ArticlePDF Available

Lichens and allied non-lichenized fungi of virgin forests in the Caucasus State Nature Biosphere Reserve (Western Caucasus, Russia)

Authors:

Abstract and Figures

We report on 659 epiphytic and epixylic species recorded from seven one-hectare plots established along an altitudinal gradient in a virgin forest of the Caucasus State Nature Biosphere Reserve. A total of 564 species are lichens, 61 are lichenicolous fungi and 34 are allied non- or facultatively lichenized fungi. one hundred forty – nine species (116 lichens, 17 lichenicolous and 16 saprophytic fungi) are new to the Northern Caucasus, including 133 species (104 lichens, 15 lichenicolous and 14 saprophytic fungi) that are new to the Caucasus Mountains. Fifty species are reported from Russia for the first time: 37 lichens (Andreiomyces obtusaticus, Bacidina mendax, Biatora aegrefaciens, B. bacidioides, B. chrysanthoides, Biatorella dryophila, Buellia iberica, Cliostomum haematommatis, Endohyalina ericina, Fellhanera christiansenii, Gyalidea minuta, Japewia aliphatica, Lecanora barkmaniana, L. subravida, Lecidea strasseri, Leptogium hibernicum, Lithothelium hyalosporum, L. phaeosporum, L. septemseptatum, Loxospora cristinae, Melanelixia epilosa, Micarea nowakii, M. perparvula, Opegrapha trochodes, Orcularia insperata, Parvoplaca servitiana, Phylloblastia inexpectata, Psoroglaena stigonemoides, Ptychographa xylographoides, Ramonia dictyospora, R. luteola, Rinodina polysporoides, Thelopsis flaveola, Topelia jasonhurii, Verrucaria hegetschweileri, Wadeana minuta, Waynea giraltiae), nine lichenicolous fungi (Arthonia vorsoeensis, Didymocyrtis melanelixiae, Epigloea urosperma, Muellerella polyspora, Phacographa zwackhii, Pronectria pilosa, Rhymbocarpus pubescens, Taeniolella friesii, Unguiculariopsis acrocordiae) and four nonlichenized saprophytic fungi (Cyrtidula major, Karschia cezannei, Kirschsteiniothelia recessa, Pseudotryblidium neesii). The ratio of macrolichens ranges between 26.5 – 40 % and rises with elevation. Lichens with a trentepohlioid photobiont are represented by 15 –51 species per plot and their species richness decreases with elevation. The species richness of cyanolichens is substantial in all plots (15 –28 species) reflecting a negligible effect of acidification/air pollution. Low species richness and low abundances of nitrophilous species indicate insignificant uptake of nitrogen emissions. Beech and fir are the most preferred phorophytes, but the vast majority of lichen species have low substrate specificity. Species richness per plots ranged between 236 and 379. The highest richness was found in a plot outside the Caucasian Reserve and we recommend its inclusion into the protected area.
Content may be subject to copyright.
90 Herzogia 33 (1), 2020: 90 –138
Lichens and allied non-lichenized fungi of virgin forests in the
Caucasus State Nature Biosphere Reserve (Western Caucasus,
Russia)
Gennadii *, Jan , Irina  &

Abstract: , G.,, J.,, I.,, Z. &, J. 2020. Lichens and allied
non-lichenized fungi of virgin forests in the Caucasus State Nature Biosphere Reserve (Western Caucasus, Russia). –
Herzogia 33: 90 –138.
We report on 659 epiphytic and epixylic species recorded from seven one-hectare plots established along an altitudinal
gradient in a virgin forest of the Caucasus State Nature Biosphere Reserve. A total of 564 species are lichens, 61 are li-
chenicolous fungi and 34 are allied non- or facultatively lichenized fungi. one hundred forty – nine species (116 lichens,
17 lichenicolous and 16 saprophytic fungi) are new to the Northern Caucasus, including 133 species (104 lichens, 15
lichenicolous and 14 saprophytic fungi) that are new to the Caucasus Mountains. Fifty species are reported from Russia for
the first time: 37 lichens (Andreiomyces obtusaticus, Bacidina mendax, Biatora aegrefaciens, B. bacidioides, B. chrysan-
thoides, Biatorella dryophila, Buellia iberica, Cliostomum haematommatis, Endohyalina ericina, Fellhanera christian-
senii, Gyalidea minuta, Japewia aliphatica, Lecanora barkmaniana, L. subravida, Lecidea strasseri, Leptogium hibern-
icum, Lithothelium hyalosporum, L. phaeosporum, L. septemseptatum, Loxospora cristinae, Melanelixia epilosa, Micarea
nowakii, M. perparvula, Opegrapha trochodes, Orcularia insperata, Parvoplaca servitiana, Phylloblastia inexpectata,
Psoroglaena stigonemoides, Ptychographa xylographoides, Ramonia dictyospora, R. luteola, Rinodina polysporoides,
Thelopsis flaveola, Topelia jasonhurii, Verrucaria hegetschweileri, Wadeana minuta, Waynea giraltiae), nine lichenicol-
ous fungi (Arthonia vorsoeensis, Didymocyrtis melanelixiae, Epigloea urosperma, Muellerella polyspora, Phacographa
zwackhii, Pronectria pilosa, Rhymbocarpus pubescens, Taeniolella friesii, Unguiculariopsis acrocordiae) and four non-
lichenized saprophytic fungi (Cyrtidula major, Karschia cezannei, Kirschsteiniothelia recessa, Pseudotryblidium neesii).
The ratio of macrolichens ranges between 26.5 – 40 % and rises with elevation. Lichens with a trentepohlioid photobi-
ont are represented by 15 –51 species per plot and their species richness decreases with elevation. The species richness
of cyanolichens is substantial in all plots (15 –28 species) reflecting a negligible effect of acidification/air pollution.

Beech and fir are the most preferred phorophytes, but the vast majority of lichen species have low substrate specificity.
Species richness per plots ranged between 236 and 379. The highest richness was found in a plot outside the Caucasian
Reserve and we recommend its inclusion into the protected area.
Zusammenfassung: , G.,, J.,, I.,, Z. &, J. 2020. Flechten
         
Rußland). – Herzogia 33: 90 –138.

wurden 659 epiphytische und epixyle Arten nachgewiesen. Davon sind 564 Flechten, 61 lichenicole Pilze und 34
   -
      
   Andreiomyces ob-
tusaticus, Bacidina mendax, Biatora aegrefaciens, B. bacidioides, B. chrysanthoides, Biatorella dryophila, Buellia
* corresponding author
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 91
iberica, Cliostomum haematommatis, Endohyalina ericina, Fellhanera christiansenii, Gyalidea minuta, Lecanora
barkmaniana, L. subravida, Lecidea strasseri, Leptogium hibernicum, Lithothelium hyalosporum, L. phaeosporum, L.
septemseptatum, Loxospora cristinae, Melanelixia epilosa, Micarea nowakii, M. perparvula, Opegrapha trochodes,
Orcularia insperata, Parvoplaca servitiana, Phylloblastia inexpectata, Psoroglaena stigonemoides, Ptychographa
xylographoides, Ramonia dictyospora, R. luteola, Rinodina polysporoides, Thelopsis flaveola, Topelia jason-
hurii, Verrucaria hegetschweileri, Wadeana minuta, Waynea giraltiae), 9 lichenicole Pilze (Arthonia vorsoeensis,
Didymocyrtis melanelixiae, Epigloea urosperma, Muellerella polyspora, Phacographa zwackhii, Pronectria pilosa,
Rhymbocarpus pubescens, Taeniolella friesii, Unguiculariopsis acrocordiae) und 4 nicht lichenisierte saprophytische
Pilze (Cyrtidula major, Karschia cezannei, Kirschsteiniothelia recessa, Pseudotryblidium neesii).
                -
         
-
ne Rolle spielen. Geringe Artenvielfalt und geringe Abundanz nitrophiler Arten indizieren unbedeutende Immissionen
  -
ße Mehrheit der Flechten zeigt eine geringe Substratspezifität. Die Artenvielfalt je Plot bewegt sich zwischen 236
und 379. Die höchste Vielfalt wurde in einem Plot außerhalb des Reservates festgestellt und wir empfehlen dessen
Aufnahme in das Schutzgebiet.
Key words: Biodiversity, epiphytes, hot-spots, lichen inventory, lichenized and lichenicolous fungi.
Introduction
The highest biodiversity among terrestrial biomes is associated with forests ( 2009).
However, most woodlands in Europe today are managed plantations, often with non-native
trees and with very low biodiversity. Primeval forests have become rare and are one of the
most endangered habitats ( et al. 2018a). The Russian North-western Caucasus is
outstanding with its 1.3 million hectares of undisturbed primeval forests ( 2017).
105 thousand hectares of undisturbed primeval fir and fir-beech forests are protected in the
Caucasus State Nature Biosphere Reserve (Caucasus Reserve in following text, et al.
1990). The Western Caucasus is a place where endangered, rare, endemic and relict plant and
animal species are concentrated ( et al. 2006). It is one of the world’s biodiversity
hot-spots ( &  2002) and one of the most diverse regions in Russia (
et al. 2001). It forms a border between two phytogeographical regions: the Euxinian province
of the Euro-Siberian region and the Hyrcanian province of the Irano-Turanian region. Its loca-
tion within the mid-latitudinal temperate zone, high topographical variation and proximity to
-
tions to alpine and nival conditions. It also harbors a high diversity of tree species and forest
types ( et al. 2011,  et al. 2018).
Although lists of lichens collected in NW Caucasus have been already published by
 (1997),  &  (2004, 2014, 2015), 
& (2005), and  (2005, 2007), fir-beech virgin forests in the Caucasus
       (1997) published a lichen
-
ported from the territory of the Caucasus Reserve. Subsequent floristic research resulted in 518
    &  2004). More
recently,  &    
Plateau (North Division of the Caucasus Reserve), mainly from alpine habitats, but also from
2) in the northern part of the Kamennoe
More (Stone Sea) Range where 330 epiphytic and epixylic species were recorded (including
30 species of lichenicolous fungi). In the Western and Southern parts of the Caucasus Reserve,

92 Herzogia 33 (1), 2020
and epixylic species were recorded ( &  2014, 2016). Another
90 species of lichenicolous fungi were reported for the Caucasus Reserve by  &
 (2016) and  (2017). Altogether, 1050 species (among them about 550

lichens, 160 lichenicolous fungi and 21 lichen-allied saprobic fungi.
In 2016, we pursued lichen inventories along an altitudinal gradient in untouched fir-beech
forests of the northern part of the Caucasus Reserve, focused on local lichen diversity hot-
spots (following  et al. 2018). Ecological and conservational implications of the
results have been published separately ( et al. 2019b), but the impressive floristic
results merit a publication of its own and are published here.
Study area
The Caucasus State Nature Reserve was established in 1924 and declared as an UNESCO
Biosphere Reserve in 1979 ( et al. 1990). In 1999, the entire territory of the Caucasus
Reserve (280 000 hectares) was included in the UNESCO World Natural Heritage Sites as
“Western Caucasus”. Approximately two thirds of the territory of the Caucasus Reserve is
covered with virgin forests; the rest of the area is occupied by subalpine and alpine meadows,
nival communities, and glaciers. Coniferous forests in the NW Caucasus are mainly formed by
Nordmann fir (Abies nordmanniana). Fir and fir-beech forests are the predominant habitat at
600 –1800 m above the sea level. Fir trees may have stunning sizes; more than 60 m in height
and about two meters in diameter at breast height ( et al. 1990). The eastern beech
(Fagus orientalis) reaches smaller sizes; slightly above 40 m in height and 100 cm in diam-
eter. Fir trees often reach 400 –500 years of age, and sometimes even 700 years, the eastern
beech reaches 280 –300 years but sometimes even 380 years ( 2011). Trautvetter
maple (Acer trautvetteri) is another forest dominant and other trees involved are: maple tree
species (Acer campestre, A. laetum, A. platanoides), lime tree (Tilia begoniifolia), hornbeam
(Carpinus betulus), ash (Fraxinus excelsior), birch (Betula litwinowii, B. pubescens) and pine
(Pinus kochiana, = P. sylvestris) ( et al. 1990). Other tree and shrub species are listed
at the beginning of the lichen list with abbreviations (see below).
According to the classification of terrestrial ecosystems (biomes) by  et al. (2018), the
study area belongs to the North-Western Caucasus regional orobiome of the North Caucasian
group with nemoral coniferous-deciduous and deciduous forests. Altitude belts in this orobi-
Quercus robur) – 200 –350 m
Quercus petraea) – 350 –500 m a.s.l.; 3) middle
mountain forests dominated by eastern beech (Fagus orientalis) – 500 650 m a.s.l.; 4) middle
mountain beech-fir forests with occassional occurrences of Acer pseudoplatanus, Carpinus
betulus, Tilia begoniifolia, Ulmus glabra etc. – 650 –1500 m a.s.l.; 5) mountain beech-fir for-
ests with Acer trautvetteri, Betula litwinowii, Sorbus aucuparia, Salix sp. etc. – 1500 –1800 m
 
Rhododendron caucasicum and sedge-herb meadows – 1800 –2300 m a.s.l. and 8) alpine belt –
2300 –3000 m a.s.l. ( 2016).
In the surveyed area, the Belaya River basin at the village Guzeripl (Fig. 1) at 670 m a.s.l., the
average annual temperature is about 8.2°C (-2°C in January, 18°C in July), the annual aver-
age precipitation 1130 mm (maximum 1540 mm). At 1400 –1700 m a.s.l., the average annual
temperature is about 5°C, (-3°C in January, 15°C in July) and the annual average precipitation
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 93
1200 mm (maximum 2000 mm). At 1810 –2020 m a.s.l., the temperature is about 3°C, (-7°C
in January, 13°C in July), the precipitation 2000 mm (maximum 2800 mm;  et al.
1982,  2009).


Materials and methods
Our field research was carried out from 6th to 18th June 2016, and organized with the aim to detect
a maximum number of lichen species in the study area. We concentrated efforts on epiphytic and
epixylic lichen species, allied non- or facultatively lichenized fungi and lichenicolous fungi. The
research was performed in seven square 1-hectare plots positioned in structurally diverse for-
est habitats along an altitudinal gradient from 700 to 1920 m (Fig. 1). Criteria for plot selection
followed the hot-spot approach described by  et al. (2018). The survey was done as a
multi-expert inventory by five of the authors (GU, IU, JM, JV, ZP), following methods described
by  et al. (2016). Approximately 40 person-days were spent in the field. GPS coor-
dinates are defined in the WGS-84 system. Specimens were identified using primarily routine
methods (light microscopy and spot tests). The researchers identified their specimens individu-
  -
mens, especially sterile crusts, were identified using thin layer chromatography (in solvents A,
B’ and C) according to the methods summarized by  et al. (2001). Some specimens were
Fig. 1. Maps showing the surveyed region and locations of plots 1–7 (basis of maps: http://opengeodata.ru).
94 Herzogia 33 (1), 2020
Fig. 2. Plot 1 – forest with Abies nordmanniana, Acer campestre, Alnus glutinosa, Carpinus betulus, Corylus avellana,
Fagus orientalis and Quercus
sequenced for nuclear ITS (ITS1, 5.8S, ITS2) and / or mitochondrial SSU DNA barcodes, fol-
lowing methods by  et al. (2018b). A standard nucleotide BLASTN search (
et al. 1990, Appendix) was used for a confirmation of species identity.
The list of taxa is in alphabetical order. The data presented for each species include: presence
on plots, substrata, collectors and a count of voucher specimens. Voucher specimens were col-
lected for most of the recorded species and are deposited in PRA (JV, ZP), LE (IU) and in the

List of sampled 1-hectare plots

1. 
or dense forest with frequent Abies nordmanniana, Acer campestre, Alnus glutinosa, Carpinus betulus, Corylus
avellana, Fagus orientalis and Quercus
2.                 
sparse forest with frequent Abies nordmanniana, Carpinus betulus, Fagus orientalis, Quercus spec. and Tilia
begoniifolia, and with forest gaps covered by Rhododendron ponticum

3.       
Abies nordmanniana, Acer trautvetteri and Fagus orientalis
& 14 VI 2016.
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 95
4. Acer trautvetteri with spots of dense
forest dominated by Abies nordmanniana and Fagus orientalis
12 & 13 VI 2016.
5. Betula litwinowii,
with single trees of Abies nordmanniana and Fagus orientalis and with spots of Rhododendron caucasicum

6.     Abies
nordmanniana and Fagus orientalis, with a forest gap covered by Rhododendron ponticum scrubs, alt.710 –740 m

7.     
               -
dant trees: Abies nordmanniana, Acer trautvetteri, Betula litwinowii, Fagus orientalis, Sorbus aucuparia, Salix
caprea, Taxus baccata, Ulmus glabra, and also Pinus kochiana
16, 17 & 18 VI 2016 (Fig. 3). This site is not protected. It is situated 150 m beyond the northern boundary of the
Caucasus Reserve.
Results
New records for Russia, Caucasus or North Caucasus are indicated as R, C and NC, respec-
tively, before the name of the respective species. The nomenclature mainly follows 
et al. (2018),  (2010) [absent taxa in the previous reference] and  &
 (2018), except the taxa from the families Ramalinaceae and Teloschistaceae (
Fig. 3. Plot 7 – mixed forest with predominant Abies nordmanniana, Acer trautvetteri and Betula litwinowii on lime-

96 Herzogia 33 (1), 2020
et al. 2013, et al. 2018) along with few relevant recent novelties ( et al.
2018,  &  2018,  et al. 2019). Several recently described taxa not in-

taxon and amended with a reference. Substrate and abbreviations:
AC – Acer campestre, AG – Alnus glutinosa, AN – Abies nordmanniana, AP – Acer platanoides, ATAcer trautvet-
teri, BL – Betula litwinowii, CA – Corylus avellana, CB – Carpinus betulus, FE – Fraxinus excelsior, FO – Fagus
orientalis, IC – Ilex colchica, JC – Juniperus communis, LO – Lonicera sp., PK – Pinus kochiana, QU – Quercus
sp., RP – Rhododendron ponticum, SASorbus aucuparia, SC – Salix caprea, SN – Sambucus nigra, ST – Sorbus
torminalis, TB – Taxus baccata, Ti – Tilia begoniifolia, UG – Ulmus glabra, VA – Vaccinium arctostaphylos, VO –
Viburnum orientale, bry – bryophytes, le – leaves, ne – needles, tw – twigs.
Lichens
Absconditella lignicola
Acolium inquinans (Sm.) A.Massal. – 4: AN/snag (JM1, ZP1).
Acrocordia cavata (Ach.) R.C.Harris – 1, 7: AN, AT, CB, FE, SN (GU2, IU1, JM1, JV2, ZP2).
Acrocordia gemmata (Ach.) A.Massal. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, CA, CB, FO, QU, Ti, UG (GU11,
IU4, JM4, JV7, ZP11).
Agonimia allobata (Stizenb.) P.James – 1, 2, 3, 5, 6: AN, FO, QU, Ti (IU1, JM2, JV6, ZP5).
Agonimia borysthenica Dymytrova, Breuss & S.Y.Kondr. – 1, 2, 6: AG, FO, stump (GU2, JM3, JV3,
ZP6). The species was recorded only in ‘lowland’ forest plots below 1000 m. Quite recently it has been
reported as new to Russia and Caucasus from Caspian forests in Dagestan ( et al. 2017).
Agonimia flabelliformis Halda, Czarnota & Guz.-Krzem. – 1, 2, 6: AG, AN, log, stump (GU3, IU1, JM2,
JV5, ZP3).
Agonimia repleta Czarnota & Coppins – 1, 2, 3, 4, 5, 6: AG, AN, AT, CB, FO, UG (GU2, IU3, JM2,
JV9, ZP6).
Agonimia tristicula (Nyl.) Zahlbr. – 1, 2, 3, 4, 7: AT, FO, QU, Ti, UG (IU1, JM4, JV4, ZP6).
Agonimia vouauxii (B. de Lesd.) M.Brand & Diederich – 7: UG/bry (JV1).
Alectoria sarmentosa (Ach.) Ach. – 3: AN (IU1, JV1).
Alyxoria ochrocheila (Nyl.) Ertz & Tehler – 4: FO (JM1, JV1).
Alyxoria varia (Pers.) Ertz & Tehler – 1, 2, 3, 4, 6, 7: AN, AP, AT, CB, FE, FO, QU, UG, log, snag
(GU13, IU12, JM2, JV15, ZP5).
Amandinea punctata (Hoffm.) Coppins & Scheid. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, ST, TB, snag, stump
(GU13, IU5, JV10, ZP4).
Amandinea aff. punctata – 4, 7: AN (JV4, ZP3). Apothecia resemble Buellia schaereri or Amandinea
punctata, but yellow, K+ red pigment present in hymenium. Specimens were seen by H. Mayrhofer,
but left unidentified. The mtSSU sequence of the sample JV16429 is very distinct from sequences of
B. schaereri and A. punctata; sequences of Diplotomma species are the most similar (97 % similarity)
according to the BLASTN-search.
Anaptychia ciliaris (L.) Körb. – 2, 3, 4, 5, 7: AN, AT, BL, FO, SA, Ti, UG (GU2, IU3, JM1, JV4, ZP1).
Anaptychia crinalis
RC Andreiomyces obtusaticus
atic acid.
Anisomeridium biforme (Borrer) R.C.Harris – 1, 4, 6: AG, AT, CB, FO (GU3, JV1, ZP2).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 97
Anisomeridium polypori (Ellis & Everh.) M.E.Barr – 1, 2, 3, 4, 5, 6, 7: AN, AT, CB, FO, SA (GU6, JM4,
JV9, ZP7).
C Anzina carneonivea (Anzi) Scheid. – 5: BL/wood (JM2).
C Aquacidia trachona (Ach.) Aptroot – 1: QU (ZP1).
Arthonia cf. bueriana (J. Lahm ex Arnold) Zahlbr. – 4: AN (IU1, JV1, ZP1). In Russia and the Caucasus,
this species was collected before from Krasnodar Territory (specimen in GLM; V. Otte in litt.). Our
-

et al. (2018) A. bueriana is a non-lichenized species. Our specimens are lichenized with trentep-
ohlioid algae and fit best the description of this species provided in the monograph of Arthoniaceae
by  (1937), who regarded this taxon for a lichen containing algae of Trentepohlia type.
Optionally the Caucasian material could represent epiphytic populations of usually saxicolous taxon
Arthonia granitophila Th.Fr. Caucasian material deserves further study. Specimen ZP23213 is filed
under the latter name in the herbarium PRA.
Arthonia didyma Körb. – 1, 2, 3, 6, 7: AN, CB, FO, SA, Ti (GU5, IU4, JM3, JV7, ZP5).
Arthonia dispersa (Schrad.) Nyl. – 1, 2, 5: AN, CA, FO (GU1, IU1, JV1).
C Arthonia faginea Müll.Arg. – 3, 4, 5, 7: AN, AT, CB, FO, SC, UG (GU1, JM4, JV8, ZP6).
Arthonia fuliginosa (Turner & Borrer) Flot. – 2: RP (ZP1). Small specimen ZP22922 with purplish-
 
(e.g.  1937) and it was also confirmed by A. Frisch. This species has been reported for the
first time for the Caucasus and Russia from the neighbouring territory of the Republic of Adygea
(-

