ArticlePDF Available

Pathological, Bacteriological and Virological Findings in Sudden and Unexpected Deaths in Young Dogs

Authors:

Abstract and Figures

In human medicine, “sudden death” has been defined by the World Health Organization (WHO) as a non‐violent, unexpected death occurring less than 24 h from the onset of symptoms. The aims of this study were: (1) to estimate the proportional mortality ratio for “sudden and unexpected death” (SUD) in young dogs; (2) to investigate the pathological and microbiological findings in SUD cases in young dogs. For these purposes, a retrospective study of a total of 145 cases of young dead dogs was performed. For each case, we collected information about the age, medical history and the gross and microbiological findings of the animals. The results of this study found 21 cases of SUD. The most frequently observed clinical symptoms in the cases of sudden death were acute respiratory symptoms, followed by acute gastroenteric symptoms, non‐specific symptoms and neurological symptoms. The evaluation of necropsy reports allowed us to observe enteritis in 18 out of 21 cases and pneumonia in seven out of 21 cases. Viral infection with Canine parvovirus type 2 was the most common cause of SUD observed. These results could provide a valuable tool for the investigation of sudden death in young dogs.
Content may be subject to copyright.
Animals2020,10,1134;doi:10.3390/ani10071134www.mdpi.com/journal/animals
Article
Pathological,BacteriologicalandVirological
FindingsinSuddenandUnexpectedDeathsin
YoungDogs
GiuseppePiegari
1,
*,LorenaCardillo
2
,FloraAlfano
2
,LuciaVangone
2
,ValentinaIovane
3

andGiovannaFusco
2
1
DepartmentofVeterinaryMedicineandAnimalProduction,UnitofPathology,UniversityofNaples
FedericoII,Naples80137,Italy
2
IstitutoZooprofilatticoSperimentaledelMezzogiorno,Portici,81100Naples,Italy;
lorena.cardillo85@gmail.com(L.C.);flora.alfano@cert.izsmportici.it(F.A.);
lucia.vangone@izsmportici.it(L.V.);giovanna.fusco@izsmportici.it(G.F.)
3
DepartmentofPharmacy,UniversityofSalerno,84084Fisciano,Italy;viovane@unisa.it
*Correspondence:giuseppe.piegari@unina.it
Received:6May2020;Accepted:2July2020;Published:3July2020
SimpleSummary:“Suddendeath”hasbeendefinedbytheWorldHealthOrganizationasanon
violent,unexpecteddeathoccurringlessthan24hfromtheonsetofsymptoms.Thecausesof
suddendeathhavebeenwidelyinvestigatedinhumanforensicmedicine.Incontrast,fewstudies
havebeenreportedintheveterinaryliterature.Thisstudyaimedtoinvestigatethefrequencyof
suddendeathsinyoungdogsindifferentageranges.Asecondaryaimwastocollectinformation
regardingclinicalsymptoms,andpathologicalandmicrobiologicalfindingsrelatedtosuddendeath
inyoungdogs.Theresultsofthepresentstudydemonstratethatthehighestfrequencyofsudden
deathoccursinanimalsinanagerangefrom10daysto1monthandfrom6to12months.Themost
frequentlyobservedclinicalsymptomsincasesofsuddendeathwereacuterespiratorysymptoms.
Furthermore,Canineparvovirustype2,E.coli,CanineDistemperVirus,ClostridiumperfringenstypeA,
andPasteurellaspp.werethemaincausesofdeathobservedinthepresentstudy.Theresults
reportedinthepresentstudycouldprovideareferencebasistobetterinvestigatesuddendeathin
veterinaryclinicalpractice.
Abstract:Inhumanmedicine,“suddendeath”hasbeendefinedbytheWorldHealthOrganization
(WHO)asanonviolent,unexpecteddeathoccurringlessthan24hfromtheonsetofsymptoms.
Theaimsofthisstudywere:(1)toestimatetheproportionalmortalityratiofor“suddenand
unexpecteddeath”(SUD)inyoungdogs;(2)toinvestigatethepathologicalandmicrobiological
findingsinSUDcasesinyoungdogs.Forthesepurposes,aretrospectivestudyofatotalof145cases
ofyoungdeaddogswasperformed.Foreachcase,wecollectedinformationabouttheage,medical
historyandthegrossandmicrobiologicalfindingsoftheanimals.Theresultsofthisstudyfound21
casesofSUD.Themostfrequentlyobservedclinicalsymptomsinthecasesofsuddendeathwere
acuterespiratorysymptoms,followedbyacutegastroentericsymptoms,nonspecificsymptoms
andneurologicalsymptoms.Theevaluationofnecropsyreportsallowedustoobserveenteritisin
18outof21casesandpneumoniainsevenoutof21cases.ViralinfectionwithCanineparvovirustype
2wasthemostcommoncauseofSUDobserved.Theseresultscouldprovideavaluabletoolforthe
investigationofsuddendeathinyoungdogs.
Keywords:postmortemmicrobiology;veterinaryforensicpathology;suddendeath;youngdogs
Animals2020,10,11342of12
1.Introduction
Inhumanmedicine,“suddendeath”hasbeendefinedbytheWorldHealthOrganization
(WHO)asanonviolent,unexpecteddeathoccurringlessthan24hfromtheonsetofsymptoms[1];
inparticular,theterm“suddenandunexpectedinfantdeath”(SUID)isusedtodescribedeathsthat
occurrelativelysuddenlyandunexpectedlyinchildrenlessthan1yearsold[2,3].Infectionsare
reportedintheliteratureasanimportantcauseofSUID,followedbymetabolicormolecular
disorders[2–5].ThemainpathogensreportedinSUIDcasesareasfollows:Staphylococcusaureus,
Escherichiacoli,Streptococcuspyogenes,Streptococcusagalactiae,Streptococcuspneumoniae,GroupB
Streptococci(GBS),RespiratorySyncytialVirus(RSV),Cytomegalovirus(CMV)andAdenovirus[2,6,7].
However,abroadrangeofpathogenshasbeenreportedintheliteratureasbeingcausesoraco
factorsinSUID,suchasParvovirusB19,EpsteinBarrvirus,InfluenzaAvirusandMycobacterium
tuberculosis[2,6,8,9].Furthermore,recentstudiesreportedtherelativelybenignCoxsackievirusA16
asapossiblecontributingfactorinSUIDinhumans[10].Forthesereasons,thecurrentSUIDautopsy
protocolintheUKandtheinternationalguidelinesadvocateforamultidisciplinaryapproachtothe
investigationofallcasesofSUID,whichshouldbebasednotonlyonthefindingsofthemacroscopic
examination,butalsoonabroadrangeofancillaryinvestigations,suchasbacteriologicaland
virologicalanalyses[11,12].Suddeninfantdeathsyndrome(SIDS)isconsideredtobeasubclassof
SUID,inwhichthecauseofdeathremainsunexplainedevenaftertheforensicnecropsy,ancillary
testsandevaluationoftheanamnesticdataandcrimesceneanalysis[1,2].Indeed,amongthecases
ofSUID,only20%haveaclearcause,whilemostcasesremainunexplainedandarecategorizedas
SIDS[1,5,13].Althoughthecauseisunknown,specificgeneticmutationsormildinfectionscouldbe
involvedinthegenesisofthesyndrome[5].Mildinfectionshavebeensuggestedtoplayakeyrole,
asdemonstratedbyalteredlevelsofimmunoglobulinorcytokineandthehighfrequencyofmild
trachealinfectionscommonlyobservedduringpostmortemexaminationsofthesubjectswithafinal
diagnosisofSIDS[5].Although,inhumanmedicine,theconceptofsuddendeath,SUIDandSIDS
hasbeenwelldefinedbytheWHO,inveterinarymedicine,auniversaldefinitionislacking.Some
authorshavedefinedsuddendeathinanimalsasdeaththatoccursinafewminutesorseveralhours,
duetopreexistingdiseaseorafunctionaldisorder[14].However,intheopinionoftheauthors,this
definitionshouldbeavoided,becauseitlacksawelldefinedtemporalreferencerange.Incontrast,
evenifnotyetvalidatedinveterinarymedicine,theWHOdefinitionprovidesanimportanttemporal
referencerangeusefulfortheidentificationofcasesofsuddendeathinveterinaryclinicalpractice.
