ArticlePDF Available

An Algorithm for Fuzzy Negations Based-Intuitionistic Fuzzy Copula Aggregation Operators in Multiple Attribute Decision Making

Authors:

Abstract and Figures

In this paper, we develop a novel computation model of Intuitionistic Fuzzy Values with the usage of fuzzy negations and Archimedean copulas. This novel computation model’s structure is based on the extension of the existing operations of intuitionistic fuzzy values with some classes of fuzzy negations. Many properties of the proposed operations are investigated and proved. Additionally, in this paper we introduce the concepts of intuitionistic fuzzy Archimedean copula weighted arithmetic and geometric aggregation operators based on fuzzy negations, including a further analysis of their properties. Finally, using a case study from an already published paper we found that our method has many advantages.
Content may be subject to copyright.
Algorithms2020,13,154;doi:10.3390/a13060154www.mdpi.com/journal/algorithms
Article
AnAlgorithmforFuzzyNegations
BasedIntuitionisticFuzzyCopulaAggregation
OperatorsinMultipleAttributeDecisionMaking
StylianosGiakoumakisandBasilPapadopoulos*
DepartmentofCivilEngineeringSectionofMathematicsandInformatics,DemocritusUniversityofThrace,
67100Kimeria,Greece;sgiakoum@civil.duth.gr
*Correspondence:papadob@civil.duth.gr;Tel.:+302541079747
Received:29May2020;Accepted:23June2020;Published:26June2020
Abstract:Inthispaper,wedevelopanovelcomputationmodelofIntuitionisticFuzzyValueswith
theusageoffuzzynegationsandArchimedeancopulas.Thisnovelcomputationmodel’sstructure
isbasedontheextensionoftheexistingoperationsofintuitionisticfuzzyvalueswithsomeclasses
offuzzynegations.Manypropertiesoftheproposedoperationsareinvestigatedandproved.
Additionally,inthispaperweintroducetheconceptsofintuitionisticfuzzyArchimedeancopula
weightedarithmeticandgeometricaggregationoperatorsbasedonfuzzynegations,includinga
furtheranalysisoftheirproperties.Finally,usingacasestudyfromanalreadypublishedpaperwe
foundthatourmethodhasmanyadvantages.
Keywords:intuitionisticfuzzysets;fuzzynegations;copula;intuitionisticfuzzyArchimedean
copulaaggregationoperators;multipleattributedecisionmaking
1.Introduction
Atanassov[1]introducedthenotionIntuitionisticFuzzySet(IFS),whichgeneralizesthenotion
ofFuzzySetproposedbyZadeh[2].BasedonthefactthatIFSisappropriateforcasesdealingwith
uncertaintyandvagueness,manyauthorshaveappliedthemtodecisionmaking.Inthecaseof
multipleattributedecisionmakingtheoperationallawsofIntuitionisticFuzzyValues(IFVs)
proposeanelementaryandremarkabletopic.Atanassov[1,3]introducedthebasicoperationallaws
andpresentedsomeoftheirproperties.Beliakovetal.[4]developedsomeoperationsbyusing
additivegeneratorsoftheproducttnorm.ZhaoandWei[5]proposedtheintuitionisticfuzzy
Einsteinhybridaggregationoperators.Atanassov,PasiandYager[6]contributedtothecaseof
multicriteriagroupdecisionmaking,withtheattributesbeingintuitionisticfuzzynumbersandthe
correspondingweightsbeingcrispnumericalvalues;theirmethodisappliedinthecontextofpublic
relationsandmasscommunication.WangandLi[7]proposedthescorefunctionandtheweighted
scorefunctionmethods.OuyangandPedrycz[8]proposedamodelforintuitionisticfuzzymulti‐
attributesdecisionmakingthatdealswiththedegreesofmembershipandnonmembership
individuallythatisappliedinmultiplecriteriasupplierselectionproblems.Taoetal.[9]gavean
intuitionisticfuzzycopulaarithmeticaggregationoperatorinmultiattributedecisionmaking.Liu
andLi[10],extendedpowerBonferronimeantointervalvaluedintuitionisticfuzzynumbersand
appliedittomultipleattributegroupdecisionmakingintheevaluationofairquality.Seikhand
Mandal[11],introducedintuitionisticfuzzyDombiweightedaveragingoperator,intuitionistic
fuzzyDombihybridaveragingoperator,intuitionisticfuzzyDombiweightedgeometricoperator,
intuitionisticfuzzyDombiorderedweightedgeometricoperatorandintuitionisticfuzzyDombi
hybridgeometricoperator.Xian,GuoandChai[12],introducedanintuitionisticfuzzy
Algorithms2020,13,1542of20
linguisticinducedgeneralizedorderedweightedaveragingoperatorandmadeanapplicationabout
takingtargetedmeasuresinpovertyalleviation(TPA).Shi,YangandXiao[13],introducedthe
intuitionisticfuzzypowergeometricHeronianmeanoperatorandtheweightedintuitionisticfuzzy
powergeometricHeronianmeanoperator.Zou,ChenandFan[14],introducedtheimproved
intuitionisticfuzzyweightedgeometricoperatorofintuitionisticfuzzyvalues.Forfurther
contributions,referencesareprovided[15–22].
Näther[23]statesthatcopulasandtnormsoftencoincide.Nelsen[24]andAlsinaetal.[25]
contributedtotheintroductionandapplicationofcopulas.Beliakovetal.[26],hassetcopulasas
conjunctivefunctions.Inaddition,theselectionofthemostsuitableconjunctivefunctionandhowto
fitadditivegeneratorsforArchimedeantnormsandArchimedeancopulasisdepictedinNäther
[23].
Thepresentpaperaimstoinvestigatetheintuitionisticfuzzycopulaaggregationoperators,
withthecombinationoffuzzynegations,inordertodevelopmultipleattributedecisionmaking
methodsforIFVs.Toaccomplishthat,theconstructionofnoveloperationsforIFVsisessential.Asa
result,thecombinationofcopulasandfuzzynegations[27]producesnewoperations,whichallow
ustoconstructnovelintuitionisticfuzzyArchimedeancopulaweightedarithmeticandgeometric
aggregationoperationswiththeusageofarithmeticandgeometricmeans.
Asaresult,theremainderofthepaperisorganizedasfollows.Section2includessomebasic
conceptsofcopulatheory,fuzzynegationsandintuitionisticfuzzysetsandalsoourdevelopmenton
noveloperationsforIFVswiththecombinationoftheabove.Thepropertiesoftheproposed
operationsareinvestigated.InSection3weprovidethenewintuitionisticfuzzyArchimedean
copulaweightedarithmeticandgeometricaggregationoperators,includingafurtheranalysisof
theirproperties.InSection4weprovideanalgorithmtoaccomplishthemultipleattributedecision
makingprocedure.InSection5weprovideapracticalexampletomaterializetheapplicationofthe
proposedapproach.Inthediscussionsection,theresultsofourworkareexplainedthoroughlyand
arecomparedwithpreviousstudies.InSection7,weprovidesomeconcludingremarksandfuture
researchdirections.
2.Preliminaries
ThisSectionprovidesnoveloperationsforIFVs,whichareestablishedthroughtheconceptsof
copula,cocopula,Archimedeancopulaandfuzzynegations.
Sklar[28]presentedtheconceptofcopula,asamathematicaltooltocombineprobability
distributions,framingthedependencestructurewithinrandomvariableswiththeusageoftheir
CDFs.
Definition1.[28]A2dimensionalcopulaisafunctionwithdomain
0,1 0,1andrange
0,1 ,grounded
and2increasing,i.e.,satisfiesthefollowingboundaryandmonotonicityconditions:
1. ( ,0) (0, ) 0.Cx C y
2. (,1) , (1, ) .Cx xC y y
3. 11 2 2 1 2 2 1
(, ) ( , ) (, ) ( , ) 0.Cx y Cx y Cx y Cx y
where,
121 2
,, , , , 0,1xyx x y y and121 2
,
x
xy y
.
Below,thedefinitionofcocopulaisgiven,accordingtoCherubinietal.’s[29]work:
Definition2.[29]Thecocopulaofacopulaisdefinedas:
*(, ) 1 (1 ,1 )Cxy C x y (1)
AccordingtoNelsen[24]thecocopulaisnotacopula,butmaybeconstructedbytheusageofa
copula.Fréchet[30]andHoeffding[31]introducedtheFréchet–Hoeffding[24]boundsofcopulasfor
any,[0,1],xymax{ 1,0} ( , ) min{ , }.
x
y Cxy xy  Atthispoint,themethodfollowsthedefinition
Algorithms2020,13,1543of20
ofArchimedeancopulas,whichmaybeconstructedwithsignificanteaseandensuresome
remarkableproperties.
Definition3.[24]Let
beacontinuous,strictlydecreasingfunctionon[0,1] [0, ]
with(1) 0
and[1]
thepseudoinverseof
,whichisdefinedas:
1
[1] (), 0 (0),
() 0, (0) ,
xx
xx



