheric pressure, but with a much lower yield unfortunatelyThe volume
of nitrogenous fertilizers required each year on the whole planet is such that this
industrial process alone consumes around 1% of the world’s energy produced! It
is trivial to say that optimizing its performance, even by a few tenths of a per-
cent, would help reduce the energy footprint of our civilization. This is why re-
search and development, from the most fundamental to the most applied, is still
extremely active in nano catalysis.
4. Nanoparticles: Curious Objects
The scientific curiosity aroused by nanomaterials stems as much from their new
intrinsic properties as from their range of applications. In the case of semicon-
ductors, we are witnessing the appearance of a quantum effect on the nanome-
tric scale: while a macroscopic light-emitting diode has a fixed color, nanopar-
ticles of the same material will have a color depending directly on their size. The
same is true for other fundamental properties, such as the melting point: a gold
nanoparticle 3 nm in diameter becomes liquid at twice the temperature of solid
gold.
Nanometric Gold Coloration
New physical phenomena are also appearing at the nanometric scale. Also, in
D. T. Dan
DOI:
10.4236/snl.2020.102002 23
Soft Nanoscience Letters
the case of gold, a ruby red coloration appears for particles of around ten nano-
meters in diameter. This effect is due to the particular behavior of the electronic
cloud which surrounds the nanoparticle. This resonates with certain light fre-
quencies and preferentially absorbs them. Glass craftsmanship used gold in the
red coloring of glass and stained glass, called Cassius purple, long before the
manufacturing process was understood to generate nanoparticles (Figure 2). A
famous object, the Cup of Lycurgus, features this deep red color to illustrate a
scene from Greek mythology in which King Lycurgus attacks Dionysus, god of
the vine and excess.
Figure 2. The Lycurgus cup, on display at the British Museum, contains gold and silver
nanoparticles. If it is lit from its sides (usual lighting), it appears green. If it is lit from the
inside, in other words in “transmission” (the object is then between the lamp and the
eye), it appears red. [Photo credit and copyright: S. Carenco].
The scientific curiosity aroused by nanomaterials stems as much from their
new intrinsic properties as from their range of applications. In the case of semi-
conductors, we are witnessing the appearance of a quantum effect on the nano-
metric scale: while a macroscopic light-emitting diode has a fixed color, nano-
particles of the same material will have a color depending directly on their size.
The same is true for other fundamental properties, such as the melting point: a
gold nanoparticle 3 nm in diameter becomes liquid at twice the temperature of
solid gold.
5. Nanotechnology Dangers
While the applications of these Lilliputian objects and technologies are booming
and have invaded our daily lives, their uses present risks:
Sanitary facilities for consumers and for professionals involved in their pro-
duction, in particular due to the strong penetrating capacity of nanoparticles
in cell tissues due to their size, which allows them to overcome certain natu-
D. T. Dan
DOI:
10.4236/snl.2020.102002 24
Soft Nanoscience Letters
ral barriers. While all nanomaterials are not dangerous, uncertainties remain
as to their possible effects (inflammatory, respiratory, cardiovascular or neu-
rological) which are insufficiently documented;
Environmental nanoparticles can also disperse and persist in the environ-
ment and we do not know the impact. Subject to confirmation, laboratory
studies indicate that microorganisms, invertebrates, and plants may be af-
fected by exposure to certain nanomaterials.
The Scientific Committee on Emerging and New Health Risks (SCISSEN),
which works within the European Commission, has highlighted the inadequacy
of existing methods for the assessment of risks to health and the environment.
There are currently no specific regulations governing the handling of nano-
materials in France and Europe. It is the principles of health protection which
are applicable, as well as the texts devoted to the marketing of chemical sub-
stances, drugs, cosmetic products or food.
Since January 2013, manufacturers, importers and distributors of nanopro-
ducts in France only have the obligation to declare the identity, quantities and
uses of nanomaterials to the National Food Safety Agency, environment and
work (ANSES).
At European level, the regulations governing nanomaterials, in cosmetics, in
biocidal products or in food are generally considered insufficient by associations
for the protection of consumers, health, the environment and workers.
As far as consumer information is concerned, “nano” labeling is compulsory
in Europe for three categories of products.
Cosmetics, since July 2013: The Cosmetics Regulation requires manufactur-
ers to mention the presence of nanomaterials in the list of cosmetic ingre-
dients: the labeling rule provides that the term “nano” is indicated in square
brackets after the name of the ‘ingredient. In the case of TiO2 for example:
Titanium dioxide [nano].
