Chapter

Changes in Biomaterial Properties of Bone With Disease and Treatment

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Changes in the material properties of bone arise from cellular formation and resorption processes, and systemic factors such as serum chemistry. These processes typically act at the nanometer and micron length scales. Treatments of bone disease aim to increase bone strength by altering bone formation or remodeling processes and serum chemistry to increase bone quantity and quality. The purpose of this review is to summarize the changes in the material properties of bone with disease and drug treatment. In this article we review the effects of the most common metabolic bone diseases such as osteoporosis, osteogenesis imperfecta, vitamin D deficiency, and diabetes mellitus, along with their treatments, on tissue material properties in (a) human studies and (b) pre-clinical animal models.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with obesity and hyperglycemia. Roux-en-Y gastric bypass (RYGB) surgery is a common treatment for severely obese patients and T2DM. Both RYGB and T2DM are linked to increased skeletal fragility, though the exact mechanisms are poorly understood. Our aim was to characterize the structural, mechanical and compositional properties of bones from diet-induced obese and RYGB-treated obese (bypass) mice to elucidate which the exact factors are contributing to the increased skeletal fragility. To achieve this, a combinatory approach including microfocus X-ray computed tomography, 3-point bending, finite element modeling and Raman spectroscopy, was used. Compared to aged-matched lean controls, the obese mice displayed decreased cortical thickness, trabecular bone loss, decreased stiffness and increased Young's modulus. For the bypass mice, these alterations were even more pronounced, and additionally they showed low mineral-to-matrix ratio in the cortical endosteal area. Accumulation of the advanced glycation end-product (AGE) pentosidine was found in the cortex of obese and bypass groups and this accumulation was correlated with an increased Young's modulus. In conclusion, we found that the increased fracture risk in T2DM- and post-RYGB bones is mainly driven by accumulation of AGEs and macro-structural alterations, generating biomechanical dysfunctionality.
Article
Full-text available
Background The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO). Methods Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ) in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness) and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI) and Amide III + Collagen/HA (M:MIII)). Results In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness. Conclusions Diabetes decreased collagen maturation and the mineral deposition process, thus reducing biomechanical properties. Moreover, the study showed that HBO improved crosslink maturation and increased maximum strength and stiffness in the femur of T1DM animals.
Article
Full-text available
Cortical bone plays a vital role in determining overall bone strength. We investigate the structural, compositional, and nanomechanical properties of cortical bone following ovariectomy (OVX) of 12 week old Sprague Dawley rats, since this animal model is frequently employed to evaluate the performance of implantable biomaterials in compromised bone healing conditions. Morphological parameters and material properties of bone in the geometrical centre of the femoral cortex were investigated four and eight weeks post-OVX and in unoperated controls (Ctrl), using X-ray micro-computed tomography, backscattered electron scanning electron microscopy, Raman spectroscopy, and nanoindentation. The OVX animals showed increase in body weight, diminished bone mineral density, increased intracortical porosity, but increased bone mass through periosteal apposition (e.g., increases in periosteal perimeter, cortical cross-sectional thickness, and cross-sectional area). However, osteocyte densities, osteocyte lacunar dimensions, and the nanomechanical behaviour on the single mineralised collagen fibril level remained unaffected. Our correlative multiscale investigation provides structural, chemical, and nanomechanical evidence substantiating earlier reports suggesting that rats ovariectomised at 12 weeks undergo simultaneous bone loss and growth, resulting in the effects of OVX being less obvious. Periosteal apposition contradicts the conventional view of bone loss in osteoporosis but appears advantageous for the greater functional demand imposed on the skeleton by increased body weight and fragility induced by increased intracortical porosity. Through a variety of morphological changes, it is likely that 12 week old rats are able to adapt to OVX-related microstructural and compositional alterations. This article is protected by copyright. All rights reserved.
Article
Full-text available
Abstract Diabetes complications and osteoporotic fractures are two of the most important causes of morbidity and mortality in older patients and share many features including genetic susceptibility, molecular mechanisms, and environmental factors. Type 2 diabetes mellitus (T2DM) compromises bone microarchitecture by inducing abnormal bone cell function and matrix structure, with increased osteoblast apoptosis, diminished osteoblast differentiation, and enhanced osteoclast-mediated bone resorption. The linkage between these two chronic diseases creates a possibility that certain antidiabetic therapies may affect bone quality. Both glycemic and bone homeostasis are under control of common regulatory factors. These factors include insulin, accumulation of advanced glycation end products, peroxisome proliferator-activated receptor gamma, gastrointestinal hormones (such as the glucose-dependent insulinotropic peptide and the glucagon-like peptides 1 and 2), and bone-derived hormone osteocalcin. This background allows individual pharmacological targets for antidiabetic therapies to affect the bone quality due to their indirect effects on bone cell differentiation and bone remodeling process. Moreover, it’s important to consider the fragility fractures as another diabetes complication and discuss more deeply about the requirement for adequate screening and preventive measures. This review aims to briefly explore the impact of T2DM on bone metabolic and mechanical proprieties and fracture risk.
Article
Full-text available
The ZDSD rat is a new obese-diabetic rat model that expresses type 2 diabetes in the presence of an intact leptin pathway. During a long pre-diabetic state, the animals exhibit most of the features of metabolic syndrome including obesity, hyperlipidemia, hypertension, insulin resistance and decreased glucose disposal. The animals used in these studies were either allowed to become spontaneously diabetic at 16-30 weeks of age, or diabetes was induced with a diabetogenic diet. In the presence of either spontaneous or diet-induced diabetes, they develop progressive albuminuria as well as increases in other urinary markers of impaired renal function (kidney injury molecule-1 (KIM-1), β2-microglobulin, clusterin and cystatin C). Typical morphological changes of nephropathy, such as glomerular capillary basement membrane thickening and podocyte effacement, accompany these marker increases. Lisinopril (ACEi) treatment (30 mg/kg/day via the diet) dramatically reduced diabetes-induced albuminuria by 85%, independent of the duration of diabetes or the initial albumin excretion. These results position the ZDSD rat as a relevant model of diabetic nephropathy that can be treated with clinically effective compounds.