Overthelastfewyears,manystudieshaveinvestigatedthecauseofdeathinanimals.In
particular,infectiousdiseasesthataffectthegastrointestinalsystemarereportedtobethemaincause
ofdeathinpuppiesandyoungdogs[15,16].Incontrast,neoplasticdiseasesappeartobetheprevalent
causeofdeathinadultdogs[15].Amongtheinfections,canineparvovirustype2(CPV2)isreported
tobeoneofthemostcommonandimportantcausesofmorbidityandmortalityinyoungdogs[17,18].
Moreover,thisvirusisconsideredtobeanimportantpathogenresponsibleforacutegastroenteritis
andmyocarditisindogs[17,18].However,withregardstosuddenandunexpecteddeaths,despite
theunderlyingcauseshavingbeensporadicallyinvestigatedindogs[19],tothebestofour
knowledge,nostudyhasevaluatedthemicrobiologicalfindingsincasesofsuddendeathinyoung
dogs.Inlightoftheseobservations,theaimsofthisstudywereasfollows:(1)toestimatethe
proportionalmortalityratio(PMR)for“suddenandunexpecteddeath”inpuppiesandyoungdogs;
(2)toinvestigatethepathological,bacteriological,andvirologicalfindingsinsuddenandunexpected
deathinyoungdogs;and(3)tointroduceastandardizedmicrobiologicalprotocolforthediagnostic
investigationofcasesofsuddendeathinveterinarymedicine
2.MaterialsandMethods
2.1StudyDesign
Anobservationalretrospectivestudyofatotalof145casesofyoungdeaddogs,consecutively
presentedbyveterinarypractitioners,owners,orlawenforcementtothe“IstitutoZooprofilatticodel
Mezzogiorno”(IZSM)ofPorticicity,SouthernItaly,wasperformedovera3yearperiod(2015–2017).
Animals2020,10,11343of12
Thesubmissionformswerecollectedtoobtaininformationaboutthemedicalhistoryandageofthe
animals.Onthebasisofthemedicalhistory,theanimalsweredividedintogroupsasfollows:
(Suddenandunexpecteddeathgroup—SUDgroup):dogswithaclinicaldiagnosisofsudden
andunexpecteddeath.AccordingtotheWHO,suddenandunexpecteddeath(SUD)caseswere
consideredtobeanonviolentandunexpecteddeaththatoccurslessthan24haftertheonsetof
symptoms;
(Expecteddeathgroup—EDgroup):dogswithoutaclinicalhistoryofsuddenandunexpected
death
Onthebasisofage,theavailabledatawerecategorizedasfollows:(Group1)10days–4weeks;
(Group2)4weeks–6weeks;(Group3)6weeks–2months;(Group4)2–3months;(Group5)3–6
months;(Group6)6–12months.Eachexaminedcasewassubjectedtoacompletenecropsyand
bacteriologicalandvirologicalinvestigations;however,forthepurposesofthisstudy,onlythe
necropsyandmicrobiologicalreportsfromanimalsintheSUDgroupwereincluded.Furthermore,
themicrobiologicalinvestigationswererestrictedtomoleculartestsforthevirologicalanalysis,and
microbiologicalculturesforthebacteriologicalexaminations.Inallassessedcases,moleculartests
wereperformedusingarealtimepolymerasechainreactionassay(RTPCR)forcanineparvovirus
(CPV),caninecoronavirus,canineadenovirus,herpesvirus,andcaninedistempervirus.Furthermore,inall
casespositiveforcanineparvovirustype2,multiplexedPCRpanelswereusedtodistinguishbetween
wildtypeandvaccineCPV2andtoidentifythepathogensubtype(CPV2a;CPV2b;CPV2c)[20].
Theanalyzedsamplesincludedtheliver,lung,kidney,spleen,heart,brainandintestine.
MicrobiologicalresultsandnecropsyreportswerebothextractedfromtheIZSMinformationsystem
(SIGLA).Animalsthattestedpositiveinthetoxicologicalinvestigations,orthathaddiedfrom
trauma,wereexcludedfromthestudy.
2.2.NecropsyProtocol
Allnecropsieswereperformedinthenecropsyroomofthe“IstitutoZooprofilattico
SperimentaledelMezzogiorno”(IZSM),Portici,Italy,withastandardnecropsyprotocol[21].All
SUDcaseswerestoredat4°Cbeforenecropsy.Theperiodbetweendeathandnecropsywasbetween
12and36h.Duringthenecropsy,accordingtointernalinstituteprotocol,allsamplesweretakenin
rigorousasepsisconditionsusingsterileinstrumentsandtransportedtothelaboratoryof
microbiology.Furthermore,toobtainuncontaminatedspecimens,asterilizationofthebodyand
organssurfaceswasperformedbeforesampling.Finally,themeantimebetweensamplecollection
andtransporttothereferencelaboratorywasunder3h.
2.3.AnalyticalValidationoftheResults
Foreachcaseofsuddenandunexpecteddeath,theclinicalhistory,necropsyreportand
microbiologicalfindingswerereviewed,andthefinalcauseofdeathwascategorizedas“explained”
or“unexplained”.However,sincedeterminingthepathologicalsignificanceofthemicroorganisms
isolatedduringnecropsyisoftendifficult,ashasbeenfrequentlyreportedintheliterature[22,23].
Forthepurposesofthisstudy,virusesdetectedbyPCRwereconsideredtobethecauseofdeath,
onlywhenassociatedwiththetypicalmacroscopicchangesobservedduringthe
anatomopathologicalexamination.Inaddition,thebacteriologicalandvirologicalfindingswere
interpretedconsideringabroadrangeofvariables,suchasthelocationofpathogendetection,the
capacityofpathogensforvirulence,thecorrelationwithinjuriesobservedduringthenecropsy,the
multisitelocationofthepathogens,theageofthedogandthecompositionofthenormalflora.
2.4.StatisticalAnalysis
Thefrequenciesofsuddenandunexpecteddeath(SUD),expecteddeath(ED),andtotaldeaths
(SUD+ED)wereevaluatedandstratifiedbyageclasses.Furthermore,weestimatedtheproportional
mortalityratio(PMR)for“SUD”ineachassessedagegroup.TheChisquaretestwasusedtoassess
differencesinthedistributionsofEDandSUDamongagegroups.
Animals2020,10,11344of12
3.Results
Outofthe145examinedreports,wefound21casesofSUDand124casesofEDduringthe3
yearstudyperiod.ThePMRofSUDwastherefore14.48%,whiletheEDwas85.52%.Furthermore,
theChisquaretestshowedasignificantdifferenceinthefrequenciesofEDandSUDamongthe
assessedagegroups(p<0.05).AllSUDcasesweresubmittedbyItalianveterinarypractitioners.The
highestfrequenciesofexpecteddeathwereobservedinanimalsinGroup2(100%ofthecases),Group
3(87.7%vs.12.5%),Group4(97.2%vs.12.8%)andGroup5(93.3%vs.6.7%).Incontrast,thehighest
frequenciesofSUDwerefoundinanimalsinGroup1(58.8%vs.41.2%)andGroup6(37.5%vs.
62.5%).Table1summarizesthefrequenciesandpercentagesofSUDandEDandthefrequencyof
totaldeaths(SUD+ED)stratifiedbyageclasses.Overall,ofthe21SUDcases,10outof21(47.61%)
dogswerelessthan4weeksold(Group1),0outof21werebetween4weeksand6weeksold(Group
2),fiveoutof21(23.8%)werebetween6weeksand2monthsold(Group3),oneoutof21(4.76%)
wasbetween2and3monthsold(Group4),twooutof21(9.51%)werebetween3and6monthsold
(Group5),andthreeoutof21(14.28%)werebetween6monthsand1yearold(Group6).
Table1.Frequencyandpercentageofsuddenandunexpecteddeaths,expecteddeathsandthe
frequencyoftotaldeathsstratifiedbyagegroups.
AgeGroupSuddenDeathExpectedDeathTotalDeaths
Group110(58.8%)7(41.2%)17
Group2014(100%)14
Group35(12.5%)35(87.5%)40
Group41(2.8%)35(97.2%)36
Group52(6.7%)28(93.3%)30
Group63(37.5%)5(62.5%)8
Total21124145
3.1ClinicalBackgroundandGrossFindings
Themostfrequentlyobservedclinicalsymptomsincasesofsuddendeathwereasfollows:acute
respiratorysymptomsin12outof21cases,followedbyacutegastroentericsymptoms(asingleor
fewepisodesofvomitingordiarrhea)insixoutof21cases,neurologicalsymptomsinonecase,and
finally,nonspecificsymptomsintwooutof21cases.Theevaluationofnecropsyreportsallowedus
toobservehaemorrhagicgastroenteritisin12outof21cases,pneumoniainsevenoutof21cases,and
catarrhalenteritisinfiveoutof21cases(Figure1).Pulmonaryoedemaormultiorgancongestion
werealsoobservedin19outof21cases.
