ArticlePDF Available

The Genera of Fungi – G6: Arthrographis, Kramasamuha, Melnikomyces, Thysanorea, and Verruconis

Authors:

Abstract and Figures

The Genera of Fungi series, of which this is the sixth contribution, links type species of fungal genera to their morphology and DNA sequence data. Five genera of microfungi are treated in this study, with new species introduced in Arthrographis , Melnikomyces , and Verruconis . The genus Thysanorea is emended and two new species and nine combinations are proposed. Kramasamuha sibika , the type species of the genus, is provided with DNA sequence data for first time and shown to be a member of Helminthosphaeriaceae ( Sordariomycetes ). Aureoconidiella is introduced as a new genus representing a new lineage in the Dothideomycetes .
Content may be subject to copyright.
Fungal Systemacs and Evoluon is licensed under a Creave Commons Aribuon-NonCommercial-ShareAlike 4.0 Internaonal License
© 2020 Westerdijk Fungal Biodiversity Instute 1
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
Fungal Systemacs and Evoluon
doi.org/10.3114/fuse.2020.06.01
VOLUME 6
DECEMBER 2020
PAGES 1–24
INTRODUCTION
This study focuses on ve genera that form part of the Genera of
Fungi project (www.generaoungi.org; Crous et al. 2014a). The
overall intenon of this project is to revise and update the generic
names of fungi, to provide DNA sequence data for them and to
restudy or recollect their type species. In this study, we provide
DNA sequence data for the unusual and poorly known genus
Kramasamuha. Furthermore, the phylogenec posion of the
genus Melnikomyces is claried. We also resolve the taxonomy
and phylogeny of Thysanorea and related Minimelanolocus
species in the Herpotrichiellaceae. Addional new taxa are
introduced based on morphological and DNA sequence data.
MATERIALS AND METHODS
Isolates
Freshly collected leaves and twigs were placed in damp chambers
and treated as described by Castañeda-Ruiz et al. (2016).
Protocols used for the collecon and processing of soil samples
are described in Giraldo et al. (2012, 2019) and Groenewald et al.
(2018). Aer 1 wk of incubaon on 2 % malt extract agar (MEA)
supplemented with penicillin-G and streptomycin, individual
colonies were transferred to MEA plates without anbiocs
and incubated between 22–24 °C for 7–14 d, in order to obtain
axenic cultures.
Colonies were sub-cultured onto 2 % potato dextrose agar
(PDA), oatmeal agar (OA), MEA (Crous et al. 2019), autoclaved
pine needles on 2 % tap water agar (PNA) (Smith et al. 1996),
and incubated at 25 °C under connuous near-ultraviolet light
to promote sporulaon. Reference strains and specimens are
maintained at the Westerdijk Fungal Biodiversity Instute (CBS
Culture Collecon and herbarium, respecvely), Utrecht, The
Netherlands or Coleção Octávio de Almeida Drummond (COAD),
Viçosa, Brazil.
DNA isolaon, amplicaon and analyses
Genomic DNA was extracted from fungal colonies growing on
MEA using the Wizard® Genomic DNA puricaon kit (Promega,
Madison, WI), following the manufacturer’s protocol. The
primers V9G (de Hoog & Gerrits van den Ende 1998) or ITS5
(White et al. 1990) and LR5 (Vilgalys & Hester 1990) were used
to amplify part of the nuclear rDNA operon (ITS) spanning the 3’
end of the 18S nrRNA gene, the rst internal transcribed spacer
(ITS1), the 5.8S nrRNA gene, the second ITS region (ITS2) and
approximately 900 bp of the 5’ end of the 28S nrRNA gene. The
primers ITS4 (White et al. 1990) and LR0R (Vilgalys & Hester
1990) were used as internal sequence primers to ensure high
quality sequences over the enre length of the amplicon. Part
of the 18S small subunit nrRNA gene (SSU) was amplied and
sequenced for selected isolates using NS1 and NS4 (White et
al. 1990). Amplicaon condions followed those described by
Cheewangkoon et al. (2008). Part of the acn gene (act) was
The Genera of Fungi – G6: Arthrographis, Kramasamuha, Melnikomyces, Thysanorea, and Verruconis
M. Hernández-Restrepo1*, A. Giraldo1,2, R. van Doorn1, M.J. Wingeld3, J.Z. Groenewald1, R.W. Barreto4, A.A. Colmán4, P.S.C. Mansur4,
P.W. Crous1,2,3
1Westerdijk Fungal Biodiversity Instute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
2Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South
Africa
3Department of Genecs, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Instute (FABI), University of Pretoria, Pretoria,
0002, South Africa
4Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
*Corresponding author: m.hernandez@wi.knaw.nl
Abstract: The Genera of Fungi series, of which this is the sixth contribuon, links type species of fungal genera to their
morphology and DNA sequence data. Five genera of microfungi are treated in this study, with new species introduced
in Arthrographis, Melnikomyces, and Verruconis. The genus Thysanorea is emended and two new species and nine