Article
Full-text available
Significance Since the first reports of atypical femoral fractures (AFFs), a clinical phenomenon in which patients experience catastrophic brittle fractures of the femoral shaft with minimal trauma, the risk associated with bisphosphonates, the most widely prescribed pharmaceuticals for osteoporosis, has become increasingly well-established. However, the underlying cause of AFFs and their causal relationship to bisphosphonates is unknown. Here we examine bone tissue from women with AFFs and show that long-term bisphosphonate treatment degrades the fracture-resistance toughening mechanisms that are inherent to healthy bone. Our work resolves the apparent paradox of AFFs as a side effect of the most common osteoporosis treatment by clarifying the differing effects of bisphosphonates on bone tissue structure and mechanical properties across multiple length scales.
Article
Full-text available
Osteoporosis is a major age-related bone disease characterized by low bone mineral density and a high risk of fractures. Bisphosphonates are considered as effective agents treating osteoporosis. However, long-term use of bisphosphonates is associated with some serious side effects, which limits the widespread clinical use of bisphosphonates. Here, we demonstrate a novel type of bone-targeting anti-resorptive agent, bisphosphonate-enoxacin (BE). In this study, ovariectomized rat model was established and treated with PBS, zoledronate (50 μg/kg) and different dose of BE (5 mg/kg and 10 mg/kg), respectively. The rats subjected to sham-operation and PBS treatment were considered as control group. Then, micro-computed tomography scanning, biomechanical tests, nano-indentation test and Raman analysis were used to compare the effects of zoledronate and BE on cortical bone mass, strength, and composition in ovariectomized rats. We found that both zoledronate and BE were beneficial to cortical bone strength. Three-point bending and nano-indentation tests showed that zoledronate- and BE-treated groups had superior general and local biomechanical properties compared to the ovariectomized groups. Interestingly, it seemed that BE-treated group got a better biomechanical property than the zoledronate-treated group. Also, BE-treated group showed significantly increased proteoglycan content compared with the zoledronate-treated group. We hypothesized that the increased bone strength and biomechanical properties was due to altered bone composition after treatment with BE. BE, a new bone-targeting agent, may be considered a more suitable anti-resorptive agent to treat osteoporosis and other bone diseases associated with decreased bone mass.
Article
Full-text available
Purpose of review: To describe the effects of type 1 diabetes on bone cells. Recent findings: Type 1 diabetes (T1D) is associated with low bone mineral density, increased risk of fractures, and poor fracture healing. Its effects on the skeleton were primarily attributed to impaired bone formation, but recent data suggests that bone remodeling and resorption are also compromised. The hyperglycemic and inflammatory environment associated with T1D impacts osteoblasts, osteocytes, and osteoclasts. The mechanisms involved are complex; insulinopenia, pro-inflammatory cytokine production, and alterations in gene expression are a few of the contributing factors leading to poor osteoblast activity and survival and, therefore, poor bone formation. In addition, the observed sclerostin level increase accompanied by decreased osteocyte number and enhanced osteoclast activity in T1D results in uncoupling of bone remodeling. T1D negatively impacts osteoblasts and osteocytes, whereas its effects on osteoclasts are not well characterized, although the limited studies available indicate increased osteoclast activity, favoring bone resorption.
Article
Full-text available
This review presents an overview of the characterization techniques available to experimentally evaluate bone quality, defined as the geometric and material factors that contribute to fracture resistance independently of areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry. The methods available for characterization of the geometric, compositional, and mechanical properties of bone across multiple length scales are summarized, along with their outcomes and their advantages and disadvantages. Examples of how each technique is used are discussed, as well as practical concerns such as sample preparation and whether or not each testing method is destructive. Techniques that can be used in vivo and those that have been recently improved or developed are emphasized, including high-resolution peripheral quantitative computed tomography to evaluate geometric properties and reference point indentation to evaluate material properties. Because no single method can completely characterize bone quality, we provide a framework for how multiple characterization methods can be used together to generate a more comprehensive analysis of bone quality to complement aBMD in fracture risk assessment.
Article
Full-text available
Osteoporosis, which is characterized by resorption of bone exceeding formation, remains a significant human health concern, and the impact of this condition will only increase with the “graying” of the worldwide population. This review focuses on current and emerging approaches for delivering therapeutic agents to restore bone remodeling homeostasis. Well-known antiresorptive and anabolic agents, such as estrogen, estrogen analogs, bisphosphonates, calcitonin, and parathyroid hormone, along with newer modulators and antibodies, are primarily administered orally, intravenously, or subcutaneously. Although these treatments can be effective, continuing problems include patient noncompliance and adverse systemic or remote-site effects. Controlled drug delivery via polymeric, targeted, and active release systems extends drug half-life by shielding against premature degradation and improves bioavailability while also providing prolonged, sustained, or intermittent release at therapeutic doses to more effectively treat osteoporosis and associated fracture risk.
Article
Full-text available
Introduction: T2DM is associated with impaired skeletal structure and a higher prevalence of bone fractures. Sclerostin, a negative regulator of bone formation, is elevated in serum of diabetic patients. We aimed to relate changes in bone architecture and cellular activities to sclerostin production in the Zucker diabetic fatty (ZDF) rat. Methods: Bone density and architecture were measured by micro-CT and bone remodelling by histomorphometry in tibiae and femurs of 14-week-old male ZDF rats and lean Zucker controls (n = 6/group). Results: ZDF rats showed lower trabecular bone mineral density and bone mass compared to controls, due to decreases in bone volume and thickness, along with impaired bone connectivity and cortical bone geometry. Bone remodelling was impaired in diabetic rats, demonstrated by decreased bone formation rate and increased percentage of tartrate-resistant acid phosphatase-positive osteoclastic surfaces. Serum sclerostin levels (ELISA) were higher in ZDF compared to lean rats at 9 weeks (+40 %, p < 0.01), but this difference disappeared as their glucose control deteriorated and by week 14, ZDF rats had lower sclerostin levels than control rats (-44 %, p < 0.0001). Bone sclerostin mRNA (qPCR) and protein (immunohistochemistry) were similar in ZDF, and lean rats at 14 weeks and genotype did not affect the number of empty osteocytic lacunae in cortical and trabecular bone. Conclusion: T2DM results in impaired skeletal architecture through altered remodelling pathways, but despite altered serum levels, it does not appear that sclerostin contributes to the deleterious effect of T2DM in rat bone.