Figure1.Pathologicallesionsincasesofsuddendeath.(A):pneumonia(arrows)(B):haemorrhagic
gastroenteritis(C):catarrhalenteritis.
3.2.MicrobiologicalExamination
Inallanimalsdeadforsuddenandunexpecteddeath,virologicalinvestigationswereperformed
withapanelofvirusestestedbyPCR(Canineparvovirus,Caninecoronavirus,Canineadenovirus,Canine
herpesvirusandCaninedistempervirus),andabacteriologicalexaminationwasperformedwith
Animals2020,10,11345of12
microbiologicalcultures.Theretrospectiveanalysisshowedpositivemicrobiologicalresultsin18out
of21cases(Table2).
Table2.Virusesorbacteriadetectedincasesofsuddenandunexpecteddeath.
PathogenNO.ofCases
CanineParvovirus10
E.Coli7
ClostridiumperfringenstypeA6
Adenovirus3
CanineDistemperVirus2
Streptococcussanguinis2
Pasteurellaspp.2
Streptococcusdysgalactiae1
Rotavirus1
However,forthepurposesofthisstudy,themicrobiologicalfindingswereinterpreted
consideringabroadrangeofvariables.Inparticular,thelocationofpathogendetection,thecapacity
ofpathogensforvirulenceandthecorrelationofthatmicroorganismswiththeobservedmacroscopic
injurieswerethemostimportantparametersassessedinthisstudy.Therefore,afterthereviewofthe
necropsiesandmicrobiologicalreports,thedetectedpathogenswereconsideredthemaincauseof
deathinonly14outof21cases.Inparticular,amongtheevaluatedcases,themaincauseofdeath
wasviralinfectionwithCanineparvovirustype2(8/21),followedbyviralinfectionwithCanine
parvovirustype2,andcoinfectionwithE.coli(2/21),bacterialcoinfectionwithClostridiumperfringens
typeAandE.coli(2/21)andviralandbacterialcoinfectionwiththeCaninedistempervirusand
Pasteurellaspp.(2/21).Finally,insevenoutof21cases,themicrobiologicalresultsdidnotexplainthe
injuriesobservedduringthenecropsy.Therefore,thecausativeagentofinfectionwasconsidered
undeterminedafterthemicrobiologicalexamination.Table3summarizestheclinicalbackgrounds,
pathologicalfindings,microbiologicalresultsandcausesofdeathofthecasesofsuddendeath.
Animals2020,10,11346of12
Table3.Microbiologicalandanatomopathologicalfindingsofthestudieddogs.
GroupSexClinicalBackgroundPathologicalFindingsVirological
ExaminationBacteriologicalExaminationCauseofDeath
1
MAcuterespiratory
insufficiency
Visceralcongestion,
pulmonaryedema,
hemorrhagicgastroenteritis
Canineparvovirustype2a
(wildtype)—detectedin
thelung,liver,heart,
brain,andintestine
Streptococcusdysgalactiae
isolatedinthelungViralinfection
MAcuterespiratory
insufficiency
Visceralcongestion,
pulmonaryedema,severe
bronchopneumonia,
catarrhalenteritis
NovirusesdetectedStreptococcussanguinis
isolatedintheintestine
Undetermined:
severepneumoniadue
tounexplainedcauses
MAcuterespiratory
insufficiency
Visceralcongestion,
pulmonaryedema,severe
bronchopneumonia,
catarrhalenteritis
NovirusesdetectedStreptococcussanguinis
isolatedintheintestine
Undetermined:
severepneumoniadue
tounexplainedcauses
FAcuterespiratory
insufficiency
Visceralcongestion,
multifocalpulmonary
hemorrhages,hemorrhagic
enteritis
Canineparvovirustype2b
and2c(wildtype)—
detectedinthelung,
liver,spleen,heart,and
intestine
Clostridiumperfringens,
DetectionofClostridium
perfringensalphatoxin—
isolatedintheintestine
Viralinfection
MAcuterespiratory
insufficiency
Lobarpneumonia,
pulmonaryedema,
catarrhalenteritis
Caninedistempervirus—
detectedinthelung,
liver,andbrain
Pasteurellaspp.—detectedin
thelungViralandbacterialinfection
FAcuterespiratory
insufficiency
Visceralcongestion,
multifocalpulmonary
hemorrhages,hemorrhagic
enteritis
Canineparvovirustype2b
and2c(wildtype)—
detectedinthelung,
liver,brain,heart,and
intestine
E.coli,Clostridiumperfringens,
DetectionofClostridium
perfringensalphatoxin—
isolatedintheintestine
Viralinfection
MAcuterespiratory
insufficiency
Visceralcongestion,
pulmonaryedema,focal
bronchopneumonia,
hemorrhagicgastroenteritis
Caninedistempervirus—
detectedinthelung,
liver,andbrain
Pasteurellaspp.—detectedin
thelung
Viralandbacterialco
infection
MAcuterespiratory
insufficiency
Visceralcongestion,
pulmonaryedema,
hemorrhagicgastroenteritis
NovirusesdetectedNobacteriadetectedUndetermined
Animals2020,10,11347of12
MAcuterespiratory
insufficiency
Visceralcongestion,
pulmonaryedema,severe
bronchopneumonia
NovirusesdetectedNobacteriadetectedUndetermined
MAcuterespiratory
insufficiency
Visceralcongestion,
hemorrhagicenteritis
Canineparvovirustype2a
(wildtype)—detectedin
theheart,spleen,and
intestine
NobacteriadetectedViralinfection
3
M
Sialorrhea,unilateraleye
swelling,muscle
stiffness,asingle
episodeofvomiting
Visceralcongestion,
pulmonaryedema,
hemorrhagicenteritis
Novirusdetected
E.coli;Clostridiumperfringens
DetectionofClostridium
perfringensalphatoxin—
detectedintheintestineand
lung
Bacterialinfection
MNeurologicalsymptoms
Visceralcongestion,bi
lateralpneumonia,
pulmonaryedema
segmentalcatarrhal
enteritis
Rotavirus(detectedin
theintestine)
E.coli—isolatedinthe
intestine
Undetermined:
severepneumonia
duetounexplainedcauses
FAcutegastrointestinal
symptoms
Visceralcongestion,
hemorrhagicenteritis,focal
pneumonia
Canineparvovirustype2a,
(wildtype)—detectedin
thelung,liver,and
intestine;Adenovirus
detectedinintestine
Clostridiumperfringens
DetectionofClostridium
perfringensalphatoxin—
isolatedintheintestine
Viralinfection
FVomiting
Visceralcongestion,
hemorrhagicenteritis,focal
pneumonia
Canineparvovirustype2a
(wildtype)—detectedin
thelung,liver,heart,
andintestine
E.coli—isolatedinintestine
andlung
Viralandbacterialco
infection
MVomiting
Visceralcongestion,
pulmonarycongestion,
enteritis,abdominal,
thoracicandpericardial
effusion,multifocal
pulmonaryhemorrhage
NovirusdetectedE.coli—isolatedinintestine
Undetermined:
insufficientfindings
toexplaindeath
4FAcuterespiratory
insufficiency
Multifocalhemorrhage,
abdominal,thoracicand
pericardialeffusion,
hemorrhagicenteritis
Novirusdetected
E.coli—detectedintheliver,
lung,andintestineClostridium
perfringensDetectionof
Clostridiumperfringensalpha
toxin—detectedinthe
intestineandlung
Bacterialinfection
Animals2020,10,11348of12
5
MAcuterespiratory
insufficiency
Pulmonarycongestion,
segmentalcatarrhal
enteritis
Canineparvovirustype2a
(wildtype)—detectedin
lung,liver,andintestine
E.coli—isolatedinthe
intestineViralinfection
FAsingleepisodeof
diarrhea
Pulmonarycongestion,
pulmonaryedema,
segmentalhemorrhagic
enteritis
Canineparvovirustype2a
(wildtype)—detectedin
lung,liver,intestine,and
spleen
Adenovirus—detectedin
thelung
NobacteriadetectedViralinfection
6
FLackofappetite
Thoraciceffusion,visceral
congestion,multifocal
hemorrhage,severe
hemorrhagicenteritis
Canineparvovirustype2a
(vaccinal)and2c(wild
type)—detectedinlung,
liver,intestine,and
spleen