Biocides, since September 2013: The Biocides Regulation also requires that
the label indicate the presence of nanomaterials in biocidal products, with the
term “nano” in parentheses, after the name of the ingredient and “the possi-
ble specific risks that are related “must be mentioned.
Food products, since December 2014 (theoretically): the INCO Regulation
had first provided for the obligation to affix the label “nano” in square brack-
ets, before the name of the ingredient concerned. But pressure from indu-
strialists in the sector to reduce this obligation has delayed the entry into
force of this measure. The obstacle was lifted at the end of October 2015, with
the vote of the Novel Foods Regulation.
6. Advantages and Disadvantages
6.1. Advantages
Many potential applications and advantages include:
Advances in disease treatments, such as cancer
D. T. Dan
DOI:
10.4236/snl.2020.102002 25
Soft Nanoscience Letters
Better imaging and diagnostic equipment
Energy-efficient products such as fuel and solar cells
Improvements in manufacturing that allow for durable, light-weight, efficient
production tools
Improved electronic devices, including transistors, LED and plasma displays
and quantum computers
Nanorobots can be used to rebuild the ozone layer, clean polluted areas and
lesson dependence on non-renewable energy sources
6.2. Disadvantages Include
The potential dangers to humans and the environment
Loss of manufacturing and agricultural jobs
Economic market crashes related to a potential lower value of oil due to more
efficient energy sources and gold or diamonds, materials that can be repro-
duced with molecular manipulation
Accessibility of weapons of mass destruction
Improved atomic weaponry
The cost of research and products made from nanoparticles
7. Nano Science and Nanoparticles: A Real Scientific
Challenge
On a very small scale, some physical properties appear, others disappear. Some
are improved or disturbed: lightness, resistance, conductivity, thermal, adhesion,
magnetism or even aesthetics etc. Impossible then to rely on the classical laws of
physics to observe, understand and manufacture nano objects. The nanometer
domain is, in fact, governed by the rules of quantum mechanics.
The miniaturization of chip components is a major scientific issue for the
processing of data from this research. It promises vastly amplified power for all
electronics, from computing speeds to the storage capacities of hard drives. An
Intel computer processor, which contained 2300 transistors in 1971, now con-
tains 50,000 times as many. And soon, the development of a quantum computer
could emerge thanks to the nanocrystals, nanowires, nanocomposites and mo-
lecular electronics under study.
For this, researchers must overcome the physical limit of integrated circuits
on silicon (reached in 2010 according to forecasts of Moore’s law) by creating
new optical architectures, and not electrical.
8. Conclusions
Nanomaterials don’t stop there; they are going beyond what we think.
These examples from the field of daily life, chemistry and catalysis illustrate
the essential role played by nanomaterials, even before the appearance of the
word nano sciences. Many other fields today rely on these complex and original
compounds to progress: photovoltaics, therapeutic vectorization, energy storage
D. T. Dan
DOI:
10.4236/snl.2020.102002 26
Soft Nanoscience Letters
and lithium batteries, etc. Their horizons go beyond the sometimes-minimalist
framework of the current debate surrounding “nanos”. Due to the diversity of
their nature and their applications, these new materials raise many ethical and
toxicological questions of prime importance, which we have not extensively dis-
cussed here. Their potential goes beyond applications such as sunscreens (tita-
nium oxide nanoparticles) or antibacterial socks (silver nanoparticles), which are
much more often mentioned in the “mainstream” press. The submerged part of
the iceberg (catalysis, clean energies, but also the successful understanding of the
properties of matter etc.) seems more relevant than ever to us in a global reflec-
tion on “nanos”.
Conflicts of Interest
The author declares no conflicts of interest regarding the publication of this pa-
per.
References
[1] Internet: Royalsociety.Org (Last Checked 23 June 2019).
https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2004/
9693.pdf
[2] Joachim.C. and Plévert, L. (2008) Nanosciences: La révolution invisible. Seuil,
France. https://doi.org/10.14375/NP.9782020867030
[3] Internet: A Boy and His Atom: The World’s Smallest Movie (Last Checked 19 July
2020).
http://www.research.ibm.com/articles/madewithatoms.shtml;
http://www.youtube.com/watch?v=oSCX78-8-q0&feature=player_embedded
[4] Internet: Resources Published on Culture Sciences Chemistry: Nobel Prize in Che-
mistry 2016: Molecular Machines and from Chemical Topology to Molecular Ma-
chines-Conference by Jean-Pierre Sauvage (Last Check 27 June 2020).
https://theconversation.com/conversation-avec-jean-pierre-sauvage-nobel-de-chimi
e-et-machines-moleculaires-124789
[5] Internet: Nanocar, the First-Ever Race of Molecule-Cars (Last Checked 25 Jully
2020). http://nanocar-race.cnrs.fr
[6] Internet: Surendra Nimesh, in Gene Therapy: Potenial Application of Nanotechno-
logiy, 2013. (Last Checked 08 June 2020 )
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutic
al-science/dendrimers
[7] Haruta, M., Kobayashi, T., Sano, H. and Yamada, N. (1987) Novel Gold Catalysts
for the Oxidation of Carbon Monoxide at a Temperature far below 0˚C.