Arthonia helvola (Nyl.) Nyl. – 4, 7: AN, wood of snag (JM1, ZP2)
C Arthonia incarnata Th.Fr. ex Almq. – 4, 7: AN, snag (IU1, JV2).
Arthonia mediella Nyl. – 3, 4, 5, 6, 7: AN, AT, FO, SA, snag (GU3, JM2, JV3, ZP8).
C Arthonia patellulata Nyl. – 7: AT, SA (GU1, ZP1).
Arthonia punctiformis Ach. – 1, 2, 3, 4, 5, 6, 7: BL, CA, FO, SA, UG (GU1, IU1, JV9).
Arthonia radiata (Pers.) Ach. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CB, FO, SA, Ti, UG (GU17, IU11, JM2,
JV13, ZP6).
Arthonia ruana A.Massal. – 1, 2: IC/tw, Q, UG/tw (JV1, ZP2).
Arthonia spadicea Leight. – 1, 2, 3, 4, 5, 6, 7: AN, AG, AT, CB, FO, QU, SC, ST, log, snag (GU6, IU2,
JM1, JV6, ZP1).
Arthonia vinosa Leight. – 1, 3, 7: AN, AT, PK, snag (GU1, IU2, JV4, ZP3). Some specimens produce
Trimmatostroma; sporodochia con-

together with sporodochia.
Arthopyrenia analepta (Ach.) A.Massal. – 1, 4, 5, 6, 7: AN/tw, FO/tw, BL, SA (GU3, JM2, JV3, ZP2).
Arthopyrenia cerasi (Schrad.) A.Massal. – 2, 7: SA/tw, Ti/tw (GU1, JV2).
Arthopyrenia salicis A.Massal. – 2, 3, 5: AN/tw, FO/tw, UG/tw (GU3, JV1).
C Arthopyrenia subcerasi (Vain.) Zahlbr. – 1, 4, 6: AT, FO/tw (GU1, JV2).
C Arthothelium scandinavicum Th.Fr. – 3, 4, 6, 7: AN, AT (GU2, IU1, JM3, JV7, ZP6).
98 Herzogia 33 (1), 2020
Arthothelium spectabile Flot. ex A.Massal. – 1, 2: CB, QU, Ti (JM1, JV1, ZP1).
Aspicilia cinerea auct. brit. (cf.) – 4: FO (ZP1). TLC: norstictic acid. The specimen ZP21467 was coll-
ected at complete basis of leaning Fagus. The identification is tentative because no apothecia were
  
glossy prothallus and pycnidia containing relatively long conidia, c. 10 –15 × 1 µm, suggest this broad-
ly circumscribed, primarily saxicolous taxon following  et al. (2009).
Athallia cerinelloides (Erichsen) Arup, Frödén & Søchting – 4, 7: AT, FO, LO, VO (IU1, JM1, JV4,
ZP3).
Athallia pyracea (Ach.) Arup, Frödén & Søchting – 3, 4, 5: AT, SN (JM1, JV2).
Bacidia absistens (Nyl.) Arnold – 1: AG (IU1).
Bacidia albogranulosa

Central and Eastern Europe (see  et al. 2018a).
Bacidia arceutina (Ach.) Arnold – 1, 2, 6: AC, AG, AN, CA, CB, FE, FO, QU, Ti, UG, log (GU8, IU1,
JM3, JV7, ZP7).
Bacidia biatorina (Körb.) Vain. – 1, 2: AN, FO, QU, RP (GU1, IU2, ZP1).
Bacidia fraxinea Lönnr. – 1, 3, 6: AN, AT, SN (GU1, IU2, JM2).
Bacidia friesiana (Hepp) Körb. – 1, 3, 6: AN, FO, SN (GU3, IU1, JM2, JV2, ZP1).
Bacidia laurocerasi (Delise ex Duby) Zahlbr. – 1, 2, 3, 6: AG, AN, CA, CB, FO, RP, UG (GU5, JM2,
JV5, ZP7).
Bacidia polychroa (Th.Fr.) Körb. – 1, 2: AC/tw, AP, CA, CB, FE, SN (GU2, IU4, JV4, ZP2).
C Bacidia’ propinqua
of Bilimbia sabuletorum but it is a distinct species of the genus Bilimbia
Bacidia rosella (Pers.) De Not. – 1, 2, 3, 6: AN, CB, FO, Ti (GU5, IU3, JM2, JV1, ZP3).
Bacidia rubella (Hoffm.) A.Massal. – 1, 2, 3, 4, 6, 7: AN, AT, CA, FO, QU, SA, UG (GU6, IU7, JV4,
ZP3).
Bacidia suffusa (Fr.) A.Schneid. – 1: AN (IU1).
Bacidina apiahica
Bacidina assulata
Bacidina chloroticula
wood (GU3, JM2, JV4, ZP5).
Bacidina delicata
RC Bacidina mendax Czarnota & Guz.-Krzem. – 1, 6: AC/tw, AN/tw, CA, UG/tw (JM1, JV3, ZP3). B.
mendax is new to Russia, but the record of B. neosquamulosa from the Leningrad region may belong
to that species as its image and short description provided by  et al. (2017) fit better to B.
mendax ( & 2018).
C Bacidina modesta 
Bacidina phacodes
Bacidina pycnidiata (Czarnota & Coppins) Czarnota & Guz.-Krzem. – 1, 3, 4, 6, 7: AT/bry, FO/liver-
worts, LO, log, snag (GU1, JM1, JV6, ZP3).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 99
Bactrospora dryina (Ach.) A.Massal. – 1, 6: AN, AG, QU (GU2, IU2, JM3, JV2, ZP1).
Bellicidia incompta     
(GU1, IU1, JM3, JV2, ZP2).
RC Biatora aegrefaciens Printzen – 3: AN/wood of branch (ZP1). It is a well recognizable species within
the genus due to its three-septate ascospores, amyloid (I + bluish) exciple and presence of gyrophoric
acid in apothecia (
            
( 1995,  et al. 2002,  et al. 2018). The taxon is a promising bioindicator
species. Due to its rarity and ecological requirements it was suggested to be a relictual old-growth
forest species ( et al. 2002).
Biatora albohyalina (Nyl.) Bagl. & Carestia – 1, 2, 3: AN, snag (GU1, IU2, ZP2).
RC Biatora bacidioides Printzen & Tønsberg – 1, 2: CB (JM1, ZP1). TLC: gyrophoric acid, argopsin.
This sorediate taxon with affinities to Biatora beckhausii was described from Picea orientalis forests
 &  2003) hence the presence
in the Caucasus was expected. Recently it was recorded also from humid Fagus sylvatica forests in
the Eastern Carpathians ( et al. 2018b,  et al. 2018). The collected Caucasian ma-
terial was sterile and identified by its extensively sorediate thalli containing both gyrophoric acid and
argopsin.
Biatora beckhausii
JV6, ZP8).
C Biatora chrysantha (Zahlbr.) Printzen – 1, 2, 4, 5, 7: AN, AT, BL, FO, RP, log (GU1, IU7, JM9, JV10,
ZP8). TLC: gyrophoric acid. Identity of one sterile specimen (JV16141) confirmed by ITS sequence.
Since the majority of vouchers is sterile, we cannot exclude that a part of the material from higher
altitudes belongs to the following species.
RC Biatora chrysanthoides Printzen & Tønsberg – 5: BL, snag (JM1, ZP4). TLC: gyrophoric acid in the

only in the subalpine forest plot during our survey. The species has been reported only once (Sweden,
 et al. 2019) since the original description from northern Norway and Pacific North America
( & 2003). It is morphologically hardly distinguishable from Biatora chrysantha,
if not fertile. Fortunately, the Caucasian specimens are fertile and with apothecia containing gyro-
phoric acid, the main discriminating feature from Biatora chrysantha ( &  2003).
Biatora efflorescens (Hedl.) Räsänen – 3, 4, 5, 7: AG, AN, AT, BL, CB, FO, PK, SA, TB, log, snag
(GU15, IU19, JM5, JV11, ZP15). The specimen on wood of snag (JV16449) with unusual phenotype
resembling Violella fucata. Identification confirmed by ITS sequence data.
Biatora fallax Hepp – 4, 5, 7: AN, BL, snag (IU1, JM1, JV7, ZP1).
Biatora globulosa
JV8, ZP12).
Biatora helvola Körb. ex Hellb. – 7: FO (ZP1).
Biatora meiocarpa (Nyl.) Arnold – 7: AN/tw (ZP1). The specimen ZP23254 is macroscopically similar
to B. helvola or extreme morphs of Lecania cyrtella s. lat. with a receding thalline margin, but with
distinct, almost rectangular lumina of excipular hyphae as large as 7 × 3.5 µm in water, enlarged
paraphyse-tips and presence of filiform conidia (30 × 1.5 µm). The species was identified based on the
description in  (1994).
Biatora aff. meiocarpa – 5: FO (ZP1). The specimen ZP23529 is a non-sorediate taxon with an immersed
thallus and small pallid apothecia containing small ellipsoid ascospores, not exceeding 10 × 3.5 µm.
100 Herzogia 33 (1), 2020
Apparently a member of the B. meiocarpa-group (sensu  2014) based on the exciple charac-
ter and enlarged paraphyses ends.
Biatora mendax Anzi – 1, 2, 3, 4, 5, 6, 7: AN, BL, CB, FO, QU, RP, UG (GU10, IU1, JM4, JV8, ZP22).
Biatora ocelliformis (Nyl.) Arnold – 1, 2, 3, 4, 6, 7: AN, AP, AT, CB, FO, RP, SA, TB, log, snag, stump
(GU12, IU5, JV5, ZP11).
Biatora pontica Printzen & Tønsberg – 1, 2, 3, 6: AG, AN, CB, FO, RP, UG (GU5, IU2, JM8, JV5,
-
mens were collected in lowland sampling plots. The identification of two sterile specimens (JM10212,
JV17846) was supported by mtSSU and ITS sequences.
Biatora radicicola Printzen, Palice & J.P.Halda – 4: FO (ZP5). One of the Caucasian specimens is para-
type of the species (ZP21105). The characteristic ecology, e.g. exposed roots and bases of trees subjec-
ted to water spray and/or sites with a prolonged snow cover (see  et al. 2016) was emended
 et al. 2019).
C Biatora vacciniicola (Tønsberg) Printzen – 5: FO (JM1, ZP1). TLC: gyrophoric acid. Sterile speci-
mens were compared to typical vouchers from Scandinavia. It is a mostly northern species preferring
-
tains ( 1995,  & 1999,  et al. 2018) reaching to Northern Ural Mts
on the northeast ( et al.        
European range of the species to the southeast.
Biatora vernalis (L.) Fr. – 1, 6: AG/bry, CB, FO/bry (IU2, JM2, JV2, ZP2).
Biatora veteranorum Coppins & Sérus. – 1, 2, 3, 7: AN, snag, stump (GU3, IU2, JM2, JV4, ZP3).
RC Biatorella dryophila
without margin, 0.15 0.2 mm diam.; epithecium granular, K+ purple; spores globose 1.2–2 µm diam.

& (1977) and Piccolia ochrophora, but we
consider it a separate species.
Biatoridium delitescens (Arnold) Hafellner – 1: AC/branch (ZP2). Only recently recorded for the first
time from the Caucasus ( & 2016)
Biatoridium monasteriense J.Lahm ex Körb. – 1, 2, 3, 4, 5, 6, 7: AT, FO, UG (GU3, IU1, JM3, JV6,
ZP5). Only recently recorded for the first time from the Caucasus ( &
2018).
C Bibbya vermifera
Bilimbia microcarpa (Th.Fr.) Th.Fr. – 1, 5, 7: FO, UG (JM1, JV1, ZP2).
Bilimbia sabuletorum (Schreb.) Arnold – 1, 2, 3, 4, 5, 7: AC, AN, AP, AT, CA, FO/bry, QU, UG/bry
(GU2, IU2, JM2, JV9, ZP7).
Blastenia anatolica
is a paratype of the species (    
mountains.
Blastenia herbidella  
IU18, JM1, JV11, ZP4). Identification of four specimens confirmed with ITS sequences (
et al. 2019a).
Blastenia hungarica (H.Magn.) Arup, Søchting & Frödén – 2, 3, 5, 7: AN/tw, CB/tw, FO/tw, TB/tw
(GU1, IU1, JM1, JV2, ZP1).
Bryobilimbia hypnorum
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 101
Bryobilimbia sanguineoatra  
CB, FO/bry, log (IU3, JM4, JV9, ZP6). Distinguished from B. hypnorum by mainly simple, narrowly
ellipsoid ascospores, < 5 µm wide, with a smooth instead of a warted perispore ( et al. 2014).
Bryoria americana
Bryoria bicolor
Bryoria capillaris
JM4, JV2, ZP3).
Bryoria fuscescens
JM3, JV3, ZP2).
Bryoria implexa  
IU4, ZP3).
Bryoria kuemmerleana
Bryoria nadvornikiana
SA, log (GU17, IU12, JM3).
Bryoria smithii
negative Pd spot reaction. It resembles B. bicolor
Bryoria vrangiana
Bryostigma muscigenum (Th.Fr.) Frisch & G.Thor (incl. Arthonia microsticta Vain.) – 1, 2: AN/ne
(GU2, IU1, JV1, ZP3); 4, 7: AN, FO/bry, log (JM2, JV4, ZP2). Specimens on Abies needles may be
referrable to Arthonia microsticta, but B. muscigenum and A. microsticta are possibly conspecific.
 &  (2009) describe an wide range of substrata for B. muscigenum (sub Arthonia
muscigena) including Abies needles for B. muscigenum. Identity of one specimen on wood (ZP21403)
confirmed by A. Frisch.
C Buellia arborea Coppins & Tønsberg – 7: BL, PK/wood, snag (ZP2). The identification of the sterile
sorediate specimen ZP22088 was confirmed by TLC (atranorin, placodiolic acid). By its delimited
(semi-)urceolate soralia the species is quite similar to Buellia griseovirens and Xylographa vitiligo
when sterile, but well recognizable by its chemistry. It preferably grows on hard, slowly decaying
wood of conifers ( 1992a).
Buellia disciformis (Fr.) Mudd – 2, 3, 4, 5, 7: AN, AT, BL, FO, SC (GU4, IU5, JM2, JV9, ZP7).
Buellia erubescens Arnold – 1, 2, 6, 7: CB, FO, Ti, UG, stump (GU4, IU2, JM2, JV5, ZP1).
Buellia griseovirens (Turner & Borrer ex Sm.) Almb. – 1, 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, PK, RP, TB,
log, snag, stump (GU14, IU8, JM5, JV8, ZP9). TLC: atranorin, norstictic acid.
RC Buellia iberica Giralt – 4, 7: AT (GU1, IU1, JM2). Thallus whitish, K+ yellow (atranorin); large
ascospores of Callispora-type, 17–23 × 8.5 µm, with microrugulate surface; hymenium without oil
droplets.
Buellia schaereri De Not. – 3, 4, 7: AN, AT, snag (GU3, JM3, JV6, ZP6).
Byssoloma leucoblepharum (Nyl.) Vain. – 1, 6: AN/ne+tw, FO/wood (GU4, IU2, JM1, JV4, ZP4).
Calicium glaucellum Ach. – 2, 3, 4, 7: PK/wood, SA/wood, snag, stump (GU4, IU3, JM2, JV6, ZP4).
Calicium lenticulare Ach. – 3, 4, 6, 7: FO, PK/wood, snag, stump (GU2, IU3, JM2, JV3, ZP1).
C Calicium parvum Tibell – 7: AN/wood (IU1).
Calicium salicinum Pers. – 1, 2, 3, 4, 6, 7: AN, AT/wood, BL, CB, log, snag, stump (GU12, IU4, JM5,
JV3, ZP4).
102 Herzogia 33 (1), 2020
Calicium trabinellum (Ach.) Ach. – 7: AN/wood, PK/wood, snag, stump (GU1, IU2, JM1, JV2, ZP2).
Calicium viride Pers. – 2, 3, 6: AN, snag (GU2, JM1, JV1, ZP1).
Caloplaca cerina (Hedw.) Th.Fr. – 1, 4, 5, 7: AN, AP, AT, BL, CA, FO, L, SA, SC, UG (GU8, IU9, JM3,
JV8, ZP6).
Caloplaca haematites
Caloplaca lucifuga G.Thor – 1, 2, 3, 6: AG, AN, AT, Ti (IU4, JM1, JV2).
Caloplaca monacensis (Leder.) Lettau – 4, 7: AT, UG (GU1, JV2, ZP2).
Caloplaca obscurella (J.Lahm ex Körb.) Th.Fr. – 7: AT (GU1).
C Caloplaca sorocarpa (Vain.) Zahlbr. – 5, 7: BL, log (JM1, JV1, ZP1).
Caloplaca stillicidiorum (Vahl) Lynge – 1, 2, 4, 7: AN/bry, AT, FO/bry, SA, SN, QU, UG/bry (GU2, IU5,
JM2, JV5, ZP1).
C Caloplaca turkuensis (Vain.) Zahlbr. – 4, 7: AT, UG (JM1, JV2, ZP4). Identifications of two sterile
specimens confirmed with mtSSU sequences.
Candelaria concolor
Candelariella efflorescens
(GU8, IU3, JM2, JV2, ZP1).
Candelariella faginea Nimis, Poelt & Puntillo – 2, 4, 5, 6, 7: AN, AT, BL, FO, UG (GU10, IU11, JM3,
JV7).
Candelariella lutella (Vain.) Räsänen – 2, 5: AN, FO, SA (GU2, JM1, ZP1).
Candelariella xanthostigma (Ach.) Lettau – 2, 3, 4, 5, 7: AN, AT, BL, FO, SA, UG (GU5, IU1, JM1,
JV6, ZP7).
Catillaria nigroclavata (Nyl.) Schuler – 1, 2, 3, 4, 6, 7: AG, AN/+ne, CA, CB, FO, QU, RP, SN, Ti, UG –
mostly tw, dead wood (GU10, IU2, JM3, JV7, ZP8).
Catinaria atropurpurea
(GU5, JM2, JV8, ZP9). The specimen JV15993 from plot 4 was identified as Catinaria aff. atropur-
purea
(maybe identical with the taxon in the note below C. atropurpurea in  (2009).
Cetraria islandica (L.) Ach. – 5: BL (IU1).
Cetraria sepincola (Ehrh.) Ach. – 5: BL (GU1, IU2, JM1, JV1, ZP2).
Cetrelia cetrarioides (Delise ex Duby) W.L.Culb. & C.F.Culb. – 1, 2, 3, 5, 6, 7: AN, BL, CB, FO, RP, SC
(GU6, IU5, JM2, JV4, ZP2). TLC: atranorin, perlatolic acid, anziaic acid, 4-O-methylolivetoric acid.
Cetrelia chicitae (W.L.Culb.) W.L.Culb. & C.F.Culb. – 1, 2: CB, FO, QU, log (GU1, IU3, JV1, ZP1).

Cetrelia monachorum (Zahlbr.) W.L.Culb. & C.F.Culb. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CA, CO, FO,
RP, SC, Ti, UG (GU8, IU2, JM7, JV6, ZP15). TLC (A, B’, C): atranorin, imbricaric acid, perlatolic
acid, anziaic acid, 4-O-dimethylimbricaric acid.
Cetrelia olivetorum (Nyl.) W.L.Culb. & C.F.Culb. – 1, 2, 4, 5, 6, 7: AG, AN, AT, BL, CB, FO,
RP, SC, Ti, UG (GU13, IU9, JM3, JV3, ZP6). TLC: atranorin, olivetoric acid, anziaic acid,
4-O-demethylmicrophyllinic acid.
Chaenotheca brachypoda (Ach.) Tibell – 2, 3, 4: AN, snag (JM1, JV1, ZP1).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 103
Chaenotheca brunneola (Ach.) Müll.Arg. – 1, 2, 3, 4, 7: BL/wood root, snag, stump (GU2, IU3, JM1,
JV1, ZP2).
C Chaenotheca chlorella (Ach.) Müll.Arg. – 4: wood (JM1).
Chaenotheca chrysocephala (Turner ex Ach.) Th.Fr. – 2, 3, 4, 6, 7: AN, PK/wood, snag (GU4, IU2,
JV2).
Chaenotheca ferruginea (Turner ex Sm.) Mig. – 2, 7: AN, PK/wood (GU1, JV1).
Chaenotheca furfuracea (L.) Tibell – 2, 4, 6, 7: AN, AT, BL/wood root, FO, snag (GU2, IU1, JV1).
Chaenotheca gracilenta (Ach.) Mattsson & Middelb. – 1, 4, 7: AC, AN, AT (ZP1).
Chaenotheca hispidula (Ach.) Zahlbr. – 1, 2, 4, 7: AN, AT, QU, snag (GU2, IU1, JM2, JV3, ZP2).
Chaenotheca laevigata
Chaenotheca phaeocephala (Turner) Th.Fr. – 4, 6, 7: AN, log, snag (GU1, IU2, JM2, JV3, ZP4).
Chaenotheca stemonea (Ach.) Müll.Arg. – 2, 3, 4, 5, 6, 7: AN, BL/wood root, FO, PK, QU (GU2, IU2,
JM3, JV6).
Chaenotheca trichialis (Ach.) Th.Fr. – 2, 3, 4, 6, 7: AG, AN, AT, CB, PK, snag, stump (GU5, IU4, JV3).
Chaenotheca xyloxena
ZP1).
Cheiromycina flabelliformis
JM3, JV4, ZP4). Two specimens from the collections for this project (ZP21103, 21313) were listed in
the phylogenetic study by  et al. (2017).
Cheiromycina petri  
Two specimens from the collections for this project (ZP 21311, 21312) were listed in the phylogenetic
study by  et al. (2017).
C Cheiromycina reimeri Printzen – 2: snag (ZP1). This taxon was expected to occur in the Great Caucasus
 2007). The
identification is tentative because the conidia are getting brown in part; otherwise the conidia fit well
to the description by  (2007), i.e. short terminal branches, extralarge conidiogenous cell etc.
Chrysothrix caesia (Flot.) Ertz & Tehler – 1: AN/tw (ZP1).
Chrysothrix candelaris (L.) J.R.Laundon – 1, 2, 3, 4, 6, 7: AG, AN, AP, AT, CB, FO, PK, QU, Ti, snag,
stump (GU19, IU16, JV4, ZP4).
Cladonia caespiticia
Cladonia carneola (Fr.) Fr. – 5: BL (ZP1).
Cladonia cenotea (Ach.) Schaer. – 2, 3, 5, 7: BL, PK, SA, log, stump (IU2).
Cladonia chlorophaea
IU1, JM3, ZP1).
Cladonia coccifera (L.) Willd. – 7: AN (ZP1).
Cladonia coniocraea
stump (GU11, IU19).
Cladonia digitata (L.) Hoffm. – 1, 2, 3, 4, 5, 7: BL, log, snag, stump (IU1, JV1).
Cladonia fimbriata (L.) Fr. – 2, 3, 4, 5, 6, 7: AN, AT, BL, FO, RP, SC, log, snag (GU1, IU1, JM2, ZP1).
Cladonia macilenta Hoffm. – 1, 3, 4, 7: snag, stump (JV1, ZP1).
104 Herzogia 33 (1), 2020
Cladonia merochlorophaea Asahina – 3: FO (JV2).
Cladonia norvegica Tønsberg & Holien – 1: log, stump (IU1).
C Cladonia novochlorophaea
acids. Differs from C. homosekikiaca, which has the same chemistry, by esorediate podetia with a
well-developed, verrucose cortex.
Cladonia ochrochlora
Cladonia parasitica (Hoffm.) Hoffm. – 1: QU, log, stump (IU2, JV1, ZP1).
Cladonia pleurota 
Cladonia pyxidata (L.) Hoffm. – 2, 4, 5, 7: AT, BL, FO, QU, SC, snag (GU2, IU3, JV2, ZP1).
Cladonia squamosa Hoffm. – 2, 5, 7: BL, PK, RP, SA (IU1).
Cliostomum corrugatum (Ach.: Fr.) Fr. – 2, 3, 4, 7: AN, AP, AT, BL, PK, QU, snag, stump (GU8, IU7,
JM3, JV5, ZP5).
Cliostomum griffithii (Sm.) Coppins – 1, 2, 3, 4, 6, 7: AN, snag (GU2, IU2, JM3, JV2, ZP3).
RC Cliostomum haematommatis
ZP5). TLC & LC-MS: atranorin and 2'-O-methylperlatolic acid (or its close derivative), sometimes with
two related compounds visible on TLC plates. The BLASTN-search did not find a very close match to
our sequences. The most similar sequences belonged to Ramalina species and Lecania baeomma; their

and chemistry correspond well to the type material of C. haematommatis except the missing pycnidia
 et
al. 2006) and Switzerland ( &  2019).
Coenogonium luteum
(GU1, JM1, JV2, ZP3).
Coenogonium pineti
(GU13, IU7, JM2, JV5, ZP2).
Collema flaccidum (Ach.) Ach. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CA, CB, FO, QU, SA, UG
(GU7, IU8, JV3, ZP8).
Collema furfuraceum (Arnold) Du Rietz – 7: AN, AT (GU1, IU2, ZP1).
Collema nigrescens (Huds.) DC. – 2, 3, 4, 5, 7: AT, BL, FO, QU, SA, SC, UG (GU4, IU5, JM3, JV5,
ZP2).
Collema subflaccidum Degel. – 1, 2, 3, 4, 6, 7: AN, AT, CA, CB, FE, FO, QU AT, FO, UG (GU7, IU5,
JM3, JV3, ZP3).
Collema subnigrescens Degel. – 3, 5, 7: AT, BL, FO, SA, SC, UG (GU4, IU5, JV1).
C Dictyocatenulata alba Finley & E.F.Morris – 3, 4, 5, 6: AN, FO (GU1, IU1, JM1, JV1, ZP3).
Elixia flexella (Ach.) Lumbsch – 4, 7: AN/snag, PK/snag (GU1, ZP2).
Enchylium tenax (Sw.) Gray – 7: UG/bry (JV1).
RC Endohyalina ericina (Nyl.) Giralt, van den Boom & Elix – 7: AN (ZP1). This is an oceanic species,
occurring locally along the Atlantic coast of Europe as far north as Ireland and of America as far south
    
and Italy ( et al. 2010,  et al. 2014,  2016). This record is quite unexpected as the

unique hosting also other oceanic lichen species with mostly Mediterranean distribution which are
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 105
otherwise rare in the Caucasus ( &2014). The present material fits
well the description given by  et al. (2010) in having a distinct grey verrucose thallus and bu-