Article
Full-text available
Osteogenesis imperfecta is an inherited connective tissue disorder with wide phenotypic and molecular heterogeneity. A common issue associated with the molecular abnormality is a disturbance in bone matrix synthesis and homeostasis inducing bone fragility. In very early life, this can lead to multiple fractures and progressive bone deformities, including long bone bowing and scoliosis. Multidisciplinary management improves quality of life for patients with osteogenesis imperfecta. It consists of physical therapy, medical treatment and orthopaedic surgery as necessary. Medical treatment consists of bone-remodelling drug therapy. Bisphosphonates are widely used in the treatment of moderate to severe osteogenesis imperfecta, from infancy to adulthood. Other more recent drug therapies include teriparatide and denosumab. All these therapies target the symptoms and have effects on the mechanical properties of bone due to modification of bone remodelling, therefore influencing skeletal outcome and orthopaedic surgery. Innovative therapies, such as progenitor and mesenchymal stem cell transplantation, targeting the specific altered pathway rather than the symptoms, are in the process of development.
Article
Full-text available
Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.
Article
Full-text available
Individuals with type 2 diabetes (T2D) have a higher fracture risk compared to non-diabetics, even though their areal bone mineral density is normal to high. Identifying the mechanisms whereby diabetes lowers fracture resistance requires well-characterized rodent models of diabetic bone disease. Toward that end, we hypothesized that bone toughness, more so than bone strength, decreases with the duration of diabetes in ZDSD rats. Bones were harvested from male CD(SD) control rats and male ZDSD rats at 16 weeks (before the onset of hyperglycemia), at 22 weeks (5–6 weeks of hyperglycemia), and at 29 weeks (12–13 weeks of hyperglycemia). There were at least 12 rats per strain per age group. At 16 weeks, there was no difference in either body weight or glucose levels between the two rat groups. Within 2 weeks of switching all rats to a diet with 48 % of kcal from fat, only the ZDSD rats developed hyperglycemia (>250 mg/dL). They also began to lose body weight at 21 weeks. CD(SD) rats remained normoglycemic (<110 mg/dL) on the high-fat diet and became obese (>600 g). From micro-computed tomography (μCT) analysis of a lumbar vertebra and distal femur, trabecular bone volume did not vary with age among the non-diabetic rats but was lower at 29 weeks than at 16 weeks or at 22 weeks for the diabetic rats. Consistent with that finding, μCT-derived intra-cortical porosity (femur diaphysis) was higher for ZDSD following ~12 weeks of hyperglycemia than for age-matched CD(SD) rats. Despite an age-related increase in mineralization in both rat strains (μCT and Raman spectroscopy), material strength of cortical bone (from three-point bending tests) increased with age only in the non-diabetic CD(SD) rats. Moreover, two other material properties, toughness (radius) and fracture toughness (femur), significantly decreased with the duration of T2D in ZDSD rats. This was accompanied by the increase in the levels of the pentosidine (femur). However, pentosidine was not significantly higher in diabetic than in non-diabetic bone at any time point. The ZDSD rat, which has normal leptin signaling and becomes diabetic after skeletal maturity, provides a pre-clinical model of diabetic bone disease, but a decrease in body weight during prolonged diabetes and certain strain-related differences before the onset of hyperglycemia should be taken into consideration when interpreting diabetes-related differences.
Article
Full-text available
Context: Skeletal deterioration, leading to an increased risk of fracture, is a known complication of type 2 diabetes mellitus (T2D). Yet plausible mechanisms to account for skeletal fragility in T2D have not been clearly established. Objective: To determine whether bone material properties, as measured by reference point indentation, and advanced glycation endproducts (AGEs), as determined by skin autofluorescence (SAF), are related in patients with T2D. Design: Cross-sectional study. Setting: Tertiary medical center. Patients: Sixteen postmenopausal women with T2D and 19 matched controls. Main outcome measures: Bone material strength index (BMSi) by in vivo reference point indentation, AGE accumulation by SAF and circulating bone turnover markers. Results: BMSi was reduced by 9.2% in T2D (p=0.02) and was inversely associated with duration of T2D (r= -0.68, p= 0.004). Increased SAF was associated with reduced BMSi (r= -0.65, p=0.006) and lower bone formation marker procollagen type 1 amino-terminal propeptide (r= -0.63, p=0.01) in T2D, while no associations were seen in controls. SAF accounted for 26% of the age-adjusted variance in BMSi in T2D (p=0.03). Conclusions: Bone material properties are impaired in postmenopausal women with T2D as determined by reference point indentation. The results suggest a role for the accumulation of AGEs to account for inferior BMSi in T2D.
Article
Full-text available
Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.
Article
Full-text available
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
Article
Full-text available
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.
Article
Full-text available
Osteogenesis imperfecta (OI) is a genetic disease characterized by skeletal fragility and deformity. There is extensive debate regarding treatment options in adults with OI. Antiresorptive treatment reduces the number of fractures in growing oim/oim mice, an animal model that reproducibly mimics the moderate-to-severe form of OI in humans. Effects of long-term treatments with antiresorptive agents, considered for treatment of older patients with OI with similar presentation (moderate-to-severe OI) are, to date, unknown. Fourier transform infrared (FTIR) imaging, which produces a map of the spatial variation in chemical composition in thin sections of bone, was used to address the following questions: (1) do oim/oim mice show a sex dependence in compositional properties at 6.5 months of age; (2) is there a sex-dependent response to treatment with antiresorptive agents used in the treatment of OI in humans; and (3) are any compositional parameters in oim/oim mice corrected to wild-type (WT) values after treatment? FTIR imaging data were collected from femurs from four to five mice per sex per genotype per treatment. Treatments were 24 weeks of saline, alendronate, or RANK-Fc; and 12 weeks of saline + 12 weeks RANK-Fc and 12 weeks of alendronate + RANK-Fc. FTIR imaging compositional parameters measured in cortical and cancellous bones were mineral-to-matrix ratio, carbonate-to-mineral ratio, crystal size/perfection, acid phosphate substitution, collagen maturity, and their respective distributions (heterogeneities). Because of the small sample size, nonparametric statistics (Mann-Whitney U- and Kruskal-Wallis tests with Bonferroni correction) were used to compare saline-treated male and female mice of different genotypes and treatment effects by sex and genotype, respectively. Statistical significance was defined as p < 0.05. At 6.5 months, saline-treated male cortical oim/oim bone had increased mineral-to-matrix ratio (p = 0.016), increased acid phosphate substitution (p = 0.032), and decreased carbonate-to-mineral ratio (p = 0.016) relative to WT. Cancellous bone in male oim/oim also had increased mineral-to-matrix ratio (p = 0.016) relative to male WT. Female oim/oim mouse bone composition for all cortical and cancellous bone parameters was comparable to WT (p > 0.05). Only the female WT mice showed a response of mean compositional properties to treatment, increasing mineral-to-matrix after RANK-Fc treatment in cancellous bone (p = 0.036) compared with saline-treated mice. Male oim/oim increased mineral-to-matrix cortical and cancellous bone heterogeneity in response to all long-term treatments except for saline + RANK-Fc (p < 0.04); female oim/oim cortical mineral-to-matrix bone heterogeneity increased with ALN + RANK-Fc and all treatments increased cancellous female oim/oim bone acid phosphate substitution heterogeneity (p < 0.04). Both oim/oim and WT mice, which demonstrate sex-dependent differences in composition with saline treatment, showed few responses to long-term treatment with antiresorptive agents. Female WT mice appeared to be more responsive; male oim/oim mice showed more changes in compositional heterogeneity. Changes in bone composition caused by these agents may contribute to improved bone quality in oim/oim mice, because the treatments are known to reduce fracture incidence. The optimal drug therapy for long-term treatment of patients with moderate-to-severe OI is unknown. Based on bone compositional changes in mice, antiresorptive treatments are useful for continued treatment in OI. There is a reported sexual dimorphism in fracture incidence in adults with OI, but to date, no one has reported differences in response to pharmaceutical intervention. This study suggests that such an investigation is warranted.