(2)
Then,2
:[0,1] [0,1]C,[1]
(, ) (( ) ())Cxy x y
 

correspondstotheconditionsofDefinition1,hence
CisacopulaandCiscalledArchimedeancopula.
Inthecase,whereCisstrictlyincreasing,(0)
and[1] 1

,then1
(, ) ( () ())Cxy x y
 

.In
thatcase
iscalledstrictgeneratorandCiscalledstrictArchimedeancopula.
InTable1,someArchimedeancopulasarelisted.
Table1.Inref.[24]ArchimedeanCopulas.
Name()t
(,)CxyParameter
Gumbel(ln)t
1
exp( [( ln ) ( ln ) ] )xy

  1
Clayton1t
1
(1)xy


 0
AliMikhailHaq1(1)
ln t
t

1(1)(1)
xy
xy
 11
 
Joeln [1 (1 ) ]t
 1
1 [(1 ) (1 ) (1 ) (1 ) ]xyxy

   1
Thestudyoftheapplicationsofcopulasinfuzzysetsisofgreatimportance,giventhatspecific
copulasaretnormsandspecificcocopulasaretconormsandviceversa.Moreover,Näther[23]
mentionedinhisworkthatthecombinationofprobabilisticinformationorfuzzyinformationhardly
matters.Below,theAtanassov’s[1]definitionforIntuitionisticFuzzySetsisprovided:
Definition4.[1]Let
X
beareferenceset,anIntuitionisticFuzzySet(IFS)
A
on
X
isdefinedas:
{, (), ()| },
AA
Ax x xxX


(3)
where,thefunctions()
A
x
and()
A
x
denotethedegreesofmembershipandnonmembershipofthe
element
x
Xtotheset
A
,respectivelywith:
0()1
Ax

,0()1
Ax

,0()()1
AA
xx


and() 1 () ()
AAA
x
xx

  iscalleddegreeof
indeterminacyof
x
to
A
.Additionally,,

iscalledIntuitionisticFuzzyValue(IFV)andthesetof
allIFVsisV.
Definition5.[32]Adecreasingfunction:[0,1] [0,1]niscalledafuzzynegationif(0) 1nand
(1) 0n.Afuzzynegationniscalled:Strict,ifitisstrictlydecreasingandcontinuousandStrong,ifitisan
involution,i.e.,(()) , [0,1]nnx x x.
Table2,proposestwoparametricfamiliesoffuzzynegations:
Table2.Inref.[32]FuzzyNegations.
NameFuzzyNegationParameter
Sugenoclass1
() 1
x
nx
x
 (1, )
 
Yagerclass1/
() (1 )nx x
  (0, )


Algorithms2020,13,1544of20
Moreover,theoperationsofIFVsinTaoetal.’s[9]work,arebeingextendedthroughthe
adaptationoffuzzynegations.
Definition6.Let,

and,

betwoIFVsand0kaparameter.
1. Additionoperation
*(, ),(,)
CCC
 
  
 1
( [ ( ( )) ( ( ))])nn n

   
1
,[() ()].

 
2. Multiplicationoperation
*
(, ), (,)
CCC
 
  
 1[( ) ( )]

 
 1
, ( [ ( ( )) ( ( ))]) .nn n

   
3. ScalarMultiplicationoperation
11
([(())]),[()].kn kn k
 


4. Poweroperation
11
[()],( [(())]).
kknkn
 
 

Byreplacingthe
parameterwiththeappropriatevalue,theTaoetal.’s[9]operationsofIFVs
areproduced.Moreover,afurtherinvestigationisheldforthepropertiesoftheproposed
operations.
Theorem1.Let,

and,

betwoIFVsand0karealvaluedparameter.Thenovel
operationsofIFVsareclosedortheirvaluesarealsoIFVs,i.e.,,,,
k
CC
kV

 
.
ProofofTheorem1.Wehave[0,1]
and0()1n


.Since
isstrictlydecreasingthen:
(1)(())(0)n


0(()) ,n



(4)
Similarly,as[0,1]
weget:
0(()) ,n



(5)
WeaddEquations(4)and(5)andweget:
0(())(()) ,nn
 
 

(6)
Basedonthefactthat1
isalsostrictlydecreasing,weobtain:
11 1
( ) ( ( ( )) ( ( ))) (0 )nn
 
 
 

1
0 ((( )) (( )))1nn
 
   

1
0(((())(())))1nn n

   

*
0(,)1.C
 


Morover,byDefinition1,as , [0,1]


,
0(,)1C



holds.
Inaddition:
*
0(,)(,)1.CC
  
 

Thus,theresultoftheoperationis:
Algorithms2020,13,1545of20
.
CV


AsEquation(3)isconcerned:
11
( [ ( ( ))]), [ ( )]kn kn k
 


For1kweget:
11
( [ ( ( ))]), [ ( )]nn
 



(( )),nn
 


,,


thatholds.
For2kweget:
11
( [ ( ( )) ( ( ))]), [ ( ) ( )]
Cnn n
 
    

  
11
( [2 ( ( ))]), [2 ( )] 2 ,
Cnn
 
 


thatholds.
Weassumethatforknholds.Thenfor1kn
:
11
( 1) [ [ ( ( ))]], ,[()]
C C
kn n n nn n
 
 

  
11 11
( [ ( ( [ [ ( ( ))]]))]) ( ( )), ( ( ( ( ))) ( ))kn nn nn n n
  
 
 

11
( [ ( ( ))]) ( ( )), (( 1) ( ))kn nn n n
 
 


11
( [( 1) ( ( ))]), (( 1) ( )) ( 1) .kn n n n n
 
 

 
Hence,bymathematicalinductiontheproofiscomplete.Theproofsthattherestofthe
operationsbelongtothesetVaresimilar.
Nextweinvestigatethepropertiesoftheproposedoperations:□
Theorem2.Let ,V



,,V



andrealvaluedparameters 12
,, 0,kk k then:
1. .
CC
 

2. .
CC
 

3. () .
CC
kkk
 

4. () .
kk k
CC
 

5. 1212
().
C
kkkk


6. 1212
.
kkkk
C


7. () () ( ).
CC
nnn



8. () () ( ).
CC
nnn



Algorithms2020,13,1546of20
9.
() ( ).
k
kn n

10. (()) ( ).
k
nnk

ProofofTheorem2.Thecases1and2areobvious,becauseofArchimedeancopulasandthe
correspondingcocopulascommutativity.
1. *11
( , ), ( , ) ( [ ( ( )) ( ( ))]), [ ( ) ( )]
CCC nn n
  
   

  
11*
( [(( )) (( ))]), [( ) ()] ( , ),(, ) .
C
nn n C C
 
    

 

2. *
(, ), (,)
CCC
 
  
 *
(,),(,) .
C
CC
 


3. 11 11
( ) ( [ ( ( ( [ ( ( )) ( ( ))])))]), [ ( [ ( ) ( )])]
C
knknnnn k
 
   
 
 
11
( ) ( [ [ ( ( )) ( ( ))]]), [ [ ( ) ( )]]
C
knknn k
 
        

  
11
( ) ( [ ( ( )) ( ( ))]), [ ( ) ( )]
C
knknknkk
 
   

  
11 1 11 1
( ) ( [ ( ( ( ( )))) ( ( ( ( ))))]), [ ( ( ( ))) ( ( ( )))]
C
k n kn kn k k
 
       
  