Caninedistempervirus
detectedinlung
Adenovirus—detectedin
lung
NobacteriadetectedViralinfection
FLackofappetiteand
feverfor12h
Multifocalhepaticnecrosis,
hemorrhagicenteritis
Canineparvovirustype2b
(wildtype)—detectedin
thelung,liver,brain,
andintestine
E.coli.Clostridiumperfringens,
DetectionofClostridium
perfringensalphatoxin
(isolatedinlung,liver,and
intestine)
Viralandbacterialinfection
FSingleepisodeof
diarrhea
Congestionofthespleen,
abdominaleffusionNovirusesdetectedNobacteriadetected
Undetermined:
insufficientfindings
toexplaindeath
Animals2020,10,11349of12
4.Discussion
Inhumanforensicpathology,theautopsyforcasesofSUIDareprimarilyperformedaccording
tothe“KennedyReport”[11].Thisprotocolandthepublishedinternationalguidelinesadvocatea
multidisciplinaryapproachtoinvestigationsofallcasesofSUID,whichshouldbebasednotonlyon
thefindingsofthepostmortemmacroscopicexamination,butalsoonabroadrangeofancillary
investigations,suchasbacteriologicalandvirologicalanalyses.Althoughabroadrangeoftestshave
beenproposedincasesofSUIDinhumanforensicmedicine,inthepresentstudy,wefocusedonthe
pathologicalandpostmortemmicrobiologyfindingsincasesofsuddendeathinyoungdogs.The
resultsofthisstudyshowalowfrequencyofsuddendeathsinyoungdogs,accountingfor14.48%of
thetotalobserveddeaths.Furthermore,theChisquaredtestshowedasignificantdifferenceinthe
frequenciesofEDandSUDamongtheassessedagegroups(p<0.05).Inparticular,thehighest
frequencyofsuddendeathwasobservedindogsyoungerthan4weeksold.Incontrast,thehighest
frequencyofEDwasobservedinanimalsinGroups2–5.Thisdifferencecouldbeduetothe
immaturityoftheimmunesystemofpuppiesyoungerthan6–12weeksofage[24].Indeed,the
endotheliochorialplacentationofthisspeciesisrelativelyimpenetrabletothetransferofmaternal
immunoglobulin[24].Thus,theimmuneprotectionofthepuppiesduringthefirstweeksoflife
dependsontheingestionofmaternalcolostrumantibodies(MCA)[24].Intheabsenceofthepassive
transferofMCA,newbornpuppiesareonlyabletodevelopanimmuneresponsetoantigensat2–3
weeksofage.Therefore,anydelayincolostrumintakeorreductionofcolostrumingestionleadstoa
reductionintheimmuneprotectionoftheanimals[24–26].Undertheseconditions,virusesorbacteria
canreplicateandspreadquickly,leadingtothedeathofthepuppies,withoutthedevelopmentof
characteristicsymptoms.Furthermore,congenitalmalformationormaternalmalnutritioncouldbe
consideredadditionalcausesofsuddendeathinthisagerange.Incontrast,after2–3weeksofage,
theimmunesystemofpuppies,althoughimmature,isabletodevelopamildimmuneresponse
againstpathogens,avoidingtherapidspreadofthepathogensandallowingthedevelopmentof
characteristicsymptomsofthepathology.Inaddition,inourstudy,themostfrequentlyobserved
grossinjuriesincasesofsuddendeathwerehaemorrhagicgastroenteritisin12outof21cases,
pneumoniainsevenoutof21cases,andcatarrhalenteritisinfiveoutof21cases.Pulmonaryoedema
ormultiorgancongestionwerealsoobservedin19outof21cases.Intraabdominalandrespiratory
lesionshavebeenpreviouslyreportedintheliteratureastwoimportantcausesofsuddenand
unexpectedinfantdeathinhumanforensicpathology[27].Indeed,respiratorytractlesions,although
mild,caneasilyleadtoseriouscomplicationsandsuddendeathofthesubjects[27].Similarly,acute
gastroentericlesionscancauseseveredehydrationandserumelectrolytedisturbance,whichhave
thepotentialtocausesuddenandunexpecteddeathinchildren[27].Overall,inourstudy,positive
microbiologicalresultswereobservedin18outof21cases.However,asfrequentlyhighlightedin
thehumanliterature,theisolationofpathogensincasesofsuddendeathdoesnotnecessarilyimply
acorrelationbetweenthosepathogensandthedeath.Inparticular,thiscorrelationmustbeconfirmed
bytheobservationofsevereandspecificinjuriesduringtheanatomopathologicalexamination[6].
Therefore,afterthereviewofthenecropsyfindings,detectedpathogenswereconsideredthemain
causeofdeathinonly14outof21cases,whileintheremainingsevencases,themicrobiological
resultsdidnotexplaintheinjuriesobservedduringthenecropsy.Thenegativefindingsobservedin
ourstudycouldsuggest:(1)anoninfectiouscauseofdeathoftheassessedanimals;or(2)adeath
duetovirusesorotherpathogensnotdetectedbythevirologicalpanelinuseinthisstudy.Indeed,
thereareawiderangeofvirusesthatarepotentiallypathogenicinyoungdogs,includingbothDNA
andRNAviruses.However,ourvirologicalpanelwaslimitedtothedetectionofthefollowingfive
specificviruses:canineparvovirus,caninecoronavirus,canineadenovirus,canineherpesvirusandcanine
distempervirus.Withregardtothepositiveresults,viralinfectionduetocanineparvovirustype2(wild
type)wasthemostcommoncauseofdeathobservedinourstudy.Overall,CPV2isacausativeagent
ofacutegastroenteritisandmyocarditis[17,18].Furthermore,itisreportedintheliteraturetobeone
ofthemostcommonandimportantcausesofmorbidityandmortalityinyoungdogs[17,18].Usually,
theclinicalsymptomsoftheinfectionareasfollows:anorexia,depression,lethargyandfever,
Animals2020,10,113410of12
followedbyvomitinganddiarrhea[17,18,28].However,itisalsoreportedtobeacauseofsudden
cardiacdeathinpuppiesbetween4and8weeksofage[17,29,30].Interestingly,wealsoobservedtwo
casesofsuddendeathduetoCaninedistempervirusandPasteurellaspp.coinfection.Caninedistemper
virusisamemberofthegenusMorbillivirus,whichcancausealargevarietyofdisordersindogs
includingrhinitis,pneumonia,demyelinatingleukoencephalitis,necrotizingbronchiolitisand
enteritis[31].Caninedistempervirusisnotreportedintheveterinaryliteratureasacauseofsudden
deathinanimals.However,Caninedistemperviruscausesimmunosuppressionbytargetingcellsthat
expresstheCD150protein(signalinglymphocyteactivationmolecule(SLAM))[31].Previousstudies
showedthatthisimmunosuppressionfavorssecondaryinfectionscausedbypathogens,suchas
BordetellabronchisepticaorC.piliforme[32].Therefore,itispossibletosupposethatopportunistic
pathogenscouldcomplicateasubclinicalCaninedistempervirusinfection,replicatingandspreading
quickly,andleadingtothedeathofthepuppieswithoutthedevelopmentofcharacteristicsymptoms.
Withregardstothebacteriologicalexamination,themostcommonisolatedbacteriawereC.
perfringenstypeA(6/19)andE.coli(6/19).However,theywereconsideredthecauseofdeathinonly
twocases.Indeed,C.perfrigensandE.coliareconsiderednormalcomponentsofcanineintestinalflora
[33,34].Similarly,thealphatoxingeneofC.perfringensmaybefoundinasymptomaticdogsaspart
ofthenormalintestinalmicroflora[33].However,insomecases,E.colicancausepleuropneumonitis
[35],gastroenteritis[36],urogenitalinfections,cholangitis,cholangiohepatitisandsepticaemia[37]in
bothhumansandotheranimals.Similarly,C.perfringenstypeAhasbeenassociatedwithgastro
entericdisease,suchashaemorrhagicenteritisindogsandabomasitisinruminants[38–40].
