PreprintPDF Available

Comparing calculated microphysical properties of tropical convective clouds at cloud base with measurements during the ACRIDICON-CHUVA campaign

Authors:

Abstract and Figures

Reliable aircraft measurements of cloud microphysical properties are essential for understanding liquid convective cloud formation. In September 2014, the properties of convective clouds were measured with a Cloud Combination Probe (CCP), a Cloud and Aerosol Spectrometer (CAS-DPOL), and a cloud condensation nuclei (CCN) counter on board the HALO (High Altitude and Long Range Research Aircraft) aircraft during the ACRIDICON-CHUVA campaign over the Amazon region. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content derived from the different instruments generally shows good agreement within the instrumental uncertainties. The objective of this study is to validate several parameterizations for liquid cloud formation in tropical convection. To this end the directly measured cloud drop concentrations (Nd) near cloud base were compared with inferred values based on the measured cloud base updraft velocity (Wb) and cloud condensation nuclei (CCN) vs. supersaturation (S) spectra. The measurements of Nd at cloud base were also compared with drop concentrations (Na) derived on the basis of an adiabatic assumption and obtained from the vertical evolution of cloud drop effective radius (re) above cloud base. The results demonstrate agreement of the measured and theoretically expected values of Nd based on CCN, S, Wb at cloud base, and the height profile of re. The measurements of NCCN(S) and Wb did reproduce the observed Nd. Furthermore, the vertical evolution of re with height reproduced the observation-based nearly adiabatic cloud base drop concentrations, Na. Achieving such good agreement is possible only with accurate measurements of DSDs. This agreement supports the validity of the applied parameterizations for continental convective cloud evolution, which now can be used more confidently in simulations and satellite retrievals.
Content may be subject to copyright.
A preview of the PDF is not available
... nuclei (IN) populations under undisturbed conditions (Pöschl et al., 2010;Prenni et al., 2009;Pöhlker et al., 2012Pöhlker et al., , 2016. Other sources of aerosol particles over the Amazon include long range Saharan dust and sea salt transport, biomass burning (either naturally-occurring or human-induced) and urban pollution downwind from cities and settlements (Talbot et al., 1988(Talbot et al., ,1990Cecchini et al., 2016;Martin et al., 2010;Kuhn et al., 2010). ...
... The time frame of the campaign corresponds to the local dry-to-wet season transition, when biomass burning is active in the southern Amazon (Artaxo et al. 2002, Andreae et al. 2015. 20 The flight paths followed a regular three-stage pattern: (i) Sampling of the air below clouds for aerosol characterization, (ii) Measurements of DSDs at cloud base, and (iii) Sampling of growing convective cloud tops (Braga et al., 2016;. Surface and thermodynamic conditions were different for the various flights (see Figure 1 and 3) with high contrasts in the north-south direction. ...
... The flow rate was set to 0.6 L min -1 , with a nominal cut-off particle size of 10 nm. NCCN at a given sources of uncertainty for the DSD measurements (Weigel et al., 2016). We excluded all cloud DSDs with droplet number concentrations (Nd) less than 1 cm -3 from further analysis. ...
Article
Full-text available
The behavior of tropical clouds remains a major open scientific question, given that the associated phys-ics is not well represented by models. One challenge is to realistically reproduce cloud droplet size dis-tributions (DSD) and their evolution over time and space. Many applications, not limited to models, use the Gamma function to represent DSDs. However, there is almost no study dedicated to understanding the phase space of this function, which is given by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and inter-comparisons. Here, we introduce the phase-space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, where the relative dispersion parameter of the DSD can play a significant role. Overall, the Gamma phase-space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on Gamma DSDs.
... The CAS-DPOL (Cloud and Aerosol Spectrometer, with detector for polarization) instrument measures aerosol and cloud particles in the size range between 0.5 and 50.0 µm (Braga et al., 2016; by sensing individual particles passing a focused laser beam. The resulting intensity distribution of forward and backward scattered light is used to derive the 20 size distribution of the particles. ...
... The liquid water content (LWC) is measured with a King type LWC Hotwire (Braga et al., 2016) installed on the CAS-DPOL. ...
Article
Full-text available
Vertical profiles of the cloud particle phase state in tropical deep-convective clouds (DCCs) were investigated using airborne solar radiation data collected by the German research aircraft HALO during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian Amazon in September 2014. A phase discrimination retrieval based on imaging spec-troradiometer measurements of cloud side spectral reflectivity was applied to DCCs under different aerosol conditions. From the retrieval results the height of the mixed phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed phase layer can vary up to 900 m for one single cloud scene. In particular, this variation is attributed to the different stages of cloud development in one scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed phase layer from 5.6 ± 0.2 km (269 K) [moderate] to 6.2 ± 0.3 km (267 K) [polluted], and of the upper boundary from 6.8 ± 0.2 km (263 K) [moderate] to 7.4 ± 0.4 km (259 K) [polluted], as would be expected from theory.