  
11 1 11 1
( ) ( [ ( ( ( ( ( ( )))))) ( ( ( ( ( ( ))))))]), [ ( ( ( ))) ( ( ( )))]
C
k n nn kn nn kn k k
 
   
  
 
() .
CC
kkk
 

4. 11 1 1
( ) [ ( [ ( ) ( )])], ( [ ( ( ( [ ( ( )) ( ( ))])))])
k
Cknknnnn
  
   
  
  
11 1 1
[ [ ( ) ( )]], ( [ [ ( ( )) ( ( ))]]) [ ( ) ( )]], ( [ ( ( ))knknnkknkn
  
     
  
 
11 1 1 1
( ( ))]) [ ( ( ( ))) ( ( ( )))], ( [ ( ( ( ( ( ( ))))))kn k k n nn kn
   
   
  
 
1
( ( ( ( ( ( ))))))]) .
kk
C
nn k n
 
  


5. 11 1 1
12 1 1 2 2
( [ ( ( ))]), [ ( )] ( [ ( ( ))]), [ ( )]
CC
kknknknknk
  
   
  
 
11 1 11 1
1212
( [ ( ( ( [ ( ( ))]))) ( ( ( [ ( ( ))])))]), [ ( [ ( )]) ( [ ( )])]nnnkn nnkn k k
 
      
  
 
111
12 12 12
( [ ( ( )) ( ( ))]), [ ( ) ( )] ( [( ) ( ( ))]),nkn kn k k n kkn
 
   

 
1
12 12
,[( )()]( ).kk kk
 


6. 12
11 1 1
11 2 2
[ ( )], ( [ ( ( ))]) [ ( )], ( [ ( ( ))])
kk
CC
knkn knkn
  
 
  
 
11 1 1 1 1
12 1 2
[ ( [ ( )]) ( [ ( )])], ( [ ( ( ( [ ( ( ))]) ( ( ( [ ( ( ))])))])k k n nnkn nnkn

 
  
  
11 1
12 1 2 12
[ ( ) ( )], ( [ ( ( )) ( ( ))]) [( ) ( )],kknknkn kk
  
   
 
  
12
1
12
,( [( )(())]) .
kk
nkkn




7. 11
( ) ( ) ( [ ( ( ( ))) ( ( ( )))]), [ ( ( )) ( ( ))]
C
nnnnn nn n n
 
     

  
11 1 1
( [ ( ) ( )]), [ ( ( )) ( ( ))] ( [ ( ) ( )], ( [ ( ( ))nnnnnn
  
    
  
 
( ( ))]) ) ( ).
C
nn
 



8. 11
( ) ( ) [ ( ( )) ( ( ))], ( [ ( ( ( ))) ( ( ( )))])
C
nn n nnnn nn
 


 
1111
[ ( ( )) ( ( ))], ( [ ( ) ( )]) ( ( [ ( ( )) ( ( ))]), [ ( )nnn nnnn
     
        

  
()]) ( ).
C
n




9. 11 11
( ) ( ), ( ) ( [ ( ( ( )))]), [ ( ( ))] ( [ ( )]), [ ( ( ))]kn k n n n k n n k n n k k n
  
   
 
  
11
( [ ( )], ( [ ( ( ))]) ) ( ).
k
nk nkn n

   


Algorithms2020,13,1547of20
10. 11 11
( ( )) [ ( ( ))], ( [ ( ( ( )))]) [ ( ( ))], ( [ ( )])
k
n knnknn knnk
  
  
 

11
( ( [ ( ( ))]), [ ( )] ) ( ).nn kn k nk
  
 


□
InordertoachievethederivationofdifferentoperationsforIFVs,theusageofgenerator
functionsfromTable1andoffuzzynegationsfromTable2,isaccomplished.Thoseoperationsare
listedinTable3:
Table3.Operationsforintuitionisticfuzzyvalues(IFVs)viaSugenoFuzzyNegation.
NameOperationsFormulas
GumbelAddition
operation
1
1
1
1
1
1 exp( [( ln( )) ( ln( )) ] )
11
,exp( [( ln ) ( ln ) ] )
1
1
1 exp ( [( ln( )) ( ln( )) ] )
11

 



  
 
 
  
 

Multiplicatio
noperation
1
1
1
1
1
1 exp( [( ln( )) ( ln( )) ] )
11
exp( [( ln ) ( ln ) ] ), 1
1
1 exp( [( ln( )) ( ln( )) ] )
11






 

 
 

 
 

Scalar
Multiplicatio
noperation
1
1
1
1
1 exp( [ ( ln( )) ] )
1,exp( [ ( ln ) ] )
1
1 exp( [ ( ln( )) ] )
1
k
k
k





Power
operation
1
1
1
1
1 exp( [ ( ln( )) ] )
1
exp( [ ( ln ) ] ), 1
1exp([(ln( ))])
1
k
k
k






ClaytonAddition
operation
1
1
1
1
1
1(( ) ( ) 1)
11 ,( 1)
1
1
1(( ) ( ) 1)
11

 



  
 




 



Multiplicatio
noperation
1
1
1
1
1
1(( ) ( ) 1)
11
(1), 1
1
1(( ) ( ) 1)
11






 

 









Scalar
Multiplicatio
noperation
1
1
1
1
1(( ) 1)
1,( 1)
1
1(( ) 1)
1
k
k
k





Power
operation
1
1
1
1
1(( ) 1)
1
(1), 1
1(( ) 1)
1
k
k
k





AliMikhailHa
q
Addition
operation
1
1
11
11
1
1(1 )(1 )
11
,
1
11(1 )(1 )
11
1( )
1
1
1(1 )(1 )
11

 



 
   
 
 
 

 

 

 


Algorithms2020,13,1548of20
Multiplicatio
noperation
1
1
11
11
1
1(1 )(1 )
11
,1
1
1(1 )(1 )
11
1( )
1
1
1(1 )(1 )
11

  



 
   
 
 
 

 

 

 


Scalar
Multiplicatio
noperation
1
()
1
11
1(1 )
1,
11(1 )
()
1
1( )
1
1(1 )
1
k
k
k
k
k
k


 







Power
operation
1
()
1
11
1(1 )
1
,1
1(1 ) ()
1
1( )
1
1(1 )
1
k
k
k
kk
k










JoeAddition
operation
1
1
1
11
11
[(1)(1)(1)(1)]
1111 ,1[(1)(1)(1)(1)]
11
11
1[(1 )(1 )(1 )(1 )]
1111











    


    


 
  


  


Multiplicatio
noperation
1
1
1
11
11
[(1)(1)(1)(1)]
1111
1[(1)(1)(1)(1)], 11
11
1[(1)(1)(1)(1)]
1111











   


    


 

   

  


Scalar
Multiplicatio
noperation
1
1
1
11
[(1)((1))]
11 ,1[(1)((1))]
11
1 [ (1 ) ( (1 ) ) ]
11
k
k
k
k
k
k









  

  


  

  


Power
operation
1
1
1
11
[(1)((1))]
11
1[(1 ) ((1 ))], 11
1 [ (1 ) ( (1 ) ) ]
11
k
k
k
k
k
k


 
 



 
 
  



  
  


InthefollowingSection,weproposethedevelopmentofintuitionisticfuzzyArchimedean
copulaweightedarithmeticandgeometricaggregationoperators,whichisachieved.Furthermore,
thepropertiesofthoseextendedaggregationoperatorsareinvestigated.
3.NovelIntuitionisticFuzzyArchimedeanCopulaWeightedArithmeticandGeometric
AggregationOperators
3.1.IntuitionisticFuzzyArchimedeanCopulaWeightedArithmeticAggregationOperator
Definition7.Let,
ii
i


,1,...,in,beacollectionofIFVsand1
{ ,..., }
n
ww w
betheweighting
vectorofi
,with01
i
w
and11
n
i
iw
.AnintuitionisticfuzzyArchimedeancopulaweighted
Algorithms2020,13,1549of20
arithmeticaggregation(w
IFACWAA )operatorofdimensionnisamapping, :n
w
I
FACWAA V V,according
to:11
( ,..., ) .
wn
n
Ci i i
IFACWAA w


BasedontheproposedadditionandscalarmultiplicationoperationsofIFVs,thefollowing
theoremisexpressed.
Theorem3.Let ,
ii
i