Article
People with type 2 diabetes mellitus (T2DM) have normal-to-high BMDs, but, counterintuitively, have greater fracture risks than people without T2DM, even after accounting for potential confounders like BMI and falls. Therefore, T2DM may alter aspects of bone quality, including material properties or microarchitecture, that increase fragility independently of bone mass. Our objective was to elucidate the factors that influence fragility in T2DM by comparing the material properties, microarchitecture, and mechanical performance of cancellous bone in a clinical population of men with and without T2DM. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 31, age = 65 ± 8 years, HbA1c = 7.1 ± 0.9%; non-DM: n = 34, age = 62 ± 9 years, HbA1c = 5.5 ± 0.4%). The T2DM specimens had greater concentrations of the advanced glycation endproduct pentosidine (+ 36%, P < 0.05) and sugars bound to the collagen matrix (+ 42%, P < 0.05) than the non-DM specimens. The T2DM specimens trended toward a greater bone volume fraction (BV/TV) (+ 24%, NS, P = 0.13) and had greater mineral content (+ 7%, P < 0.05) than the non-DM specimens. Regression modeling of the mechanical outcomes revealed competing effects of T2DM on bone mechanical behavior. The trend of higher BV/TV values and the greater mineral content observed in the T2DM specimens increased strength, whereas the greater values of pentosidine in the T2DM group decreased postyield strain and toughness. The long-term medical management and presence of osteoarthritis in these patients may influence these outcomes. Nevertheless, our data indicate a beneficial effect of T2DM on cancellous microarchitecture, but a deleterious effect of T2DM on the collagen matrix. These data suggest that high concentrations of advanced glycation endproducts can increase fragility by reducing the ability of bone to absorb energy before failure, especially for the subset of T2DM patients with low BV/TV.
Article
Purpose of the study: Teriparatide (Human recombinant Parathyroid Hormone 1-34) is an anabolic agent that is frequently used in patients with osteoporosis and has been extensively investigated with animal model and clinical studies in current literature. The purpose of the study was to evaluate the impact of teriparatide on bone mineral density and fusion. Materials and methods: The findings from preclinical studies that have investigated the role of teriparatide in animal models are summarized in presented review. Results: Overall, the studies show an improvement in bone mineral density and increased fusion rates for osteoporotic animals undergoing spine fusion with teriparatide use. Conclusion: Further studies should be conducted for unanswered questions, such as teriparatide use before surgery, the effect on cervical fusion and surgery related complications.
Article
Osteoporosis is characterized by the loss of bone mass, deterioration of the bone microarchitecture, and an increased risk of fractures; these later complications are associated with significant morbidity and mortality. The asymptomatic and progressive nature of osteoporosis underscores the importance of identifying this entity in early stages. Despite the various treatments available, the prevention of the disease represents the most important aspect of management. An adequate intake of calcium and vitamin D as well as a healthy lifestyle is the basis for maintaining bone health. When osteoporosis is diagnosed, the choice of medications must be individualized considering characteristics of the patient and the risk of fractures. In this article, we review the main causes of osteoporosis, when and how to start treatment, and appropriate therapy and monitoring.
Article
Ovariectomized animal models have been extensively used in osteoporosis research due to the resulting loss of bone mass. The purpose of the present study was to test the hypothesis that estrogen depletion alters mineralization regulation mechanisms in an ovariectomized monkey animal model. To achieve this we used Raman microspectroscopy to analyze humeri from monkeys that were either SHAM-operated or ovariectomized (N = 10 for each group). Measurements were made as a function of tissue age and cortical surface (periosteal, osteonal, endosteal) based on the presence of calcein fluorescent double labels. In the present work we focused on osteoid seams (defined as a surface with evident calcein labels, 1 μm distance away from the mineralizing front, and for which the Raman spectra showed the presence of organic matrix but not mineral), as well as the youngest mineralized tissue between the second fluorescent label and the mineralizing front, 1 μm inwards from the front with the phosphate mineral peak evident in the Raman spectra (TA1). The spectroscopically determined parameters of interest were the relative glycosaminoglycan (GAG) and pyridinoline (Pyd) contents in the osteoid, and the mineral content in TA1. At all three cortical surfaces, significant correlations were evident in the SHAM-operated animals between osteoid GAG (negative) and Pyd content, and mineral content, unlike the OVX animals. These results suggest that in addition to the well-established effects on turnover rates and bone mass, estrogen depletion alters the regulation of mineralization by GAGs and Pyd.