Furthermore,thisbacteriumhasbeenreportedintheliteratureasacauseofsuddenandunexpected
deathindogs[39].Unfortunately,nospecifictestforthediagnosisofenteritisduetoC.perfringensis
describedintheliterature[40].Thus,generally,theclinicalsigns,thepathologicalfindings,the
microbiologicalanalysis,andtheabsenceofotherpathogensmustbeexaminedbeforeconfirming
thediagnosis[40].Inourcase,themultisitelocationsofthepathogens,theabsenceofotherviruses
orbacteriaandthespecificanatomopathologicalfindingsofhaemorrhagicenteritissupportedthe
diagnosisofenteritisduetoC.perfringensandE.coliasthefinalcauseofdeath.
Finally,thisstudyallowedthedetectionofawiderangeofpathogensthat,afterthereviewof
thenecropsyandmicrobiologicalreports,werenotconsideredthemaincauseofdeathoftheanimals,
suchasCanineAdenovirus,Rotavirus,Streptococcussanguinis,Streptococcusdysgalactiaeand,insome
cases,E.coliandC.perfringens.Therefore,furtherstudieswillbeneededtoevaluatethepossible
contributionsofthesepathogenstocasesofsuddenandunexpecteddeathinyoungdogs.
5.Conclusions
Suddendeathisanuncommoncauseofdeathinyoungdogs.However,thehighfrequenciesof
virusesandbacteriadetectedinourstudyhighlightstheimportanceofperformingcomplete
bacteriologicalandvirologicalanalysesinallcasesofsuddendeathinyoungdogs.Theresultsofthis
studysuggestthatourPCRpanelcombinedwithabacteriologicalanalysiscouldfacilitatetherapid
detectionandtypespecificidentificationofthepathogeniccausesorcofactorsofdeathinmostcases
ofsuddendeathinyoungdogs.Finally,theseresultscouldprovideavaluableepidemiologicaltool
fortheinvestigationofsuddendeathinyoungdogs.
AuthorContributions:Theindividualcontributionsinthepresentstudywereasfollows:conceptualizationand
methodologyG.P.,G.F.,L.C.;validationF.A.,L.V.,V.I.;investigationG.P.,L.C.;datacurationG.P.;writing—
originaldraftpreparationG.P.;projectadministrationG.F.;fundingacquisitionG.F.Allauthorshavereadand
agreedtothefinalversionofthemanuscript.
Funding:Thisresearchdidnotreceiveanyspecificgrantfromfundingagenciesinthepublic,commercial,or
notforprofitsectors.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
Animals2020,10,113411of12
References
1. Byard,R.W.Suddendeath—Anoverview.InSuddenDeathinInfancy,Childhood,andAdolescence,1sted.;
Byard,R.W.,Cohle,S.D.,Eds.;CambridgeUniversityPress:Cambridge,UK,1994;pp.1–4.
2. Kruger,M.M.;Martin,L.J.;Maistry,S.;Heathfield,L.J.Asystematicreviewexploringtherelationship
betweeninfectionandsuddenunexpecteddeathbetween2000and2016:Aforensicperspective.Forensic
Sci.Int.2018,289,108–119.
3. Prtak,L.;AlAdnani,M.;Fenton,P.;Kudesia,G.;Cohen,M.C.Contributionofbacteriologyandvirologyin
suddenunexpecteddeathininfancyArch.Dis.Child.2010,95,371–376.
4. Tajiri,T.;Tate,G.;Miura,K.;Masuda,S.;Ohike,N.;Kunimura,T.;Mitsuya,T.;Morohoshi,T.Suddendeath
causedbyfulminantbacterialinfection:BackgroundandpathogenesisofJapaneseadultcases.Intern.Med.
2008,47,1499–1504.
5. Kinney,H.C.;Thach,B.T.TheSuddenInfantDeathSyndrome.N.Engl.J.Med.2012,8,795–805.
6. FernándezRodríguez,A.;Ballesteros,S.;DeOry,F.;Echevarría,J.E.;AlvarezLafuente,R.;Vallejo,G.;
Gómez,J.Virologicalanalysisinthediagnosisofsuddenchildrendeath:Amedicolegalapproach.Forensic
Sci.Int.2006,161,8–14.
7. Yagmur,G.;Ziyade,N.;Elgormus,N.;Das,T.;Sahin,M.F.;Yildirim,M.;Ozgun,A.;Akcay,A.;Karayel,F.;
Koc,S.Postmortemdiagnosisofcytomegalovirusandaccompanyingotherinfectionagentsbyrealtime
PCRincasesofsuddenunexpecteddeathininfancy(SUDI).J.ForensicLeg.Med.2016,38,18–23.
8. Dettmeyer,R.;Baasner,A.;Schlamann,M.;Padosch,S.A.;Haag,C.;Kandolf,R.;Madea,B.Roleofvirus
inducedmyocardialaffectionsinsuddeninfantdeathsyndrome:Aprospectivepostmortemstudy.Pediatr.
Res.2004,55,947–952.
9. Dempers,J.;Ann,S.M.;Wadee,S.A.;Kinney,H.C.;Odendaal,H.J.;Wright,C.A.ProgressivePrimary
PulmonaryTuberculosisPresentingastheSuddenUnexpectedDeathinInfancy:ACaseReport.Forensic
Sci.Int.2011,206,27–30.
10. Astrup,B.S.;Johnsen,I.B.G.;Engsbro,A.L.TheroleofCoxsackievirusA16inacaseofsuddenunexplained
deathinaninfant—ASUDIcase.ForensicSci.Int.2016,259,9–13.
11. Kennedy,H.SuddenUnexpectedDeathinInfancy.AMultiAgencyProtocolforCareandInvestigation,1sted.;
TheReportofaWorkingGroupConvenedbytheRoyalCollegeofPathologistsandtheRoyalCollegeof
PaediatricsandChildHealth;TheRoyalCollegeofPathologists/TheRoyalCollegeofPaediatricsandChild
Health:London,UK,2014.
12. Bajanowski,T.;Vege,A.;Byard,R.W.;Krous,H.F.;Arnestad,M.;Bachs,L.;Banner,J.;Blair,P.S.;Borthne,
A.;Dettmeyer,R.;etal.Suddeninfantdeathsyndrome(SIDS)—Standardizedinvestigationsand
classification:Recommendations.ForensicSci.Int.2007,165,129–143.
13. Vennemann,M.;Bajanowski,T.;ButterfassBahloul,T.;Jorch,G.;Brinkmann,B.;Mitchell,E.A.Dorisk
factorsdifferbetweenexplainedsuddenunexpecteddeathininfancyandsuddeninfantdeathsyndrome?
Arch.Dis.Child.2007,92,133–136.
14. Parry,N.M.Medicine:Suddenandunexpecteddeathinsmallanimalpatients:Part1.CompanionAnim.
2008,13,23–30.
15. Fleming,J.M.;Creevy,K.E.;Promislow,D.E.L.MortalityinNorthAmericanDogsfrom1984to2004:An
InvestigationintoAge,Size,andBreedRelatedCausesofDeath.J.Vet.Intern.Med.2011,25,187–198.
16. Eleni,C.;Panetta,V.;Scholl,F.;Scaramozzino,P.CausesofdeathindogsintheprovinceofRome(Italy).
Vet.Ital.2014,50,137–143.
17. Nandi,S.;Kumar,M.CanineParvovirus:CurrentPerspective.IndianJ.Virol.2010,21,31–44.
18. Mylonakis,M.E.;Kalli,I.;Rallis,T.S.Canineparvoviralenteritis:Anupdateontheclinicaldiagnosis,
treatment,andprevention.Vet.Med.2016,11,91–100.
19. Olsen,T.F.;Allen,A.L.Causesofsuddenandunexpecteddeathindogs:A10yearretrospectivestudy.
Can.Vet.J.2000,41,873–875.
20. Kaur,G.;Chandra,M.;Dwivedi,P.N.;Narang,D.MultiplexrealtimePCRforidentificationofcanine
parvovirusantigenictypes.J.Virol.Methods2016,233,1–5.
21. Brownlie,H.W.;Munro,R.TheVeterinaryForensicNecropsy:AReviewofProceduresandProtocols.Vet.
Pathol.2016,53,919–928.
22. Wilson,S.J.;Wilson,M.L.;Reller,L.B.Diagnosticutilityofpostmortembloodcultures.Arch.Pathol.Lab.
1993,117,986–988.