-
ned both apically as well as at the septum and tend to be paler towards the ends. The septum is formed
lately, and the ontogeny is referable to the type B. The material was too sparse for TLC analyses for
confirmation of characteristic compounds (diploicin, fulgidin) and filiform conidia (characteristic for
this genus) were not found, however the identification was confirmed by H. Mayrhofer.
Eopyrenula leucoplaca (Wallr.) R.C.Harris – 1: CA (GU1).
Evernia divaricata (L.) Ach. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, PK, QU, RP, SA, SC, TB, UG,
snag, stump (GU14, IU18, JV1, ZP1).
Evernia prunastri (L.) Ach. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CA, CB, FO, QU, RP, log, snag
(GU14, IU5).
Fellhanera bouteillei
JM2, JV4, ZP3).
RC Fellhanera christiansenii
C Fellhanera gyrophorica Sérus., Coppins, Diederich & Scheid. – 1: FO (JV1, ZP1).
Fellhanera subtilis
Fellhanera viridisorediata Aptroot, M.Brand & Spier – 1, 6: AN/ne+tw (GU3, ZP1).
Fellhaneropsis myrtillicola (Erichsen) Sérus. & Coppins – 1, 6: AN/ne+tw (GU3, IU1, ZP1).
Flavoparmelia caperata (L.) Hale – 1, 2, 3, 4, 5, 6, 7: AN, BL, FO, CB, QU, RP, SA, Ti, UG, snag (GU5,
IU5, JV1, ZP2).
Flavoplaca flavocitrina (Nyl.) Arup, Frödén & Søchting – 2: QU (JV1).
Frutidella furfuracea (Anzi) M.Westb. & M.Svenss. – 3, 4, 5, 7: AN, BL, FO (GU1, JM3, JV2, ZP3).
Fuscidea arboricola Coppins & Tønsberg – 1, 4, 7: AN, BL, FO, PK (JM2, JV2, ZP7).
Fuscidea cyathoides
C Fuscidea recensa
 1992a). This was also the case for the sterile
Betula.
Fuscopannaria mediterranea (Tav.) P.M.Jørg. – 1, 2, 7: AN, AT, FO, QU, Ti (GU2, IU3, JM1).
Gabura fasciculare (L.) P.M.Jørg. – 4, 5, 7: AT, BL, FO, SA, SC, UG (GU4, IU4, JM4, ZP3).
Graphis scripta (L.) Ach. s. lat. – 1, 2 (+ “betulina” type), 3 (+ “pulverulenta” type), 4, 6: AG, AN, AP,
AT, CA, CB, FO, QU, Ti, UG, VA (GU20, IU12, JM2, JV9, ZP7). The recent study based on both
molecular and morphological characters showed that some putative species are nested within the G.
scripta-complex, but they do not fully correspond to the taxa that were distinguished on the basis of
apothecium morphology ( et al. 2015).
Gyalecta carneola (Ach.) Hellb. – 1, 2, 3: AN, AP, AT, CB, FO, QU, RP, Ti (GU8, IU2, JM2, JV4, ZP3).
Gyalecta derivata Schuler & Zahlbr. – 3: AT, FO (IU1, JM1, JV3, ZP2). Our specimens may be identi-
fied as Gyalecta croatica (sensu  1958) distinguished from G. derivata by shorter and broader
ascospores (17–28 × 4.5 6 µm) containing 4 –9 cells. Our observations of some specimens from a
British herbarium (E) revealed substantial variation in spore shape and septation of G. derivata, which
included the range given for croatica.
106 Herzogia 33 (1), 2020
Gyalecta fagicola (Hepp ex Arnold) Kremp. – 2, 3, 4, 7: AN, AT, CB, FO (IU3, JM1, ZP4).
Gyalecta flotowii Körb. – 1, 2, 3: AN, AP, CB, FO, QU (GU2, IU1, JM2, JV2, ZP2).
Gyalecta herculina (Rehm) Baloch, Lumbsch & Wedin – 2, 3, 4, 5, 7: AN, AT, FO, SA, UG (GU9, IU4,
JM6, JV10, ZP12). Specimens JV15841 and JV16395 are with pycnidia. Conidia of two types: (a)
bacilliform, 5 × 1 µm and (b) long and sigmoid, c. 50 × 2 µm.
Gyalecta ophiospora
JV6, ZP6).
Gyalecta truncigena (Ach.) Hepp – 2, 3, 6: AP, CB, FO, QU (GU3, IU1, JM1, JV2, ZP6). Material from
plot 2 apparently includes two taxa. Except typical G. truncigena with ellipsoid-fusiform ascospores,
some specimens (e.g. ZP23488) produce spores approaching G. flotowii by the shape but are slightly
pointed at the apices, more richly muriform (more than 10 cells in the optical view), and the septa are
not oblique as in the latter species.
Gyalecta ulmi (Sw.) Zahlbr. – 2, 3, 6: AP, FO, QU (GU1, JM1, JV2, ZP3).
Gyalectidium setiferum
RC Gyalidea minuta-

has recently been summarized by  & (2012). Our epixylic occurrence of the species

Central Europe.
Gyalideopsis helvetica
mainly on wood, log, snag (GU5, IU3, JM4, JV5, ZP8).
NC Gyalideopsis piceicola
 & 2012).
Gyalolechia flavorubescens (Huds.) Søchting, Frödén & Arup – 1: CB (JV1).
Halecania viridescens Coppins & P.James – 1, 2, 3, 4, 6: AN, CA, CB, FO, RP, UG (GU2, JM1, JV5,
ZP6). In Russia and the Caucasus, this species was collected for the first time from the Republic
                
growing on branches and young stems of deciduous trees, often accompanied with Catillaria nig-
roclavata and other slightly nitrophytic lichens. Apothecia are produced rarely and were not obser-
   
Scoliciosporum sarothamni or Trapeliopsis flexuosa
red). Probably a widespread lichen in Russia.
Hazslinszkya gibberulosa (Ach.) Körb. – 1, 2, 3, 6, 7: AC, AN, AP, CB, FE, FO, QU, UG (GU1, JM3,
JV5, ZP12).
Heterodermia japonica (M.Satô) Swinscow & Krog – 1, 2, 3, 4, 6, 7: AN, AT, FO, QU (GU5, IU2, JM1,
JV4, ZP1).
Heterodermia speciosa (Wulfen) Trevis. – 1, 2, 4, 5, 7: AN, AP, AT, BL, CA, CB, FO, SA (GU3, IU7,
JM2, ZP2).
Hyperphyscia adglutinata
ZP2).
Hypocenomyce scalaris (Ach.) M.Choisy – 7: PK, snag (GU2).
Hypogymnia austerodes (Nyl.) Räsänen – 4, 5, 7: AN, AT, BL, FO, snag (GU1, IU3, JM2, JV1, ZP3).
Hypogymnia bitteri (Lynge) Ahti – 3, 4, 5: AN, AT, BL (GU1, IU1, ZP2).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 107
Hypogymnia physodes (L.) Nyl. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CB, FO, PK, QU, RP, SA, SC,
TB, Ti, log, snag, stump (GU17, IU13, JV1, ZP3).
Hypogymnia tubulosa (Schaer.) Hav. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, FO, PK, QU, RP, SA, SC,
TB, snag, stump (GU13, IU12, ZP1).
Hypogymnia vittata (Ach.) Parrique – 3, 4, 5, 7: AN, BL, FO, SC (GU1, IU3, JM2, JV4, ZP1).
Hypotrachyna laevigata (Sm.) Hale – 1: AN/ne+tw (GU1).
Hypotrachyna revoluta
Icmadophila ericetorum (L.) Zahlbr. – 2, 4, 7: log (GU, IU, JM, JV, ZP – only field records).
Imshaugia aleurites (Ach.) S.L.F.Mey. – 7: AN, BL, PK, sang (IU1, JM1, JV2).
Inoderma byssaceum (Weigel) Gray – 1, 2, 3, 6: AN, AT, CB, FO, QU, snag (GU4, IU5, JM2, JV6, ZP4).
RC Japewia aliphatica-
racterized by its brown, often areolate thallus composed of tiny blastidia that frequently develop into

 et al.,
unpublished).
Japewia subaurifera Muhr & Tønsberg – 5, 7: PK, SC, snag (GU1, IU1, JV1, ZP1). TLC: Japewia
 (1992).
Japewia tornoënsis (Nyl.) Tønsberg – 7: AN, BL, PK, snag (GU2, JM1, JV3, ZP4).
Lathagrium auriforme
Lecania croatica (Zahlbr.) Kotlov – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, CA, CB, FO, QU, RP, SN, Ti,
UG (GU7, IU12, JM5, JV10, ZP11). Lichen with a distinct green thallus around soralia, resembling
Mycobilimbia epixanthoides
ITS sequence data. The specimen ZP23048 is fertile.
Lecania cyrtella (Ach.) Th.Fr. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CA, FO, JC, SA, UG, log, snag (GU10,
IU5, JM4, JV8, ZP14).
Lecania cyrtellina (Nyl.) Sandst. – 1, 3, 4, 5, 7: AN, AT, FO, log, snag (GU7, IU2, JV1, ZP2).
Lecania naegelii (Hepp) Diederich & van den Boom – 1, 2, 3, 4, 6, 7: AG, AN, CA, CB, FO, LO, QU,
Ti, UG, VO, snag (GU16, IU1, JV8, ZP6).
Lecanora albella (Pers.) Ach. – 2: CB (GU1, JM1, JV1).
Lecanora albellula (Nyl.) Th.Fr. – 2, 3, 4, 5, 7: AN, PK/wood, snag, stump (GU4, IU3, JM2, ZP3).
Lecanora allophana Nyl. – 2, 4, 5, 7: AN, AP, AT, FO, SA, UG (GU3, IU5, JM2, JV4, ZP6).
C Lecanora aff. anopta 
Ascospores ellipsoid, 7–10 × 3 4.5 µm. Conidia cylindrical, slightly curved, c. 5 8 × 1 µm. The spe-
cimen ZP21226 recalls pale morps (green pigment deficient) of L. anopta by its finely pruinose, see-
mingly biatorine apothecia (early receding thalline margin is however visible on section), by unevenly
inspersed guttulae (golden sclerotized ascospores) within the hymenium and by frequent pycnidia with
slightly curved conidia (see 
separate species, distinct from Lecanora anopta due to its different chemistry and narrower ascospores.
Lecanora argentata (Ach.) Malme – 1, 2, 3, 4, 6, 7: AG, AN, AT, CB, FO, ST, Ti, UG (GU6, IU6, JM1,
JV3, ZP7).
RC Lecanora barkmaniana
specimen JM10602 was identified based on the match of ITS and mtSSU data following a BLASTN
108 Herzogia 33 (1), 2020
search (100 % identity and 76 % coverage for ITS; >99 % and 100 % coverage for mtSSU). Both
Caucasian specimens are sterile. This sorediate taxon was recently dealt with in more detail by
 et al. (2017).
Lecanora cadubriae (A.Massal.) Hedl. – 7: AN, PK (JV1, ZP1).
Lecanora carpinea (L.) Vain. – 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, QU, RP, SA, TB (GU22, IU11,
JM6, JV1).
Lecanora chlarotera Nyl. – 2, 3, 4, 5, 6, 7: AN, AT, CA, CB, FO, SA (GU7, IU5, JM4, JV1, ZP2).
Lecanora cinereofusca H.Magn. – 1, 2, 6: CB, FO (JM2, JV2, ZP2).
NC Lecanora compallens
zeorin. Sterile specimen ZP22341 is tentatively identified by its chemistry and delimited soralia (so-
mewhat urceolate at the beginning). In Transcaucasia, this species has been recently reported from
Armenia ( et al. 2014).
Lecanora expallens Ach. – 1, 2, 3, 4, 5, 6, 7: AN, AG, CB, snag, stump (GU2, JM3, JV7, ZP2). Only
sterile specimens recorded, often with a low concentration of xanthones.
Lecanora exspersa Nyl. – 3, 4, 5, 7: AN, AT, BL, FO, log, snag, stump (GU8, IU3, JM9, JV11, ZP17).
TLC: atranorin, nephrosteranic acid or sometimes one additional fatty acid. Sequences from the
 et al. (2017).
Lecanora glabrata (Ach.) Malme – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, CA, CB, FO, QU, SA, ST, Ti
(GU22, IU8, JM10, JV7, ZP10). Both chemotypes reported by  (2014) were present in the
study area.
Lecanora hypoptoides (Nyl.) Nyl. – 7: AN, snag (GU1, JV1).
Lecanora intumescens (Rebent.) Rabenh. – 1, 2, 3, 4, 5, 7: AT, BL, CA, FO, SA (GU8, IU7, JM2, JV7,
ZP5).
Lecanora leptyrodes (Nyl.) Degel. – 2, 3, 4, 5, 7: AN, AP, AT, BL, FO, SA, SC (GU8, IU9, JM4, JV4).
Lecanora mughicola Nyl. – 7: AN/wood, PK/wood (ZP2). TLC: isousnic acid. Traces of cinereorufa-
green pigment observed, broader ascospores than in L. saligna (4 –5 µm).
C Lecanora phaeostigma (Körb.) Almb. – 4, 5, 7: AN/wood, PK/wood, log, snag (GU2, IU1, JM1, JV2,
ZP2).
Lecanora praesistens Nyl. – 4, 5: AT, FO, SC (GU4, IU1, JM2). A member of the Lecanora subfusca
group with 16-spored asci.
Lecanora pulicaris (Pers.) Ach. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, FO, PK, SA, SC, ST, snag (GU3, IU7,
JM4, JV3, ZP5). Very unusual morphotypes with a distinctly crenulate margin, which is not typical
for this species, occured in the area. Additionally, the chemotype with fumarprotocetraric acid was
missing; only atranorin and roccellic acid were recorded by TLC. Identity of several specimens was
confirmed by the results of BLASTN searches based on ITS (>98 % identity) and mtSSU (>99 %)
sequences.
Lecanora saligna (Schrad.) Zahlbr. – 3, 4, 5, 7: AT, FO, SC, snag (GU1, IU1, JM2, JV2, ZP1).
NC Lecanora sarcopidoides (A.Massal.) A.L.Sm. – 4: AN/snag (ZP1). TLC: pseudoplacodiolic acid.
Microconidia (often gently bent) 4 –5 × 0.8 µm. In Transcaucasia, this species has been reported from
 1983).
Lecanora stanislai     -
rin, usnic acid. Recently described species similar to L. expallens, but without xanthones (
 et al. 2017). Two Caucasian specimens (JM10367, JV14920) are paratypes. It differs
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 109
from L. compallensL. compallens). Identifications

Lecanora subcarpinea Szatala – 3, 5: AT, BL, FO (GU3, IU1).
Lecanora subintricata (Nyl.) Th.Fr. – 7: snag (IU1, JM1, JV1, ZP2).
RC Lecanora subravida Nyl. – 1, 2: snag (JM1, ZP1). TLC: usnic, isousnic, pseudoplacodiolic and
squamatic acids. Macroconidia broadly falcate, 9 –10 × 3 –3.3 µm. The taxon of the Lecanora saligna

historical localities ( & 2008).
Lecanora symmicta (Ach.) Ach. – 1, 2, 5, 6, 7: AT, BL, FO, QU, Ti, UG, snag (GU4, IU2, JM3, JV1,
ZP2).
Lecanora thysanophora R.C.Harris – 1, 2, 3, 4, 5, 6: AG, AN, AP, AT, BL, CA, CB, FO, QU, SC, Ti

Lecidea albofuscescens Nyl. – 7: AN, SA (JV1, ZP1).
C Lecidea apochroeella Nyl. – 1: wood (JM1). Hypothecium brown (K-); epihymenium granular, brow-

Lecidea coriacea Holien & Palice – 3, 7: AN/wood, log (JM1, JV1, ZP5). This old-growth forest species
related to Lecidea betulicola is easily identifiable due to the content of secalonic acid A in hypothe-
cium (KOH + golden-yellow). It was described quite recently ( et al. 2016) and some of our
specimens are paratypes.
Lecidea nylanderi (Anzi) Th.Fr. – 1, 7: FO, PK, snag (GU1, IU1, JM2, JV2, ZP2).
NC Lecidea sphaerella Hedl. – 2, 3, 4, 7: AN, AT, BL, FO, UG (JM2, JV5, ZP2). In Transcaucasia, this
species has been reported from Georgia ( 1983).
RC Lecidea strasseri Zahlbr. – 2: QU/bry (JV1). Similar to Bryobilimbia sanguineoatra, but with a
Lecidea ber-
engeriana
Lecidella achristotera
Lecidella elaeochroma (Ach.) M.Choisy s. lat. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, QU, RP, SA,
SC, Ti, UG, snag (GU9, IU5, JM2, JV21, ZP22).
Lecidella euphorea
Lecidella flavosorediata        
(GU2, IU2, JM6, JV5, ZP7). TLC: granulosin, arthothelin, +1 additional xanthone with lower Rf va-
lue. Identification of JM11114 confirmed by ITS and mtSSU.
Lecidella laureri (Hepp) Körb. – 2, 3, 4, 6, 7: AN, AP, FO, TB (GU7, IU2, ZP1).
Lepra albescens (Huds.) Hafellner – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, QU, RP, SA, Ti, UG
(GU12, IU8, JV6).
Lepra amara (Ach.) Hafellner – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CB, FO, QU, RP, SA, SC, TB, Ti, log
(GU11, IU20, JV4, ZP2).
C Lepra borealis
fumarprotocetraric acid (in solvents A & C). Both samples correspond also morphologically with L.
borealis.
Lepra ophthalmiza (Nyl.) Hafellner – 2, 3: AN, FO, ST (JM2, JV2, ZP1). TLC: unidentified aliphatic
compounds.
110 Herzogia 33 (1), 2020
Lepra trachythallina (Erichsen) Lendemer & R.C.Harris – 1, 2, 6: CB, FO, QU, Ti (GU5, IU3, JM3,
JV6, ZP3). TLC: thamnolic acid.
Lepra waghornei (Hult.) Lendemer & R.C.Harris – 1, 2: CB, FO (GU1, JM1, ZP3). TLC: norstictic acid.
Lepraria eburnea J.R.Laundon – 2: CB/bry, QU/bry (GU2, IU1, ZP2). TLC: chemotype I – alectorialic
and protocetraric acids; chemotype II – alectorialic, barbatolic, psoromic and 2'-O-demethylpsoromic
acids.
Lepraria elobata Tønsberg – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, FO, UG, log (GU2, IU6, JM3, JV4, ZP1).
TLC: stictic, constictic acids, zeorin, atranorin.
Lepraria finkii (B.de Lesd.) R.C. Harris – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, BL, CB, FO, QU, RP, Ti, UG,
snag (GU28, IU4, JV19, ZP7). TLC: stictic, constictic acids, zeorin, atranorin.
Lepraria incana (L.) Ach. – 1, 2, 3, 4, 6, 7: AG, AN, AT, BL, FO, QU, snag (GU2, IU1, JM4, JV10,

UV+ white reaction.
Lepraria jackii
and roccellic acids.
Lepraria rigidula (B.de Lesd.) Tønsberg – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, CB, FO, PK, QU, RP, SA, snag/
bry (GU3, IU2, JM2, JV5, ZP4). TLC: atranorin, nephrosteranic acid.
Lepraria vouauxii (Hue) R.C.Harris – 1, 2, 3, 4, 6: AP, AT, CB, FO, Ti (JM2, JV3, ZP4). TLC: pannaric
acid 6-methylester.
Leptogium burnetiae C.W.Dodge – 1, 2, 3, 4, 6, 7: AN, AP, AT, CA, FE, FO, QU, SA, Ti, UG (GU6,
IU8, JM4, JV4, ZP5). MtSSU sequence of JV15904 has 99 % identity with L. burnetiae from Spain
and with L. pedicellatum from Korea. Our samples match the description of L. burnetiae: tomentum
on the lower thallus surface of cylindrical cells, isidia coralloid forming patchy clusters on the upper
surface; thallus colour blue-grey. A red-listed species in the Russian Federation ( et al. 2008).
Leptogium cyanescens (Rabenh.) Körb. – 1, 2, 6: AN, AT, CA, CB, FE, FO, QU, RP, SN, Ti, UG, log
(GU7, IU9, JM4, JV4, ZP5).
RC Leptogium hibernicum
striate with nodular isidia; lower surface uniformly finely pubescent-tomentose; tomental hairs c.