... The information from CCP-CIPgs were used in this study to identify cloud with raindrops. From data of CAS-DPOL, CCP-CDP Braga et al. (2017b) and in the Supporting Information S1. ...
Article
Full-text available
We investigated the relationship between the number concentration of cloud droplets (Nd) in ice‐free convective clouds and of particles large enough to act as cloud condensation nuclei (CCN) measured at the lateral boundaries of cloud elements. The data were collected during the ACRIDICON‐CHUVA aircraft campaign over the Amazon Basin. The results indicate that the CCN particles at the lateral cloud boundaries are dominated by detrainment from the cloud. The CCN concentrations detrained from non‐precipitating convective clouds are smaller compared to below cloud bases. The detrained CCN particles from precipitating cloud volumes have relatively larger sizes, but lower concentrations. Our findings indicate that CCN particles ingested from below cloud bases are activated into cloud droplets, which evaporate at the lateral boundaries and above cloud base and release the CCN again to ambient cloud‐free air, after some cloud processing. These results support the hypothesis that the CCN around the cloud are cloud‐processed.
Article
Full-text available
The number concentration of activated CCN ( N <sub>a</sub>) is the most fundamental microphysical property of a convective cloud. It determines the rate of droplet growth with cloud depth and conversion into precipitation-sized particles and affects the radiative properties of the clouds. However, measuring N <sub>a</sub> is not always possible, even in the cores of the convective clouds, because entrainment of sub-saturated ambient air deeper into the cloud lowers the concentrations by dilution and may cause partial or total droplet evaporation, depending on whether the mixing is homogeneous or extreme inhomogeneous, respectively. Here we describe a methodology to derive N <sub>a</sub> based on the rate of cloud droplet effective radius ( R <sub>e</sub>) growth with cloud depth and with respect to the cloud mixing with the entrained ambient air. We use the slope of the tight linear relationship between the adiabatic liquid water mixing ratio and R <sub>e</sub><sup>3</sup> (or R <sub>v</sub><sup>3</sup>) to derive an upper limit for N <sub>a</sub> assuming extreme inhomogeneous mixing. Then we tune N <sub>a</sub> down to find the theoretical relative humidity that the entrained ambient air would have for each horizontal cloud penetration, in case of homogeneous mixing. This allows us to evaluate both the entrainment and mixing process in the vertical dimension in addition to getting a better estimation for N <sub>a</sub>. We found that the derived N <sub>a</sub> from the entire profile data is highly correlated with the independent CCN measurements from below cloud base. Moreover, it was found that mixing of sub-saturated ambient air into the cloud at scales of ~100 m and above is inclined towards the extreme inhomogeneous limit, i.e. that the time scale of droplet evaporation is significantly smaller than that for turbulent mixing. This means that ambient air that entrains the cloud is pre-moistened by total evaporation of cloud droplets before it mixes deeper into the clouds where it can hardly change the droplet size distribution, hence R <sub>e</sub> remains close to its adiabatic value at any given cloud depth. However, the tendency towards the extreme inhomogeneous mixing appeared to slightly decrease with altitude, possibly due to enhanced turbulence and larger cloud drops aloft. Quantifying these effects, based on more examples from other projects and high resolution cloud models is essential for improving our understanding of the interactions between the cloud and its environment. These interactions may play an important role in cloud dynamics and microphysics, by affecting cloud depth and droplet size spectra, for example, and may therefore influence the cloud precipitation formation processes.
Article
Full-text available
In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NO<sub>y</sub>, CO<sub>2</sub>, CO, and O<sub>3</sub> and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm<sup>−3</sup> and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m<sup>−3</sup> was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm<sup>−3</sup>, an ice water content of 2.3 × 10<sup>−4</sup> g m<sup>−3</sup>, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm<sup>−3</sup> with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10<sup>−4</sup> g m<sup>−3</sup>. All known in situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established for modelling purposes. A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles may result from activation of the present aerosol, yielded low ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles.
Article
Full-text available
An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s−1 for the horizontal and 0.2 m s−1 for the vertical wind components.
Article
Full-text available
Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust or dust/biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust/biological aerosol layers increase the accumulated precipitation by 10–20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a 40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5–8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.
Article
Full-text available
The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm), but differences in particle number densities nice (162–235 cm−3) and in vertical contrail extensions (120–290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25–0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.