Animals2020,10,113412of12
23. Morris,J.A.;Harrison,L.M.;Partridge,S.M.Postmortembacteriology:Areevaluation.J.Clin.Pathol.2006,
59,1–9.
24. Day,M.J.ImmuneSystemDevelopmentintheDogandCat.J.Comp.Path.2007,137,10–15.
25. Decaro,N.;Buonavoglia,C.Canineparvovirus—Areviewofepidemiologicalanddiagnosticaspects,with
emphasisontype2c.Vet.Microbiol.2012,155,1–12.
26. Mila,H.;Grellet,A.;Desario,C.;Feugier,A.;Decaro,N.;Buonavoglia,C.ChastantMaillard,S.Protection
againstcanineparvovirustype2infectioninpuppiesbycolostrumderivedantibodies.J.Nutr.Sci.2014,3,
54.
27. Byarnt,V.A.NaturalDiseasesCausingSuddenDeathinInfancyandEarlyChildhood.InSIDSSudden
InfantandEarlyChildhoodDeath:ThePast,thePresentandtheFuture,1sted.;Duncan,J.R.,Byard,W.R.,Eds.;
TheUniversityofAdelaide:Adelaide,Australia,2018;pp.300–312.
28. Stann,S.E.;DiGiacomo,R.F.;Giddens,W.E.;Evermann,J.F.Clinicalandpathologicalfeaturesofparvoviral
diarrhoeaindogs.J.Am.Vet.Med.Assoc.1984,185,651–654.
29. Hayes,M.A.;Russell,R.G.;Babiuk,L.A.Suddendeathinyoungdogswithmyocarditiscausedby
parvovirus.J.Am.Vet.Med.Assoc.1979,174,1197–1203.
30. Ridgway,E.J.;Harvey;D.Thehospitalautopsy:Amanualoffundamentalautopsypractice.InTheHospital
Autopsy,3rded.;Burton,J.,Rutty,G.,Eds.;HodderEducation:London,UK,2009.
31. Beineke,A.;Puff,C.;Seehusen,F.;Baumgärtner,W.Pathogenesisandimmunopathologyofsystemicand
nervouscaninedistemper.Vet.Immunol.Immunopathol.2009,127,1–18.
32. Headley,S.A.;Oliveira,T.E.S.;Pereira,A.H.T.;Moreira,J.R.;Michelazzo,M.M.Z.;Pires,B.G.;Marutani,
V.H.B.;Xavier,A.A.C.;DiSantis,W.G.;Garcia,J.L.;etal.Caninemorbillivirus(caninedistempervirus)with
concomitantcanineadenovirus,canineparvovirus2,andNeosporacaninuminpuppies:Aretrospective
immunohistochemicalstudy.Sci.Rep.2018,8,13477.
33. Goldstein,M.R.;Kruth,S.A.;Bersenas,A.M.E.;Holowaychuk,M.K.;Weese,J.S.Detectionand
characterizationofClostridiumperfringensinthefecesofhealthyanddiarrheicdogs.Can.J.Vet.Res.2012,
76,161–165.
34. Bettelheim,K.A.;Goldwater,P.N.EscherichiacoliandSuddenInfantDeathSyndrome.Front.Immunol.2015,
6,343.
35. Handt,L.K.;Stoffregen,D.A.;Prescott,J.S.;Pouch,W.J.;Ngai,D.T.;Anderson,C.A.;Gatto,N.T.;DebRoy,
C.;Fairbrother,J.M.;Motzel,S.L.;etal.Clinicalandmicrobiologiccharacterizationofhemorrhagic
pneumoniaduetoextraintestinalpathogenicEscherichiacoliinfouryoungdogs.Comp.Med.2003,53,663–
670.
36. Astrid,B.K.;Anthony,P.C.;Casey,M.GauntEnteropathogenicEscherichiacoli(EPEC)infectionin
associationwithacutegastroenteritisin7dogsfromSaskatchewan.Can.Vet.J.2016,57,964–968.
37. Beutin,L.Escherichiacoliasapathogenindogsandcats.Vet.Res.1999,30,285–298.
38. Sasaki,J.;Goryo,M.;Asahina,M.;Makara,M.;Shishido,S.;Okada,K.Hemorrhagicenteritisassociated
withClostridiumperfringenstypeAinadog.J.Vet.Med.Sci.1999,61,175–177.
39. Schlegel,J.B.;Dreumel,T.D.;Slavić,D.;Prescott,J.F.ClostridiumperfringenstypeAfatalacutehemorrhagic
gastroenteritisinadog.Can.Vet.J.2012,53,555–557.
40. Marks,S.L.;Kather,E.J.Clostridiumperfringens‐ andClostridiumdifficileassociateddiarrhea.InInfectious
DiseasesoftheDogandCat,3rded.;Greene,C.E.,Ed.;SaundersElsevier:StLouis,MO,USA,2016;pp.363–
366.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommons
Attribution(CCBY)license(http://creativecommons.org/licenses/by/4.0/).
... Le recueil des informations utiles à la recherche de l'origine de la mortalité néonatale doit être minutieux. mère, comme le déroulement de la gestation ou de la mise bas, le comportement maternel, la quantité et la qualité du colostrum et du lait, la santé de la mère, etc. Elles peuvent provoquer chez les chiots nouveau-nés des signes cliniques peu évocateurs, voire inexistants, vingt-quatre heures avant la mort dans la majorité des cas (60 % des cas) [14]. Si des signes cliniques sont présents, ils sont souvent non spécifiques et classiques chez un chiot nouveau-né, comme une déshydratation, une hypothermie et une hypoglycémie. ...
... Bien que les signes cliniques chez les chiots nouveau-nés soient fréquemment non spécifiques et que le délai entre leur apparition et la mort soit souvent court, le propriétaire ou l'éleveur doit être interrogé afin d'identifier les circonstances particulières de la mort [4,12,14]. Par exemple, si plusieurs chiots morts ont un faible poids à la naissance, cela suggère plutôt une anomalie lors de la gestation (d'origine alimentaire, utérine, contagieuse, etc.). De même, un retard de croissance du chiot mort par rapport à la fratrie évoque une complication depuis la naissance (hypoxie, anomalie congénitale, etc.), tandis qu'une perte de poids brutale est souvent associée à un trouble aigu (infection, traumatisme). ...
Article
Conserver le cadavre dans des conditions adaptées et recueillir les commémoratifs et l'anamnèse sont deux premières étapes préalables à l'autopsie, indispensables à l'interprétation de ses résultats. L a mortalité néonatale, définie comme la mortalité intervenant au cours des trois pre-mières semaines de vie, est fréquente dans l'espèce canine. Elle touche entre 7 et 21 % des chiots nés vivants [2, 5, 10]. Dans 60 à 80 % des cas, la mort intervient durant la première semaine de vie [5, 11]. Dans le contexte d'un tableau clinique fruste et d'une dégradation rapide du corps de l'animal, l'examen post-mortem constitue une étape importante pour tenter d'identifier la cause de la mort, et permettre également la mise en place de mesures prophylactiques. Au préalable, il est essen-tiel de réceptionner le corps dans de bonnes conditions et de recueillir les informations nécessaires à la recherche de l'origine de la mortalité néonatale.
... For years, there was evidence of limited CAdV-1 circulation in domestic dogs and less reported was its connection to ICH cases in Italy [17,[26][27][28][29]44,45]. According to these data, nowadays, CAdV-1 infection is considered uncommon in the veterinary practice, but consequentially, its clinical evidence could be underestimated. ...
... Among CAdV-1 E3 sequences obtained during the years 1966-2013 from dogs in Italy, a high sequence homology was observed, and therefore, sequences became indistinguishable based on this targeted gene. This conserved region, other than informative of the CAdV type, confirms to be a useful target both for the in-vivo and post-mortem molecular assays [17,28,44,45] but evidenced some limits for the genomic discrimination of the compared strains. Similarly, Penton base gene analysis, herein described for the first time for CAdV-1, revealed a very low divergence and rare single synonymous substitutions, preventing the evidence for genomic markers of CAdV-1 strains. ...