Chemistry
Letters
, 16, 405-408. https://doi.org/10.1246/cl.1987.405
[8] Thompson, D. (2007) Michael Faradays Recognition of Ruby Gold: The Birth of
Modern Nanotechnology.
Gold Bulletin
, 40, 267-269.
http://link.springer.com/article/10.1007%2FBF03215598
[9] Michael, F. (1857) Experimental Relations of Gold (and Other Metals) to Light.
Philosophical Transactions of the Royal Society of London
, 147, 145-181.
https://doi.org/10.1098/rstl.1857.0011
... Nanotechnology has emerged as a new and promising science, revolutionizing the production process of many materials from electronics to those used in the pharmaceutical and food industries [1,2]. However, nanoscale materials have different properties compared to the same material on bulk state, and it is not possible to predict their biological activity by extrapolating the physical and chemical properties of the components that constitute these nanostructured materials [3,4]. ...
... Values are the means ± standard deviations of three independent experiments. * denotes significant differences with control saline (p < 0.05).2 Values are expressed as PC concentration for control liposomes, corresponding to the equivalent PC amount of liposomes containing 0.1, 0.3, 0.5, and 0.8 mg mL −1 nisin, respectively. ...
Article
Full-text available
Liposomes are among the most studied nanostructures. They are effective carriers of active substances both in the clinical field, such as delivering genes and drugs, and in the food industry, such as promoting the controlled release of bioactive substances, including food preservatives. However, toxicological screenings must be performed to ensure the safety of nanoformulations. In this study, the nematode Caenorhabditis elegans was used as an alternative model to investigate the potential in vivo toxicity of nanoliposomes encapsulating the antimicrobial peptide nisin. The effects of liposomes containing nisin, control liposomes, and free nisin were evaluated through the survival rate, lethal dose (LD50), nematode development rate, and oxidative stress status by performing mutant strain, TBARS, and ROS analyses. Due to its low toxicity, it was not possible to experimentally determine the LD50 of liposomes. The survival rates of control liposomes and nisin-loaded liposomes were 94.3 and 73.6%, respectively. The LD50 of free nisin was calculated as 0.239 mg mL−1. Free nisin at a concentration of 0.2 mg mL−1 significantly affected the development of C. elegans, which was 25% smaller than the control and liposome-treated samples. A significant increase in ROS levels was observed after exposure to the highest concentrations of liposomes and free nisin, coinciding with a significant increase in catalase levels. The treatments induced lipid peroxidation as evaluated by TBARS assay. Liposome encapsulation reduces the deleterious effect on C. elegans and can be considered a nontoxic delivery system for nisin.
... Recent advances in nanotechnology have allowed researchers to develop devices with promising potential for use in a wide variety of applications in biomedicine, biotechnology, environmental science, and engineering (Bundschuh et al., 2018;Dan, 2020). Nanoparticles are the basic fundamental component in nanotechnology with sizes that range from 1 to 100 nm (Alavi and Karimi, 2018;Khan et al., 2019;Speranza, 2021). ...
Article
Full-text available
The use of biological systems such as plants, bacteria, and fungi for the synthesis of nanomaterials has emerged to fill the gap in the development of sustainable methods that are non-toxic, pollution-free, environmentally friendly, and economical for synthesizing nanomaterials with potential in biomedicine, biotechnology, environmental science, and engineering. Current research focuses on understanding the characteristics of biogenic nanoparticles as these will form the basis for the biosynthesis of nanoparticles with multiple functions due to the physicochemical properties they possess. This review briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic nanoparticles, the cytotoxic effects of nanoparticles due to their physicochemical properties and the use of capping agents, molecules acting as reducing and stability agents and which aid to alleviate toxicity. The review also summarizes recent green synthetic strategies for metallic nanoparticles.