Article
Skeletal fragility is a major complication of type 2 diabetes mellitus (T2D), but there is a poor understanding of mechanisms underlying T2D skeletal fragility. The increased fracture risk has been suggested to result from deteriorated bone microarchitecture or poor bone quality due to accumulation of advanced glycation end-products (AGEs). We conducted a clinical study to determine whether: 1) bone microarchitecture, AGEs, and bone biomechanical properties are altered in T2D bone, 2) bone AGEs are related to bone biomechanical properties, and 3) serum AGE levels reflect those in bone. To do so, we collected serum and proximal femur specimens from T2D (n = 20) and non-diabetic (n = 33) subjects undergoing total hip replacement surgery. A section from the femoral neck was imaged by microcomputed tomography (microCT), tested by cyclic reference point indentation, and quantified for AGE content. A trabecular core taken from the femoral head was imaged by microCT and subjected to uniaxial unconfined compression tests. T2D subjects had greater HbA1c (+23%, p ≤ 0.0001), but no difference in cortical tissue mineral density, cortical porosity, or trabecular microarchitecture compared to non-diabetics. Cyclic reference point indentation revealed that creep indentation distance (+18%, p ≤ 0.05) and indentation distance increase (+20%, p ≤ 0.05) were greater in cortical bone from T2D than in non-diabetics, but no other indentation variables differed. Trabecular bone mechanical properties were similar in both groups, except for yield stress, which tended to be lower in T2D than in non-diabetics. Neither serum pentosidine nor serum total AGEs were different between groups. Cortical, but not trabecular, bone AGEs tended to be higher in T2D subjects (21%, p = 0.09). Serum AGEs and pentosidine were positively correlated with cortical and trabecular bone AGEs. Our study presents new data on biomechanical properties and AGEs in adults with T2D, which are needed to better understand mechanisms contributing to diabetic skeletal fragility.
Article
Purpose of review: This article reviews recent publications on the effect of type 1 diabetes (T1D) on fracture risk, bone mineral density (BMD), bone structure, and bone tissue quality. Possible fracture prevention strategies for patients with T1D have also been reviewed. Recent findings: T1D is associated with substantially elevated fracture risk and modestly low BMD at the femoral neck. However, BMD alone does not explain higher observed fracture risk in T1D. T1D also affects bone macro- and microstructure, characterized by thinner cortices and trabecular bone changes such as thinner and more widely spaced trabeculae. Structural bone deficit is pronounced in the presence of microvascular complications. Tissue-level changes, such as accumulation of advanced glycation endproducts, detrimental alterations of the mineral phase because of low bone turnover, and occlusion of vascular channels in bone by mineralized tissue, are implicated in pathophysiology of bone fragility in T1D. There are no guidelines on screening and prevention of osteoporotic fractures in T1D. Summary: More studies are needed to understand the influence of T1D on structural bone quality and tissue material properties. There is a need for a prospective study to evaluate better screening strategies for diagnosis and treatment of osteoporosis in T1D.
Article
Fracture risk increases as type 2 diabetes (T2D) progresses. With the rising incidence of T2D, in particular early-onset T2D, a representative pre-clinical model is needed to study mechanisms for treating or preventing diabetic bone disease. Towards that goal, we hypothesized that fracture resistance of bone from diabetic TallyHO mice decreases as the duration of diabetes increases. Femurs and lumbar vertebrae were harvested from male, TallyHO mice and male, non-diabetic SWR/J mice at 16 weeks (n ≥ 12 per strain) and 34 weeks (n ≥ 13 per strain) of age. As is characteristic of this model of juvenile T2D, the TallyHO mice were obese and hyperglycemic at an early age (5 weeks and 10 weeks of age, respectively). The femur mid-shaft of TallyHO mice had higher tissue mineral density and larger cortical area, as determined by micro-computed tomography, compared to the femur mid-shaft of SWR/J mice, irrespective of age. As such, the diabetic rodent bone was structurally stronger than the non-diabetic rodent bone, but the higher peak force endured by the diaphysis during three-point (3pt) bending was not independent of the difference in body weight. Upon accounting for the structure of the femur diaphysis, the estimated toughness at 16 weeks and 34 weeks was lower for the diabetic mice than for non-diabetic controls, but neither toughness nor estimated material strength and resistance to crack growth (3pt bending of contralateral notched femur) decreased as the duration of hyperglycemia increased. With respect to trabecular bone, there were no differences in the compressive strength of the L6 vertebral strength between diabetic and non-diabetic mice at both ages despite a lower trabecular bone volume for the TallyHO than for the SWR/J mice at 34 weeks. Amide I sub-peak ratios as determined by Raman Spectroscopy analysis of the femur diaphysis suggested a difference in collagen structure between diabetic and non-diabetic mice, although there was not a significant difference in matrix pentosidine between the groups. Overall, the fracture resistance of bone in the TallyHO model of T2D did not progressively decrease with increasing duration of hyperglycemia. However, given the variability in hyperglycemia in this model, there were correlations between blood glucose levels and certain structural properties including peak force.
Article
Background: It is important to estimate the likelihood that a pediatric fracture is caused by osteogenesis imperfecta (OI), especially the least severe type of OI (type 1). Methods: We reviewed records of 29,101 pediatric patients with fractures from 2003 through 2015. We included patients with closed fractures not resulting from motor vehicle accidents, gunshot wounds, nonaccidental trauma, or bone lesions. Patients with OI of any type were identified through International Classification of Diseases-9 code. We randomly sampled 500 pediatric patients in whom OI was not diagnosed to obtain a control (non-OI) group. We reviewed age at time of fracture, sex, fracture type, laterality, and bone and bone region fractured. Bisphosphonate use and OI type were documented for OI patients. Subanalysis of patients with type-1 OI was performed. The Fisher exact and χ tests were used to compare fracture rates between groups. P<0.05 was considered significant. Positive likelihood ratios for OI were calculated by fracture pattern. Results: The non-OI group consisted of 500 patients with 652 fractures. The OI group consisted of 52 patients with 209 fractures. Non-OI patients were older at the time of fracture (mean, 9.0±5.0 y) than OI patients (mean, 5.5±4.4 y) (P<0.001). OI patients had more oblique, transverse, diaphyseal, and bilateral long-bone fractures than non-OI patients (all P<0.001). Non-OI patients had more buckle (P=0.013), metaphyseal (P<0.001), and physeal (P<0.001) fractures than OI patients. For patients with type-1 OI and long-bone fractures (n=18), rates of transverse and buckle fractures were similar compared with controls. Transverse humerus (15.2), olecranon (13.8), and diaphyseal humerus (13.0) fractures had the highest positive likelihood ratios for OI, and physeal (0.09) and supracondylar humerus (0.1) fractures had the lowest. Conclusions: Transverse and diaphyseal humerus and olecranon fractures were most likely to indicate OI. Physeal and supracondylar humerus fractures were least likely to indicate OI. Radiographic fracture pattern is useful for estimating likelihood of OI. Level of evidence: Level III.
