Conference Paper

Micro-structured optical multi-mode fibers for sensing applications

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
An investigation on the feasibility of utilizing Mode Division Multiplexing (MDM) for simultaneous measurement of Surrounding Refractive Index (SRI) and temperature using a single sensor element based on an etched OM4 Graded Index Multi Mode Fiber (GI-MMF) with an integrated fiber Bragg Grating (BG), is presented. The proposed work is focused on the concept of principle mode groups (PMGs) generated by the OM4 GI-MMF whose response to SRI and temperature would be different and thus discrimination of the said two parameters can be achieved simultaneously via a single sensor element. Results indicate that the response of all PMGs to temperature to be equal, i.e., 11.4 pm/°C, while the response to SRI depends on each PMG. Thus, it is evident that temperature “de-coupled” SRI measurement can be achieved by deducing the temperature effects experienced by the sensor element. Sensitivity of the PMGs to applied SRI varied from 3.04 nm/RIU to of 0.22 nm/RIU from the highest to lowest PMG, respectively. The results verify that it is feasible to obtain dual measurement of SRI and temperature simultaneously using the same, i.e., single, sensing element.
Article
Full-text available
To keep pace with the increasing demand of transmission capacity, space division multiplexing technologies are currently intensively investigated. In this context, mode selective glass fiber couplers are of great interest due to their compatibility with existing glass fiber networks. In this work, we present a novel type of mode selective glass fiber coupler for co-directional coupling based on fiber gratings and fused asymmetric fibers. The achieved mode selective coupling efficiency agrees well with numerical simulations performed for comparison. The benefits of the grating approach are a lower mode crosstalk and a simple adaption of the propagation constants through changing of the grating-period.
Article
Full-text available
In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.
Article
Full-text available
Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well.
Article
Full-text available
The accurate determination of physico-chemical fluid parameters is of major importance in many process engineering applications. Not only the monitoring of the phase distribution in piping systems but also the detection of chemical concentrations in liquids is of interest for an efficient, safe and reliable operation of laboratory as well as industry scale applications. In this paper, we present a miniature all-silica fibre optic sensor capable of measuring pressure, temperature and refractive index of a fluid at a single point simultaneously. In future, such a sensor can be utilized in applications, where these quantities and, hence, phase composition or chemical concentration have to be monitored possibly under harsh environments such as geothermal or oil drilling wells.
Article
Full-text available
In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture.
Article
Full-text available
In this work different fibre optic sensors for the structural health monitoring of civil engineering structures are reported. A fibre optic crack sensor and two different fibre optic moisture sensors have been designed to detect the moisture ingress in concrete based building structures. Moreover, the degeneration of the mechanical properties of optical glass fibre sensors and hence their long-term stability and reliability due to the mechanical and chemical impact of the concrete environment is discussed as well as the advantage of applying a fibre optic sensor system for the structural health monitoring of sewerage tunnels is demonstrated.
Article
Full-text available
The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.
Article
Full-text available
A fibre optic surface plasmon resonance (SPR) sensor system for smartphones is reported, for the first time. The sensor was fabricated by using an easy-to-implement silver coating technique and by polishing both ends of a 400 µm optical fibre to obtain 45° end-faces. For excitation and interrogation of the SPR sensor system the flash-light and camera at the back side of the smartphone were employed, respectively. Consequently, no external electrical components are required for the operation of the sensor system developed. In a first application example a refractive index sensor was realised. The performance of the SPR sensor system was demonstrated by using different volume concentrations of glycerol solution. A sensitivity of 5.96·10⁻⁴ refractive index units (RIU)/pixel was obtained for a refractive index (RI) range from 1.33 to 1.36. In future implementations the reported sensor system could be integrated in a cover of a smartphone or used as a low-cost, portable point-of-care diagnostic platform. Consequently it offers the potential of monitoring a large variety of environmental or point-of-care parameters in combination with smartphones.