Leptogium saturninum
bry (GU1, IU9, JM5, JV8, ZP5). Specimen JV15903 was confirmed by a mtSSU sequence (similarity
99 –100 % with L. saturninum according to Blast).
Letharia vulpina (L.) Hue – 7: PK/wood, snag (GU & IU (photodocumentation), JM, JV, ZP – field
records). A red-listed species in the Russian Federation ( et al. 2008).
Lichenomphalia umbellifera (L.: Fr.) Redhead, Lutzoni, Moncalvo & Vilgalyis – 2, 3, 7: log, stump
(IU3, JV1).
RC Lithothelium hyalosporum (Nyl.) Aptroot – 1, 2, 6: AN, CB, FO (GU1, IU4, JM1, JV1, ZP3). Our
specimens have ascospores usually 20 –28 µm long.  (2006) reported ascospores 14 –20(–24)
µm long. This is the first report of the genus for Russia and Caucasus.
RC Lithothelium phaeosporum (R.C.Harris) Aptroot – 1: FO (IU1). This species is closely related to L.
septemseptatum, but has only 3 instead of 5 –7 septa ( 2006).
RC Lithothelium septemseptatum (R.C.Harris) Aptroot – 1: QU (ZP1). Perithecia with reddish-brown

Mature ascospores usually 6-celled, getting red-brown, c. 38 × 13.5 µm.
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 111
Lobaria pulmonaria (L.) Hoffm. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CA, CB, FO, QU, RP, SA,
Ti, UG, log (GU12, IU14, JV1, ZP1). A red-listed species in the Russian Federation ( et al.
2008).
Lobarina scrobiculata (Scop.) Nyl. ex Cromb. – 1, 2, 3, 4, 5, 6, 7: AN, BL, FO, QU, RP, SA, SC (GU2,
IU5, JM3, ZP3).
C Lopadium disciforme (Flot.) Kullh. – 1, 3, 4, 6, 7: AN, AT, BL, FO, QU, snag (GU2, IU1, JM3, JV1,
ZP2).
RC Loxospora cristinae 
Identification of this recently described species has been confirmed by TLC – the samples contained
2'-O-methylperlatolic acid with traces of (up to four) related compounds. Several samples were also

Switzerland ( et al. 2018,  et al. 2018,  &  2019).
NC Loxospora elatina (Ach.) A.Massal. – 1, 2, 3, 6, 7: AG, AN, AT, FO, PK, QU (GU3, JM5, JV7, ZP4).
 1983).
Marchantiana asserigena (J.Lahm) Søchting & Arup – 1, 2: UG/tw, FO/tw (IU1, JV1). Specimen
JV16394 confirmed with ITS sequence data.
Maronea constans (Nyl.) Hepp – 1, 2, 6: AN, FO, RP (GU2, JM2, JV2, ZP5).
Megalaria grossa (Pers. ex Nyl.) Hafellner – 1, 2: AN, QU (JM2, ZP1).
Megalaria laureri (Th. Fr.) Hafellner – 1, 2, 3, 6: AN, AP, CB, FO, QU, RP, ST, Ti (GU12, IU1, JM4,
JV6, ZP12).
C Megalospora porphyritis            -
men JV15146 (TLC: pannarin, zeorin), matches 99 % the Australian sample Kantvilas 370/09 of
Megalospora tuberculosa). It should be noted, the authors of the phylogenetic study, where this sam-
ple was included ( & 2012), followed a broad concept of the species by 
(1983, 1986) who included pannarin-containing North American M. porphyritis ( 1983) and
later, also non-sorediate Australian M. inflexa ( 1986) under M. tuberculosa, as ‘chemical strain
B’. The same authors ( &  2012) have shown that M. tuberculosa (sensu Sipman)
is non-monophyletic taxon, but left the question of the species circumscription open. M. porphyritis
has recently been reported as new to Russia as an example of “American/Asian disjunction” (
M. tuberculosa sensu  (1983, 1986)
shows much larger distribution including S Brazil and Australia. More detailed studies with larger
sampling are necessary to resolve species boundaries in this complex.
RNC Melanelixia epilosa (J.Steiner) A.Crespo et al. – 3, 4, 5, 7: AN, AT, BL, FO, SA, SC, UG (GU8,
IU10, JM3, JV3, ZP2). We sequenced one specimen (ITS and mtSSU) and confirmed M. epilosa
(>99 % for ITS). The presence of M. glabra among non-sequenced specimens remains possible. In
Transcaucasia, M. epilosa has been recently reported from Armenia and Georgia ( et al. 2016).
Melanelixia glabratula (Lamy) Sandler & Arup – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, RP, SA,
Ti, log, snag (GU10, IU7, ZP1).
Melanelixia subargentifera (Nyl.) O.Blanco et al. – 3, 4, 6: AT, CB, FO (GU2, JM1).
Melanelixia subaurifera (Nyl.) O.Blanco et al. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, BL, CB, FE, FO, QU,
RP, TB, Ti, log, snag (GU30, IU10, ZP2).
Melanohalea exasperata (De Not.) O.Blanco et al. – 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, SA, SC, UG
(GU12, IU6, JV4, ZP4).
Melanohalea exasperatula (Nyl.) O.Blanco et al. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CB, FO, RP,
SA, SC, TB, snag (GU22, IU12, JV2, ZP4).
112 Herzogia 33 (1), 2020
Menegazzia subsimilis (H. Magn.) R.Sant. – 1, 2, 3, 6: AG, CB, FO (GU1, JM1, JV3, ZP1).
Menegazzia terebrata (Hoffm.) A.Massal. – 1, 2, 4, 5, 6: AG, AN, CB, BL, FO, QU (GU3, IU1, JM2).
C Micarea anterior (Nyl.) Hedl. – 7: AN/snag (ZP1).
C Micarea botryoides (Nyl.) Coppins – 1, 4, 6, 7: log, snag (JV3, ZP2).
Micarea denigrata (Fr.) Hedl. – 3, 4, 5, 7: log, snag, stump (GU3, JM5, JV5, ZP7). TLC: gyrophoric and
5-O-methylhiascic acids.
C Micarea elachista (Körb.) Coppins & R.Sant. – 7: PK/snag (JV1, ZP1).
Micarea globulosella (Nyl.) Coppins – 1, 3, 4, 5: AN, BL, FO (GU2, IU2, JM2, JV4, ZP2). TLC and spot
tests: gyrophoric acid not detected in most specimens. Possibly M. synotheoides is involved here too;
the specimen ZP21248 shows faintly C+ reddish reaction.
C Micarea hedlundii Coppins – 2, 7: log (JM1, JV1).
Micarea melaena (Nyl.) Hedl. – 1, 7: AN, PK/wood, QU/snag, stump (IU2, JM2, JV2, ZP1).
C Micarea melaeniza Hedl. – 2, 3: AN/wood, snag (IU3, ZP2).
Micarea micrococca (Körb.) Gams ex Coppins – 1, 2, 3, 4, 5, 6, 7: AG, AN/wood, CB/wood, QU/wood,
log, snag, stump (GU5, IU10, JV10, ZP6).
Micarea misella (Nyl.) Hedl. – 1, 2, 3, 4, 5, 7: log, snag, stump (GU1, IU1, JM4, JV10, ZP8).
Micarea nigella Coppins – 1, 3, 4, 7: BL/wood root, log, snag, stump (GU3, JM1, JV5, ZP2). Pycnidia
often do not contain any traces of purple (K+ green) pigment (character of M. melaeniza), but the pig-
ment is always present in the hypothecium.
RC Micarea nowakii Czarnota & Coppins – 4, 5, 7: wood (JM3). TLC: micareic acid. Identity confirmed
by mtSSU barcoding (97–99 % in BLASTN search).
Micarea peliocarpa (Anzi) Coppins & R.Sant. – 1, 2, 3, 4, 5, 6, 7: AG, AN, CB/wood, FO, log, snag,
stump (GU5, IU3, JM2, JV8, ZP4).
RC Micarea perparvula (Nyl.) Coppins & Printzen – 3: log (JM1). The voucher corresponds well to a
sample from Italy (JM6933) identified by B. Coppins.
Micarea prasina Fr. – 1, 2, 3, 4, 5, 7: AN, BL, QU, log, snag, stump (GU6, IU2, JM8, JV6, ZP7).
Micarea pusilla 
from the M. micrococca group, characterized by very small (up to 0.2 mm in diam.) whitish apothecia,
usually very thin and membranaceous thallus and small ascospores (7–9 × 2–3 µm). It occurs espe-
cially on wood of coniferous trees (mainly stumps of Picea abies) in old-growth as well as managed
forests ( et al. 2019).
Micarea soralifera
snag, stump (GU7, IU6, JV12). TLC: micareic acid. This newly described species is characterized by
the thallus developing distinct, mostly delimited green soralia, the presence of micareic acid and the
Sedifolia et al. 2016). M. sorali-
fera can be confused in the field with several other sorediate Micarea species and Trapelia corticola,
which is very common and often grows in the same localities as M. soralifera. T. corticola, however,
contains gyrophoric acid (soralia and thallus C+ red). Most specimens are sterile with at least initially

C Micarea tomentosa Czarnota & Coppins – 2, 7: AN/snag (JV1, ZP1).
Multiclavula mucida (Pers.) R.H.Petersen – 6, 7: log (GU1).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 113
Mycobilimbia carneoalbida
ZP1).
Mycobilimbia epixanthoides
1, 2, 3, 4, 5, 6, 7: AN, AT/bry, BL, CB, FO/bry, QU/bry, RP, Ti/bry, UG/bry (IU1, JM7, JV4, ZP8).
Thallus similar to well developed Lecania croatica
-
med as M. epixanthoides with ITS and mtSSU data (99 % similarities with available M. epixanthoides

Mycobilimbia tetramera
5, 7: AT/bry, UG/bry, log/bry (IU1, JM3, JV4).
C Mycoblastus alpinus (Fr.) Th.Fr. ex Hellb. – 7: AN/log, snag (JV1, ZP1). TLC: atranorin, usnic acid,
cf. planaic acid. This sorediate taxon is dealt as synonym under its fertile counterpart Mycoblastus
affinis (Schaer.) T.Schauer by  et al. (2018). Here we follow the traditional concept to separate
these two distinctive morpho-ecotypes as distinct species.
Myelochroa aurulenta
and leucotylic acid, cf. secalonic acid A. Spot reaction of medulla Pd-.
Myelochroa metarevoluta (Asahina) Elix & Hale – 1: AN/ne+tw, AT, CA, FO (GU3, ZP1). TLC: atra-
norin, galbinic acid, 3 4 major terpenoids (zeorin, leucocytin, leucocytic acid and derivatives), cf.
salazinic acid. Spot reaction of medulla Pd+ orange.
Myriolecis persimilis
TB, UG (GU10, IU5, JM2, JV6, ZP8).
Myriolecis sambuci (Pers.) Clem. – 4, 7: AT, FO (GU1, IU1, JM2, JV2, ZP1).
Nephroma bellum
ZP3).
Nephroma helveticum Ach. – 2: FO, RP (GU1, JV1).
Nephroma parile (Ach.) Ach. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CB, FO, QU, RP, SA, SC, ST,
UG, log (GU11, IU17, JM2, JV3, ZP5).
Nephroma resupinatum (L.) Ach. – 2, 3, 4, 5, 7: AP, AT, BL, FO, SA, SC, UG (GU2, IU6, JV3, ZP2).
C Normandina acroglypta (Norman) Aptroot – 1, 2, 3, 4, 5, 6, 7: AN, BL, CB, FO, QU, SA – often as-

crustose lichens when without perithecia. Collected Caucasian material is sterile with greenish areola-

of deciduous trees. TLC of the specimen ZP22076 revealed presence of zeorin, which was previously
discovered by Tønsberg (see Norvegian Lichen Database) and also reported by  et al. (2014)
for this species. The presence of zeorin clearly separates strongly sorediate morphs of N. acroglypta
from Mycobilimbia epixanthoides, a species with a similar appearance and ecology.
Normandina pulchella (Borrer) Nyl. – 1, 2, 4, 6: AC, AG, AN, AT, BL, CA, CB, FO, QU, RP, UG – often
associated with liverworts (GU3, IU3, JM2, JV1, ZP2).
Ochrolechia alboflavescens (Wulfen) Zahlbr. – 4, 5, 7: AN, BL, PK (GU2, IU1, JM3, JV3, ZP3). TLC:
variolaric acid, lichesterinic, protolichesterinic acids. A richly fertile specimen (ZP22813) contained
atranorin and gyrophoric acid in addition.
Ochrolechia androgyna (Hoffm.) Arnold – 1, 3, 6, 7: AN, AT, BL, FO, TB (GU1, JM1, JV3, ZP3). TLC:

Ochrolechia arborea 
snag (GU1, IU1, JM4, JV4, ZP4). TLC: gyrophoric and lecanoric acids, lichexanthone. UV+ orange.
114 Herzogia 33 (1), 2020
Ochrolechia bahusiensis H.Magn. – 1, 2, 3, 4, 3, 7: AN, AT, BL, CB, FO, RP, SA, snag (IU1, JM4, JV1,
ZP11). TLC: lecanoric and gyrophoric acids, murolic acid complex. UV+ white thallus.
C Ochrolechia mahluensis Räsänen – 3, 4: AT (JM2, JV1). TLC: gyrophoric and lecanoric acids.
Ochrolechia microstictoides Räsänen – 2, 4, 5, 7: AN, BL, CB/wood, PK, log, snag (GU1, IU1, JM4,
JV1, ZP3). TLC: only variolaric acid. K-, P+ yellow, C+ yellow, UV+ white.
Ochrolechia pallescens (L.) A.Massal. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, BL, CB, FO, RP, SA, SC, UG,
stump (GU12, IU8, JM4, JV4, ZP13). TLC: variolaric acid, murolic acid, gyrophoric acid. One speci-
men collected by JM confirmed by ITS and mtSSU.
Ochrolechia szatalaensis Verseghy – 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, RP, SA, snag (GU5, IU3, JM1,
JV3, ZP3). TLC: variolaric acid.
Ochrolechia trochophora (Vain.) Oshio – 1, 6: CB, FO (JM1, JV2, ZP3). TLC: gyrophoric and lecanoric
acids. Identification of the specimen JV15442 was confirmed by mtSSU and ITS barcode.
Ochrolechia turneri (Sm.) Hasselrot – 2, 4, 7: AN, QU, snag (IU1, ZP2).
Opegrapha niveoatra (Borrer) J.R.Laundon – 1, 2, 3, 4, 6, 7: AG, AN, AT, FO, PK/wood, Ti, snag (GU8,
IU7, JM3, JV8, ZP8).
RC Opegrapha trochodes Coppins, F.Berger & Ertz – 1, 2, 3, 4, 6, 7: AN, AT, CB, FO, QU, UG (GU1,
IU3, JM3, JV3, ZP7).
Opegrapha vermicellifera (Kunze) J.R.Laundon – 1, 2, 3, 4, 6: AN, AT, CB, FO, QU, Ti (GU3, IU2,
JM3, JV5, ZP3).
RC Orcularia insperata (Nyl.) Kalb & Giralt – 2: AN/tw (ZP1). The genus Orcularia has recently been
segregated from the artificial genera Buellia and Rinodina ( & 2011) based on polarilo-
cular ascospores (OrculariaAmandinea). Orcularia in-
sperata
hemispheres. In Europe the epithet biloculata (either as Buellia or Rinodina) was used for this species,
which shows an oceanic-Mediterranean distribution ( et al. 2009). The Caucasian specimen
is rather small, with apothecia superficially resembling Catillaria nigroclavata, but containing charac-
teristic, only slightly pigmented brownish polarilocular ascospores fitting the description in  &
 (2011). This is the first report of the genus for Russia and Caucasus.
Pannaria conoplea (Ach.) Bory – 1, 2, 3, 4, 5, 7: AN, AP, AT, BL, CB, FO, QU, RP, SA, SC, UG (GU3,
IU3, JM4, JV4, ZP2).
Parmelia barrenoae
Parmelia ernstiae Feuerer & A.Thell – 1, 2, 3, 4, 5, 6, 7: AN, AT, FO, QU, RP, SA (GU9, IU9, JM3, ZP6).
Parmelia saxatilis (L.) Ach. – 2, 3, 4, 5, 7: AN, AT, BL, FO, PK, QU, SA, TB, log, snag (GU4, IU8).
Some specimens resembling P. ernstiae by a strongly pruinose thallus upper surface, but confirmed as
P. saxatilis by ITS sequences.
Parmelia serrana
and mtSSU.
Parmelia submontana
IU3, JM2, ZP1).
Parmelia sulcata Taylor – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CB, FO, PK, QU, RP, SA, SC, TB, Ti,
log, snag, stump (GU41, IU26, JM1, ZP2).
Parmeliella triptophylla (Ach.) Müll.Arg. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, CA, FE, FO, QU, RP,
SA, Ti, UG (GU13, IU12, JM1, JV8, ZP7).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 115
Parmelina carporrhizans
IU5, JV5, ZP5).
Parmelina pastillifera (Harm.) Hale – 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, RP, UG (GU4, IU3, JV1, ZP1).
Parmelina quercina (Willd.) Hale – 3, 4, 5, 6, 7: AN, AT, BL, Ti (GU1, JV1, JM2).
Parmeliopsis ambigua (Wulfen) Nyl. – 3, 4, 5, 6, 7: AN, AP, AT, BL, FO, PK, log, snag, stump (GU9,
IU11, JV1).
Parmeliopsis hyperopta (Ach.) Arnold – 3, 4, 5, 7: AN, BL, FO, PK, log, snag (GU1, IU4, ZP1).
Parmotrema perlatum (Huds.) M.Choisy – 1, 2, 6: AG, AN, CB, FO, RP, SN, UG (GU5, IU4, JM4, JV1,
ZP3). TLC: stictic acid complex, atranorin.
RC Parvoplaca servitiana (Szatala) Arup, Søchting & Frödén – 3, 4: AN/tw (IU1, JV1). Specimen
JV16132 confirmed with ITS sequence data.
Parvoplaca tiroliensis (Zahlbr.) Arup, Søchting & Frödén – 7: UG/bry (GU1, JV1). Tiny yellow apothe-
Ulmus glabra (not its typical ecology). Specimen
JV15751 confirmed with ITS and mtSSU sequence data.
Peltigera collina (Ach.) Schrad. – 1, 2, 3, 4, 6, 7: AG, AN, AP, AT, CB, FO, QU, RP, SA, Ti, UG, log
(GU4, IU7, JM2, JV1, ZP1).
Peltigera degenii Gyeln. – 2, 3, 4, 5, 7: AN, FO, log, snag (GU1, IU5, JM1, JV2).
Peltigera horizontalis (Huds.) Baumg. – 1, 2, 3, 6, 7: AN, AT, FO, QU, SA, log, snag (GU1, IU2).
Peltigera neopolydactyla (Gyeln.) Gyeln. – 2, 6: log, snag (IU1, ZP1).
Peltigera polydactylon
JV3).
Peltigera praetextata
SA, UG, log, snag (GU5, IU10, JV2, ZP2).
Pertusaria coccodes (Ach.) Nyl. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, ST, log, snag (GU5, IU2,
JM2, JV4, ZP7).
Pertusaria constricta Erichsen – 1, 2, 3, 4, 6, 7: AN, AP, AT, CA, CB, FO, SA (GU6, IU2, JM4, JV4,
ZP3).
Pertusaria coronata (Ach.) Th.Fr. – 2, 3, 4, 5, 6, 7: AN, AT, BL, CB, FO, PK/wood, QU, SA, Ti, snag
(GU13, IU11, JM4, JV3, ZP6).
Pertusaria flavida (DC.) J.R.Laundon – 2, 3, 4, 6, 7: AN, AT, BL, FO, Ti (GU1, IU1, JM1, JV1, ZP2).
TLC: thiophaninic and an additional xanthone.
Pertusaria leioplaca DC. – 1, 2, 3, 4, 6, 7: AN, AT, CA, CB, FO, RP, SA, UG (GU9, IU2, JM3, JV8,
ZP6). TLC: stictic acid, coronatone. A variable material that may comprise more taxa; while material
from the montane plot 7 displays distinctly convex ascocarps with 4 6-spored asci, the specimen
from the ‘lowland’ plot 1 (ZP23406) has shallow ascocarps and 6 8 spored asci recalling ‘Pertusaria
alpina’.
Pertusaria pertusa
C Pertusaria pupillaris (Nyl.) Th.Fr. – 3, 4, 5, 7: AN, BL, snag (JM1, JV5, ZP3). TLC: protocetraric acid
or fumarprotocetraric acid (ZP22074).
Pertusaria sommerfeltii
Phaeophyscia ciliata (Hoffm.) Moberg – 1: SN (GU1).
116 Herzogia 33 (1), 2020
Phaeophyscia endophoenicea (Harm.) Moberg – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, FO, UG (GU6, IU9,
JM3, JV3, ZP3).
Phaeophyscia orbicularis
Phaeophyscia pusilloides (Zahlbr.) Essl. – 1, 6: AC, AG, AN, CA, CB, FO, SN, Ti, UG (GU12, IU9,
JM2, JV4, ZP5).
Phaeophyscia rubropulchra (Degel.) Essl. – 1, 2, 3, 6: AG, AN, AT, CB, FO (GU2, IU1, JM2, JV2,
ZP3).
Phlyctis agelaea (Ach.) Flot. – 1, 2, 3, 6: AN, AT, CA, CB, FO, QU, RP, Ti (GU3, IU4, JM2, JV4, ZP2).
Phlyctis argena (Spreng.) Flot. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CB, FO, QU, TB, Ti, UG, snag
(GU17, IU8, JM1, JV2, ZP1).
RC Phylloblastia inexpectata 
correspond to the description of this species by  et al. (2007). This is the first report of the
genus for Russia and Caucasus.
Phyllogyalidea phyllophila
Physcia adscendens (Fr.) H.Olivier – 1, 3, 4, 6, 7: AG, AN, AP, AT, FO (GU9, IU9, JM1, JV2, ZP1).
Physcia aipolia (Ehrh. ex Humb.) Fürnr. – 1, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CA, CB, FO, SA, SC,
Ti, UG (GU6, IU9, JM2, JV2, ZP6).
Physcia cf. biziana (A.Massal.) Zahlbr. – 5: BL (JM1). A single small thallus fits well with a description
of this species (e.g.  &  2012), but according to BLASTN, our sample of P.
biziana
GU247178, GU247212).
Physcia stellaris (L.) Nyl. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, FO, SA, SC, UG (GU13, IU5, JV4,
ZP4).
Physcia tenella (Scop.) DC. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, RP, SA, TB, Ti, UG (GU14,
IU8, JV1, ZP1).
Physcia tribacia (Ach.) Nyl. – 4: AT (IU1, JM1).
Physciella chloantha (Ach.) Essl. – 1, 6: AC, AG, AN, CA, CB, FO, SN, UG (GU3, IU2, ZP2).
Physconia detersa (Nyl.) Poelt – 3, 4, 6: AT, FO (JV2, ZP3).
Physconia distorta (With.) J.R.Laundon – 1, 2, 3, 4, 5, 6, 7: AC, AN, AP, AT, BL, CA, CB, FE, FO, SA,
SC, Ti, UG (GU18, IU25, JM2, JV3, ZP3).
Physconia perisidiosa (Erichsen) Moberg – 3, 4, 5, 7: AN, AP, AT, FO, UG (GU2, IU6, JM3, JV1, ZP1).
NC Piccolia ochrophora (Nyl.) Hafellner – 1, 2, 4: AT, QU, SN (JM1, JV2). Specimen JV14926 repre-
sents an anamorph with distinct white pycnidia and sphaerical conidia. In Transcaucasia, this species
has been recently reported from Armenia ( et al. 2015).
Placynthiella dasaea (Stirt.) Tønsberg – 2, 3, 4, 5, 7: AN/wood, FO/wood, log, snag, stump (GU5, IU3,
JM2, JV2, ZP5).
Placynthiella icmalea (Ach.) Coppins & P.James – 1, 2, 3, 4, 5, 7: AN, BL, CB/wood, FO, PK/wood, log,
snag, stump (GU9, IU10, JV3, ZP4).
Platismatia glauca (L.) W.L.Culb. & C.F.Culb. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, BL, FO, PK, SA, TB,
snag (GU5, IU5, JV1).
Polycauliona candelaria (L.) Frödén, Arup & Søchting – 7: AN (ZP1).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 117
Polycauliona polycarpa (Hoffm.) Frödén, Arup & Søchting – 7: UG (JV1).
Porina aenea (Wallr.) Zahlbr. – 1, 2, 3, 4, 6, 7: AN, AP, AT, CB, FO, QU, RP, SA, log (GU16, IU3, JM3,
JV8, ZP6).
Porina borreri
Porina byssophila (Körb. ex Hepp) Zahlbr. – 2, 3: CB, FO (ZP2). Similar to P. aenea but with a diffe-
rent pigmentation, giving a KOH+ greyish blue reaction. Identity of the specimen ZP24020 confir-
med by A. Orange. Previously it was recorded only once from the Caucasus as a saxicolous species
( &  2004). Recently it has been shown it is more frequent species than
previously believed and often growing as an epiphyte as well (2013).
Porina leptalea (Durieu & Mont.) A.L.Sm. – 1, 2, 3, 6: AN, AT, FO, QU, SN (IU1, JM2, JV2, ZP4).
Porina oxneri R.Sant. – 1, 6: AN/ne+tw (GU4, IU2, JM1, JV3, ZP1).
Porina pseudohibernica Tretiach – 2, 3, 4, 6, 7: AN, AT, FO, QU, Ti (JM3, JV3, ZP5). Only recently
recorded for the first time from the Caucasus and Russia ( et al. 2017).
Porina rosei Sérus. – 1: CB (JV1). Sterile, isidiate specimen; thalllus green-grey; isidia long, ±branched,
fragile, with distinct papillae of outer mycobiont cells, but isidia not monilliform; cortex of isidia
rather thin, indistinct.
Protoparmelia oleagina (Harm.) Coppins – 7: wood (JM1).
Pseudevernia furfuracea (L.) Zopf – 2, 3, 4, 5, 7: AN, AT, BL, FE, FO, PK, RP, SA, SC, TB, snag (GU4,
IU9, ZP2).
Pseudoschismatomma rufescens (Pers.) Ertz & Tehler – 3: AP, AT (IU1, JM1, JV2, ZP1).
C Psoroglaena abscondita
JV2, ZP2).
Psoroglaena dictyospora
log, snag (GU3, IU2, JM1, JV9, ZP10).
RC Psoroglaena stigonemoides (Orange) Henssen – 2: Ti (ZP1). A sterile specimen with distinctly papil-
late filaments under the microscope; branchlets 8 –10 µm broad with tiny photobiont cells, seemingly
arranged in two rows.
RC Ptychographa xylographoides Nyl. – 4: snag (IU1). Apothecia persistently narrow and elongate; ex-

ascospores simple, 8.5 –13 × 4.5 – 6.5 µm. This is the first report of the genus for Russia and Caucasus.
Punctelia borreri (Sm.) Krog – 5, 6: BL, Ti (GU1, ZP1).
Punctelia jeckeri (Roum.) Kalb – 1: UG (IU1).
C Puttea exsequens (Nyl.) Printzen & Davydov – 1, 2, 6: FO, QU – wood, log, snag (GU2, IU1, JM2,
JV4, ZP4).
Pycnora praestabilis (Nyl.) Hafellner – 7: PK/wood, snag (GU2, JV1, ZP2).
C Pycnora xanthococca (Sommerf.) Hafellner – 7: PK/wood (JV1).
Pyrenula chlorospila (Nyl.) Arnold – 1, 2: AP, CA (GU2).
Pyrenula coryli A.Massal. – 1: FO (JV1).
Pyrenula laevigata (Pers.) Arnold – 1, 2, 6: AN, AP, CA, CB, FO (GU2, IU3, JV3, ZP2).
Pyrenula nitida (Weigel) Ach. – 1, 2, 3, 4, 5, 6: AG, AN, AP, AT, CA, CB, FO, QU, ST, Ti, UG (GU15,
IU6, JM2, JV9, ZP5).
118 Herzogia 33 (1), 2020
Pyrenula nitidella   
IU1, JM2, JV11).
Ramalina calicaris (L.) Fr. – 2, 3, 4, 5, 7: AN, AP, AT, BL, CB, FO, RP, SA, SC (GU4, IU14, JM3, JV3,

secondary metabolites (ZP22953).
Ramalina europaea
Ramalina farinacea (L.) Ach. – 1, 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CA, CB, FO, QU, RP, SA, Ti, snag,
stump (GU19, IU15, ZP7). TLC: usnic acid (present or absent), protocetraric acid (always present),
norstictic acid with a satellite (connorstictic acid) (present or absent); two chemotypes revealed: I –
with norstictic acid (ZP21641, 22696) and II – without norstictic acid (ZP22932, 23201, 23412).
Ramalina fraxinea (L.) Ach. – 3, 4, 5, 7: AN, AT, BL, FO, SA, SC (GU1, IU1, JM1, ZP1).
Ramalina obtusata (Arnold) Bitter – 1, 2, 3, 4, 5, 6, 7: AG, AN, AP, AT, BL, CB, FO, PK, QU, RP, TB,
Ti, log, snag (GU16, IU15, JM3, JV4, ZP8).
Ramalina panizzei De Not. – 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, SA, SC (GU1, IU2, JM2,