Article
Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density, which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation endproducts (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared imaging and high-performance liquid chromatography. Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the non-enzymatic crosslinks hydroxylysyl pyridinoline and lysyl pyridinoline, did not differ in the proximal femora of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. This article is protected by copyright. All rights reserved
Article
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Article
In contrast to “classical” forms of Osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain-of-function mutation in the IFITM5 gene, encoding the interferon-induced transmembrane protein 5, or bone-restricted ifitm-like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders like hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate treated patients.
Article
Objective: To investigate the differences in bone turnover between diabetic patients and controls. Design: A systematic review and meta-analysis. Methods: A literature search was conducted using the databases Medline at PubMed and EMBASE. The free text search terms 'diabetes mellitus' and 'bone turnover', 'sclerostin', 'RANKL', 'osteoprotegerin', 'tartrate-resistant acid' and 'TRAP' were used. Studies were eligible if they investigated bone turnover markers in patients with diabetes compared with controls. Data were extracted by two reviewers. Results: A total of 2881 papers were identified of which 66 studies were included. Serum levels of the bone resorption marker C-terminal cross-linked telopeptide (-0.10 ng/mL (-0.12, -0.08)) and the bone formation markers osteocalcin (-2.51 ng/mL (-3.01, -2.01)) and procollagen type 1 amino terminal propeptide (-10.80 ng/mL (-12.83, -8.77)) were all lower in patients with diabetes compared with controls. Furthermore, s-tartrate-resistant acid phosphatase was decreased in patients with type 2 diabetes (-0.31 U/L (-0.56, -0.05)) compared with controls. S-sclerostin was significantly higher in patients with type 2 diabetes (14.92 pmol/L (3.12, 26.72)) and patients with type 1 diabetes (3.24 pmol/L (1.52, 4.96)) compared with controls. Also, s-osteoprotegerin was increased among patients with diabetes compared with controls (2.67 pmol/L (0.21, 5.14)). Conclusions: Markers of both bone formation and bone resorption are decreased in patients with diabetes. This suggests that diabetes mellitus is a state of low bone turnover, which in turn may lead to more fragile bone. Altered levels of sclerostin and osteoprotegerin may be responsible for this.
Article
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of fractures according to several studies. The underlying mechanisms remain unclear, although small case-control studies indicate poor quality of the cortical bone. We have studied a population-based sample of women aged 75-80 in Gothenburg, randomly invited from the population registry. Areal bone mineral density (aBMD) was measured by dual energy x-ray absorptiometry (Hologic Discovery A), bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT; ExtremeCT from Scanco Medical AG), and reference point indentation was performed with Osteoprobe (Active Life Scientific). Women with T2DM (n = 99) had higher aBMD compared to controls (n = 954). Ultradistal tibial and radial trabecular bone volume fraction (+11% and +15%, respectively), distal cortical volumetric BMD (+1.6% and +1.7%), cortical area (+11.5% and +9.3%), and failure load (+7.7% and +12.9%) were higher in diabetics than in controls. Cortical porosity was lower (mean ± SD: 1.5 ± 1.1 vs 2.0 ± 1.7%, p = 0.001) in T2DM in the distal radius but not in the ultradistal radius or the tibia. Adjustment for covariates (age, body mass index, glucocorticoid treatment, smoking, physical activity, calcium intake, bone-active drugs) eliminated the differences in aBMD but not in HR-pQCT bone variables. However, bone material strength index (BMSi) by reference point indentation was lower in T2DM (74.6 ± 7.6 vs 78.2 ± 7.5, p < 0.01), also after adjustment, and women with T2DM performed clearly worse in measures of physical function (one leg standing: -26%, 30 s chair-stand test: -7%, timed up and go: +12%, walking speed: +8%; p < 0.05-0.001) compared to controls. In conclusion, we observed a more favorable bone microarchitecture but no difference in adjusted aBMD in elderly women with T2DM in the population compared to non-diabetics. Reduced BMSi and impaired physical function may explain the increased fracture risk in T2DM. This article is protected by copyright. All rights reserved.
Article
Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400–1200 IU) and calcium (1.0–1.5 g) supplementation, or did not.
Article
The physical properties of bone tissue are determined by the organic and mineral matrix, and are one aspect of bone quality. As such, the properties of mineral and matrix are a major contributor to bone strength, independent of bone mass. Cortical bone quality may differ regionally on the three skeletal envelopes that compose it. Each of these envelopes may be affected differently by ovarian hormone depletion. Identifying how these regions vary in their tissue adaptive response to ovarian hormones can inform our understanding of how tissue quality contributes to overall bone strength in postmenopausal women. We analyzed humeri from monkeys that were either SHAM-operated or ovariectomized. Raman microspectroscopic analysis was performed as a function of tissue age based on the presence of multiple fluorescent double labels, to determine whether bone compositional properties (mineral/matrix ratio, tissue water, glycosaminoglycan, lipid, and pyridinoline contents, and mineral maturity/crystallinity) are similar between periosteal, osteonal, and endosteal surfaces, as well as to determine the effects of ovarian hormone depletion on them. The results indicate that mineral and organic matrix characteristics, and kinetics of mineral and organic matrix modifications as a function of tissue age are different at periosteal vs. osteonal and endosteal surfaces. Ovarian hormone depletion affects the three cortical surfaces (periosteal, osteonal, endosteal) differently. While ovarian hormone depletion does not significantly affect the quality of either the osteoid or the most recently mineralized tissue, it significantly affects the rate of subsequent mineral accumulation, as well as the kinetics of organic matrix modifications, culminating in significant differences within interstitial bone. These results highlight the complexity of the cortical bone compartments, add to existing knowledge on the effects of ovarian hormone depletion on local cortical bone properties, and may contribute to a better understanding of the location specific action of drugs used in the management of postmenopausal osteoporosis.