,1,...,in,beacollectionofIFVsand1
{ ,..., }
n
ww w
betheassociated
weightingvector,with01
i
w
and11
n
i
iw
.Then,theaggregatedvalue,basedonthew
IFACWAA
operator,canbeexpressedas:
1
1
1([ (())]( ,..., ),)i
n
iwn
i
IFACW n nAwA


1
1
[()]
i
n
i
i
w

Thevalueofw
IFACWAA operatorisalsoanIFV.
ProofofTheorem3.For 1n,weget:
11
1
1
1
11
( [ ( ( ))]) , ]() [ ( )
wnwnIFAC wWAA
 


Butwehavethat 11w,soweget:
11
11
1
( ) ( [ ( ( ))]), [ ( )]
wnnIFACWAA
 



11
1
() ,
w
IFACWAA


 11
() ,
w
IFACWAA

as 1,V
1
()
w
IFACWAA V
.
Next,wesupposethatfor nkitholds,sowecalculate:
1
1
1([ (())]( ,..., ),)i
k
iwk
i
IFACW n nAwA


1
1
[()]
i
k
i
i
w

For 1nk
,weget:
1
111111
( ,..., , ( ))()
kk
Ci i i Ci i i C k kwkk wwwIFACWAA


  
11
11 11
11
11
( [ ( ( ))]), [ ( )] ( [ ( ( ))]), [ ( )]
ii kk
kk
iiCkk
ii
nwn w nwn w
  
    

 


 

1
11 1
1
1
( [ ( ( ( [ ( ( ))]))) ( ( ( [ ( ( ))])))]),
i k
k
ik
i
nnn wn nnwn
  
    
 

1 1
11 1 1
11
11
, [ ( [ ( )]) ( [ ( )])] ( [ ( ( )) ( ( ))]),
ik ik
kk
ik ik
ii
wwnwnwn

    
 
 


 

1
1
1
1
,[ ()]) ( )]
ik
k
ik
i
ww

 
11
11
11
])([ (()), [ ()]
ii
kk
ii
ii
nwn w
 





Itholds,soasaresult,bymathematicalinductiontheproofiscomplete.□
Algorithms2020,13,15410of20
Proposition4. Let ,
ii
i


,1,...,in,beacollectionofIFVsand1
{ ,..., }
n
ww w
betheassociated
weightingvector,with01
i
w
and11
n
i
iw
.Thenw
IFACWAA operatoris:
1. Idempotent,i.e.,if ,,
ii
 

,then:for𝑖1, … , 𝑛,1
( ,..., ) .
wn
IFACWAA

2. Bounded,i.e.,for𝑖1, … , 𝑛,1
( ,..., ,)0,1 1 0
wn
IFACWAA


.
3. Commutative,i.e.,foranypermutationof,
ii
i


,() ()
() ,
fi fi
fi


,with 1, ..., in,
where 𝑓:1,2, … , 𝑛1,2, … , 𝑛,1
( ,..., )
wn
IFACWAA
(1) ( )
( ,..., )
wf fn
IFACWAA

.
ProofofProposition4.1.1
1
1([ (())]( ,..., ),)i
n
iwn
i
IFACW n nAwA


1
1
[()]
i
n
i
i
w

.
As
i
and
i
weget: 1
1
1
( ,..., ) ( [ ( ( ))]),
wn
n
i
i
InwnFACWAA


1
1
[()]
n
i
i
w

11
11
( [ ( ( )) ]), [ ( ) ]
nn
ii
ii
nn w w
 
  



11
( [ ( ( ))]), [ ( )]nn
 
  

,



.
TheproofsofEquations(2)and(3)areobviousbasedonthepropertiesofArchimedeancopulas
andtheircorrespondingcocopulas.□
3.2.IntuitionisticFuzzyArchimedeanCopulaWeightedGeometricAggregationOperator
Definition8. Let,
ii
i


,1, ..., in,beacollectionofIFVsand1
{ , ..., }
n
ww w
betheweighting
vectorof i
,with01
i
w
and11
n
i
iw
.AnintuitionisticfuzzyArchimedeancopulaweightedgeometric
aggregation(w
IFACWGA )operatorofdimensionnisamapping, :n
w
I
FACWGA V V,accordingto:
11
( ,..., ) i
w
wn
n
Ci i
IFAC W GA

 .
BasedontheproposedmultiplicationandpoweroperationsofIFVs,thefollowingtheoremis
expressed.
Theorem5. Let ,
ii
i


,1,...,in,beacollectionofIFVsand1
{ ,..., }
n
ww w
betheassociated
weightingvector,with01
i
w
and 11
n
i
iw
.Then,theaggregatedvalue,basedonthew
IFACWGA
operator,canbeexpressedas: 1
1
1
( ,..., ) [ ( )],
i
wn
n
i
i
wIFACWGA

1
1
([ (())])
i
n
i
i
nwn


.
Thevalueofw
IFACWGA operatorisalsoanIFV.
ProofofTheorem5.For 1n,weget:
11
11
11 1
( ) [ ( )], ( [ ( ( ))]) ,
w
IFACWGA w n w n
 
 

butwehavethat
11wsoweget:
11
11
1
( ) [ ( )], ( [ ( ( ))]) .
w
IFACWGA n n
 
 

Asaresult,wehave:
11
11
() , .
w
IFACWGA

 

As1,V
1
()
w
IFACWGA V
.
Next,supposethatfornkitholds.
For1nk
wecalculate:
1
1111
1
1
(, ( ) ( )..., ) iik
www
kk
Ci i Ci i Ckkw
IFACWGA

  
11
11 11
11
11
[ ( )], ( [ ( ( ))]) [ ( )], ( [ ( ( ))])
iikk
kk
iiCkk
ii
wn wn w nwn
   
    

 


 

Algorithms2020,13,15411of20
1
11 1 1 1
1
1 1
[ ( [ ( )]) ( [ ( )])], ( [ ( ( ( [ ( ( ))])))
ik i
k k
ik i
i i
wwnnnwn

    
  
 
 

1 1 1
11 1
111
11
( ( ( [ ( ( ))])))]) [ ( ) ( )], ( [ ( ( )) ( ( ))])
kikik
kk
kikik
ii
nn w n w w n w n w n
     
       
 
 


 

11
11
11
[()],([(())])
ii
kk
ii
ii
wn wn
 





Itholds,sobymathematicalinductiontheproofiscomplete.□
Remark1. w
IFACWGA operatorpossessesthesamepropertiesas,
w
IFACWAA suchasidempotency,
boundarypropertyandcommutativity.
Inordertodepictsomeoftheproducedw
IFACWAA andw
IFACWGA operatorsweusethe
proposedoperatorsforIFVsasdescribedinTable3,whichareexpressedintheTable4andTable5,
respectively.
Table4.SomeSugenoBasedIntuitionisticFuzzyArchimedeanCopulaWeightedArithmetic
AggregationOperators.
Namew
IFAC WAA
Gumbel
1
1
1
11
1
1
1 exp[[ [ ln( )] ] ]
1,exp[[ [ ln ] ] ]
1
1(exp[[ [ln( )]]])
1
i
i
i
i
i
n
in
i
i
n
i
i
i
w
w
w


 


Clayton
1
1
1
11
1
1
1( ( ))
1,( ( ) )
1
1(( ( )))
1
i
i
i
i
i
n
in
i
i
n
i
i
i
w
w
w



AliMikhailHaq
1
1
1
1
11
1(1 )
1
()
1
11
,
11(1)
1( ) ()
1
1(1 )
1
()
1
1
i
ii
i
i
ii
ii
ii
i
i
n
w
i
n
w
i
n
w
i








Joe
1/
11/
1/ 1
1
1
(1 (1 (1 ) ) )
1,1 (1 (1 (1 ) ) )
1
1(1(1 (1(1 ))))
1
ii
ii
i
ii
i
n
w
n
iw
n
wi
i






 
 
Table5.SomeSugenoBasedIntuitionisticFuzzyArchimedeanCopulaWeightedGeometric
AggregationOperators.
Namew
IFACWGA
Gumbel
1
11
1
1
1
1
1 exp[[ [ ln( )] ] ]
1
exp[[ [ ln ] ] ], 1
1 (exp[[ [ ln( )] ] ])
1
i
i
i
i
i
n
i
ni
in
i
i
i
w
w
w


