Article

A whiff of contention

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Natural vesicles produced from genetically engineered cells with tailored membrane receptor composition are promising building blocks for sensing biodevices. This is particularly true for the case of G-protein coupled receptors (GPCRs) present in many sensing processes in cells, whose functionality crucially depends on their lipid environment. However, the controlled production of natural vesicles containing GPCRs and their reproducible deposition on biosensor surfaces are among the outstanding challenges in the road map to realize practical biomolecular devices based on GPCRs. In this work we present the production and characterization of membrane nanovesicles from Saccharomyces cerevisiae containing heterologously expressed olfactory receptors – a member of the family of GPCRs – and study their deposition onto substrates used as biosensor supports. We show by direct observation with Atomic Force Microscopy that nanovesicles deposit and flatten without rupturing on glass substrates following approximately a diffusive law. We show that surface coverages larger than 20–25% of the substrate can be reproducibly achieved under practical nanovesicle concentrations and reasonable time scales, while keeping to the minimum the presence of background residuals coming from the nanovesicles production process. Surface chemistry modification of gold substrates indicates a higher affinity of natural nanovesicles for acid modified surfaces as compared to amino or alcohol modified surfaces. Present results constitute an important step in the practical realization of biosensor devices based on natural nanovesicles integrating G-protein coupled membrane receptors.
Article
Full-text available
Phosphoinositide 3-kinase (PI3K) signaling has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand the breadth of such inhibition in odor coding, we screened a panel of odorants representing different chemical classes, as well as odorants known to occur in a natural odor object (tomato), for their ability to rapidly activate PI3K-dependent inhibitory signaling. Odorants were screened on dissociated native rat ORNs before and after pre-incubation with the PI3K-isoform specific blockers AS252424 and TGX221. Many different odorants increased their excitatory strength for particular ORNs following PI3K blockade in a manner consistent with activating PI3K-dependent inhibitory signaling in those cells. The PI3K-dependent inhibitory odorants overlapped with conventional excitatory odorants, but did not share the same bias, indicating partial partitioning of the odor space. Finding that PI3K-dependent inhibition can be activated by a wide range of otherwise conventional excitatory odorants strongly implies PI3K-dependent inhibition provides a broad basis for opponent coding in mammalian ORNs.
Article
Full-text available
Whether olfaction recognizes odorants by their shape, their molecular vibrations, or both remains an open and controversial question. A convenient way to address it is to test for odor character differences between deuterated and undeuterated odorant isotopomers, since these have identical ground-state conformations but different vibrational modes. In a previous paper (Franco et al. (2011) Proc Natl Acad Sci USA 108:9, 3797-802) we showed that fruit flies can recognize the presence of deuterium in odorants by a vibrational mechanism. Here we address the question of whether humans too can distinguish deuterated and undeuterated odorants. A previous report (Keller and Vosshall (2004) Nat Neurosci 7:4, 337-8) indicated that naive subjects are incapable of distinguishing acetophenone and d-8 acetophenone. Here we confirm and extend those results to trained subjects and gas-chromatography [GC]-pure odorants. However, we also show that subjects easily distinguish deuterated and undeuterated musk odorants purified to GC-pure standard. These results are consistent with a vibrational component in human olfaction.
Article
The biocatalytic production of flavor naturals that determine chemosensory percepts of foods and beverages is an ever challenging target for academic and industrial research. Advances in chemical trace analysis and post-genomic progress at the chemistry-biology interface revealed odor qualities of nature's chemosensory entities to be defined by odorant-induced olfactory receptor activity patterns. Beyond traditional views, this review and meta-analysis now shows characteristic ratios of only about 3 to 40 genuine key odorants for each food, from a group of about 230 out of circa 10 000 food volatiles. This suggests the foodborn stimulus space has co-evolved with, and roughly match our circa 400 olfactory receptors as best natural agonists. This perspective gives insight into nature's chemical signatures of smell, provides the chemical odor codes of more than 220 food samples, and beyond addresses industrial implications for producing recombinants that fully reconstruct the natural odor signatures for use in flavors and fragrances, fully immersive interactive virtual environments, or humanoid bioelectronic noses.
Article
Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins׳ orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications.
Article
At present, no satisfactory theory exists to explain how a given molecule results in the perception of a particular smell. One theory is that olfactory sensory neurons detect intramolecular vibrations of the odorous molecule. We used psychophysical methods in humans to test this vibration theory of olfaction and found no evidence to support it.