ZP22766 was confirmed by ITS barcode.
Ramalina pollinaria (Westr.) Ach. s. lat. – 1, 2, 3, 4, 6, 7: AG, AN, AT, CA, CB, FO, QU, Ti (GU4,
IU3, JM3, JV1). Three specimens collected by JM represent R. pollinaria s. str., other specimens may
represent R. europaea.
Ramalina roesleri (Hochst. ex Schaer.) Hue – 1: dead tw of Prunus
Ramalina sinensis Jatta – 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, SC (GU3, IU7, JV1, ZP1).
Ramalina thrausta (Ach.) Nyl. – 1, 2, 3, 6: AN, FO, RP, Ti (GU1, IU1, JV3, ZP2).
Ramboldia elabens (Fr.) Kantvilas & Elix – 7: PK/wood, snag (JM1, ZP1).
Ramonia chrysophaea
RC Ramonia dictyospora Coppins – 1: SN (JV1).
RC Ramonia luteola
Reichlingia leopoldii Diederich & Scheid. – 3: AT (JM1). TLC: 2'-O-methylperlatolic acid (major), con-
fluentic acid (minor). Based on molecular data it is recognized as a member of Arthoniomycetes, and
was emended to include also Arthonia zwackhii, a chemically concordant fertile species ( et al.
2014). In Russia and the Caucasus, this species was collected for the first time from the Republic of
Adygea and from Krasnodar Territory (specimen in GLM; V. Otte in litt.).
Ricasolia amplissima (Scop.) De Not. – 1, 2, 3, 4, 6, 7: AN, AP, AT, BL, CB, FE, FO, QU, SA, UG (GU2,
IU2, JV1, ZP4). A red-listed species in the Russian Federation ( et al. 2008). The fruticose
growth form of Ricasolia amplissima (“Dendriscocaulon
as photobionts) has a rather different ecology and distribution compared to its bi- or tripartite foliose
photomorph (always with chlorophyte photobiont, sometimes with additional cyanobacteria in cepha-
lodia). In the Caucasus, it often grows independent of the foliose R. amplissima
it can inhabit other lichen species (e.g., Cetrelia sp., Parmelina sp. and other Parmeliaceae). We are
listing the records of the “Dendriscocaulon
form: 3, 4, 7: AN, BL, FO, SA (GU2, IU4, JM2).
Rinodina albana (A.Massal.) A.Massal. – 1, 2, 3, 4, 5, 6, 7: AC, AN, AT, BL, CA, CB, FO, SA, UG, snag
(GU3, JM6, JV7, ZP8).
C Rinodina buckii Sheard – 1: FO (ZP2). TLC: zeorin, pannarin. Fertile material (ZP22823) with
teichophila-type ascospores; verified by H. Mayrhofer. The species was recently described as E North
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 119
American / E Asian taxon by 
region. Presence of the species in the Caucasus represents a large range expansion.
C Rinodina capensis Hampe – 1, 2, 3, 4, 5, 7: AN, AT, BL, FO, RP, log, snag (GU5, IU4, JM5, JV4, ZP7).
C Rinodina efflorescens Malme – 1, 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, Ti, snag (GU3, IU1, JM3, JV6,
ZP3). TLC: pannarin, secalonic acid A.
C Rinodina excrescens Vain. – 1, 7: AN, FO (GU1, IU1, JM1, JV1). TLC: pannarin (traces).
Rinodina exigua (Ach.) Gray – 1, 2, 4: AG, AN, FO (GU1, IU1, JM1, ZP3).
C Rinodina freyi H.Magn. – 1, 2, 6: AN, CA, FO (GU2, JV2, ZP2).
Rinodina griseosoralifera Coppins – 4, 7: AT, BL, UG (GU1, IU1, JV2).
C Rinodina malangica (Norman) Arnold – 5: AT, SA (JV1, ZP2). The most similar mtSSU sequences
(94 –95 % in BLASTN) of the sterile specimen collected by JV belong to Rinodina species. Specimen
ZP21628 bears few apothecia.
Rinodina orculata Poelt & M.Steiner – 1, 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, JC, PK/wood, SA, SC, TB,
snag (GU7, IU6, JM5, JV14, ZP21).
RC Rinodina polysporoides Giralt & H.Mayrhofer – 1, 2, 6: AP, FO, Ti (GU4, JM2). The sample
JM10654 identified by H. Mayrhofer.
Rinodina pyrina (Ach.) Arnold – 3, 4, 5: AN, CB (GU2, ZP1).
C Rinodina sheardii Tønsberg – 3, 4, 5, 7: AN, AT, BL, FO (JM1, JV2, ZP4). TLC: Secalonic acid A, ze-
orin, unidentified UV+ blue substance (both prior and after charring) at level of atranorin, not forming
a visible spot. Caucasian material is sterile, forming delimited, brightly yellowish-greenish soralia on a

see  1992b).
Rinodina sophodes (Ach.) A.Massal. – 2, 3, 4, 5, 7: AP, AT, BL, CB, FO, SA, UG (GU4, IU2, JM4, JV9,
ZP7).
Rinodina subpariata (Nyl.) Zahlbr. – 1, 2, 3, 4, 5, 6, 7: AG, AN, AT, BL, CB, FO, RP, SA, Ti, stump
(GU9, IU3, JM6, JV10, ZP7).
C Rinodina tenuis Müll. Arg. – 1: FO (JM1). TLC: pannarin, zeorin. Identified by H. Mayrhofer.
NC Rinodina trevisanii (Hepp) Körb. – 1, 4, 5, 7: AN, AT, BL, CA, FO, SC, log, snag (GU2, IU2, JM4,
JV3, ZP4). In Transcaucasia, this species has been reported from Georgia ( & 
2007).
C Rinodina willeyi Sheard & Giralt – 1, 6: AG, FO (JV2, JM3, ZP1). TLC: pannarin, zeorin, traces of
terpenoids. JM specimens identified by H. Mayrhofer. Caucasian material is sterile but corresponds
well morphologically and chemically to description of the species ( et al. 2012). It was recently
 et al. 2017).
C Ropalospora viridis (Tønsberg) Tønsberg – 1, 2, 6: CB, FO (JM2, JV1, ZP2).
Rostania occultata
ZP1).
C Sagedia aff. mastrucata

out as Aspicilia grisea sensu British authors ( et al. 2010). Sagedia mastrucata is the closest
-
blished data).
120 Herzogia 33 (1), 2020
C Sarcosagium campestre (Fr.) Poetsch & Schied. – 4, 6: AN/wood, snag (JM1, ZP2).
C Schaereria corticola      
(ZP21398, 23342): gyrophoric and 5-O-methylhiascic acid (trace). Persistently delimited brown sora-
lia. MtSSU sequence (JV16547) has >97 % identity with S. corticola (sample Tønsberg 28432).
Schismatomma pericleum (Ach.) Branth & Rostr. – 1, 2, 3, 4, 6, 7: AN, FO, TB, Ti (GU3, IU5, JM3,
JV4, ZP1).
NC Sclerophora amabilis (Tibell) Tibell – 2, 3: FO (JV1, ZP1). In Transcaucasia, this species has been
 1998).
Sclerophora farinacea Chevall. – 2, 3, 6: AP, FO (JM1, JV1, ZP1).
Sclerophora pallida (Pers.) Y.J.Yao & Spooner – 1, 2, 3, 4: FO, QU (GU2, JM2, ZP1).
NC Sclerophora peronella (Ach.) Tibell – 4: AT (GU1). In Transcaucasia, this species has been reported
 1998).
Scoliciosporum chlorococcum 
(IU1, JV1, ZP3).
C Scoliciosporum sarothamni-
mens may represent the very similar S. gallurae.
Scoliciosporum schadeanum
Scoliciosporum umbrinum (Ach.) Arnold – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CB, FO, RP, SA, SC, TB,
UG – mainly tw, snag (GU11, IU5, JM3, JV12, ZP11).
Scutula circumspecta
CB, FO, QU, UG (GU1, IU1, JM5, JV5, ZP11).
Scytinium gelatinosum
Scytinium lichenoides
Ti, UG/bry, log (GU7, IU9, JV2, ZP2).
Scytinium pulvinatum
RP, ST, Ti/bry, UG (GU2, IU3, JM1, JV1, ZP2).
Scytinium subtile
Scytinium teretiusculum
UG, snag (GU4, IU5, JM4, JV7, ZP7).
C Steinia geophana (Nyl.) Stein – 2, 3, 4, 5: log, snag (JV3, ZP1).
C Strangospora microhaema (Norman) R.A.Anderson – 1: AC/tw (ZP1).
C Strangospora moriformis (Ach.) Stein – 7: PK (ZP1).
Strigula jamesii (Swinscow) R.C.Harris – 2: CB (ZP1).
Strigula stigmatella (Ach.) R.C.Harris – 2, 3, 4, 6, 7: AT, CB, FO, QU, SA, Ti – incl. bryophytes (GU5,
IU2, JM4, JV12, ZP12).
Tephromela atra (Huds.) Hafellner – 2, 3, 4, 5, 7: AN, AP, AT, CB, FO, SA (GU4, IU8, JV5, ZP7).
Tetramelas chloroleucus (Körb.) A.Nordin – 5, 7: AT, BL, SA (ZP5).
Tetramelas triphragmioides (Anzi) A.Nordin & Tibell – 3, 5: AN, AT, BL (GU1, IU2, JV2, ZP1).
Thelenella muscorum (Fr.) Vain. – 2, 3, 4: AT/bry, CB/bry, FO/bry (IU1, JM1, JV2, ZP1).
C Thelenella pertusariella (Nyl.) Vain. – 3, 4, 5, 6, 7: AG, FO, SC (GU1, JV3, ZP6).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 121
Thelocarpon epibolum Nyl. – 3: AN, FO (also on Peltigera sp.), log (JV2).
C Thelocarpon intermediellum Nyl. – 4: snag (IU1, JM1).
C Thelocarpon lichenicola
RNC Thelopsis flaveola Arnold – 2, 4, 5: AP, AT, FO, Ti (GU2, IU2, JM2, JV4, ZP5). In Transcaucasia,
 &  2012).
Thelopsis rubella Nyl. – 2, 3, 4, 6: AN, CB, FO, QU, Ti (IU1, JV2, ZP7).
Thelotrema lepadinum (Ach.) Ach. – 1, 2, 6: AN, CB, FO, RP, Ti (GU1, IU2, JM3, JV2, ZP4).
C Toensbergia leucococca
Toniniopsis subincompta
BL, CB, FO, SA, SN, UG, log, snag (GU11, IU6, JM3, JV18, ZP12).
RC Topelia jasonhurii
to the description of this species in  et al. (2013). In the field, Topelia jasonhurii can
resemble some Thelopsis species, but it differs for example by muriform ascospores. This taxon has

Trapelia corticola Coppins & P.James – 1, 2, 3, 4, 5, 6, 7: AG, AN/wood, QU, log, snag, stump (GU5,
IU3, JM4, JV14, ZP3).
Trapeliopsis flexuosa (Fr.) Coppins & P.James – 1, 2, 3, 4, 5, 7: BL, PK, log, snag, stump (GU1, IU2,
JM1, ZP2).
C Trapeliopsis gelatinosa
C Trapeliopsis glaucolepidea (Nyl.) Gotth. Schneid. – 3, 7: snag (JM1, JV2).
Trapeliopsis granulosa (Hoffm.) Lumbsch – 3, 7: AN, PK, snag (JV2).
Trapeliopsis pseudogranulosa Coppins & P.James – 1, 2, 3, 5: BL, snag (JM2, JV1, ZP2).
Trapeliopsis viridescens (Schrad.) Coppins & P.James – 1, 2, 3, 4, 7: FO, log, snag, stump (GU1, JV).
Tuckermannopsis chlorophylla (Willd.) Hale – 2, 3, 4, 5, 7: AN, AT, BL, CB, FO, PK, QU, TB, snag
(GU3, IU10, JV1, ZP1).
Usnea articulata (L.) Hoffm. – 1, 2, 3, 4, 5, 7: AN, BL, CB, FO, PK, QU, RP, UG (GU1, IU2, JM1, JV4,
ZP2).
Usnea barbata (L.) F.H.Wigg. – 2, 3, 4, 5, 6, 7: AN, AT, BL, FO, RP (GU4, IU4, JM6). Selected speci-
mens verified by P. Clerc.
Usnea cavernosa
and 5 formed a compacted medulla.
Usnea dasopoga (Ach.) Nyl. – 1, 2, 3, 4, 5, 6, 7: AN, BL, CB, FO, PK, RP, snag (GU5, IU4, JM3, JV6,
ZP1).
Usnea flavocardia Räsänen – 1: AN (JM1).
Usnea florida (L.) F.H.Wigg. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CB, FO, QU, RP, SA, SC, UG, log, snag
(GU13, IU7, JV2, ZP3). A red-listed species in the Russian Federation ( et al. 2008).
Usnea glabrescens (Nyl. ex Vain.) Vain. var. glabrescens – 1, 2, 3, 4, 6, 7: AN, CB, FO, RP, snag (GU9,
IU3).
var. fulvoreagens Räsänen – 1, 2, 4, 6: AN, CB, FO, QU, Ti (GU6, IU2, JM2, ZP3).
Usnea hirta (L.) F.H.Wigg. – 5, 7: AN, BL, PK, snag (GU1, JV1, ZP1).
122 Herzogia 33 (1), 2020
Usnea intermedia (A.Massal.) Jatta – 2, 3, 4, 5, 6, 7: AN, AP, AT, BL, CB, FO, SA, SC, snag (GU6, IU12,
JM4, JV3, ZP6).
Usnea longissima Ach. – 1, 2, 3, 6: AN, CA, CB, FO, QU, RP (GU10, IU5, JM, JV, ZP2).
Usnea perplexans Stirt. – 1, 3, 4, 5, 7: AN, AT, BL, FO, SA, SC, snag (GU6, IU7, JM5, JV2, ZP3).
Specimens collected by JM verified by P. Clerc.
Usnea subfloridana Stirt. – 1, 2, 3, 4, 5, 6, 7: AN, AT, BL, CB, FO, QU, PK, RP, QU (GU3, IU3, JM3,
JV5, ZP4).
Usnea substerilis
Usnea wasmuthii Räsänen – 2, 6: FO (JM3). Specimens collected by JM analyzed by TLC and verified
by P. Clerc.
Usnocetraria oakesiana
Vahliella saubinetii (Mont.) P.M.Jørg. – 1, 2, 7: AN, AT, FO, QU, Ti (GU2, IU3, JM2).
Varicellaria hemisphaerica
QU, RP, SA, Ti, snag (GU6, IU10, JM4, JV5, ZP3). TLC: gyrophoric and lecanoric acids (+ an un-

Verrucaria breussii Diederich & van den Boom – 1, 2, 6: AG, FO (JV4, ZP1). All specimens have no
involucrellum and the exciple is colourless in the lower part. As for the spore size the material is not
homogenous and more taxa may be included. Specimen JV15453 contains usually smaller ascospores
(c. 16 –20 µm long), but at least some larger ascospores (20 –25 µm long) were also present. Specimen
ZP22986 fits well this taxon with ascospores c. 23 × 10.5 µm.
RC Verrucaria hegetschweileri Körb. ex Nyl. (nom. illeg.) non (Naegeli ex Hepp) Garov. – 2: QU (ZP1).
  
wall reaching to the base; ascospores ellipsoid to ovoid (subpyriform) 12–16.5 × 6 –7 µm.
Verrucaria cf. lignicola
the base. The voucher ZP23166 was identified by O. Breuss. It is similar to Verrucaria bryoctona with
-
V. bryoctona the involucrellum is developed, but hardly discernible from the perithecial
wall, and the thallus is more or less areolate-squamulose but not granular.
Vezdaea aestivalis (Ohlert) Tscherm.-Woess & Poelt – 1, 2: Ti, log (ZP2).
C Vezdaea retigera Poelt & Döbbeler – 1, 6: AG, FO, log (JV1, ZP2). Sterile specimens identified on
basis of characteristic goniocysts with short spines.
C Vezdaea rheocarpa Poelt & Döbbeler – 2, 7: AN, QU (JM1, ZP1). Sterile specimen ZP22936 with

C Violella fucata (Stirt.) T.Sprib. – 2, 5, 6, 7: AN, BL, CB, FO, PK/wood (JM3, ZP3). TLC: atranorin,
fumarprotocetraric acid.
Vulpicida pinastri (Scop.) J.-E. Mattsson & M.J. Lai – 2, 5, 7: AN, BL, FO, RP, SC, stump (GU2, IU4,
JM, JV1, ZP1).
RC Wadeana minuta Coppins & P.James – 4: FO (JV1). This is the first report of the genus for Russia
and Caucasus.
RC Waynea giraltiae van den Boom – 7: UG (GU1, ZP1). Characteristic species when fertile. Hairy
squamules are somewhat similar to those of unrelated Agonimia opuntiella when young, but distinctly
larger with age. In the specimen ZP21598 only one apothecium is present, habitually very similar to
      