 


Algorithms2020,13,15412of20
Clayton
1
11
1
1
1
1
1( ( ))
1
(()), 1
1(( ( ))
1
i
i
i
i
i
n
i
ni
in
i
i
i
w
w
w



AliMikhailHaq
1
1
1
1
11
1(1 )
1
()
1
1
1,
1(1 ) 1
1( )
() 1
1(1 )
1
()
1
1
i
ii
i
i
ii
i
i
ii
i
i
n
w
i
n
w
i
n
w
i


 



 

Joe
1/
1
1/
1/
1
1
1
(1 (1 (1 ) ) )
1
1(1 (1(1 ))), 1
1(1(1 (1(1 ))))
1
ii
i
i
i
ii
i
n
w
ni
w
n
w
i
i






 
 
4.w
IFAC WAA andw
IFACWGA OperatorsinMADM
InthissectionanalgorithmforMultipleAttributeDecisionMaking(MADM)withIFVsis
introduced.Let1
{ ,..., }
m
Uu ubethesetofalternativesand1
{ ,..., }
n
CC Cbethesetofattributes,
withaweightingvector1
{ ,..., }
n
ww w
,with01
i
w
and
1
1
n
i
i
w
.Theintuitionisticfuzzy
decisionmatrix(,)
ij ij m n
R

 where,,
ij ij ij

 with1,...,imand1,..., njrepresent
thedegreethati
usatisfies
j
C,suchthat,[0,1]
ij ij

,with1,
ij ij


i.e.,
11 11 1 1
11
,,
,,
nn
mm mnmn
R
 
 








(7)
Inordertoobtaintheweightingvectorofattributes,themodifiedmaximizingdeviations
methodforMADMwithintuitionisticfuzzyinformation[9]canbeused.AsMADMwith
intuitionisticfuzzyinformationisaproceduretoendupwiththebestalternative,
i
uU1, ..., ,im
thecomparisonofIFVsisachievedbythefollowingconcept.
ForanyIFV,,

ChenandTan[33]proposedascorefunction
s
andHongandChoi
[34]proposedanaccuracyfunction h,i.e.,()s


and()h


,respectively.Thelarger
thescoreis,thegreatertheIFVwouldbe.Inthecasethatthescorefunction’svaluesfortwoIFVsare
equal;theaccuracyfunctioncanprovidemorespecificresult.XuandYager[35],basedonscoreand
accuracyfunctions,gaveatotalorderforIFVs.
BasedontheaboveandinspiredbyMADMmodelin[9],wederivethefollowingalgorithm.
Algorithms2020,13,15413of20
Algorithm1MultipleAttributeDecisionMakingModel
BEGIN
1:Obtainthenormalizedintuitionisticfuzzydecisionmatrix,i.e.,
(,)
ij ij m n
R

 .
2:Determinetheweightingvectoroftheattributes.
3:AggregatetheIFVsusingtheproposed w
IFACWAA or w
IFACWGA
operators.
4:Sorttheoptionsaccordingtoscorefunctionandaccuracyfunction.
5:Selectthebestalternative,byrankingthevaluesof,
i
1, ..., im.
END
Inordertodemonstratetheproposedmethod,weprovidethefollowingnumericalexample,
whichisadaptedfromTaoetal’s[9]work,inordertocomparetheirmethodwiththepresent
extensionofit.
5.APracticalExampleforMADMwithIFVs.
Aresearchfacilityhasarrangedtopurchaseanelectronicdevice.Thepeopleincharge,selected
thefourmostappropriatemodelsforfurtherconsideration,afterthemarketresearch.Thoseare
indicatedasthefouralternatives1234
{, , , }.UuuuuTheevaluationofthealternativesisachieved
bytheconsiderationoffiveattributesbythedecisionmaker(DM).Thoseattributesarelistedas
follows:thelayoutoftheproduct(1
C),thetechnicalassistance(2
C),thebrand(3
C),theprice(4
C)
andthequalityoftheproduct(5
C).
Step1.Thenormalizedintuitionisticfuzzydecisionmatrixcanbeobtainedasfollows:
45
0.4,0.3 0.5,0.2 0.7, 0.2 0.4,0.6 0.6, 0.2
0.6,0.1 0.4, 0.3 0.3, 0.5 0.6,0.2 0.5, 0.3
() 0.5,0.4 0.6, 0.1 0.6, 0.2 0.7, 0.1 0.3,0.6
0.6,0.3 0.4, 0.5 0.5, 0.3 0.8, 0.2 0.5, 0.2
ij
R








.
inwhich,theelement,,
ij ij

with1,..., 4iand 1,...,5j,representstheintuitionistic
membershipandnonmembershipdegreeoftheithalternativethatsatisfiesthejth
attribute.
Step2.Inthepresentwork,weuseTaoetal.’s[9],modifiedmaximizingdeviationsmethod,in
ordertoderivethefiveweightingsoftheattributes,andsincethenumericalexampleisthe
sameweget: 10.2162,w20.2703,w30.1892,w40.1081,w50.2162.w
Step3.Theaggregatedresultsaregivenbytheusageof w
IFACWAA and w
IFACWGA operatorsandare
listedin 
Algorithms2020,13,15414of20
Table6andTable7.
Step4.Thescorefunction’sresultsforeachalternativeandforeachtypeof w
IFACWAA and
w
IFACWGA operatorsarelistedinTable8andTable9.
Step5.TherankingofthealternativesisachievedandisdepictedinTable10.
Algorithms2020,13,15415of20
Table6.TheaggregationresultsusingintuitionisticfuzzyArchimedeancopulaweightedarithmetic
aggregation(w
IFACWAA ).
Alternatives
Gumbel
1
0.3
Clayton
1
0.3
AliMikhailHaq
1
0.3
Joe
1
0.3
1
u0.5394,0.2459  0.5560,0.2337  0.5356,0.2488  0.5394,0.2459 
2
u0.4777,0.2494  0.4908,0.2126  0.4736,0.2544  0.4777,0.2494 
3
u0.5388,0.2267  0.5556,0.1776  0.5338,0.2357  0.5388,0.2267 
4
u0.5444,0.3020  0.5731,0.2846  0.5395,0.3056  0.5444,0.3020 
Table7.TheaggregationresultsusingintuitionisticfuzzyArchimedeancopulaweightedgeometric
aggregation(w
IFACWGA ).
Alternatives
Gumbel
1
0.3
Clayton
1
0.3
AliMikhailHaq
1
0.3
Joe
1
0.3
1
u0.5156,0.2762  0.5045,0.2976  0.5197,0.2693  0.5156,0.2762 
2
u0.4534,0.2940  0.4387,0.3097  0.4576, 0.2868  0.4534,0.2940 
3
u0.5049,0.3176  0.4823,0.3581  0.5113,0.3012  0.5049,0.3176 
4
u0.5152,0.3306  0.5045,0.3443  0.5196,0.3252  0.5152,0.3306 
Table8.Thescorefunction’sresultsusing.
w
IFACWAA
Alternatives
Gumbel
1
0.3
Clayton
1
0.3
AliMikhailHaq
1
0.3
Joe
1
0.3
1
u0.29350.32230.28680.2935
2
u0.22830.27820.21920.2283
3
u0.31210.37800.29810.3121
4
u0.24240.28840.23390.2424
Table9.Thescorefunction’sresultsusingw
IFACWGA .
Alternatives
Gumbel
1
0.3
Clayton
1
0.3
AliMikhailHaq
1
0.3
Joe
1
0.3
1
u0.23940.20690.25040.2394
2
u0.15940.12900.17080.1594
3
u0.18730.12430.21010.1873
4
u0.18460.16020.19440.1846
Table10.Rankingofthealternatives.
Typew
IFAC WAA  w
IFACWGA 
Gumbel314 2
uuuu  134 2
uu u u
Clayton314 2
uuuu  142 3
uu u u