Article
Full-text available
Laboratory calibrations of the Cloud Droplet Probe (CDP) sample area and droplet sizing are performed using water droplets of known size, generated at a known rate. Although calibrations with PSL and glass beads were consistent with theoretical instrument response, liquid water droplet calibrations were not, and necessitated a 2 μm shift in the manufacturer's calibration. We show that much of this response shift may be attributable to a misalignment of the optics relative to the axis of the laser beam. Comparison with an independent measure of liquid water content (LWC) during in-flight operation suggests much greater biases in the droplet size and/or droplet concentration measured by the CDP than would be expected based on the laboratory calibrations. Since the bias in CDP-LWC is strongly concentration dependent, we hypothesize that this discrepancy is a result of coincidence, when two or more droplets pass through the CDP laser beam within a very short time. The coincidence error, most frequently resulting from the passage of one droplet outside and one inside the instrument sample area at the same time, is evaluated in terms of an "extended sample area" (SA<sub>E</sub>), the area in which individual droplets can affect the sizing detector without necessarily registering on the qualifier. SA<sub>E</sub> is calibrated with standardized water droplets, and used in a Monte-Carlo simulation to estimate the effect of coincidence on the measured droplet size distributions. The simulations show that extended coincidence errors are important for the CDP at droplet concentrations even as low as 200 cm<sup>−3</sup>, and these errors are necessary to explain the trend between calculated and measured LWC observed in liquid and mixed-phase clouds during the Aerosol, Radiation and Cloud Processes Affecting Arctic Climate (ARCPAC) study. We estimate from the simulations that 60% oversizing error and 50% undercounting error can occur at droplet concentrations exceeding 400 cm<sup>−3</sup>. Modification of the optical design of the CDP is currently being explored in an effort to reduce this coincidence bias.
Article
Full-text available
Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations as well as hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a one-year period and full seasonal cycle (March 2014–February 2015). The presented measurements provide a climatology of CCN properties for a characteristic central Amazonian rain forest site. The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The observed mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), elevated values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol. The hygroscopicity parameter κ exhibits remarkably little temporal variability: no pronounced diurnal cycles, weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes. For modelling purposes, we compare different approaches of predicting CCN number concentration and present a novel parameterization, which allows accurate CCN predictions based on a small set of input data.
Article
Full-text available
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean and biomass burning seasons, respectively. The Manaus plume is present year-round, and it is transported by prevailing northeasterly and easterly winds in the wet and dry seasons, respectively. This introduction also organizes information relevant to many papers in the special issue. Information is provided on the vehicle fleet, power plants, and industrial activities of Manaus. The mesoscale and synoptic meteorologies relevant to the two IOPs are presented. Regional and long-range transport of emissions during the two IOPs is discussed based on satellite observations across South America and Africa. Fire locations throughout the airshed are detailed. In conjunction with the context and motivation of GoAmazon2014/5 as presented in this introduction, research articles including thematic overview articles are anticipated in this special issue to describe the detailed results and findings of the GoAmazon2014/5 Experiment.
Book
This first comprehensive review of airborne measurement principles covers all atmospheric components and surface parameters. It describes the common techniques to characterize aerosol particles and cloud/precipitation elements, while also explaining radiation quantities and pertinent hyperspectral and active remote sensing measurement techniques along the way. As a result, the major principles of operation are introduced and exemplified using specific instruments, treating both classic and emerging measurement techniques. The two editors head an international community of eminent scientists, all of them accepted and experienced specialists in their field, who help readers to understand specific problems related to airborne research, such as immanent uncertainties and limitations. They also provide guidance on the suitability of instruments to measure certain parameters and to select the correct type of device. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to solar system objects makes this work equally appealing to astronomers studying atmospheres of solar system bodies with telescopes and space probes. 2013 Wiley-VCH Verlag GmbH & Co. KGaA.
Article
Abstract The Mid-Latitude CIRRUS experiment ML-CIRRUS deployed the High Altitude Long Range research aircraft HALO to obtain new insights into nucleation, life-cycle, and climate impact of natural cirrus and aircraft induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feed-backs are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in-situ/remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations. In spring 2014, HALO performed 16 flights above Europe with a focus on anthropogenic contrail cirrus and mid-latitude cirrus induced by frontal systems including warm conveyor belts and other dynamical regimes (jet streams, mountain waves, convection). Highlights from ML-CIRRUS include 1) new observations of microphysical and radiative cirrus properties and their variability in meteorological regimes typical for mid-latitudes; 2) insights into occurrence of in-situ formed and lifted liquid-origin cirrus; 3) validation of cloud forecasts and satellite products; 4) assessment of contrail predictability and 5) direct observations of contrail cirrus and their distinction from natural cirrus. Hence, ML-CIRRUS provides a comprehensive data set on cirrus in the densely populated European mid-latitudes with the scope to enhance our understanding of cirrus clouds and their role for climate and weather.