Article
In this study, both the optical and piezoelectric properties of polyvinylidene fluoride (PVDF) electrospun nanofibers were investigated at different needle-to-collector distances of the electrospinning process at constant applied high voltage. For piezoelectric characterization, the fabricated nanofiber mats were subjected to applied forces, including cyclic force, variable frequency-based loads, and free-falling masses (impulse loading), along with power density analysis for different load resistance values. In addition, both optical absorbance and transmittance measurements were conducted to evaluate the optical properties of the fabricated nanofibers. The piezoelectric analysis demonstrated the best piezoresponse of the fabricated nanomats at a needle-to-collector distance of 15 cm and high voltage of 22 kV. However, a trade-off between piezoelectric response and optical transmissivity was observed based on the electrospinning distance parameter. The relatively higher optically transparent sample exhibited only moderate piezoelectric response, while the less transparent sample displayed the highest piezoelectric activity. Based on the optimized sample and piezoelectric analysis, the synthesized nanofiber mat was subjected to applied mechanical stress in the form of variable velocity and momentum loads. A maximum potential of approximately 16 V was harvested through velocity and momentum impact, especially with the addition of a double-layer PVDF membrane. Furthermore, the sensing effect of airflow pressure on single/double-layer PVDF was studied. The single-layer PVDF membrane generated 79 mV under an airflow speed of 21 km/h, while the double-layer membrane produced 114 mV potential under the same airflow. This study highlights the diverse applications of PVDF nanofiber mats as multifunctional sensors and energy harvesting applications from mechanical shocks and airflow impact.
Article
Full-text available
Background: Modern medicine requires intensive research to find new diagnostic and therapeutic solutions. Recently, upconverting nanoparticles (UCNPs) doped with lanthanide ions have attracted significant attention. Methods: The efficient internalization of UCNPs by cells was confirmed, and their precise cellular localization was determined by electron microscopy and confocal studies. Results: UCNPs colocalized only with specific organelles, such as early endosomes, late endosomes and lysosomes. Furthermore, experiments with chemical inhibitors confirmed the involvement of endocytosis in UCNPs internalization and helped select several mechanisms involved in internalization. Exposure to selected UCNPs concentrations did not show significant cytotoxicity, induction of oxidative stress or ultrastructural changes in cells. Conclusion: This study suggests that UCNPs offer new diagnostic options for biomedical infrared imaging.
Article
We performed molecular dynamics (MD) simulations in order to evaluate the effects of increasing the concentration of functionalized gold nanoparticles (AuNP), Au144(SC11H22COO1-)60 type, in water solution. Our results point to a formation of clusters in which each AuNP competes for regions with the others without reducing the average number of water molecules at the AuNP boundary. We also discuss how the direct interaction between the nanoparticle and the water molecules ends up being strengthened with the increase in the concentration of AuNPs, indicating an increase in the lifetime of the hydrogen bonds (HB) and in the limiting energy for the rupture of these HB between AuNP-water in the first solvation shell layer structure.
Article
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and cause addiction problems. Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes. Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Article
That wonderful production of the human mind, the undulatory theory of light, with the phenomena for which it strives to account, seems to me, who am only an experimentalist, to stand midway between what we may conceive to be the coarser mechanical actions of matter, with their explanatory philosophy, and that other branch which includes, or should include, the physical idea of forces acting at a distance; and admitting for the time, the existence of the ether, I have often struggled to perceive how far that medium might account for or mingle in with such actions, generally; and to what extent experimental trials might be devised which, with their results and consequences, might contradict, confirm, enlarge, or modify the idea we form of it, always with the hope that the corrected or instructed idea would approach more and more to the truth of nature, and in the fulness of time coincide with it. The phenomena of light itself are, however, the best and closest tests at present of the undulatory theory; and if that theory is hereafter to extend to and include other actions, the most effectual means of enabling it to do so will be to render its application to its own special phenomena clear and sufficient. At present the most instructed persons are, I suppose, very far from perceiving the full and close coincidence between all the facts of fight and the physical account of them which the theory supplies. If perfect, the theory would be able to give a reason for every physical affection of fight; whilst it does not do so, the affections are in turn fitted to develope the theory, to extend and enlarge it if true, or if in error to correct it or replace it by a better. Hence my plea for the possible utility of experiments and considerations such as those I am about to advance.
Article
A variety of gold catalysts can be used to catalyze the oxidation of carbon monoxide at temperatures as low as −70 °C and are stable in a moistened gas atmosphere. The novel catalysts, prepared by coprecipitation, are composed of ultra-fine gold particles and one of the oxides of 3d transition metals of group VIII, namely, Fe, Co, and Ni.
Nanosciences: La révolution invisible
  • Joachim C Plévert
Joachim.C. and Plévert, L. (2008) Nanosciences: La révolution invisible. Seuil, France. https://doi.org/10.14375/NP.9782020867030