 2010,  et al. 2018,  et al. 2018).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 123
Xanthomendoza ulophyllodes (Räsänen) Søchting, Kärnefelt & S.Y.Kondr. – 4, 7: AT (JM, JV2).
Specimen JV16088 was confirmed by ITS barcode (98 –100 % identity by BLASTN). Other speci-
mens with similar morphology are suggested to belong here too.
Xanthoria parietina (L.) Th.Fr. – 2, 3, 6: AN, UG (GU1, JV1, ZP1).
Xylographa parallela (Ach.) Fr. – 2, 3, 4, 5, 7: CB/wood, PK/wood, log, snag, stump (GU3, IU2, JV3,
ZP1). TLC (ZP22099): stictic acid (major), norstictic acid (minor). Specimens tentatively identified as
Xylographa pallens, following the monograph by  et al. (2014), were revised as X. parallela
on the basis of mtSSU and ITS barcode.
C Xylographa soralifera Holien & Tønsberg – 3, 4, 7: log, snag, stump (GU3, JV2, ZP1).
C Xylographa trunciseda
ZP4).
Xylographa vitiligo (Ach.) J.R.Laundon – 2, 3, 4, 7: AN/wood, PK/wood, log, snag, stump (GU2, IU4,
JM4, JV4, ZP1).
Zwackhia viridis (Ach.) Poetsch & Schied. – 1, 2, 4, 6: AN, CB, FO, Ti (GU5, IU2, JM2, JV7, ZP3).
Lichenicolous fungi
Abrothallus bertianus De Not. – 2, 3, 4, 5: on Melanelixia glabratula, M. subaurifera, Melanohalea
exasperata, AT, BL, FO (GU2, IU2).
C Abrothallus nephromatis Suija & Pérez-Ortega – 5: on Nephroma parile, SC (GU1, IU1).
Abrothallus parmeliarum (Sommerf.) Arnold – 5: on Parmelia ernstiae, P. sulcata, BL, FO, SC (GU2,
IU2, JM1, ZP1).
Abrothallus peyritschii (Stein) Kotte – 5: on Vulpicida pinastri, BL (IU1, JM1, ZP1).
C Abrothallus suecicus (Kirschst.) Nordin – 5: on Ramalina panizzei, AT (GU1).
Acolium sessile (Pers.) Arnold – 3: on Pertusaria coccodes, AN (JV1).
C Arthonia biatoricola Ihlen & Owe-Larss. – 3, 4, 5, 7: on Biatora efflorescens, AN, AT, PK/wood, snag,
stump (GU3, IU3, JV3, ZP1).
Arthonia epiphyscia Nyl. – 1, 5: on Physcia stellaris, Physciella chloantha, BL, SN (GU1, IU1).
Arthonia phaeophysciae Grube & Matzer – 1: on Phaeophyscia pusilloides, AN (GU1).
Arthonia subfuscicola (Linds.) Triebel – 4, 7: on Lecanora carpinea, AN, FO, SA (GU2, IU1).
RC Arthonia vorsoeensis Alstrup – 3: on Amandinea punctata, AT (GU1). Hymenium 40 –50 µm high,
gel I+ blue; asci arthonioid, clavate, apically I-, 8-spored; ascospores l-septate, 9 –11 × 3.5 – 4 µm, long
remaining colourless ( et al. 2004).
Arthophacopsis parmeliarum Hafellner – 5, 7: on Parmelia sulcata, SA, SC, TB (GU2, IU2).
C Arthrorhaphis aeruginosa R.Sant. & Tønsberg – 7: on Cladonia sp. (JM1).
Bachmanniomyces punctum (A.Massal.) Diederich & Pino-Bodas – 7: on Cladonia coniocraea, PK
(IU1).
Biatoropsis usnearum Räsänen s. str. – 2: on Usnea sp. (JM1).
Chaenothecopsis brevipes Tibell – 2, 6: on Inoderma byssaceum, AN, QU (JV2).
NC Chaenothecopsis vainioanaArthonia sp., PK/wood, snag (GU1, IU1). In
 2006).
124 Herzogia 33 (1), 2020
Dactylospora deminuta (Th.Fr.) Triebel – 2: on Mycobilimbia epixanthoides, QU (ZP1).
Dactylospora lobariella (Nyl.) Hafellner – 2, 4: on Lobaria pulmonaria, AT, CB (GU2, JM1).
Dactylospora parasiticaLepra albescens (JM1).
C Didymocyrtis cf. cladoniicola    Lecanora
carpinea, SA (IU1).
RC Didymocyrtis melanelixiaeParmelia sulcata, BL (IU1).
RC Epigloea urosperma Döbbeler – 2: on Placynthiella icmalea, log (IU1, JV1). Asci 34 µm long, with
32 ascospores; ascospores l-septate, 8.4 × 2 µm with tail 4 µm.
Heterocephalacria bachmannii (Diederich & M.S.Christ.) Millanes & Wedin – 1: on Cladonia conio-
craea, log, stump (GU2).
Homostegia piggotiiParmelia sulcata, BL, Ti (GU1, ZP1).
Intralichen christiansenii    Lecanora intumescens, FO
(GU1).
Kalchbrenneriella cyanescens (Kalchbr.) Diederich & M.S.Christ. – 7: on Usnea subfloridana, AN
(IU1). In Russia and Caucasus, this species was collected for the first time from the Republic of
Adygea (specimen in GLM; V. Otte in litt.).
Lichenoconium lecanorae       Hypogymnia sp., Lecanora carpinea,
Parmeliopsis ambigua, AT, SA, TB (GU1, IU2, JM1).
Lichenoconium usneaeMelanohalea exasperata, Physconia perisidiosa,
Ramalina panizzei, AN, AT (GU3).
Lichenopeltella peltigericolaPeltigera praetextata, BL (IU1).
Lichenostigma alpinumCladonia coniocraea,
stump (IU1).
C Monodictys cellulosa S.Hughes – 7: on Arthonia vinosa, snag (GU1).
C Monodictys epileprariaLepraria rigidula, RP (GU1).
Muellerella lichenicolaCaloplaca cerina, FO (IU1).
RC Muellerella polyspora Hepp ex Müll.Arg. – 2, 4: on Arthonia radiata, FO (GU2). Asci multispored;
ascospores 5 –7 × 2.5 –3 µm; perithecia becoming ± superficial.
Myxophora leptogiophilaCollema flaccidum, QU
(ZP1).
Opegrapha rotunda Hafellner – 4: on Physconia distorta, AT (IU1).
Perigrapha superveniens (Nyl.) Hafellner – 4, 5: on Parmelia sulcata, AN, BL (JV1, ZP1).
RNC Phacographa zwackhii Phlyctis argena, AN, AT
(IU1, JM2, ZP2). In Transcaucasia, this species has been recently reported from Armenia (
et al. 2015).
Plectocarpon lichenum Lobaria pulmonaria, CB, FO, QU (GU1,
IU2, JM1).
Plectocarpon scrobiculatae Diederich & Etayo – 5: on Lobarina scrobiculata, BL (IU1).
RC Pronectria pilosa Etayo & López de Silanes – 5: on Collema subnigrescens, SC (IU1). Originally
decribed from Collema furfuraceum. Ascomata yellowish, 50 80 µm in diam., with normally setose
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 125
papilla around ostiole; ascospores ellipsoid to almost fusiform, hyaline, 1-septate, slightly constricted
in the septum, not ornamented, 10 –13.5(–15) × 3.3 –3.5 µm (et al. 2009).
Pseudoseptoria usneae  Usnea perplexans, Usnea sp., AT, BL, FO
(GU1, IU2).
Raesaenenia huuskoneniiBryoria nadvor-
nikiana, Bryoria sp., AN, AT, FO, PK (GU6, IU4).
RC Rhymbocarpus pubescens (Etayo & Diederich) Diederich & Etayo – 4: on Lepraria finkii, AT
(GU1). The species is well characterized within the genus by its hairy exciple and association with
Lepraria. Another species occurring on the same host genus, R. neglectus (Vain.) Diederich & Etayo,
 &  1998,  &2000).
Sclerococcum serusiauxii Boqueras & Diederich – 4: on Parmelina carporrhizans, AT (GU1).
Sclerococcum simplexLepra trachythallina, CB (IU1).
Sphaerellothecium propinquellum (Nyl.) Cl.Roux & Triebel – 7: on Lecanora carpinea, AT (GU1).
Sphaerellothecium pumilum (Lettau) Nav.-Ros., Cl.Roux & Hafellner – 7: on Physcia aipolia, SA (IU1).
Sphinctrina anglica Nyl. – 7: on Protoparmelia oleagina, wood (JM1).
Sphinctrina turbinata (Pers.) De Not. – 2, 4: on Pertusaria coronata, P. pertusa, CB, FO (GU3, ZP1).
Stigmidium buelliae Zhurb. & Himelbrant – 7: on Buellia disciformis, FO (GU1).
Stigmidium congestum (Körber) Triebel – 4, 7: on Lecanora carpinea, L. chlarotera, L. leptyrodes, L.
pulicaris, AN, AT, SA (GU5, IU2, JM2, ZP1).
Stigmidium euclineVaricellaria hemisphaerica, AN, Ti, snag (GU2, IU2).
Stigmidium lecidellae Triebel, Cl.Roux & Le Coeur – 4: on Lecidella elaeochroma, FO (ZP1).
Taeniolella delicataLecidella flavosorediata, snag (GU1).
RC Taeniolella friesii (Hepp) Hafellner – 2, 3, 6: on Strigula stigmatella, AT, CO, FO, QU (GU2, IU1,
JV2, ZP3). On thallus of Strigula stigmatella
Tremella cetrariicola Diederich & Coppins – 3, 7: on Tuckermannopsis chlorophylla, FO (GU1, JV1).
Tremella hypogymniae Diederich & M.S.Christ. – 4: on Hypogymnia sp. (JM1).
RC Unguiculariopsis acrocordiae (Diederich) Diederich & Etayo – 2: on Acrocordia gemmata, CO
(ZP1). U. acrocordiae is well recognizable due to its tiny reddish/brownish ascomata with hairy
margin and its strict association with Acrocordia gemmata ( &  2000 &
 2018).
Vouauxiella lichenicola (Linds.) Petr. & Syd. – 5: on Lecanora praesistens, AT (IU1).
Not or doubtfully lichenized fungi
C Actidium hysterioides Fr. – 2: wood (ZP, no voucher).
NC Agyrium rufum (Pers.) Fr. – 3, 7: AN/wood (ZP2). In Transcaucasia, this species has been reported
 1986).
C Anisomeridium macrocarpum (Körb.) V.Wirth – 1, 2, 4, 6: AT, CA, FO, QU (GU2, JV2).
Atichia glomerulosa (Ach.) Stein – 2, 4: AN/ne, RP/le (GU1, ZP2).
Chaenothecopsis debilis (Sm.) Tibell – 3, 4, 7: FO/snag, wood (IU2, JM1, JV1).
Chaenothecopsis pusilla (Ach.) A.F.W.Schmidt – 2, 7: snag (GU2, JV1).
126 Herzogia 33 (1), 2020
Chaenothecopsis pusiola (Ach.) Vain. – 3, 4, 7: AN/wood, snag, stump (GU1, IU1, JV1, ZP1).
Chaenothecopsis rubescens Vain. – 7: AN (IU1).
Chaenothecopsis savonica (Räsänen) Tibell – 7: AN, snag (GU1, IU2).
Chaenothecopsis viridireagens
Cryptodiscus pallidus (Pers.) Corda – 1, 2, 5, 7: log, snag, stump (GU1, IU2, JM2, JV1, ZP3).
RC Cyrtidula major (Nyl.) Vain. – 5: BL (GU1, JM1).
Dennisiella babingtonii
C Exarmidium hemisphaericum (Fr.) Aptroot – 2, 4: log, snag (GU3, IU1). Ascospores 28 –30 × 8 –10
µm.
C Exarmidium inclusum (Pers.) Aptroot – 2, 3, 4, 7: log, snag (JV4, ZP3).
C Hysterium pulicare (Lightf.: Fr.) Pers. – 1: QU (ZP1).
RC Karschia cezannei Ertz & Diederich – 2: QU, Ti (ZP3). This recently described corticolous taxon
has been formerly apparently confused with members of Melaspilea s. lat., well distinguishable from
them on account of the periphyses in inner part of the apothecial margin and amyloid asci (see 
&
taxon.
NC Kirschsteiniothelia aethiops
this species has been recently reported from Georgia ( 1986).
RC Kirschsteiniothelia recessa     
Ascospores large, 18 –20 × 7 µm.
C Melaspileella proximella (Nyl.) Ertz & Diederich – 1, 2, 3, 4, 7: AC, AN, FO (JV2, ZP5).
C Microcalicium ahlneri Tibell – 1, 7: QU/wood, snag (IU1, ZP1).
Microcalicium disseminatum (Ach.) Vain. – 2, 4: AN, snag (GU2).
Mycocalicium subtile (Pers.) Szatala – 2, 3, 4, 7: AN/wood, AT/wood, PK/wood, QU/wood, SA/wood,
snag, stump (GU9, IU6, JM4, JV6, ZP2).
Mycomicrothelia wallrothii
C Mycoporum cf. antecellens (Nyl.) R.C.Harris – 4, 7: AN, AT, snag (GU1, JV2). Not lichenized, but
     
-
cial wall K-; asci with a distinct thollus; slender paraphysoids present; conidia c. 4 –5 × 1 µm.
Naetrocymbe fraxini (A.Massal.) R.C.Harris – 5: SA (JM1).
Naetrocymbe punctiformis (Pers.) R.C.Harris – 1, 3, 4, 5, 7: AN/tw, AT/tw, BL, CB, FO/tw, SA, Ti, UG/
tw (GU4, IU2, JM1, JV7, ZP1).
Peridiothelia fuliguncta
RC Pseudotryblidium neesii (Flot.) Rehm – 2, 6, 7: AN (ZP3). This is a distinctive non-lichenized leotia-
Abies 
with lichens at bases of fir-trees. It was even regarded as a lichenicolous fungus by some earlier authors
(see  2011). The Caucasian material grows along with sterile thalli of Loxospora elatina
but evidently not directly associated with it. This species is quite easily identifiable due to its relatively
      
turning violet by KOH and two-celled ascospores in cylindrical asci are the most distinctive features
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 127
for the taxon (see  2011). Until now it was reported only from Europe, exclusively from
Abies albaAbies
alba and A. nordmanniana.
Rebentischia massalongii (Mont.) Sacc. – 1, 4, 7: AN, AT, UG (IU2, JV1). Only recently recorded for the
first time from the Caucasus and Russia ( & 2018).
C Rhizodiscina lignyota (Fr.) Hafellner – 7: wood (ZP1).
Sarea difformis (Fr.) Fr. – 3: AN (JM1).
Stenocybe pullatula (Ach.) Stein – 1: AG, CB (IU3).
Stictis radiata (L.) Pers. – 1, 2: dead twig of deciduous trees, Ti (IU1, ZP1).
We found a total of 659 species (ca. 16.1 % of the lichen flora of Russia, and ca. 32 % of the
lichen flora of the Northern Caucasus) in seven 1-hectare plots, including 564 lichenized, 61
lichenicolous and 34 allied non- or facultatively lichenized fungi that are often studied by
lichenologists. Plots 2, 4 and 7 had the most diverse lichen flora with more than 300 recorded
species; the lowest species richness, below 250 species, was observed in plots 5 and 6 (Table
1). Microlichens predominate in our species list – of 564 species, 407 were microlichens (ca.
72 % of lichenized taxa). The ratio of macrolichensis was higher at upper altitudes (plots 4, 5
and 7; Table 1).
Table 1. Total species richness and species richness in morpological and ecological groups observed in the investi-
gated plots. Plots are ordered according to increasing altitude.
Plot 1
700 m
Plot 6
720 m
Plot 2
940 m
Plot 3
1460 m
Plot 4
1720 m
Plot 7
1830 m
Plot 5
1900 m Total
Lichens 298 230 331 288 314 340 224 564
microlichens 219 161 235 199 215 232 134 407
macrolichens 79 69 96 89 99 108 90 157
% micro-/macrolichens 73.5/26.5 70/30 71/29 69/31 68/32 68/32 60/40 72/28
cyanolichens 17 17 28 20 22 25 15 34
the same, % 5.7 7.4 8.5 6.9 7 7.4 6.8 6
with trentepohlioid photobiont 50 39 51 43 38 27 15 79
the same, % 16.8 16.9 15.4 14.9 12.1 8 6.7 14
Lichenicolous fungi 3 4 16 10 21 20 17 61
Non-lichenized fungi 10 2 17 8 13 19 5 34
All groups 311 236 364 306 348 379 246 659
We found high diversity in the genera Lecanora (29 species), Arthonia s. lat. (21), Bacidia
s. lat. (18), Biatora (18), Caloplaca s. lat. (18), Micarea (18), Rinodina (18), Pertusaria s. lat.
(15), Usnea (14), Chaenotheca (13), Ochrolechia (10), Ramalina (10) and Gyalecta (8). On
the other hand, we found only a few species and low abundances of nitrophilous lichen genera,
e.g. Physconia (3 species), Xanthoria s. lat. (4), Phaeophyscia (5) and Physcia (6).
Abies nordmanniana (378
species) and Fagus orientalis (353), lower numbers are from Acer trautvetteri (256), Betula
litwinowii (199) and Carpinus betulus (184), and the lowest numbers are from Quercus (137),
Ulmus glabra (124), Sorbus aucuparia (120), Tilia begoniifolia (89) and others. Wood-
dwelling species (223) were recorded from snags (188) and logs (108).
128 Herzogia 33 (1), 2020
Discussion
Significant extensions of known geographical range
149 species (116 lichens, 17 lichenicolous fungi, 16 saprobic fungi) are new to the Northern
Caucasus (= Russian part of the Caucasian Mts), including 133 species (104 lichens, 15 li-
chenicolous fungi, 14 saprobic fungi) new to the Caucasus Mts.
Lichen species new to Russia are Andreiomyces obtusaticus, Bacidina mendax, Biatora
aegrefaciens, B. bacidioides, B. chrysanthoides, Biatorella dryophila, Buellia iberica,
Cliostomum haematommatis, Endohyalina ericina, Fellhanera christiansenii, Gyalidea minu-
ta, Japewia aliphatica, Lecanora barkmaniana, L. subravida, Lecidea strasseri, Leptogium
hibernicum, Lithothelium hyalosporum, L. phaeosporum, L. septemseptatum, Loxospora cris-
tinae, Melanelixia epilosa, Micarea nowakii, M. perparvula, Opegrapha trochodes, Orcularia
insperata, Parvoplaca servitiana, Phylloblastia inexpectata, Psoroglaena stigonemoides,
Ptychographa xylographoides, Ramonia dictyospora, R. luteola, Rinodina polysporoides,
Thelopsis flaveola, Topelia jasonhurii, Verrucaria hegetschweileri, Wadeana minuta and
Waynea giraltiae.
Lichenicolous fungi new to Russia are Arthonia vorsoeensis, Didymocyrtis melanelixiae,
Epigloea urosperma, Muellerella polyspora, Phacographa zwackhii, Pronectria pilosa,
Rhymbocarpus pubescens, Taeniolella friesii and Unguiculariopsis acrocordiae.
Non-lichenized fungi new to Russia are Cyrtidula major, Karschia cezannei,
Kirschsteiniothelia recessa and Pseudotryblidium neesii.
Genera new to Russia are Andreiomyces, Lithothelium, Orcularia, Phylloblastia, Topelia and
Wadeana.
Another five lichen species new to Russia have been recently described and our specimens
are already published: Bacidia albogranulosa ( et al. 2018a), Biatora radicicola
( et al. 2016), Blastenia anatolica ( et al. 2019a), Lecanora stanislai
( et al. 2017) and Lecidea coriacea ( et al. 2016).
           
Pronectria pilosa ( et al. 2009),
Cliostomum haematommatis, Endohyalina
ericina, Leptogium hibernicum, etc. (  
Aegean Islands, Greece for Buellia iberica ( &
the Carpathians Mts for Verrucaria hegetschweileri ( et al. 2006). Moreover, the range
of Topelia jasonhurii

Ecological aspects
The general characteristics of the observed diversity correspond with data obtained from an
altitudinal gradient in Carpathian beech dominated forests ( et al. 2018a, 
et al. 2015, 2018). All plots tend to harbour rare species that characteristically occur in old-
growth forests with a long lasting continuity. In contrast, species considered nitrophilous (e.g.,
frequent European species of Teloschistaceae and Physciaceae) have low species richness and
low abundances in all plots which possibly indicates a negligible effect of air pollution caused
by emissions of fixed nitrogen.
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 129
In plots at low altitudes (below 1000 m), we recorded numerous species and genera character-
istic for a warm-humid or oceanic climate (e.g., Bactrospora dryina, Byssoloma leucoblephar-
um, Fellhanera spp., Gabura fasciculare, Hypotrachyna laevigata, H. revoluta, Lithothelium
spp., Maronea constans, Myelochroa aurulenta, M. metarevoluta, Parmotrema perlatum,
Phylloblastia inexpectata, Phyllogyalidea phyllophila, Thelotrema lepadinum, Topelia jason-
hurii and Vahliella saubinetii). In plots at high altitudes, we recorded some typically subal-
pine species preferring cool-humid climate (e.g., Anzina carneonivea, Caloplaca sorocarpa,
Parvoplaca tiroliensis, Rinodina magelanica and Tetramelas chloroleucus) and boreal species
(e.g., Cetraria sepincola, Fuscidea recensa, Japewia subaurifera, Ptychographa xylograph-
oides and Pycnora xanthococca).
The number of cyanolichen species ranged 15 –28 species per plot (total 34 species; Table
1). Although these are seemingly low numbers, they are substantially higher than in ancient
forests which were affected by former or present air pollution. For example, old-growth for-
est plots in the Czech Republic are often without cyanolichens, or only one or few Peltigera
-
anolichens is demonstrated for other regions affected by air pollution, e.g. the New Forest in
England ( 2010). Lichens with a trentepohlioid photobiont ranged 15 –51 species
per plot (total 79 species; Table 1). They were distinctly more represented in plots at low al-
titudes correspondingly with results by et al. (2017) and et al. (2018).
Ratio of foliose plus fruticose lichens (macrolichens) versus crustose lichens (microlichens)
in our surveyed plots was between 26.5 40 % and it rose with altitude. The same trend was
 et al. 2018).
Positive correlation of macrolichens ratio with altitude may be explained by high demands of
macrolichens for humidity and light accessability that both increase with altitude (et
al. 1997, 2010, et al. 2016).
Substrate specificity and selectivity of epiphytic lichens
   et al.
2009,  et al. 2009,  2012,  et al. 2013). In our study, the greater species
richness was found on silver fir and beech which is not a surprising fact as both tree species are

of species recorded from birch is caused by the birch dominance in the subalpine plot.
Although beech and fir are the most preferred substrata, most lichen species have a low speci-
ficity to fir or beech. About 90 % of recorded species were observed on three or more types of
substrates. Species recorded on less than three types of substrata may be either substrate spe-
cific (e.g. Gyalidea minuta and Multiclavula mucida on logs and snags, and Stenocybe pullat-
ula mostly on Alnus twigs), or were rarely recorded (e.g. Cetraria sepincola, Lecanora albella,
Physcia tribacia and Usnocetraria oakesiana). In the latter case, we suggest a lower substrate
specificity, which could be tested by extended sampling. Among 223 lichenized species occur-
ring on wood (logs, snags, stumps), only a low portion (56 species) is strictly lignicolous (i.e.

Plot 7 – the most diverse lichen flora was found beyond the protected area
The present study is focused on the unique area in the NW Caucasus designated as a UNESCO

130 Herzogia 33 (1), 2020
  
some even new to Russia. However, the highest species richness (379 species per hectare)
was found in the seventh plot which is situated beyond the borderline of the Caucasus Reserve
(details in the list of studied sites). The lichenological value of this plot is not only in the large
number of species but also in the presence of rare and threatened species. Five species are
 et al. 2008). Among them,
Letharia vulpina, Lobaria pulmonaria and Usnea florida are vulnerable (VU), and Leptogium
burnetiae and Ricasolia amplissima are near threatened (NT). The high diversity of lichens in
Plot 7 can be explained by its large forest habitat diversity, the high number of tree species and

local hot-spot that we located within our research, we strongly recommend an extension of the
Caucasus Reserve to include woodlands beyond its current northern boundary.
Acknowledgements



    

(Cladonia), O. Breuss (Wien) (Verrucaria cf. lignicola), P. Clerc (Genève) (Usnea), B. Coppins (Edinburgh) (Micarea
perparvulaBacidia s.lat.), A. Frisch (Trondheim) (ArthonialesLecanora
stanislai), H. Mayrhofer (Graz) (Amandinea & RinodinaBryoria), A. Orange (Cardiff) (Porina
byssophila). We received support from the long-term research development grant RVO [67985939] and the Russian
 


References
, P. V. 2009. Changes in the upper limits of tree species distribution in the Western Caucasus (Belaya River
Basin) related to recent climate warming. – Russian Journal of Ecology 40: 33 –38. https://doi.org/10.1134/
S1067413609010056
, V. V.,, K., L. G.,, V. V.,, V. V.,, A. N., ,
A. S.,, M. V. ,, P. A. &, V. G. 1990. Caucasus Nature Reserve. – In: , V. E. &

, V.,, S. &  15:
45 –50.
, S. F., , W.,, W., , E. W. &, D. J. 1990. Basic local alignment search tool. –
Journal of Molecular Biology 215: 403 – 410.
, A. &, H. 2012. Physciaceae. Part 1. Foliose genera. – In:  C.M. (ed.). Fungi of
Bulgaria, 9: 1–112. – Sofia: Institute of Biodiversity and Ecosystem Research. Bulgarian Academy of Sciences.
, A. 2006. Three new species of Lithothelium (Pyrenulaceae) from China and Thailand, with a revised world
38: 541–548.
, A.,, L. B. &, P. 2018. Aquacidia
temperate Bacidia species that belong in the Pilocarpaceae (lichenized ascomycetes). – Gorteria 40: 11–14.
, U.,, U. &, P. 2013. A new taxonomy of the family Teloschistaceae. – Nordic Journal of
Botany 31(1): 16 – 83. https://doi.org/10.1111/j.1756-1051.2013.00062.x
, V.,, E.,, M. R.,, A. R.,, G., , A.,, N. L.,,
, E.,, M. E.,, B.,, I.,, R.,, E. &, V.
J. 2014. Lichenized and lichenicolous fungi from the Pitiüses Archipelago (Eivissa and Formentera Islands and
Islets), Balearic Islands, Spain. – Mycotaxon 126: 247–248. https://doi.org/10.5248/126.247

, C.,, M. W.,. B.,, C.,, M., , J. H.,, T., , S.
& , J. 2016. Contrasting patterns of lichen functional diversity and species richness across an elevation
gradient. – Ecography 39: 689 – 698. https://doi.org/10.1111/ecog.01789
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 131
, A., , A., , Z., , A., , M., , O., , N.,
, N.,, A., , A.,, I., , M.,, P. & , E. 2006.
Russia’s World Natural Heritage Sites. – Russian Conservation News 40: 1– 45.
, O. &, G. 2005. Ecological analysis of lichens in the Teberda State Biosphere Reserve
(North-Western Caucasus, Russia). – Folia Cryptogamica Estonica 41: 23 –35.
, B. J. &, A. 2009. Arthonia Ach. – In: , C. W.,, A.,, B. J.,, A.,
, O. L.,, P. W. & , P. A. (eds). The Lichens of Great Britain and Ireland. Pp. 153 –171. –
London: The British Lichen Society.
, P. & , B. 2018. Bacidina mendax sp. nov., a new widespread species in Central
Europe, together with a new combination within the genus Bacidina. – Lichenologist 50: 43 –57.
, D. A., , P., , A., , H., , T. & , K. 2011. Temperate
and Boreal Rainforest Relicts of Europe. – In: Temperate and Boreal Rainforests of the World: Ecology and
Conservation. Pp. 154 –180. – Washington, DC: Island Press.
, P. &, J. 2000. A synopsis of the genera Skyttea, Llimoniella and Rhymbocarpus (lichenicolous
Ascomycota, Leotiales). – Lichenologist 32: 423 – 485.
, M. &, J. 2019. Cliostomum haematommatis und Loxospora cristinae  
corticole, sorediöse Krustenflechten in der Schweiz. – Meylania 63: 22–29.
, S. 1994. Biatora meiocarpa (Nyl.) Arnold, a misunderstood species. – Lichenologist 26: 31–37.
, S.,, M.,, M. &, J. C. 2019. Additions to the lichen flora of Fennoscandia III. –
Graphis Scripta 31: 34 – 46.
, C. J. 2012. Lichen epiphyte diversity: A species, community and trait-based review. – Perspectives in Plant
Ecology, Evolution and Systematics 14: 131–152. https://doi.org/10.1016/j.ppees.2011.10.001
, D. & , P. 2015. Dismantling Melaspileaceae: a first phylogenetic study of Buelliella, Hemigrapha,
Karschia, Labrocarpon and Melaspilea. – Fungal Diversity 71: 141–164. https://doi.org/10.1007/s13225-015-0321-1
, J. &, P. 1998. Lichenicolous fungi from the western Pyrenees, France and Spain. IV. Ascomycetes. –
Lichenologist 30: 103 –120.
, A. K. 2018. Megalospora porphyritis  7:
143 –145. DOI: 10.17581/bp.2018.07208
A., O. W. &  B. J. 2009. Aspicilia A. Massal. (1852). – In: , C. W.,, A.,
, B. J.,A.,, O. L.,, P. W. &, P. A. (eds). The Lichens of Great Britain
and Ireland. Pp. 181–188. London: – The British Lichen Society.
, A., , G. &           
Uganda – supported by molecular data. – Nova Hedwigia 98: 295 –312. DOI: 10.1127/0029-5035/2013/0155
, A. M.,, C. &, S. 2014. Bryobilimbia, a new generic name for Lecidea hypnorum and closely
related species. – Lichenologist 46: 25 –37.