AliMikhailHaq31 4 2
uuuu  134 2
uu u u
Joe314 2
uuuu  134 2
uu u u
Algorithms2020,13,15416of20
Toillustratetheaffectionof
parameterintheprocedureas
parameterisfixedto1(and‐1
inAliMikhailHaqcase)weutilizedthefollowinggraphsthataredepictedinFigure1andFigure2
forthe w
IFACWAA andinFigure3andFigure4forthe w
IFACWGA .
(A)(B)
Figure1.(A)Gumbeltype w
IFACWAA scoreresult.(B)Claytontype w
IFACWAA scoreresult.
(A)(B)
Figure2.(A)AliMikhailHaqtype w
IFACWAA scoreresult.(B)Joetype w
IFACWAA scoreresult.
(A)(B)
Figure3.(A)Gumbeltype w
IFACWGA scoreresult.(B)Claytontype w
IFACWGA scoreresult.
Algorithms2020,13,15417of20
(A)(B)
Figure4.(A)AliMikhailHaqtype w
IFACWGA scoreresult.(B)Joetype w
IFACWGA scoreresult.
6.Discussion
ThepresentpaperestablishesspecificnoveloperationallawsofIFVs,asthegeneralizationof
theexistingcopulabasedoperationallaws,withthecontributionoffuzzynegations.Additionally,
thepaperprovidestheextensionoftheproposedoperationstothearithmeticmeanandtothe
geometricmeanofIFVs.
Firstofall,thereplacementofthe
parameterwiththenumericalvaluezeroinSugenoclass,
orwiththenumericalvalueoneinYagerclass,inDefinitions6–8andthecorrespondingtables
(Table3–Table5),providesuswiththeoperationlawsandtheaggregationoperatorsofTaoetal.’s
[9]work.Asaresult,thegeneralizationoftheexistingoperatorsbytheproposedoperationallaws
andtheextensionoftheexistingaggregationoperatorsareverified.Morespecifically,theextension
oftheexistingaggregationoperatorsisbasedonthereformoftheexistingbasicoperational
environment.
RegardingtheprovidedpracticalexampleforMADMwithIFVs,developedinordertopoint
outtheadvantagesandtheflexibilityoftheproposedalgorithm,wemaycallforththefollowing
comparisonwith[9].
Tocontinuewiththerankingofthealternativesin[9],theusageofGumbeltypeaggregation
operatorsuggeststhethirdalternative(3
u)asthemostadequateone.Inaddition,theClayton,
AliMikhailHaq‐andJoetypeofaggregationoperatorsprovidesthesamealternative,respectively,
throughtheotherthreealternativesaredevelopedwithadifferentorder.Ontheotherhand,inour
approach,asTable10shows,thereisnodifferenceintheorderofthefouralternativesforeachtype
ofaggregationoperatorand,asaresult,theorderproblemisdistinguished.
Inaddition,inTable10,theorderofthealternativesisprovided,suggestingtheusageof
w
IFACWGA operatorsforeachcopulatype,whichrepresentsanewbestalternative.Specifically,
Gumbel,AliMikhailHaq‐ andJoetypeaggregationresultsdemonstratethatthemostadequate
alternativeis1
uand 3
ufollows.Therestrankingremainsthesamewiththew
IFACWAA operators
ranking.However,inthecaseofClaytontypew
IFACWGA rankinginrespectofthethree
alternativesistotallydifferent,throughthefirstoneremains1
udemonstratingthemostadequate
choice.Thisperspectivemaybeconsideredreasonable,giventhattheparameter
doesnotaffect,
neitherthemembershipdegree,northenonmembershipdegreeintheaggregationprocessandthis
factmaybeobservedintheClaytontypescorefunction’splot.
Anotherremarkablefactabouttheproposedaggregationoperatorsisthattheyprovidetwo
parametersaffecting(inmostcases)theresults,suggestingmorechoicesandflexibilityforthe
decisionmakers.Forthedescriptionoftheaffectionof
parameter,Figure1Figure4havebeen
utilized,as
parameterisfixedto1(and‐1intheAliMikhailHaqcase).
InFigure1,apparentlytheGumbel‐andClaytontypeofw
IFACWAA operatorssuggestdistinct
scorefunctionsforeachalternative,with3
ualwaysrepresentingthemostadequatechoiceand2
u
Algorithms2020,13,15418of20
theleastadequateone.ThesameholdsfortheJoe‐ andAliMikhailHaqtypeofw
IFACWAA
operators,asitisdepictedinFigure2.InFigure3,theGumbeltypeofw
IFACWGA suggests1
uas
themostadequatechoiceand2
utheleastadequateone,throughalternatives3
uand4
uthat
meetacrossoverpoint.InFigure4,wemayobservethatJoetypeofw
IFACWGA proposesthesame
alternatives,respectively,astheGumbeltypeapproach,butalsoacrossoverpointforthe
alternatives3
uand 4
u.
7.Conclusions
ThepapercitedthegeneralizationofcopulabasedoperationsofIntuitionisticFuzzyValues
(IFVs)viafuzzynegations.Additionally,novelaggregationoperatorswereproducedfromthenew
operationsofIFVs,withtheirpropertiesbeingfurtherinvestigated.Asaresult,analgorithmis
suggested,whichmaybeutilizedinMultipleAttributeDecisionMaking(MADM)processes.
ThemainadvantageofourworkisthattheaggregationoperatorsofIFVsprovidedinthe
suggestedalgorithmareunivariateparametric,thereforevariousintuitionisticfuzzyArchimedean
copulaweightedarithmeticandgeometricoperatorscouldbeobtained,witheachonepotentially
beingmoreappropriateforthedecisionmakers.Combinedwiththemostappropriatecopula[23]
foreachMADMcase,morespecifiedaggregatoroperatorswouldbeprovidedtoexpressmore
accuratelyadecisionmaker’sattitude.
Inthefutureouraimistocombinetheproposedoperationswithfuzzynegationsviaconic
sections[36],inordertoproducemodifiedfamiliesofaggregatoroperationsofIFVs.Furthermore,
wearewillingtoadapttheproposedoperations,followingtheappropriatetransformation,inother
typesoffuzzysets,suchashesitantfuzzysets[37],andunbalancedlinguistictermsets[38]and
neutrosophicsets[39],inordertoconstructalgorithmsformultipleattributedecisionmakingand
multipleattributegroupdecisionmaking.
AuthorContributions:Investigation,S.G.andB.P.;supervision,B.P.Allauthorshavereadandagreedtothe
publishedversionofmanuscript.
Funding:Thisresearchreceivednoexternalfunding.
Acknowledgments:TheauthorsareverythankfultotheEditorandtheRefereesfortheircorrections,valuable
commentsandsuggestionsinordertoimprovethequalityofthepresentpaper.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Atanassov,K.T.Intuitionisticfuzzysets.FuzzySetsSyst.1986,20,87–96.
2. Zadeh,L.A.Fuzzysets.Inf.Control1965,8,338–353.
3. Atanassov,K.T.Newoperationsdefinedovertheintuitionisticfuzzysets.FuzzySetsSyst.1994,61,
137–142.
4. Beliakov,G.;Bustince,H.;Goswami,D.P.;Mukherjee,U.K.;Pal,N.R.Onaveragingoperatorsfor
Atanassov’sintuitionisticfuzzysets.Inf.Sci.2011,181,1116–1124.
5. Zhao,X.;Wei,G.SomeintuitionisticfuzzyEinsteinhybridaggregationoperatorsandtheirapplicationto
multipleattributedecisionmaking.Knowl.BasedSyst.2013,37,472–479.
6. Atanassov,K.;Pasi,G.;Yager,R.Intuitionisticfuzzyinterpretationsofmulticriteriamultipersonand
multimeasurementtooldecisionmaking.Int.J.Syst.Sci.2005,36,859–868.
7. Wang,J.Q.;Li,J.J.Multicriteriafuzzydecisionmakingmethodbasedoncrossentropyandscore
functions.ExpertSyst.Appl.2011,38,1032–1038.
8. Ouyang,Y.;Pedrycz,W.Anewmodelforintuitionisticfuzzymultiattributesdecisionmaking.Eur.J.
Oper.Res.2016,249,677–682.
9. Tao,Z.;Han,B.;Chen,H.Onintuitionisticfuzzycopulaaggregationoperatorsinmultipleattribute
decisionmaking.Cogn.Comput.2018,10,610–624.
10. Liu,P.;Li,H.Interval‐ ValuedIntuitionisticFuzzyPowerBonferroniAggregationOperatorsandTheir
ApplicationtoGroupDecissionMaking.Cogn.Comput.2017,9,494–512.
Algorithms2020,13,15419of20
11. Seikh,M.R.;Mandal,U.IntuitionisticfuzzyDombiaggregationoperatorsandtheirapplicationtomultiple
attributedecisionmaking.Granul.Comput.2019,1–16,doi:10.1007/s4106601900209y.
12. Xian,S.;Guo,H.;Chai,J.Intuitionisticfuzzylinguisticinducedgeneralizedhybridweightedaveraging
operatoranditsapplicationtotaketargetedmeasuresinpovertyalleviation.Comput.Appl.Math.2019,38,
134.
13. Shi,M.;Yang,F.;Xiao,Y.IntuitionisticfuzzypowergeometricHeronianmeanoperatorsandtheir
applicationtomultipleattributedecisionmaking.J.Intell.FuzzySyst.2019,37,2651–2669.
14. Zou,X.Y.;Chen,S.M.;Fan,K.Y.Multipleattributedecisionmakingusingimprovedintuitionisticfuzzy
weightedgeometricoperatorsofintuitionisticfuzzyvalues.Inf.Sci.2020,535,242–253.
15. Xia,M.;Xu,Z.;Zhu,B.SomeissuesonintuitionisticfuzzyaggregationoperatorsbasedonArchimedean
tconormandtnorm.Knowl.BasedSyst.2012,31,78–88.
16. Deschrijver,G.;Kerre,E.E.Ageneralizationofoperatorsonintuitionisticfuzzysetsusingtriangular
normsandconorms.NotesIntuit.FuzzySets2002,8,19–27.
17. Liu,H.W.;Wang,G.J.Multicriteriadecisionmakingmethodsbasedonintuitionisticfuzzysets.Eur.J.
Oper.Res.2007,179,220–233.