Article
Full-text available
Bragg gratings in optical fibers in multimode propagation are investigated experimentally and theoretically. Bragg gratings formed in optical fibers in multimode propagation show multiple reflection peaks or multiple transmission dips in the reflection or transmission spectra, respectively. For standard graded-index multimode fiber, the number of reflection peaks of a Bragg grating depends on excitation condition of propagating modes. The number of reflection peaks of a Bragg grating at around 1.55 μm is 19 for highly multimode excitation and 3-4 for lower order mode excitation. We analyze the phase-matching conditions of the propagating modes and identify half of the reflection peaks as the reflection to the same mode and the rest as the reflection to the neighboring modes. In dispersion-shifted fiber, a Bragg grating at around 0.8 μm in three-mode propagation shows three reflection peaks in the reflection spectrum. The temperature dependence of each reflection peak is similar to that of a conventional Bragg grating in single-mode fiber. Polarization dependence measured on a Bragg grating in multimode graded-index fiber is negligible. An advantage of Bragg gratings in multimode fiber (MMF) and the applications are discussed
Conference Paper
The work presents an investigation on the utilization of an etched Graded-Index (GI)- Multi-Mode Fiber (MMF) for mode-multiplexed Fiber Optic Sensor (FOS) applications and the simultaneous measurement of the Surrounding Refractive Index (SRI) and temperature.
Article
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
Article
The design and development of a new fibre optic sensor system for the optical detection of leakages in sewerage tunnels is reported. The system developed overcomes the disadvantages of the usually employed camera based inspection systems which are relatively complex and, in addition, require cleaning of the structures to be monitored beforehand. The sensor concept created combines a Fibre Bragg Grating (FBG)-based humidity sensor and a swellable polymeric fibre optic sensor. Both sensors are located along the sewerage tunnel so that they can response immediately to any leakages that may occur. The swellable polymeric fibre optic sensor shows a response of 34.2 dB in the presence of water, a performance which is superior to that seen form other swellable polymeric fibre optic sensors reported so far. Furthermore, the resistance of both sensors to highly alkaline environments (pH 13.4), an important feature of such sensors was verified. Consequently, when compared to the use of conventional inspection techniques, the novel fibre optic sensor system provides a robust, relatively low-cost and continuous monitoring system well suited to use in sewerage tunnels.
Article
Structural Health Monitoring (SHM) can be understood as the integration of sensing and intelligence to enable the structure loading and damage-provoking conditions to be recorded, analyzed, localized, and predicted in such a way that nondestructive testing becomes an integral part of them. In addition, SHM systems can include actuation devices to take proper reaction or correction actions. SHM sensing requirements are very well suited for the application of optical fiber sensors (OFS), in particular, to provide integrated, quasi-distributed or fully distributed technologies. In this tutorial, after a brief introduction of the basic SHM concepts, the main fiber optic techniques available for this application are reviewed, emphasizing the four most successful ones. Then, several examples of the use of OFS in real structures are also addressed, including those from the renewable energy, transportation, civil engineering and the oil and gas industry sectors. Finally, the most relevant current technical challenges and the key sector markets are identified. This paper provides a tutorial introduction, a comprehensive background on this subject and also a forecast of the future of OFS for SHM. In addition, some of the challenges to be faced in the near future are addressed.
Article
The analysis and design of a quasi-distributed multimode fiber refractometer array is presented. The main challenge in the design of a practical quasi-distributed sensor array proved to be in mitigation of otherwise pronounced cross-talk effects among the individual sensors in the network. The cross-talk effects originate from mode filtering properties and the strong mode excitation dependence on the multimode refractometer sensors that constitute the array. The introduction of mode conditioning based on fiber mode filters and mode mixers effectively reduced the cross talk to a negligible level while providing the desired sensor response at acceptable collateral losses to the network. A comprehensive experimental analysis was carried out to provide detailed insight into the multimode sensor array behavior and to obtain data necessary for an overall and effective network design.