, A.,, H. J. M. &, W. 2014. A contribution to the lichen-forming and lichenicolous
fungi flora of Armenia. – Willdenowia 44: 263 –267. http://dx.doi.org/10.3372/wi.44.44208
, A.,, A.,, A.R.,, V., , Z.,, V. J.,, E.,, A.,, P. K.
&, H. T. 2015. First inventory of lichens and lichenicolous fungi in the Khosrov Forest State Reserve,
Armenia. – Flora Mediterranea 25: 105 –114. DOI: 10.7320/FlMedit25.105
, V.,, P. W. &  O. W. 2009. Rinodina (Ach.) Gray (1821). – In: , C. W.,, A.,
, B. J.,, A.,, O. L.,, P. W. &, P. A. (eds). The Lichens of Great Britain
and Ireland. Pp. 812– 825. – London: The British Lichen Society.
 O. L. 2009. Catinaria Vain. (1922). – In: , C. W.,, A., B. J., , A.,,
O. L.,, P. W. & (eds). The Lichens of Great Britain and Ireland. P. 289. London: The British
Lichen Society.
, M., , P. P. G. &, J. A. 2010. Endohyalina, the genus in the Physciaceae to accommodate
the species of the Rinodina ericina-group. – Mycological Progress 9(1): 37– 48. DOI: 10.1007/s11557-009-0616-2
 E. A. 2011. Variability of forest vegetation in a protected regime in the Western Caucasus. PhD Thesis. –
Moscow: Institute of Geography, Russian Academy of Sciences. (In Russian).
, B., , P., A. &, M. 2016. Micarea soralifera sp. nov., a new sorediate
species in the M. prasina group. – Lichenologist 48: 161–169.
, B.,, A., , J.,, T.,, M. &, M. 2017. Lecanora stanislai,
a new, sterile, usnic acid containing lichen species from Eurasia and North America. – Phytotaxa 329: 201–211.
http://dx.doi.org/10.11646/phytotaxa.329.3.1
, B.,, A.,, D.,, E. &, M. 2018. Phylogenetic approaches reveal
a new sterile lichen in the genus Loxospora (Sarrameanales, Ascomycota) in Poland. – Phytotaxa 348: 211–220.
http://dx.doi.org/10.11646/phytotaxa.348.3.4
132 Herzogia 33 (1), 2020
, D. L.,, P. M. &, B. J. 2006. Lichenophoma haematommatis, a previously
Cliostomum (Lecanorales, Ramalinaceae). – Herzogia 19: 5 –10.
, J.,, T. N.,, B. &, M. P. 2006. Lichens and lichenicolous fungi of
109: 1–79. (In Russian)
, D. E.,, I. S., J.,, J. V.,, E. S., , A. V. &
, A. G. 2017. New records of lichens and allied fungi from the Leningrad Region, Russia. VIII. – Folia
Cryptogamica Estonica 54: 63 –70. http://dx.doi.org/10.12697/fce.2017.54.11
, H.,, Z.,, C. R.,, T. &, T. 2016. Lecidea coriacea sp. nov., a lichen species
from oldgrowth boreal and montane forests in Europe and North America. – Herzogia 29: 412– 420.
, A.,, G.,, J. &, V. 2017. An old-growth forest at the Caspian Sea coast is
similar in epiphytic lichens to lowland deciduous forests in Central Europe. – Herzogia 30: 103 –125.
, T. E.,, D. P.,, V. P. &, V. D. 1982. The climate of the Western Caucasus

, K. &, M. 2011. Orcularia, a segregate from the lichen genera Buellia and Rinodina (Lecanoromycetes,
Caliciaceae). – Phytotaxa 38: 53 – 60. http://dx.doi.org/10.11646/phytotaxa.38.1.8
, G. &, H. T. 2012. Reappraisal of the genera of Megalosporaceae (Teloschistales, Ascomycota). –
Australian Systematic Botany 25: 210 –216. https://doi.org/10.1071/SB11040
, I.,, J., , F. &, P. 2013. Factors influencing epiphytic bryophyte and lichen species
richness at different spatial scales in managed temperate forests. – Biodiversity and Conservation 22: 209 –223.
https://doi.org/10.1007/s10531-012-0415-y
, S.,, E.,, M. &, S. 2018. Molecular systematics and character evolution in the
lichen family Ramalinaceae (Ascomycota: Lecanorales). – Taxon 67: 871– 904. https://doi.org/10.12705/675.1
, A. F. 
distribution. PhD Thesis. – Moscow: M.V. Lomonosov Moscow State University. (In Russian).
, S.,, L.,, S.,, M.,E., , S. O. &, J. S. 2013.
New and noteworthy lichen-forming and lichenicolous fungi. – Acta Botanica Hungarica 55: 275 –349. https://
doi.org/10.1556/ABot.55.2013.3-4.9
, E., , R., , A., , A., , P., , V., , J. C., , M. P., ,
G., , A., , S., , M., , T. & , H. T. 2015. Hidden diversity in the
morphologically variable script lichen (Graphis scripta) complex (Ascomycota, Ostropales, Graphidaceae). –
Organisms Diversity and Evolution 15: 447– 458.
, V.,, N.,, H.,, L. &, D. 2001. Biodiversity of the Caucasus: an ana-
lysis of biodiversity and current threats and initial investment portfolio. – Moscow: World Wide Fund for Nature.
, S. B. 1997. Lichens and lichen communities of the North-Western Caucasus (floristic and ecological
analyses). – Krasnodar: Kuban State University.
, D. &, J. 2012. Gyalidea minuta in Central Europe – new data on its distribution, ecology, and mor-
phological variation. – Mycotaxon 119: 11–16. https://doi.org/10.5248/119.11
, A.,, J., , M.,, A.,, E. &, L. 2019. Sharpening species bound-
aries in the Micarea prasina group, with a new circumscription of the type species M. prasina. – Mycologia 111:
574 –592. https://doi.org/10.1080/00275514.2019.1603044
, J. D. &     
sequences available. – URL: http://www.lichenicolous.net [1/3/2018].
, S. D.,, T. L.,, P. K., , A. & , H. T. 2016. Hidden diversity before our
eyes: Delimiting and describing cryptic lichen-forming fungal species in camouflage lichens (Parmeliaceae,
Ascomycota). – Fungal Biology 120: 1374 –1391. DOI: 10.1016/j.funbio.2016.06.001
 J. A. 2009. The role of forests in the preservation of biodiversity. – In: , J. N. &, H. G. (eds). Forests
and forest plants. Vol. 3. – UNESCO and EOLSS Publishers Co Ltd.
, M. E.,, J. &2009. Pronectria pilosa (Hypocreaceae) sp. nov. and other
lichenicolous fungi found on Collemataceae in the Iberian Peninsula. – Bryologist 112: 101–108. https://doi.
org/10.1639/0007-2745-112.1.101
, B., , K. A.,, F. J.,, S.,, C.,, C.,, G.,, P.,,
D.,, R.,, M.,, B.,, M.,, S.,, T.,, G. G.,,
K., , E. B., , E. T., , J.,, J.,, T.,, A., , D.,, R. &
, M. 1997. Vertical profile of epiphytes in a Pacific Northwest old-growth forest. – Northwest Science
71: 145 –152.
, J. 2014. A revision of the epiphytic species of the Lecanora subfusca group (Lecanoraceae, Ascomycota) in
the Czech Republic. – Lichenologist 46: 489 –513.
, J.,, Z. &, J. 2014. New lichen records and rediscoveries from the Czech Republic and
27: 257–284.
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 133
, J.,, F.,, Z. & , J. 2017. Corticolous sorediate Lecanora species (Lecanoraceae,
Ascomycota) containing atranorin in Europe. – Lichenologist 49: 431– 455.
, J., , Z.,, A.,, F.,, F.,, N. &
  31:
140 –171.
, J.,, Z.,, J.,, A. &, M. 2018b. Bacidia albogranulosa (Ramalinaceae, liche-
nized Ascomycota), a new sorediate lichen from European old-growth forests. – MycoKeys 44: 51– 62. https://

, D.,, N., , N.,, M., , H.,, M. &, C. 2018.
Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the
Caucasus. – Global Ecology and Biogeography 27: 1314 –1325. https://doi.org/10.1111/geb.12799
, H. &, J. W. 2007. Rinodina archaea (Physciaceae, lichenized Ascomycetes) and related spe-
cies. – Bibliotheca Lichenologica 96: 229 –246.
, B., , U.,, O.,, E., , J.,, T. L.,, N.,,
J.,, A. E., , L.,, P. R.,, R.,, M., , J. W.,, T. &

9: 859 –930. DOI: 10.5943/mycosphere/9/4/10
, C.,, S.,, F.,, C.,, J.,, T. &, J. 2009. Lichen diversity in
temperate montane forests is influenced by forest structure more than climate. – Forest Ecology and Management
258: 745 –751. https://doi.org/10.1016/j.foreco.2009.05.015
, L.,, R., , T.,, A., , M. &, Z. 2017. Molecular analyses
uncover the phylogenetic placement of the lichenized hyphomycetous genus Cheiromycina. – Mycologia 109:
588 – 600. https://doi.org/10.1080/00275514.2017.1397476
, I. G. 1986. Flora of Spore-Producing Plants of Georgia (Conspectus). – Tbilisi: Metsniereba. (In
Russian).
, J., , L., &, P. L. 2009. Influence of tree species on epiphytic macrolichens in temperate mixed
forests of northern Italy. – Canadian Journal of Forest Research 39
, P. L. 2016. The Lichens of Italy. A Second Annotated Catalogue. – Trieste: Edizioni Università di Trieste
, P. L.,, J.,, C.,, P.,, H.,, S. &, P. O. 2018. The lichens
31
, G. N. 2016. Biodiversity of orobiomes in the North Caucasus on the Biome map of Russia. – South of
Russia: ecology, development. 11: 21–36. (In Russian). https://doi.org/10.18470/1992-1098-2016-1-21-36
, G. N., , N. B., , E. V., , N. G.,, M. V., , I. M.,
, M. V.,, S. V.,, E. A.,, M. S.,, E. E.,, G. P.,
, V. Y.,, L. G.,, O. A., , A. A.,, P. I.,, T.
V.,, M. N. &, O. N. 2018. The biomes of Russia (s. 1:7 500 000). – Moscow: WWF-RUSSIA.
, D. M. &, E. 2002. The global 200: Priority ecoregions for global conservation. – Annals of the
Missouri Botanical Garden 89: 199 –224.
, A.,, P. W. &, F. J. 2001. Microchemical methods for the identification of lichens. – London:
The British Lichen Society.
 
vascularium 39: 219 –224. (In Russian).

79: 131–140.
, Z., , J.,, O. &
European lichen biota. – Herzogia 31: 518 –534.
, Z.,, A. &  
planina (W Carpathians). – In: , A.,, A.,, E. &, P. (eds). Central European
lichens – diversity and threat. Pp. 179 –192. – Ithaca: Mycotaxon Ltd.
, S.,, T.,, Z.,, J. A. & C. 2010. A molecular phylogeny of the Lecanora
varia group, including a new species from western North America. – Mycological Progress 9: 523 –535. https://
doi.org/10.1007/s11557-010-0660-y
, J. & , A. 1977. Bestimmungsschlüssel europäischer Flechten. Ergänzungsheft I. – Bibliotheca
Lichenologica 9: 1–258.
, M. 2013. Porina byssophila in North Bedfordshire. – Bulletin of the British Lichen Society 112: 71–73.
, C. 1995. Die Flechtengattung Biatora in Europa. – Bibliotheca Lichenologica 60: 1–275.
, C. 2007. New records of Cheiromycina species, a genus of lichenized hyphomycetes, with C. reim-
eri             84: 261–267. https://doi.org/10.1127/0029-
5035/2007/0084-0261
134 Herzogia 33 (1), 2020
, C. 2014. A molecular phylogeny of the lichen genus Biatora including some morphologically similar
species. – Lichenologist 46: 441– 453.
, C. &, Z. 1999: The distribution, ecology and conservational status of the lichen genus Biatora in
central Europe. – Lichenologist 31: 319 –335.
, C. &, T. 2003. Four new species and three new apothecial pigments of Biatora. – Bibliotheca
Lichenologica 86: 133 –145.
, C.,, T. &, Z. 2002. Biatora aegrefaciens, rare but widespread. – Graphis Scripta 13:
37–38.
, C., , J. P., , J. W., , Z., , P., , G., , T. &
, J. 2016. Five new species of Biatora from four continents. – Herzogia 29: 566 –585.
, S., , A., , A., , M., , R., , E.,  , W., , D.,
, C., , L., , S. E.,, G., , D.,, E.,,
S.,, L.,, P. L.,, S., , S.,, D.,, F., &, M. 2018.
Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 5. – Italian Botanist 5: 31– 43. https://doi.
org/10.3897/italianbotanist.5.24852
, K. 1937. Arthoniaceae. – In: Dr. L. Rabenhorst‘s Kryptogamen Flora von Deutschland, Österreich und der
Schweiz, Band 9, Abteilung 2(1), Lieferung 1: 1–180.
, N. A. 2010. Lichens. – In: A. C.  (ed.), Biodiversity in the New Forest. P. 84 –111. – Newbury,

, E.,, B. J. &, R. 2007. Phylloblastia inexpectata (Verrucariaceae), a new species of
foliicolous lichen from Western Europe and Madeira. – Lichenologist 39: 103 –108.
, J. W.,, J. C.,, T. ,, G. &, T. 2012. Further contributions to the genus
Rinodina (Physciaceae, Lecanoromycetidae): two new species to science and a new record for the Canadian High
Arctic. – Herzogia 25: 125 –143.
, J. W.,, A. K., , I. A., D., , E., , A.,,
I.,, G.,T.,, L. &, T. 2017. The lichen genus Rinodina (Physciaceae,
Caliciales) in north-eastern Asia. – Lichenologist 49: 617– 672.
, H. J. M. 1983. A monograph of the lichen family Megalosporaceae. – Bibliotheca Lichenologica 18: 1–241.
, H. J. M. 1986. Additional notes on the lichen family Megalosporaceae. – Willdenowia 15: 557–564. https://
www.jstor.org/stable/3996469
, H. J. M. &, T. 2015. Lichens and lichenicolous fungi from the island of Chios (Aegean Sea, Greece). –
Herzogia 28: 496 –519.
, U. & , U. 2018. Marchantiana asserigena comb. nov., a possible European immigrant from
Australia. – Graphis Scripta 30: 115 –120.
, T.,, P.,, T.,, S.,, H. &, H. T. 2014. Molecular systematics
of the wood-inhabiting, lichen-forming genus Xylographa (Baeomycetales, Ostropomycetidae) with eight new
species. – Symbolae Botanicae Upsalienses 37: 1– 87.
, A. N. 1998. New and rare calicioid lichens and fungi from relict tertiary forests of Caucasus and the Crimea. –
Folia Cryptogamica Estonica 32: 127–133.
           

, T. 1992a. The sorediate and isidiate, corticolous, crustose lichens in Norway. – Sommerfeltia 14: 1–331.
, T. 1992b. Rinodina sheardii, a new lichen species from northwest Europe and northwest North America. –
Bryologist 95: 216 –217.
        
Scientific Press Ltd. (In Russian).
, I. N. &
48: 315 –326. (In Russian).
, I. N. &      
(Krasnodar Territory, Western Transcaucasia). – Novitates systematicae plantarum non vascularium 50: 243 –256.
(In Russian).
, I. N. &, G. P. 2018. Contributions to the lichen flora of the Stavropol Territory
(Central Caucasus, Russia). – Novitates systematicae plantarum non vascularium 52: 417– 434. (In Russian).

, G. P. &, I. N. 2004. Lichens. – In: , T. M.,, O. M.,,
N. S. &, A. K. (eds). The Present-day State of Biodiversity within Protected Areas of Russia. Issue 3.
Lichens and Bryophytes. Pp. 5 –235. – Moscow: The World Conservation Union; Ministry of Natural Resources
of the Russian Federation; Commission on Biodiversity Conservation of the Russian Academy of Sciences. (In
Russian, with partial English translation).
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 135
, G. P. &
Tver. Gosud. Univ. Ser. Biologiya i Ecologiya 27(23): 109 –116. (In Russian).
, G. &
Russia). – Herzogia 27: 285 –319.
, G. &, I. 2015. New records of lichens and lichenicolous fungi from the NW Caucasus
(Russia). – Herzogia 28: 185 –192.
, G. P.,, J. &, I. N. 2017. Genus Porina (Porinaceae, Lichenes) in the lichen
102: 563 –576. (In Russian).
, P. P. G. 2010. Waynea giraltiae, a new lichen species from the Iberian Peninsula. – Lichenologist 42:
29 –33.
, P. P. G. &, A. M. 2008. Some new Lecanora species from western and central Europe, belong-
ing to the L. saligna group, with notes on related species. – Lichenologist 40: 465 – 497.
  Gyalecta a Pachyphiale   
             
1958/1: 21–56.
, J.,, J.,, J. &
Central European old-growth forests. – Herzogia 28: 104 –126.
, J.,, J.,, Z.,, B. J,, M.,, P., , N. &, A. 2016.
Methods for obtaining more complete species lists in surveys of lichen biodiversity. – Nordic Journal of Botany
34: 619 – 626. https://doi.org/10.1111/njb.01053
, J.,, J.,, Z., , F.,, F., , N.,, A.,, V. &, R.
2018. Exploiting hot-spots; effective determination of lichen diversity in a Carpathian virgin forest. – PLoS ONE
13(9): e0203540. https://doi.org/10.1371/journal.pone.0203540
, J., , I., , J.,, U.,, T., , G., , J. & , U. 2019a.
Substrate switches, phenotypic innovations and allopatric speciation formed taxonomic diversity within the li-
chen genus Blastenia. – Journal of Systematics and Evolution (in press). https://doi.org/10.1111/jse.12503
, J.,, G.,, Z.,, J.,, I.,, J. &, C. 2019b. The
epiphytic lichen biota of Caucasian virgin forests: an exceptional new baseline for European conservation. –
Biodiversity and Conservation 28: 3257–3276. https://doi.org/10.1007/s10531-019-01818-4
    23:
229 –248.
, V., , T.,, A. &, D. 2018. Loxospora cristinae found in Germany. – Herzogia 31:
995 –999.
, P.,, N.,, H.,, D. & ., P. 2017. Patterns and drivers of lichen species
composition in a NW-European lowland deciduous woodland complex. – Biodiversity and Conservation 26:
401– 419. https://doi.org/10.1007/s10531-016-1250-3
, M. P. 2017. Lichenicolous fungi of the Caucasus: new species, new records and a second synopsis. –
Opuscula Philolichenum 16: 267–311.
, M. P. &
colous lichens of the Northwest Caucasus, Russia. – Opuscula Philolichenum 15: 37–55.
, E. 2011. Pseudotryblidium neesii – ein von Lichenologen häufiger gesammelter Ascomycet auf
Abies. – Meylania 46: 11–14.
Manuscript accepted: 6 November 2019.
Communicated by: Holger Thüs
Addresses of the authors
Gennadii Urbanavichus, Institute of North Industrial Ecology Problems, Kola Science Centre,
        
Russia. E-mail: g.urban@mail.ru
Irina Urbanavichene, Komarov Botanical Institute, Russian Academy of Sciences, Professor
Popov Str. 2, 197376 St Petersburg, Russia. E-mail: urbanavichene@gmail.com
136 Herzogia 33 (1), 2020

Czech Republic & University of South Bohemia, Faculty of Biological Sciences, Department


             