Article
Full-text available
Canine adenovirus type 1 (CAdV-1) is the causative agent of a systemic and potentially fatal viral disease of domestic and wild canids. In Italy, CAdV-1 infection has also been occasionally described in dogs, but information on the epidemiology and its genomic features is still limited. A study was conducted on 291 dogs suspected of infectious gastrointestinal disease. Samples collected from dogs in southern Italy between 2017 and 2020 were analyzed. Virological and histopathological assays were carried out. The presence of CAdVs and other canine viral enteropathogens was investigated, and sequence and phylogenetic analyses were performed. CAdV-1 was detected in six (2.1%) dead stray dogs alone or in mixed infections with other viruses. Gross lesions and histopathological findings referred to CAdV infection were observed, also involving the central nervous system tissues. All inoculated samples were successfully isolated. Sequence analysis evidenced divergences with the circulating strains previously described in Italy and a closer relation with older CAdV-1 strains collected from other countries, suggesting a genetic heterogeneity of CAdV-1 in Italy. The evidence of the circulation of CAdV-1 and its genomic features allows us to have more in-depth knowledge of the epidemiology and evolution of the CAdV-1 genomic variants.
... Unknown cause of SUD was the most frequent of all categories in both cats and dogs, accounting for more than one third of deaths in the whole study population. This is higher than described in the Canadian, UK, and Italian papers, where 12.6% to 14.5% were reported [10][11][12][13]; and more similar to the SUD frequency reported in horses [17,19]. This difference between the current work and previous publications reinforces the necessity for this Australian-based study. ...
Article
Full-text available
Simple Summary Pets may die unexpectedly, without warning, and with no externally visible reason for death. As in people, postmortem examination can be performed to try to determine the cause of death. There are many diseases which may result in sudden unexpected death in domestic animals, although there is little research on companion animals and no studies performed in Australia. The aims of this study were to identify causes of sudden unexpected death in cats and dogs in Australia by examining postmortem reports and to identify risk factors for certain causes of sudden death. Abstract Sudden and unexpected death (SUD) is a common reason for animals to undergo post-mortem examination. There is limited literature examining the causes of SUD in cats and dogs, and no research specific to Australia. The purpose of this study was to investigate the epidemiology and pathology of SUD in cats and dogs in a multicentric study across Australia. Retrospective post-mortem reports of SUD in cats and dogs were obtained from four veterinary schools in Australia distributed across four states. The frequency of SUD between institutes ranged from 2.1% to 6.5%. Dogs composed the majority of the study population (76%), and males outnumbered females, particularly in the feline subpopulation. After necropsy, 37% of SUD remained cause unknown, the largest category in both cats and dogs. When cause was identified, cardiovascular disease was most common in both species, followed by gastrointestinal disease in dogs, and trauma in cats. In dogs, multinomial logistic regression identified age as a risk factor significantly associated with the four largest categories of SUD. This study identified causes of SUD in Australian cats and dogs, including novel causes not previously reported. Further, this study revealed a higher rate of unsolved SUD in Australia than can be found in the literature from other countries.
... De nombreuses autres conclusions concernant la ou les causes de la mort peuvent être illustrées chez le chiot nouveau-né, à l'aide du tableau lésionnel et des résultats des différents examens complémentaires (tableau). [1,4,9] et données non publiées des auteurs. ...
Article
Plusieurs types d'examens complémentaires sont envisageables au moment de l'autopsie. Chez le chiot, leur association permet de déterminer la cause de la mort dans plus de 90 % des cas. L ors de mortalité néonatale chez le chien, l'examen post-mortem est souvent le seul qui permet, directement ou assorti d'examens complémentaires, d'établir un diagnostic, en raison de l'absence fréquente de données cliniques sur les circonstances de la mort. La der-nière partie de cet examen consiste donc à réunir et à mettre en relation l'ensemble des résultats d'ana-lyses concernant le chiot mort et/ou la portée dont il est issu. 1. INTERPRÉTER LES RÉSULTATS DES ANALYSES COMPLÉMENTAIRES Lésions microscopiques L'interprétation des lames histopathologiques doit être réalisée par des pathologistes vétéri-naires. Cela est d'autant plus important que chez le chiot nouveau-né, les lésions sont beaucoup moins marquées que chez le chien adulte. Le faible développement du système immunitaire pourrait expliquer une réaction infl ammatoire beaucoup moins sévère lors d'infection, donc moins visible au microscope. De plus, les inter-prétations des lames sont parfois diffi ciles, car des fi gures d'hématopoïèse extramédullaire, la persistance des structures foetales ou des foyers de tissus immatures sont encore visibles dans de nombreux cas (photos 1 à 3) [4]. Bactériologie Chez environ 80 % des chiots nouveau-nés qui meurent au cours des trois à quatre premières semaines après la naissance, les résultats bactério-logiques se révèlent positifs en phase post-mortem. RÉSUMÉ La dernière partie de l'autopsie a pour objectif de mettre en relation tous les résultats des analyses menées chez le chiot et/ou sa portée afi n d'établir le diagnostic fi nal. Cet article présente les particularités de l'interprétation des résultats des examens post-mortem (l'histologie, la bactériologie, la polymerase chain reaction et la coproscopie), ainsi que les diff érentes causes de la mort associées.
Article
Background : Whether it entails the loss of a beloved family member or a valuable work animal, the sudden, unexpected death of an animal can be a daunting and traumatic experience for both owners and veterinary practitioners. Veterinary practitioners are often the first point of contact for people grieving the loss of a companion animal, and may be called upon to provide support and reassurance, even though many have not received formal training in grief and bereavement management. Aim of the article : This article aims to provide tools to guide the approach to these situations, in the form of insight into common causes of sudden death and tips on how a practitioner should collect information, manage owner expectations and provide valuable context that can facilitate the pathologist's interpretation of findings.
Article
Full-text available
One of the objects of the forensic veterinary examination is the animal’s corpses, the death of which occurred suddenly, or from violent actions, including cruel treatment. A variation of the manifestation of cruelty to animals is their deliberate poisoning. Among the wide variety of toxic substances, pesticides, including rodenticides, occupy a significant place. The aim of the study was to develop an algorithm for forensic veterinary diagnostics and evaluation of dog corpses in case of their sudden death from poisoning with anticoagulant rodenticide – bromadiolone. The objects of the study were the seven dog’s corpses, on which a forensic veterinary examination was carried out for the period from 2010 to 2021 with a clinical diagnosis of acute poisoning with lethal fleeting consequences from poisoning with anticoagulant rodenticide – bromadiolone, established during life. The article shows that the general algorithm for the forensic veterinary examination of the corpse of an animal whose death occurred from poisoning includes the following steps: establishing a list of objects provided for research and information about their condition, conditions for conducting forensic veterinary research, applied methods of studies, their registration numbers (if any); study of the case and the animal’s death anamnesis circumstances; study of veterinary documents and individual case materials related to the examination or provided to the expert additionally at his request; forensic veterinary examination of an animal corpse; study of registration data; external examination of the corpse of an animal; internal examination of an animal corpse; additional studies of the corpse: chemical-toxicological, histological (cytological), microbiological, etc.; forensic veterinary diagnosis; synthesizing research; formulation of conclusions (results); formulation an expert opinion. The forensic veterinary diagnosis, established on the basis of the results of a forensic veterinary examination of the corpses of the dogs under examination, is formulated according to the established rubric structure: the main nosologicalunit and its fatal complication(internal bleeding – hematoperitoneum, hemothorax, bilateral pulmonary edema); accompanying nosological units (acute hemorrhagic gastroenterocolitis, acute hemorrhagic endocarditis, general anemia, congestive venous hyperemia of the kidneys, liver and spleen); background nosological units (undifferentiated hepatopathy and nephropathy, chronic pancreatitis, polyarthritis). The positions of the formulated forensic veterinary diagnosis indicate that they are generally characteristic of acute poisoning. The cytogram data analyzed in the article coincide with the data obtained during the forensic veterinary autopsy of animal corpses, indicating that the poison, from which the death of the dogs under examination occurred, belongs to the group of hemolytic toxins. A chemical-toxicological investigation of the contents of the stomach of the corpses of the dogs under expert identified the poisonous substance of the second generation of rodenticides – bromadiolone at a concentration of 10 mg/kg. A complex of investigations has proved that there is a direct necessary causal relationship between the dog’s death and the nature of the poisoning. Key words: forensic veterinary examination, animals, intoxication, poisonous substances, autopsy, chemical and toxicological research, algorithm.