18. Li,D.F.MultiattributedecisionmakingmethodbasedongeneralizedOWAoperatorswithintuitionistic
fuzzysets.ExpertSyst.Appl.2010,37,8673–8678.
19. Yu,X.;Xu,Z.Prioritizedintuitionisticfuzzyaggregationoperators.Inf.Fusion2013,14,108–116.
20. Liu,P.;Liu,Y.Anapproachtomultipleattributegroupdecisionmakingbasedonintuitionistic
trapezoidalfuzzypowergeneralizedaggregationoperator.Int.J.Comput.Intell.Syst.2014,7,291–304.
21. Ye,J.Intuitionisticfuzzyhybridarithmeticandgeometricaggregationoperatorsforthedecisionmaking
ofmechanicaldesignschemes.Appl.Intell.2017,47,73–751.
22. Sirbiladze,G.;Sikharulidze,A.Extensionsofprobabilityintuitionisticfuzzyaggregationoperatorsin
fuzzyMCDM/MADM.Int.J.Inf.Technol.Decis.Mak.2018,17,621–655.
23. Näther,W.Copulasandtnorms:Mathematicaltoolsforcombiningprobabilisticinformation,with
applicationtoerrorpropagationandinteraction.Struct.Saf.2010,32,366–371.
24. Nelsen,R.B.AnIntroductiontoCopulas,2nded.;SpringerScience&BusinessMedia:NewYork,NY,USA,
2006.
25. Alsina,C.;Frank,M.J.;Schweizer,B.AssociativeFunctions:TriangularNormsandCopulas;WorldScientific:
Singapore,2006.
26. Beliakov,G.;Pradera,A.;Calvo,T.AggregationFunctions:AGuideforPractitioners;Springer:
Berlin/Heidelberg,Germany,2007.
27. Massanet,S.;Pradera,A.;RuizAguilera,D.;Torrens,J.Equivalenceandcharacterizationofprobabilistic
andsurvivalimplications.FuzzySetsSyst.2019,359,63–79.
28. Sklar,A.Fonctionsderépartitionàndimensionsetleursmarges.Publ.Inst.Statist.Univ.Paris1959,8,
229–231.
29. Cherubini,U.;Luciano,E.;Vecchiato,W.CopulaMethodsinFinance;JohnWiley&Sons,Ltd.:Chichester,
UK,2004.
30. Fréchet,M.Surlestableauxdecorrelationdontlesmargessontdonnées.ComptesRendusHebd.Des.Seances
DeLAcad.Des.Sci.1956,242,2426–2428.
31. Hoeffding,W.MasstabinvarianteKorrelationstheorie;SchriftendesMathematischenInstitutsundInstituts
furAngewandteMathematikderUniversitatBerlin:Berlin,Germany,1940;Volume5,pp.181–233.
32. Baczynski,M.;Jayaram,B.FuzzyImplications;Springer:Berlin/Heidelberg,Germany,2008.
33. Chen,S.M.;Tan,J.M.Handlingmulticriteriafuzzydecisionmakingproblemsbasedonvaguesettheory.
FuzzySetsSyst.1994,67,163–172.
34. Hong,D.H.;Choi,C.H.Multicriteriafuzzydecisionmakingproblemsbasedonvaguesettheory.Fuzzy
SetsSyst.2000,114,103–113.
35. Xu,Z.;Yager,R.R.Somegeometricaggregationoperatorsbasedonintuitionisticfuzzysets.Int.J.Gen.
Syst.2006,35,417–433.
36. Souliotis,G.;Papadopoulos,B.AnalgorithmforProducingFuzzyNegationsviaConicalSections.
Algorithms2019,12,89.
37. Torra,V.Hesitantfuzzysets.Int.J.Intell.Syst.2010,25,529–539.
Algorithms2020,13,15420of20
38. Tao,Z.;Han,B.;Zhou,L.;Chen,H.TheNovelComputationalModelofUnbalancedLinguisticVariables
BasedonArchimedeanCopula.Int.J.Uncertain.FuzzinessKnowl.BasedSyst.2018,26,601–631.
39. Smarandache,F.Neutrosophicsetageneralizationoftheintuitionisticfuzzyset.Int.J.PureAppl.Math.
2005,24,287.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).
... Giakoumakis and Papadopoulos [21] developed a novel computation model of Intuitionistic Fuzzy Values with the use of fuzzy negations and Archimedean copulas. This novel computation model's structure is based on the extension of the existing operations of intuitionistic fuzzy values with some classes of fuzzy negations. ...
... In step 1, in Case 1-Isosceles trapezium, a large number of temperature (39) and humidity (21) values received membership degree values greater than 0.9 or equal to 1. ...
Article
Full-text available
In this research paper, a generator of fuzzy methods based on theorems and axioms of fuzzy logic is derived, analyzed and applied. The family presented generates fuzzy implications according to the value of a selected parameter. The obtained fuzzy implications should satisfy a number of axioms, and the conditions of satisfying the maximum number of axioms are denoted. New theorems are stated and proven based on the rule that the fuzzy function of fuzzy implication, which is strong, leads to fuzzy negation. In this work, the data taken were fuzzified for the application of the new formulae. The fuzzification of the data was undertaken using four kinds of membership degree functions. The new fuzzy functions were compared based on the results obtained after a number of repetitions. The new proposed methodology presents a new family of fuzzy implications, and also an algorithm is shown that produces fuzzy implications so as to be able to select the optimal method of the generator according to the value of a free parameter.
... e second is to present a new fuzzy copula construction between two fuzzy random variables, via the construction mentioned before. e investigation of fuzzy copulas is of great importance, as in many circumstances, researchers need to fuse or aggregate probabilistic and fuzzy information [16][17][18]. In the present paper, we aim to provide a novel construction method of copulas, in order to produce a construction procedure of fuzzy copulas that no attempt has been made since the concept of fuzzy copulas was recently developed. ...
... It may also be of interest considering these construction methods in the case of n-dimensional copulas n > 2. On the other hand, the case in which these construction methods could possibly be defined in more than four subrectangles of the unit square may be examined. In addition, the extension of those methods for Intuitionistic fuzzy sets [16,18] and Pythagorean fuzzy sets [31] could be possibly achieved, in order to develop aggregation operators for multiple attribute decision making algorithms. ese topics are the basis for our future investigations. ...
Article
Full-text available
The paper introduces a method for the construction of bivariate copulas with the usage of specific values of the parameters α and β (α,β transformation) and the parameters κ and λ in their domain. The produced bivariate copulas are defined in four subrectangles of the unit square. The bounds of the produced copulas are investigated, while a novel construction method for fuzzy copulas is introduced, with the usage of the produced copulas via α,β transformation in four subrectangles of the unit square. Following this construction procedure, the production of an infinite number of copulas and fuzzy copulas could be possibly achieved. Some applications of the proposed methods are presented.
Article
Full-text available
The purpose of this paper is to introduce the concepts of Dombi t-norm and Dombi t-conorm to aggregate intuitionistic fuzzy information. First, we have proposed some new operational laws of intuitionistic fuzzy numbers (IFNs) based on Dombi t-norm and t-conorm. Furthermore, based on these operational laws, we have introduced intuitionistic fuzzy Dombi weighted averaging (IFDWA) operator, intuitionistic fuzzy Dombi order weighted averaging (IFDOWA) operator, intuitionistic fuzzy Dombi hybrid averaging (IFDHA) operator, intuitionistic fuzzy Dombi weighted geometric (IFDWG) operator, intuitionistic fuzzy Dombi order weighted geometric (IFDOWG) operator, and intuitionistic fuzzy Dombi hybrid geometric (IFDHG) operator. Moreover, some suitable properties of these operators are also discussed. Then, utilizing these proposed operators, we have presented an algorithm to solve multiattribute decision-making (MADM) problems under an intuitionistic fuzzy environment. Finally, we have utilized a numerical example to compare the flexibility of the proposed method with the other existing methods.
Article
Full-text available