Appendix. 
Taxon Sample ITS mtSSU
Amandinea sp. (A. aff. punctata) -MK778513
Bacidia albogranulosa  MK158339 MK158334
Bacidia albogranulosa  MK158340 MK158335
Biatora sp. (B. amylacea ined.)  MK778585 MK778516
Biatora efflorescens  MK778586 MK778517
Biatora chrysantha  MK778587 -
Biatora pontica  MK778588 MK778518
Biatora pontica  -MK778519
Biatora vacciniicola  -MK778520
Blastenia anatolica Z. Palice 21647 (PRA) MK778590 -
Blastenia herbidella  MK778591 -
Buellia schaereri  MK778592 MK778521
Caloplaca turkuensis  - MK778522
Caloplaca turkuensis  - MK778523
Candelariella faginea  MK778596 MK778524
Catinaria sp.  MK778597 -
Cliostomum haematommatis  MK778598 MK778525
Cliostomum haematommatis  MK778599 MK778526
Fellhanera sp.  MK778600 -
Gyalecta herculina  MK778584 MK778515
Gyalecta herculina  MK778601 -
Gyalectaceae sp.  - MK778527
Lecania croatica  MK778602 -
Lecania cf. cyrtella Z. Palice 21641 (PRA) MK778603 MK778528
Lecania cf. cyrtella G. Urbanavichus s.n. (hb. GU) - MK778582
Lecanora allophana  KY548050 KY502421
Lecanora argentata  MK778604 MK778529
Lecanora barkmaniana  MK778605 MK778530
 et al.: Lichens of virgin forests in the Caucasus Reserve (Russia) 137
Taxon Sample ITS mtSSU
Lecanora carpinea s.str. MK778606 MK778531
Lecanora carpinea s.str. MK778607 MK778532
Lecanora carpinea s.str. MK778608 MK778533
Lecanora carpinea s.str. - MK778534
Lecanora cinereofusca  - MK778535
Lecanora exspersa  KY548053 KY502420
Lecanora exspersa  KY548054 KY502419
Lecanora exspersa  KY502415 KY548057
Lecanora exspersa  MK778609 MK778536
Lecanora leptyrodes  - MK778537
Lecanora leptyrodes  MK778610 MK778538
Lecanora pulicaris  MK778611 MK778539
Lecanora pulicaris  MK778612 MK778540
Lecanora pulicaris  - MK778541
Lecanora pulicaris Z. Palice 23005 (PRA) - MK778542
Lecanora sp. - MK778543
Lecanora sp. MG076967 -
Lecanora stanislai  - MK778544
Lecanora stanislai  - MK778545
Lecidea sp. MK778613 MK778546
Lecidella aff. flavosorediata  MK778614 -
Lecidella flavosorediata  MK778615 MK778547
Leptogium burnetiae  - MK778548
Leptogium saturninum  - MK778549
Loxospora cristinae  MK778617 MK778550
Loxospora cristinae  - MK778551
Loxospora cristinae  - MK778552
Loxospora cristinae  - MK778553
Loxospora cristinae  MK778619 -
Loxospora cristinae  MK778620 -
Loxospora cristinae  MK778621 MK778554
Marchantiana asserigena  MK778593 -
Megalospora porphyritis  MK778622 MK778555
Melanelixia epilosa  MK778623 MK778556
Micarea nowakii  - MK778557
Micarea nowakii  - MK778558
138 Herzogia 33 (1), 2020
Taxon Sample ITS mtSSU
Mycobilimbia epixanthoides  MK778624 MK778559
Mycoblastus sp. MK778625 MK778560
Ochrolechia pallescens  MK778626 MK778561
Ochrolechia trochophora  MK778627 MK778562
Parmelia barrenoae  MK778628 -
Parmelia ernstiae  MK778629 MK778563
Parmelia saxatilis  MK778630 MK778564
Parmelia saxatilis  MK778631 MK778565
Parmelia saxatilis  MK778632 -
Parmelia serrana  MK778633 MK778566
Parmelia serrana  MK778634 MK778567
Parmelia serrana  MK778635 MK778568
Parmelia submontana  - MK778569
Parvoplaca servitiana  MK778594 MK778570
Parvoplaca tiroliensis  MK778595 -
Pertusaria pupillaris  - MK778571
Physcia cf. biziana  MK778637 MK778572
Ramalina panizzei Z. Palice 22766 (PRA) MK778638 -
Rinodina griseosoralifera  - MK778573
Rinodina malangica  - MK778574
Rinodina sp. MK778639 MK778575
Rinodina sheardii  MK778640 -
Rinodina sheardii  - MK778576
Sagedia aff. mastrucata Z. Palice 23193 (PRA) MK778583 MK778514
Scoliciosporum cf. umbrinum  MK778641 MK778577
Scoliciosporum sp. MK778642 MK778578
Schaereria corticola  - MK778579
Tetramelas sp.Z. Palice 23089 (PRA) MK778643 -
unidentified lichen  MK778644 MK778580
Xanthomendoza ulophyllodes  MK778645 -
Xylographa parallela  MK778636 -
Xylographa parallela  MK778589 MK778581
Xylographa parallela Z. Palice 22099 (PRA) MK778618 -
... Molecular evidence is needed to better assess the relationship of these widely disjunct populations. Rinodina tenuis has also been reported recently from the Western Caucasus region of southern Russia (Urbanavichus et al. 2020), an area known for disjunct occurrences of otherwise eastern North American-eastern Asian lichens (Otte 2004). ...
... In the central and southern Appalachians, where Eastern White Cedar is very sporadically distributed or lacking, it occurs on hardwoods, especially oak (Quercus L.) species (Lendemer et al. 2014). The single collection reported from the Russian Caucasus by Urbanavichus et al. (2020) was on Oriental Beech (Fagus orienta lis Lipsky). ...
... When it was first described in 1995, R. willeyi was known globally from fewer than 10 localities in the southern Appalachians and northeastern coastal region of eastern North America, including the two in New Brunswick noted above (Sheard 1995). It is now known to occur more widely in the Appalachian and Great Lakes regions (Lendemer et al. 2014), northeastern Asia (Sheard et al. 2017), the Western Caucasus region of Russia (Urbanavichus et al. 2020), andAlaska (McCune et al. 2018). In New Brunswick, it is locally frequent throughout the province. ...
Article
Full-text available
Fifteen species of the crustose lichen genus Rinodina are confirmed in New Brunswick, Canada. We report four corticolous species, Rinodina pachysperma, Rinodina populicola, Rinodina septentrionalis, and Rinodina tenuis, and the saxicolous Rinodina tephraspis in the province for the first time. A previous report of Rinodina granuligera is based on a specimen that we have re-identified as Rinodina cinereovirens. We note distinguishing characteristics, habitats, substrata, relative abundance, and biogeographic relationships of each species and provide an identification key and distribution maps. The most frequently occupied phorophytes (tree substrata) are Sugar Maple (Acer saccharum), Yellow Birch (Betula alleghaniensis), and Eastern White Cedar (Thuja occidentalis). Some species are closely associated with particular habitats, phorophytes, or both. For example, we found R. pachysperma only in floodplain forests dominated by Silver Maple (Acer saccharinum), and R. tenuis only on Eastern White Cedar in wet cedar-dominated stands. In contrast, we recorded Rinodina freyi on numerous phorophyte species in a relatively wide range of habitats. Other than Eastern White Cedar and Balsam Fir (Abies balsamea), conifers are rarely colonized by Rinodina species in New Brunswick. Most Rinodina species are probably not currently of conservation concern in the province. However, R. cinereovirens is known from only two collections, one dating from 1902. The other, from 2007, was on Black Ash (Fraxinus nigra) in a swamp forest next to an active peat-mining operation. The expected devastation of ash species by the invasive Emerald Ash-borer (Agrilus planipennis) is a further threat to this occurrence and to any lichens for which ash may be an important phorophyte.
... В России данные виды отмечены в ряде регионов от европейской части до Дальнего Востока (Spisok…, 2010). Lithothelium hyalosporum впервые был найден в России сравнительно недавно (Urbanavichus et al., 2020). Вид отмечен в Кавказском заповеднике (Республика Адыгея) в смешанных лесах на коре граба, бука, пихты в высотном диапазоне 700-960 м над ур. ...
... В Крыму вид был найден на юго-западе Крымских гор, где произрастал на дубе (Khodosovtsev, Khodosovtseva, 2007). На Кавказе отмечен в западной части -в редколесных сообществах на фисташке (Otte, 2005, как V. sorbinea) и в широколиственных лесах на ольхе и буке (Urbanavichus et al., 2020). В Мордовском заповеднике вид найден на липе (Urbanavichene, Urbanavichus, 2016). ...
... 3)-5, на коре в основании ствола (DAG 1468). Ранее известное распространение на Кавказе: Краснодарский край(Otte, 2005, как Verrucaria sorbinea Breuss), Республика Адыгея(Urbanavichus et al., 2020). ...
Article
Full-text available
An annotatted list including 116 species of lichenized, lichenicolous and nonlichenized fungi growing on beech in foothill Dagestan is given. Among them 66 species are firstly reported for studied forests of which 31 species have not been previously known from beech in Dagestan. Species Biatora pallens, Bryobilimbia hypnorum, Lithothelium hyalosporum, Myelochroa aurulenta, Scutula circumspecta, Verrucaria breussii and genera Bryobilimbia, Lithothelium, Myelochroa are new for the East Caucasus. The record of Lithothelium hyalosporum is the secon for Russia and the Caucasus. These species, and genus Eopyrenula, have not been known in Dagestan. We notice absence of most lichens which are growing in the belt of beech forest within the Caucasus. This is a result of the forest management on study area. A low proportion of foliose and fruticose lichens (36%) and cyanobiont species (5%) indicates a low precipitation and high anthropogenic disturbance of the studied habitats.
... The asci have a K/I-apical dome (Trapelia-type) and contains eight ellipsoid, colourless, one-celled spores (Cannon et al. 2021). It was for a long time only known from Great Britain but has now been encountered in Oregon and Washington in the northwestern United States, northwest Spain, United Kingdom (southwest England, Scotland, Wales), Norway and western Caucasus in Russia (Artskart 2023, Barreno & Pérez-Ortega 2005, Cannon et al. 2021, McCune 1997, Nordén et al. 2019, Urbanavichus et al. 2020). The known distribution indicates a distinct preference for an oceanic and temperate rainforest climate. ...
Article
Full-text available
We report 22 lichenised fungi as new to Sweden, of which nine are also new to Fennoscandia and one new to Europe. The newly reported species are Agonimia flabelliformis, Carneothele sphagnicola, Lecania madida, Lecanora horiza, L. subravida, L. subsaligna, Lecidea subhumida, L. toensbergii, Micarea coppinsii, M. isidioprasina, M. microsorediata, M. pseudotsugae, M. substipitata, Miriquidica majae, Protoblastenia calvella, P. szaferi, Ptychographa xylographoides, Ramboldia subcinnabarina, Verrucaria hydrophila, V. prominula, and V. rosula. We revised Swedish specimens of Normandina acroglypta and found that all but one belong to N. chlorococca, which is reported as new to Sweden. We also publish new records of the anamorphic, possibly lichenised fungus Sphaeronaema truncatum, a long-forgotten taxon originally described from Sweden 200 years ago.
... Flora..., 2014). The nearest localities are known in the Leningrad Region (Himelbrant et al., 2022b) and the Republic of Adygea (Urbanavichus et al., 2020). Lichenicolous fungus. ...
Article
Full-text available
First records for Russia of naviculoid diatom from the Yaroslavl Region, and micromycetes from the Republic of North Ossetia — Alania, green alga for the Leningrad Region and Yamal-Nenets Autonomous Area, fragilarioid diatom for the Kaliningrad Region, red alga for the Nizhny Novgorod Region, cyanoprokaryota for the Leningrad Region and Chukotka Autonomous Okrug, and crustaceous red alga for the Autonomous Republic of Adjara of Georgia, macromycetes for the Leningrad Region, Khanty-Mansi Autonomous Area — Yugra, Republic of Tuva, Trans-Baikal Territory, myxomycetes for the Trans-Baikal Territory, lichens and allied fungi for the Murmansk and Tver regions, republics of Karelia and Tuva, Yamal-Nenets Autonomous Area, Altai and Khabarovsk territories, cyanolichen for the Urals and the Orenburg Region, mosses for the Lipetsk Region, republics of Ingushetia and Buryatia, Krasnoyarsk and Trans-Baikal territories are presented. The data on their localities, habitats, distribution are provided. The specimens are kept in the herbaria ALTB, GSU, IBIW, IRK, KPABG, LE, MHA, MW, NNSU, NSK, PZV, TBI, UUH, VU, YSU, and the Diatom collection of the Laboratory for Algology of IBIW RAS. Sequences of 16S, and 16S–23S ITS cyanobacterial RNA regions, ITS1-5.8S-ITS2 fungal and ITS1-2 moss nrDNA regions of some specimens have been deposited in the GenBank.
... In the 20th century, extensive research on the Caucasus flora was carried out by Barkhalov (1975Barkhalov ( , 1983, and by Vězda who worked particularly in the Caucasian reserve on the Black Sea coast and Abkhazia (Vězda 1983); these accounts also documented several species of Bacidia s. lat. More recently, Bacidia species have been reported in many lichenofloristic papers and checklists of the Caucasus covering northern (Urbanavichus & Urbanavichene 2002, 2017b, 2018Urbanavichene & Urbanavichus 2019;Urbanavichus et al. 2021), north-western (Otte 2001(Otte , 2004(Otte , 2007aBlinkova & Urbanavichus 2005;, 2017a, western (Urbanavichene & Urbanavichus 2016;Urbanavichus et al. 2020), south-western ), north-eastern (Urbanavichus & Ismailov 2013), central , eastern (Ismailov et al. 2017), and southern (Harutyunyan et al. 2011;Alverdiyeva & Novruzov 2014;Gasparyan & Sipman 2016;Inashvili et al. 2022) parts of the region. Urbanavichus (2010) was the first to compile data on lichens known for the Russian territory (incorporating the Caucasus), including 18 species of Bacidia s. lat. in the checklist currently known from the Caucasus. ...
Article
Full-text available
During a study of the incompletely known lichen flora of the Caucasus, we analyzed 237 specimens of corticolous Bacidia s. str. collected in the Northern and Southern Caucasus, including Armenia, Azerbaijan, Georgia, and Russia. Of these, 54 specimens belonging to 11 species of Bacidia s. str. were selected for molecular studies, representing the observed morphological variability of the genus. We obtained 142 sequences from three RNA-coding genes (nrITS, nrLSU, and mtSSU) and two protein-coding genes ( RPB 1 and RPB 2). The single and concatenated datasets were complemented with Bacidia s. str. sequences from GenBank and subjected to Bayesian inference and two maximum likelihood analyses (RAxML and IQ-TREE). The resulting trees yielded highly concordant topologies of the groups and corresponded with previous results, supporting two main clades correlating with apothecia pigmentation. Our analyses are the first to reveal the presence of Bacidia heterochroa in the Caucasus. An exceptionally high degree of morphological plasticity was found in the Rubella and Suffusa groups. As a result of morphological examination and phylogenetic results, B. caucasica (Suffusa group) was described as new to science. Furthermore, two putative taxa in the Rubella group, Bacidia inconspicua ined. and B. maritima ined., were introduced. This study furthers our understanding and documentation of the understudied lichen flora of the Caucasus, bringing the total number of Bacidia species for the region to 13.
... In this context, the significance of natural disturbances in Western Carpathian forests, resulting in the supply of decaying spruce logs as a substrate for this specialized group of lichens, may appear minor. However, it has to be noted that in various geographic regions of the world, including the best-preserved fragments of old-growth forests, today the group that inhabits only wood is usually much less diverse compared to the group of epiphytic lichens (e.g., Cieśliński and Czyżewska, 1992;Jüriado et al., 2003;Spribille et al., 2008;Vondrák et al., 2015;Urbanavichus et al., 2020). Our investigations did not include logs older than 17 y, since only 3 windthrown spruces were registered on the monitoring plots in 2000 and 2001, and no suitable and available wood sections were found on them during the research. ...
Article
Full-text available
We investigated which of the following environmental factors: the number of years since the windthrow of the tree (the age of dead wood), the phytocenosis (the type of forest community), altitude, exposure, wood hardness and the spatial scale of forest disturbances (small gaps with a few fallen spruces vs large-area windthrows) contributed to the diversity and abundance of lichens inhabiting the exposed wood of windthrown spruce trees in Polish Western Carpathian forests. Both Shannon H index and sum of coverage coefficients rose with increasing age of the wood, levelling off after 11-14 y (diversity) and 14-17 y (abundance). This factor appeared to be the most important for this group of lichens, but the significant positive impact of large-area windthrows on the lichen abundance was also demonstrated by using a GLM model. The age of the wood we precisely determined on the basis of data on Norway spruce mortality collected annually in permanent plots of the Gorce National Park since 2000. Using the Shore durometer we linked the course of the wood-inhabiting lichen succession with wood decay more precisely than before. The largest number of species was associated with medium hard wood, i.e., 51 < x ≤ 80 on the Shore scale. Based on the NMDS analysis, we distinguished four age groups of logs, differing in lichen abundance and defined by the dominance of distinctive species. A large number of usually corticolous lichen species used the wood of windthrown spruce logs as an optional habitat to survive large-scale, post-hurricane forest disturbances.
Article
Full-text available
Loxospora is a genus of crustose lichenLoxospora is a genus of crustose lichens containing 13 accepted species that can be separated into two groups, based on differences in secondary chemistry that correlate with differences in characters of the sexual reproductive structures (asci and ascospores). Molecular phylogenetic analyses recovered these groups as monophyletic and support their recognition as distinct genera that differ in phenotypic characters. Species containing 2’-O-methylperlatolic acid are transferred to the new genus, Chicitaea Guzow-Krzem., Kukwa & Lendemer and four new combinations are proposed: C. assateaguensis (Lendemer) Guzow-Krzem., Kukwa & Lendemer, C. confusa (Lendemer) Guzow-Krzem., Kukwa & Lendemer, C. cristinae (Guzow-Krzem., Łubek, Kubiak & Kukwa) Guzow-Krzem., Kukwa & Lendemer and C. lecanoriformis (Lumbsch, A.W. Archer & Elix) Guzow-Krzem., Kukwa & Lendemer. The remaining species produce thamnolic acid and represent Loxospora s.str. Haplotype analyses recovered sequences of L. elatina in two distinct groups, one corresponding to L. elatina s.str. and one to Pertusaria chloropolia, the latter being resurrected from synonymy of L. elatina and, thus, requiring the combination, L. chloropolia (Erichsen) Ptach-Styn, Guzow-Krzem., Tønsberg & Kukwa. Sequences of L. ochrophaea were found to be intermixed within the otherwise monophyletic L. elatina s.str. These two taxa, which differ in contrasting reproductive mode and overall geographic distributions, are maintained as distinct, pending further studies with additional molecular loci. Lectotypes are selected for Lecanora elatina, Pertusaria chloropolia and P. chloropolia f. cana. The latter is a synonym of Loxospora chloropolia. New primers for the amplification of mtSSU are also presented.s containing 13 accepted species
Article
The current study reports ten lichenicolous fungi as new distributional record for India: Arthonia pepei Etayo and Pérez-Ortega, Cladophialophora parmeliae (Etayo and Diederich) Diederich and Unter., Didymocyrtis melanelixiae (Brackel) Diederich, R.C. Harris and Etayo, Nesolechia thallicola (A. Massal.) Rehm, Ovicuculispora parmeliae (Berk. and M.A. Curtis) Etayo, Pyrenidium aggregatum Knudsen and Kocoruk., Sclerococcum pseudosipmanii Zhurb. and Diederich, Spirographa parmotrematis Flakus, Etayo and Miądl., Steinia geophana (Nyl.) Stein and Zwackhiomyces macrosporus Alstrup and Olech. Further, Arthonia pepei, Nesolechia thallicola, Pyrenidium aggregatum, Spirographa parmotrematis, Steinia geophana and Zwackhiomyces macrosporus have also extended their host range.
Article
A unique crustose lichen species was recently documented from various types of preserved forests across boreal and temperate Europe (Norway, Ukraine, the Czech Republic) and the Caucasus (Russia). It is formally described here as the new species Biatora amylacea . A phylogeny based on ITS and mtSSU sequences demonstrates that it belongs to an isolated group within the core of Biatora s. lat., together with the recently described B. radicicola . It is a distinctive taxon within the genus on account of its amyloid exciple, otherwise known only from members of the Biatora rufidula group. The new species is also characterized by amyloid thalline hyphae and the production of soredia with a blue-green pigment. This microlichen may serve as a bioindicator species of old-growth forests.
Article
Full-text available
Ninety-four species of lichenicolous and allied fungi are reported from the Northwest Caucasus. Nanostictis caucasica on Parmelia sulcata is described as new to science. A presumably new ascomycete with hairy apothecia growing on Thamnolia vermicularis is described but not given a formal name. Acremonium pertusariae, Arthonia destruens, Cercidospora cf. rinodinae, Endococcus sendtneri, Lichenochora inconspicua, Lichenodiplis anomala, Rhizocarpon cf. ochrolechiae, Roselliniopsis tartaricola and Thelocarpon cf. sphaerosporum are newly reported for Asia and Russia, Polycoccum hymeniicola is newly reported for Russia. A first verified occurrence of Dactylospora tegularum in Russia is reported. Dactylospora athallina and Zwackhiomyces kiszkianus are reported new to Asian Russia. Cercidospora verrucosaria, Cornutispora ciliata, C. lichenicola, Dacampia hookeri, D. rufescentis, Didymocyrtis consimilis, Lichenochora caloplacae, Lichenostigma chlaroterae, Merismatium nigritellum agg., Monodictys fuliginosa, Pronectria erythrinella s. l., Scutula epiblastematica, Sphaerellothecium araneosum, Sphinctrina leucopoda, Stigmidium pseudopeltideae, S. squamariae and Tetramelas phaeophysciae are reported new to the Caucasus. Lichenochora caloplacae is reported for the first time from outside the Arctic. An unusual intrahymenial parasite of Lecanora pulicaris similar to Rhabdospora lecanorae is discussed. Bryoplaca is reported as a new host genus for Merismatium nigritellum agg., Cetrelia for Cornutispora lichenicola and Echinothecium reticulatum, Flavoparmelia for Cornutispora ciliata, and Pseudevernia for Lichenoconium cargillianum. A synopsis of 248 species from 98 genera of lichenicolous fungi and three species from two additional genera of allied fungi so far known from the Caucasus is presented and analyzed. The most species-rich genera are Stigmidium, Arthonia and Abrothallus. 81% of the lichenicolous fungi species were found on only one host genus. The value of the 'parasite genera:host genera' ratio is about 1:1. The most frequently parasitized lichen genera are Lecanora s. l., Parmelia, Peltigera, Cladonia and Physcia. About half of the species found in the Caucasus occur outside the Holarctic. The lichenicolous index for the Russian Caucasus is approximately 0.2. The most frequently collected species were Lichenostigma maureri, Marchandiomyces corallinus, Lichenoconium erodens, L. lecanorae and Nesolechia oxyspora. About 25% of the detected species were considered visible to the naked eye, 60% were clearly visible only at 10× magnification, and 15% only at 20−40× magnification.
Article
Full-text available
Lichens from Mediterranean vegetation outposts in a narrow strip along the Caucasian Black Sea coast, including Diploicia canescens, Pertusaria ilicicola, Physconia grisea subsp. algeriensis, Ramalina canariensis, Roccella fucoides, Teloschistes chrysophthalmus at their only occurrences in Russia.
Article
Full-text available
2019. Additions to the lichen flora of Fennoscandia III. Graphis Scripta 31 (5): 34-46. Oslo. ISSN 2002-4495. Six lichen-forming fungi, Ameliella grisea, Bacidina mendax, B. modesta, Biatora chrysanthoides, B. radicicola and Micarea sambuci, as well as seven lichenicolous fungi, Adelococcus alpestris, Heteroacanthella ellipsospora, Llimoniella catapyrenii, Sphaerellothecium siphulae, Tremella christiansenii, T. macrobasidiata and T. tuckerae, are reported for the first time from Sweden. Bacidina mendax and Biatora radicicola are also reported as new to Norway and Bacidina indigens is reported as new to Finland. The new combination Bacidina modesta (Zwackh ex Vain.) S. Ekman is proposed and Raphiospora viridescens, a synonym of Bacidia bagliettoana that has been misused for Bacidina indigens, is lectotypified.
Article
Full-text available
The north-western Caucasus is exceptional in Europe because of its 1.3 million hectares of unmanaged ‘virgin’ forest. The Caucasus State Nature Reserve protects some 200,000 hectares, but contiguous areas are exposed to forest loss, fragmentation and degradation. Such an extensive region of virgin forest provides a unique opportunity to document diversity along key ecological gradients for an undisturbed system in Europe. Focusing on lichen epiphytes, we surveyed local diversity hot-spots along a 1200 m altitudinal gradient. Our main results are that: (a) species richness is enormously high in 1-hectare plots (between 233 and 358) representing a new baseline for Europe, (b) species composition differs substantially among plots with turnover increasing for difference in altitude. Cumulative species richness along the gradient was 597. More than a half of detected species had an affinity for, or were restricted to either the lower or the uppermost parts of the altitudinal gradient. However, this was related to differences in forest structure, rather than altitude per se. Species richness in plots increased significantly with the proportion of sparse/open forest. Length of an ecotone line, number of available tree and shrub species and number of dominant tree species also tend to increase species richness. These four variables had higher values at the lower and upper parts of the gradient, than at mid-altitudes, explaining a bimodal relationship of species richness with altitude. We conclude that loss of forest habitat at the lower and upper margins of the altitudinal gradient will cause the most significant decline in epiphytic lichen diversity.
Article
Full-text available
New data on lichen flora of the Stavropol Territory (Central Caucasus) are provided. Study of four protected natural areas of the Stavropol Territory — «Lermontova Skala» and «Mashuk Mountain» natural monuments, and «Beshtaugorskiy» and «Malyy Essentuchok» sanctuaries resulted in finding of 279 species: 258 species of lichens, 18 species of lichenicolous fungi and 3 species of non-lichenized saprobic fungi. Among them Bacidia notarisiana, Buelliella minimula, Pertusaria pluripuncta, Protoparmelia memnonia, Psorotichia vermiculata, Rebentischia massalongii are new for Russia, 23 species are new for Caucasus, 25 species for the North Caucasus, 164 species for the Central Caucasus and 225 species are new for the Stavropol Territory.
Article
Full-text available
For a long time, samples of sorediate crustose lichens containing 2’-O-Methylperlatolic acid have been called Pertusaria aff. pulvereosulphurata in Switzerland. Finally, their identity was clarified: These are Cliostomum haematommatis, which is mentioned for the first time from Switzerland and Loxospora cristinae, collected already in the 19th century and recently confirmed in the country. Both species and their distribution in Switzerland are presented and discussed.
Article
Full-text available
Blastenia is a widely distributed lichen genus in Teloschistaceae. We reconstructed its phylogeny in order to test species delimitation and to find evolutionary drivers forming recent Blastenia diversity. The origin of Blastenia is dated to the early Tertiary period, but later diversification events are distinctly younger. We recognised 24 species (plus 2 subspecies) within 6 infrageneric groups. Each species strongly prefers a single type of substrate (17 species occur on organic substrates, 7 on siliceous rock), and most infrageneric groups also show a clear substrate preference. All infra‐generic groups tend to have the Mediterranean and Macaronesian distribution, but some epiphytic species have much larger geographic ranges and some evolved after a long‐distance dispersal outside the region. Chlorinated and non‐chlorinated anthraquinone chemosyndromes co‐occur in apothecia of most species, but the chemotype has been secondarily reduced in some lineages. One infrageneric group has a marked reduction in apothecial size, associated with a substrate shift to twigs. Only 7 species have vegetative diaspores; they also produce apothecia but have smaller ascospores. Genome sizes (22‐35 Mb in Blastenia) are significantly higher in epilithic species. Within‐species genetic variation is low in widely distributed species but high in some epilithic species with small geographical ranges. New taxa are: B. afroalpina, B. anatolica, B. caucasica, B. gennargentuae, B. herbidella subsp. acidophila, B. lauri, B. monticola, B. palmae, B. psychrophila, B. purpurea, B. relicta, B. remota, B. xerothermica and B. xerothermica subsp. macaronesica. New combinations are: B. festivella and B. subathallina; both names and B. catalinae are lectotypified. This article is protected by copyright. All rights reserved.
Article
Micarea is a lichenized genus in the family Pilocarpaceae (Ascomycota). We studied the phylogeny and reassessed the current taxonomy of the M. prasina group. We focused especially on the taxonomic questions concerning the type species M. prasina and, furthermore, challenges concerning type specimens that are too old for successful DNA barcoding and molecular studies. The phylogeny was reconstructed using nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), mitochrondrial rDNA small subunit (mtSSU), and replication licensing factor MCM7 gene from 31 species. Fifty-six new sequences were generated. The data were analyzed using maximum parsimony and maximum likelihood methods. The results revealed four undescribed, well-supported lineages. Three lineages represent new species described here as M. fallax, M. flavoleprosa, and M. pusilla. In addition, our results support the recognition of M. melanobola as a distinct species. Micarea fallax is characterized by a vivid to olive green thallus composed of aggregated granules and whitish or brownish apothecia sometimes with grayish tinge (Sedifolia-gray pigment).Micarea flavoleprosa has a thick, wide-spreading yellowish green, whitish green to olive green sorediate thallus and lacks the Sedifolia-gray pigmentation. The species is mostly anamorphic, developing apothecia rarely. Micarea melanobola is characterized by a pale to dark vivid green granular thallus and darkly pigmented apothecia (Sedifolia-gray). Micarea pusilla is characterized by a whitish green to olive green thinly granular or membranous thallus, numerous and very small whitish apothecia lacking the Sedifolia-gray pigment, and by the production of methoxymicareic acid. Micarea fallax, M. flavoleprosa, and M. melanobola produce micareic acid. The reliability of crystalline granules as a character for species delimitation was investigated and was highly informative for linking the old type specimen of M. prasina to fresh material.