Article
Full-text available
Neonatal mortality in puppies is a problem frequently encountered by dog breeders. Often, only postmortem examination allows diagnosis and implementation of measures to save the rest of the litter. This article presents the key steps of the postmortem examination, namely, autopsy, histopathology, bacteriology, molecular identification of pathogens, and coproscopy. Sampling, samples' conservation, and interpretation of the obtained results are presented as well as their relative importance for the final diagnosis. Finally, examples of the most frequent syndromes observed under postmortem examination in canine newborns, together with the results from a complementary analysis looking for infectious agents responsible for death, are discussed.
Article
Bufavirus is a novel virus associated with canine gastroenteritis. Three strains of bufavirus were first detected in dog feces collected from Anhui province in Eastern China. The near-complete genome sequences were amplified. Sequence alignment showed 98.3–99.5% homology between the three bufavirus strains and reference strains. Phylogenetic analysis showed the distributed viruses forming a cluster of close relationships. Selective pressure analysis of the VP2 region indicated that the canine bufavirus (CBuV) was mainly subject to negative selection during evolution. The negative selection site was located on the residue of B-cell epitopes, indicating minimal change to the virus's immunogenicity. Since this is the first report of CBuV circulating in Anhui Province, this study will provide further understanding of the phylogenetic and molecular characteristics of CBuV and serve as a reference for prevention and vaccine development.
Article
Full-text available
A retrospective immunohistochemical study was designed to investigate the frequency of concomitant traditional infectious disease pathogens in puppies that died suddenly and review the aspects of associated pathogenesis. Fifteen puppies were evaluated; the pathology reports and histopathologic slides of these animals were reviewed to determine the pattern of histopathologic lesions. The intralesional identification of antigens of canine (distemper) morbillivirus (CDV), canine adenovirus-1 and -2 (CAdV-1 and -2), canine parvovirus-2 (CPV-2), Toxoplasma gondii, and Neospora caninum was evaluated by IHC within the histopathologic patterns observed. All puppies contained CDV nucleic acid by molecular testing. The most frequent histopathologic patterns were intestinal crypt necrosis (n = 8), white matter cerebellar demyelination (n = 7), necrohaemorrhagic hepatitis (n = 7), interstitial pneumonia (n = 7), and gallbladder oedema (n = 5). All puppies contained intralesional antigens of CDV in multiple tissues resulting in singular (n = 3), and concomitant dual (n = 3), triple (n = 5) and quadruple (n = 4) infections by CAdV-1, and -2, CPV-2, and N. caninum; T. gondii was not identified. Concomitant infections by CDV was observed with N. caninum (100%; 1/1), CPV-2 (100%; 8/8), CAdV-1 (100%; 8/8), and CAdV-2 (100%; 8/8). Intralesional antigens of CDV and not CAdV-1 were identified in cases of gallbladder oedema. The “blue eye” phenomenon was histologically characterized by corneal oedema and degenerative lesions to the corneal epithelium, without inflammatory reactions.
Article
Full-text available
Seven dogs diagnosed with enteropathogenic Escherichia coli (EPEC) infection in association with acute gastroenteritis are described. Disease severity ranged from mild in adults to fatal disease in young dogs. Enteropathogenic E, coli infection should be considered as a possible differential diagnosis in dogs with diarrhea.
Article
Full-text available
Mathios E Mylonakis, Iris Kalli, Timoleon S Rallis Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece Abstract: Canine parvovirus type 2 is the cause of a highly contagious acute enteritis associated with high morbidity and mortality, with very low survival rates in untreated dogs. Although severe clinical disease typically occurs in dogs younger than 6 months of age, adults with insufficient immunity may potentially be affected. In this article, the current state of knowledge is reviewed regarding the diagnostic aspects of parvoviral enteritis, with special emphasis placed on the clinical relevance of the detection of viral antigens in the feces, detection of viral antibodies in the serum, or the polymerase chain reaction-based amplification of the viral DNA in the feces. In addition, the components of the supportive and symptomatic treatment aiming to optimize the outcome of the disease in the clinical setting are thoroughly reviewed. Immunization guidelines for the prevention of the disease are also updated. Keywords: dog, parvovirus type 2, acute enteritis, treatment, vaccination
Article
Full-text available
The Coxsackievirus A16 (CV-A16) is one of the main pathogens causing hand-foot-and-mouth disease in young children. It is a low-virulence virus rarely involved in serious illness. It is seen sporadically or in outbreaks all over the world. We report a case of sudden unexplained death in infancy, SUDI, in a 3 and 1/2 months old infant, in which a thorough post mortem investigation pointed at a fatal infection with CV-A16 as the most likely cause of death. Only five cases of fatal CV-A16 infection have been published and none of these presented as sudden death. The fatal cases involved two infants, two young children and an elderly man. Post mortem, pre-autopsy CT-scan and C-reactive protein analysis allowed for an autopsy procedure targeted at a microbiological cause of death. The case illustrates the usefulness of supplementary testing during autopsy.
Article
Death due to infectious diseases is a major health concern worldwide. This is of particular concern in developing countries where poor-socio economic status and a lack of healthcare resources contribute to the high burden of disease. In some cases death due to infection can be acute and aggressive, and death may occur without a diagnosis whilst the person is still alive. These deaths may ultimately lead to a medico-legal autopsy being performed. There are various mechanisms by which sudden death due to infection may occur. In addition, there are many risk factors associated with sudden death due to infection, which differ between infants and older individuals. However, it is unclear which pathogens and risk factors are most frequently associated with sudden death due to infection. Therefore a systematic review of articles and case reports published between 1 January 2000 and 30 June 2016 was undertaken in order to (1) explore the relationship between pathogens and their causative role and (2) identify the relationship between predisposing and/or risk factors associated with sudden death due to infection. Major databases were searched and after critical appraisal 143 articles were identified. It was found that respiratory infections and deaths involving bacterial pathogens were most commonly associated with these deaths. In addition the most common risk factors in infants were exposure to tobacco smoke and co-sleeping. In adults the most common risk factors were co-morbid conditions and illnesses. This information aids in a better understanding of these deaths and highlights the need for more research in this field, particularly in developing countries.
Article
Investigation of animal-related crime, and therefore submission of forensic cases to veterinary pathology facilities, is increasing, yet many veterinary pathologists are unfamiliar and often uncomfortable with involvement in the forensic necropsy. This article discusses various aspects of the forensic necropsy without specific attention to any particular species group or crime. General advice is given on procedures, documentation, and recording of the examination, and the article indicates how these features may differ from those used in investigation of natural disease. It also discusses evidence management, including recordkeeping, identification of evidence, labeling of photographs, and use of standard operating procedures and protocols. Various written and visual methods for documentation of the forensic necropsy are covered, and adjunctive topics such as sample collection, assessment, and description of wounds and taphonomy are included. Cause, mechanism, and manner of death are defined, and guidance to the use of these terms is given. The aim of this article is to offer guidance on procedural aspects of the forensic necropsy that will help those developing their forensic services, contribute to standardization of the provision of forensic veterinary pathology, and build the confidence of the “uncomfortable” forensic veterinary pathologist.
Article
Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types.
Article
As an opportunistic pathogen with high mortality rates, Cytomegalovirus (CMV) may lead to fatal disseminated CMV infection of the premature and newborn; thus necessitating the demonstration of CMV-DNA with clinical history and/or histopathological findings of CMV infection and defining other bacterial and viral infection agents with real-time polymerase chain reaction (RT-PCR) in udden unexpected death in infancy (SUDI) cases as we aimed in this study. 314 (144 female, 170 male) SUDI cases were prospectively investigated from January 2013 to January 2015 in Istanbul Forensic Medicine Institution. The study includes 87 tissue samples of 39 cases for post-mortem histopathological examination of interstitial pneumonia, myocarditis, meningitis, encephalitis, hepatitis, colitis or tubulointerstitial nephritis and/or accompanying chronic sialadenitis. CMV-DNA was found positive in 35 (40.2%) salivary gland, 19 (21.8%) lung, 1 (1.1%) tonsil, and 1 (1.1%) brain tissues. CMV sialadenitis and/or CMV pneumonia associated with other viral and/or bacterial agents were detected in 23 (60%) of 39 infant cases. The demonstration of CMV-DNA would significantly clarify the cause of death and collection of epidemiological data in SUDI cases with clinical history and histopathological findings of CMV infection accompanying chronic CMV sialadenitis. Furthermore, CMV suppresses the immune system, and may predispose to other bacterial and/or viral infections in these cases. Post-mortem molecular investigations are useful in explaining cause of death in SUDI with a suspicion of infection in forensic autopsies.