Multiple attribute decision making (MADM) problem is a common issue and to take targeted measures in poverty alleviation (TPA) is one of the typical MADM problem. Aggregation operator, which is significant in MADM problem, attracts many attentions in the intuitionistic fuzzy linguistic environment. In this paper, we introduce the intuitionistic fuzzy linguistic induced generalized ordered weighted averaging (IFLIGOWA) operator to provide a wide range of operators to aggregate the intuitionistic fuzzy linguistic information. Then, the new intuitionistic fuzzy linguistic entropy which takes all schemes into account is presented. Subsequently, we propose the intuitionistic fuzzy linguistic induced generalized hybrid weighted averaging (IFLIGHWA) operator whose weight vector is associated with both entropic weights and subjective weights. The properties of the IFLIGHWA operator are also studied. Eventually, the method based on the IFLIGHWA operator for MADM problem is presented and a numerical example about TPA is used to illustrate effectiveness of proposed method.
Article
Full-text available
In this paper we introduced a new class of strong negations, which were generated via conical sections. This paper focuses on the fact that simple mathematical and computational processes generate new strong fuzzy negations, through purely geometrical concepts such as the ellipse and the hyperbola. Well-known negations like the classical negation, Sugeno negation, etc., were produced via the suggested conical sections. The strong negations were a structural element in the production of fuzzy implications. Thus, we have a machine for producing fuzzy implications, which can be useful in many areas, as in artificial intelligence, neural networks, etc. Strong Fuzzy Negations refers to the discrepancy between the degree of difficulty of the effort and the significance of its results. Innovative results may, therefore, derive for use in literature in the specific field of mathematics. These data are, moreover, generated in an effortless, concise, as well as self-evident manner.
Article
Full-text available
Operations of intuitionistic fuzzy values have been widely studied and have attracted significant interest. In this paper, some other operations on intuitionistic fuzzy values on the basis of Archimedean copulas and corresponding co-copulas are introduced. Such novel operations can show the relevance between intuitionistic fuzzy values. A family of weighted aggregation operators are developed according to the proposed operations, i.e., the intuitionistic fuzzy copula aggregation operator. The properties of the novel operations and the weighted aggregation operators are also considered. In the end, we provide a modified maximizing deviation decision procedure for multiple attributes decision making under intuitionistic fuzzy environment, and show a case study to illustrate the application of the proposed approach.
Article
Full-text available
Arithmetic aggregation operators and geometric aggregation operators of intuitionistic fuzzy values (IFVs) are common aggregation operators in the fields of information fusion and decision making. However, their aggregated values imply some unreasonable results in some cases. To overcome the shortcomings, this paper proposes an intuitionistic fuzzy hybrid weighted arithmetic and geometric aggregation (IFHWAGA) operator and an intuitionistic fuzzy hybrid ordered weighted arithmetic and geometric aggregation (IFHOWAGA) operator and discusses their suitability by numerical examples. Then, we propose a multiple attribute decision-making method of mechanical design schemes based on the IFHWAGA or IFHOWAGA operator under an intuitionistic fuzzy environment. Finally, a decision-making problem regarding the mechanical design schemes of press machine is provided as a case to show the application of the proposed method.
Article
In this paper, we develop a novel multiple attribute decision making (MADM) method using the improved intuitionistic fuzzy weighted geometric (IIFWG) operator of intuitionistic fuzzy values (IFVs) proposed in this paper. First, we develop the IIFWG operator of IFVs to conquer the weak points of the existing operators of IFVs, where they have the drawbacks that their aggregated values are indeterminate in some situations. Based on the proposed IIFWG operator of IFVs, we present a MADM method to overcome the weak points of the existing MADM methods, which have the shortcomings that they obtain unreasonable ranking orders (ROs) of alternatives or they cannot discriminate the ROs of alternatives in some circumstances.
Article
This paper investigates intuitionistic fuzzy information aggration problem with the interrelationship among the input values and the 'singular point' (i.e. the input value was either too large or too small) which canot be solved by most existing aggregation operators. To accomplish this, this paper combines the geometric Heronian mean (GHM) operator with the power geometric (PG) operator under intuitionistic fuzzy environment. Then, the intuitionistic fuzzy power GHM (IFPGHM) operator and the weighted intuitionistic fuzzy power GHM (WIFPGHM) operator are presented. The new operators capture not only the correlations between the input arguments but also the relative closeness of decision making information such that they can better solve the intuitionistic fuzzy information aggregation problem with diversified connections between arguments. The desirable properties of these new extensions of GHM operator and their special cases are investigated. Finally, based on the WIFPGHM operator, we present an approach to multiple attribute decision making and illustrate that approach with a practical example.
Article
Probabilistic and survival implications are two kinds of fuzzy implication functions that combine the imprecision modelled by fuzzy concepts and the imprecision modelled by the probability theory. Both kinds of fuzzy implication functions are derived from copulas through two different construction methods, and since their introduction in 2011 and 2012 respectively, they have been deeply studied. In this paper an axiomatic characterization of both families is given and it is proved that both families coincide. The mentioned characterizations are obtained by reversing these construction methods in order to obtain copulas from fuzzy implication functions. As it is expected the so-called 2-increasingness property on fuzzy implication functions plays an important role in the characterization theorems.
Article
We develop a novel computation model of unbalanced linguistic variables on the basis of Archimedean copulas and corresponding co-copulas, which provides a new tool to aggregate unbalanced linguistic information. The properties of the proposed computational model are also studied. We present the concepts of weighted unbalanced Archimedean copula arithmetic aggregation operators and weighted unbalanced Archimedean copula geometric aggregation operators. The properties of these aggregation operators are further investigated. Finally, a group decision making of sensory evaluation is introduced to illustrate the feasibility and validity of our proposed computational model.
Article
New family of intuitionistic fuzzy operators for aggregation of information on interactive criteria/attributes in Multi-Criteria/attributes Decision Making (MCDM/MADM) problems are constructed. New aggregations are based on the Choquet integral and the associated probability class of a fuzzy measure. Propositions on the correctness of the extension are presented. Connections between the operators and the compositions of dual triangular norms (Formula presented.) and (Formula presented.) are described. The conjugate connections between the constructed operators are considered. It is known that when interactions between criteria/attributes are strong, aggregation operators based on Choquet integral reflect these interactions at a certain degree, but these operators consider only consonant structure of criteria/attributes. New operators reflect interactions among all the combinations of the criteria/attributes in the fuzzy MCDM/MADM process. Several variants of new operators are used in the decision making problem regarding the assessment of software development risks.