Chapter
Background: Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. This is an update of a previously published Cochrane Review. Objectives: To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. Search methods: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Register: 28 April 2016. Selection criteria: Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. Data collection and analysis: Two authors independently extracted data and assessed the risk of bias of the included trials. Main results: Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95% confidence interval 0.30 to 1.06). In the remaining trial no statistically significant difference was noted in fracture incidence. For spine bone mineral density, no statistically significant difference was noted in the aggregated data from two trials, mean difference 9.96 (95% confidence interval -2.51 to 22.43). In the remaining trial a statistically significant difference in mean per cent change in spine bone mineral density z score favoured intravenous bisphosphonates at six and 12 months. Data describing growth, bone pain, and functional outcomes after oral or intravenous bisphosphonate therapy, or both, as compared to placebo were incomplete among all studies, but do not show consistent improvements in these outcomes. Two studies compared different doses of bisphosphonates. No differences were found between doses when bone mineral density, fractures, and height or length z score were assessed. One trial compared oral versus intravenous bisphosphonates and found no differences in primary outcomes. Two studies compared the intravenous bisphosphonates zoledronic acid and pamidronate. There were no significant differences in primary outcome. However, the studies were at odds as to the relative benefit of zoledronic acid over pamidronate for lumbosacral bone mineral density at 12 months. Authors' conclusions: Bisphophonates are commonly prescribed to individuals with osteogenesis imperfecta. Current evidence, albeit limited, demonstrates oral or intravenous bisphosphonates increase bone mineral density in children and adults with this condition. These were not shown to be different in their ability to increase bone mineral density. It is unclear whether oral or intravenous bisphosphonate treatment consistently decreases fractures, though multiple studies report this independently and no studies report an increased fracture rate with treatment. The studies included here do not show bisphosphonates conclusively improve clinical status (reduce pain; improve growth and functional mobility) in people with osteogenesis imperfecta. Given their current widespread and expected continued use, the optimal method, duration of therapy and long-term safety of bisphosphonate therapy require further investigation. In addition, attention should be given to long-term fracture reduction and improvement in quality of life indicators.
Article
Alterations in microstructure and mineral features can affect the mechanical and chemical properties of bones and their capacity to resist mechanical forces. Controversial results on diabetic bone mineral content have been reported and little is known about the structural alterations in collagen, maturation of apatite crystals, and carbonate content in diabetic bone. This current study is the first to report the mineral and organic properties of cortical, trabecular, and growth plate regions of diabetic rat femurs using Fourier transform infrared (FT-IR) microspectroscopy and the Vickers microhardness test. Femurs of type I diabetic rats were embedded into polymethylmethacrylate blocks, which were used for FT-IR imaging and microhardness studies. A lower mineral content and microhardness, a higher carbonate content especially labile type carbonate content, and an increase in size and maturation of hydroxyapatite crystals were observed in diabetic femurs, which indicate that diabetes has detrimental effects on bone just like osteoporosis. There was a decrease in the level of collagen maturity in diabetic femurs, implying a decrease in bone collagen quality that may contribute to the decrease in tensile strength and bone fragility. Taken together, the findings revealed alterations in structure and composition of mineral and matrix components, and an altered quality and mechanical strength of rat femurs in an early stage of type I diabetes. The results contribute to the knowledge of structure–function relationship of mineral and matrix components in diabetic bone disorder and can further be used for diagnostic or therapeutic purposes.
Article
The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia, oxidative stress and the accumulation of advanced glycation endproducts that compromise collagen properties, increase marrow adiposity, release inflammatory factors and adipokines from visceral fat, and potentially alter the function of osteocytes. Additional factors including treatment-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus. © 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Article
The SHOTZ study assessed the progressive effects of teriparatide (TPTD) and zoledronic acid (ZOL) on bone remodeling and material properties in postmenopausal women with osteoporosis. Previously, we reported that biochemical and histomorphometric bone formation indices were significantly higher in patients receiving TPTD versus ZOL. Here we report bone mineralization density distribution (BMDD) results based on quantitative backscattered electron imaging. The 12-month primary study was randomized and double blind until the month 6 biopsy then open label. Patients (TPTD, n = 28; ZOL, n = 31) were then eligible to enter a 12-month open-label extension with their original treatment: TPTD 20 µg/d (subcutaneous injection) or ZOL 5 mg/y (intravenous infusion). A second biopsy was collected from the contralateral side at month 24 (TPTD, n = 10; ZOL, n = 10). In cancellous bone, ZOL treatment was associated at 6 and 24 months with significantly higher average degree of mineralization (CaMEAN, +2.2%, p = 0.018; +3.9%, p = 0.009, respectively) and with lower percentage of low mineralized areas (CaLOW, −34.6%, p = 0.029; -33.7%, p = 0.025, respectively) and heterogeneity of mineralization CaWIDTH (−12.3%, p = 0.003; -9.9%, p = 0.012, respectively), indicating higher mineralization density and more homogeneous mineral content versus TPTD. Within the ZOL group, significant changes were seen in all parameters from month 6 to 24, indicating a progressive increase in mineralization density. In sharp contrast, mineralization density did not increase over time with TPTD, reflecting ongoing deposition of new bone. Similar results were observed in cortical bone. In this study, TPTD stimulated new bone formation, producing a mineralized bone matrix that remained relatively heterogeneous with a stable mean mineral content. ZOL slowed bone turnover and prolonged secondary mineralization, producing a progressively more homogeneous and highly mineralized bone matrix. While both TPTD and ZOL increase clinical measures of bone mineral density (BMD), this study shows that the underlying mechanisms of the BMD increases are fundamentally different. Clinicaltrials.gov# NCT00927186. This article is protected by copyright. All rights reserved
Article
Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+ Fx; n = 21, age mean 54 ± SD 15 y) and with no history of fragility fracture (− Fx; n = 12, age 57 ± 5 y). A subset of the patients included in the –Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (− Fx + HRT n = 8, age: 58 ± 5 y) and were analyzed separately from patients with no history of HRT (− Fx–HRT n = 4, age: 56 ± 7 y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of –Fx–HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of –Fx + HRT patients (− 22% M:M, − 18% XLR) and + Fx patients (− 17% M:M, − 18% XLR). Across multiple FTIR parameters, tissue from the –Fx–HRT group had smaller low-tail (5th percentile) values than that from the –Fx + HRT or + Fx groups. In trabecular collagen maturity and crystallinity (XST), the –Fx–HRT group had smaller low-tail values than those in the –Fx + HRT group (− 16% XLR, − 5% XST) and the + Fx group (− 17% XLR, − 7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the –Fx–HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals and immature crosslinks, as well as moderately mature tissue, is an important characteristic of healthy, fracture-resistant bone. Finally, the larger mean and low-tail values of mineral:matrix ratio and collagen maturity noted in our –Fx + HRT vs. –Fx–HRT biopsies are consistent with greater tissue age and greater BMD arising from decreased osteoclastic resorption in HRT-treated patients.
Article
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼ 1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either due to collagen haploinsufficiency OI type I (OI-Quant; N = 11) or aberrant collagen structure (OI-Qual; N = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (N = 54, ages 1-23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, while fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared to healthy children were evident for nanoporosity, mineral maturity / crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. This article is protected by copyright. All rights reserved.
Article
Subjects with Type 1 diabetes mellitus have decreased bone mineral density and an up to 6 fold increase in fracture risk. Yet bone fragility is not commonly regarded as another unique complication of diabetes. Both animals with experimentally induced insulin deficiency syndromes and patients with type 1 diabetes (T1DM) have impaired osteoblastic bone formation, with or without increased bone resorption. Insulin/IGF-1 deficiency appears to be a major pathogenetic mechanism involved, along with glucose toxicity, marrow adiposity, inflammation, adipokine and other metabolic alterations that may all play a role on altering bone turnover. In turn increasing physical activity in children with diabetes as well as good glycaemic control appear to provide some improvement of bone parameters, although robust clinical studies are still lacking. In this context, the role of osteoporosis drugs remains unknown.
Article
Substantial evidence shows that skeletal fragility should be considered among the complications associated with type 2 diabetes. Individuals with type 2 diabetes have increased fracture risk, despite normal bone mineral density (BMD) and high BMI-factors that are generally protective against fractures. The mechanisms underlying skeletal fragility in diabetes are not completely understood, but are multifactorial and likely include effects of obesity, hyperglycaemia, oxidative stress, and accumulation of advanced glycation end products, leading to altered bone metabolism, structure, and strength. Clinicians should be aware that BMD measurements underestimate fracture risk in people with type 2 diabetes, and that new treatments for diabetes, with neutral or positive effects on skeletal health, might play a part in the management of diabetes in those at high risk of fracture. Data for the optimum management of osteoporosis in patients with type 2 diabetes are scarce, but in the absence of evidence to the contrary, physicians should follow guidelines established for postmenopausal osteoporosis.
Article
Low-energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age- and sex-matched. AGEs (pentosidine) in bone matrix was measured by high-performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro- and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low-energy fractures in T1DM patients. © 2015 American Society for Bone and Mineral Research.
Article
Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.
Article
Osteoporosis alters bone mass and composition ultimately increasing the fragility of primarily cancellous skeletal sites; however, effects of osteoporosis on tissue-level mechanical properties of cancellous bone are unknown. Dual-energy X-ray absorptiometry (DXA) scans are the clinical standard for diagnosing osteoporosis though changes in cancellous bone mass and mineralization are difficult to separate using this method. The goal of this study was to investigate possible difference in tissue-level properties with osteoporosis as defined by donor T scores. Spine segments from Caucasian female cadavers (58–92 years) were used. A T score for each donor was calculated from DXA scans to determine osteoporotic status. Tissue-level composition and mechanical properties of vertebrae adjacent to the scan region were measured using nanoindentation and Raman spectroscopy. Based on T scores, six samples were in the Osteoporotic group (58–74 years) and four samples were in the Not Osteoporotic group (65–92 years). The indentation modulus and mineral to matrix ratio (mineral:matrix) were lower in the Osteoporotic group than the Not Osteoporotic group. Mineral:matrix ratio decreased with age (r 2 = 0.35, p = 0.05), and the indentation modulus increased with areal bone mineral density (r 2 = 0.41, p = 0.04). This study is the first to examine cancellous bone composition and mechanical properties from a fracture prone location with osteoporosis. We found differences in tissue composition and mechanical properties with osteoporosis that could contribute to increased fragility in addition to changes in trabecular architecture and bone volume.
Chapter
This chapter focuses on the extracellular matrix (ECM), which is synthesized primarily by osteo-blasts but also contains proteins adsorbed from the circulation. The preponderance of bone is ECM. The chapter summarizes the composition of bone and the salient features of the classes of bone matrix proteins. It lists specific details for the individual ECM components. Bone is a composite material whose extracellular matrix consists of mineral, collagen, water, noncollagenous proteins (NCPs), and lipids in decreasing proportion (depending on age, species, and site). These components have both mechanical and metabolic functions. Each of the components in the organic matrix of bone influences the mechanism of mineral deposition. Some promote mineralization; some inhibit the formation and/ or growth of mineral crystals; and some are multifunctional, promoting in some cases and inhibiting in others.
Article
AimsType 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus.Materials and methodsStreptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala2]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation and Fourier-transform infrared microspectroscopy.Results[D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide.Conclusions Treatment of STZ-diabetic mice with [D-Ala2]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients. This article is protected by copyright. All rights reserved
Article
The ovariectomized (OVX) rat model is well established in investigations of osteoporosis and osteoporotic therapies. Advent of techniques such as Fourier-transform infrared (FTIR) spectroscopy and small angle X-ray scattering (SAXS) facilitate characterization of bone composition and mineral structure, respectively, which are key determinants of bone strength. Limited publications exist on the implementation of these techniques in the OVX rat model. At 12 weeks of age, female Sprague-Dawley rats were either sham-operated (n = 6) or ovariectomized (n = 6) and sacrificed 18 weeks later. L2 lumbar vertebrae and proximal tibiae were assessed by µCT, FTIR and SAXS. Presence of extensive trabecular deterioration in the µCT data confirmed the onset of osteoporosis. FTIR compositional parameters were determined including measures of degree of mineralization, crystallinity, collagen maturity and acid phosphate content. Mineral crystal thickness was determined from the SAXS data using two approaches available in literature. Compositionally, a decline in the heterogeneity of acid phosphate content was observed while measures of crystallinity and collagen maturity remained unaltered. Using an iterative curve fitting method, OVX-induced increases in the mineral crystal thickness of 3.8 and 7.8 % (p < 0.05) were noted in the trabecular of the vertebra and tibia, respectively. In conclusion, implementation of FTIR and SAXS techniques in the OVX rat model, identified no significant compositional changes while substantiating thickening of the mineral crystals as a general structural feature of OVX-induced osteoporosis in rats.