combinaons are proposed. Kramasamuha sibika, the type species of the genus, is provided with DNA sequence data
for rst me and shown to be a member of Helminthosphaeriaceae (Sordariomycetes). Aureoconidiella is introduced
as a new genus represenng a new lineage in the Dothideomycetes.
Key words:
DNA barcodes
fungal systemacs
ITS
LSU
new taxa
Corresponding editor:
U. Braun
Effectively published online: 5 February 2020.
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
2
amplied and sequenced for selected isolates using the primer
set Act1/Act4 (Voigt & Wöstemeyer 2000). The soware SeqMan
Pro v. 13.0.0 (DNASTAR, Madison, WI) and Geneious v. 11.0.4
(Kearse et al. 2012; hps://www.geneious.com) were used to
obtain consensus sequences of each isolate. Blast searches using
ITS and LSU sequences were performed for each isolate and the
closest matches were retrieved from GenBank and included in
the phylogenec analyses. Mulple sequence alignments for
individual genes were generated using the online version of
MAFFT (hp://ma.cbrc.jp/alignment/soware/). Subsequent
phylogenec analyses from individual and combined datasets
were conducted using Maximum-likelihood (ML) performed
on the CIPRES Science Gateway portal (Miller et al. 2012) using
RAxML v. 8.2.10 (Stamatakis 2014). The default parameters were
used, and bootstrap support (BS) was obtained using the rapid
bootstrapping algorithm with the automac halt opon. A BS ≥
95 % was considered as stascally signicant. Sequence data
were deposited in the GenBank/ENA public databases (Table 1)
and the alignments and trees in TreeBASE (hp://www.treebase.
org).
Morphology
Slide preparaons were mounted in lacc acid or water from
colonies sporulang on the media previously menoned.
Observaons were made with a Nikon SMZ1500 dissecng
microscope and with a Nikon Eclipse Ni compound microscope
using a DSRi2 digital camera (Nikon, Tokyo, Japan) and NIS-
Elements imaging soware v. 4.3. Colony characters and
pigment producon were noted aer 1–2 wk of growth on
MEA, PDA and OA incubated at 25 ºC under natural light.
Colony colours (surface and reverse) were determined using
the colour charts of Rayner (1970). Taxonomic noveles were
deposited in MycoBank (www.MycoBank.org; Crous et al.
2004).
RESULTS
Phylogeny
Three overview phylogenies were generated in this study. The
rst two of these were based on a paral alignment of LSU to
provide the phylogenec posion of the treated genera and
species within the Dothideomycetes (Fig. 1) and Sordariomycetes
(Fig. 2). A third analysis was implemented for selected
Herpotrichiellaceae genera based on a concatenated ITS/LSU/
SSU alignment (Fig. 3). Other phylogenec trees specic to the
treated species are discussed in the notes for those taxa.
The BLAST search results using the LSU and ITS sequences
for the isolates CBS 145943, CBS 145767, CBS 145768, and JW
showed that they were related to members of Cladoriellales
and Asterinales, Venturiales and Eremomycetales in the
Dothideomycetes. Consequently, the currently accepted taxa
in those orders and other orders in the Dothideomycetes were
included in our analyses (Fig. 1).
The overview phylogeny of Dothideomycetes (Fig. 1)
revealed that in the Arthrographis subclade (96 % BS), the
strains JW 49012, JW 190014, and JW 209002 grouped together
in a separate clade represenng a putave new species that is
described below.
The genus Aureoconidiella is introduced to accommodate
CBS 145943 that formed a lineage disnct from other genera,
families and orders included in the analysis. A new family and
order are introduced for this genus. Furthermore, the isolates
CBS 145767 and CBS 145768 nested in the Sympoventuriaceae
clade (91 % BS) within the Venturiales. They were closely related
but dierent to Melnikomyces vietnamensis and Verruconis
verruculosa, respecvely. These isolates are consequently
considered to represent putave new species in the genera
Melnikomyces and Verruconis that are introduced below.
The overview phylogeny of Sordariomycetes (Fig. 2) revealed
that four isolates, CBS 146133, CBS 146338, CBS 146339,
and COAD 2632 of Kramasamuha sibika grouped together
in a fully-supported terminal clade (100 % BS), related to
Helminthosphaeriaceae (97 % BS).
The combined analysis of the ITS/LSU/SSU (Fig. 3) revealed
that Minimelanolocus and Thysanorea cluster together in the
same clade (86 % BS). Several species treated so far as belonging
to Minimelanolocus, i.e. M. aquacus, M. asiacus, M. curvatus,
M. melanicus, M. obscurus, M. rosselianus, M. submersus, and
M. thailandensis, proved to be congeneric with Thysanorea and
therefore new combinaons are proposed to accommodate
them. In addion, CBS 145909 and CBS 145910 formed a
separate subclade (100 % BS) within Thysanorea, represenng
two putave new species.
Taxonomy
Aureoconidiellales Hern.-Restr. & Crous, ord. nov. MycoBank
MB833918.
Descripon: See descripon of Aureoconidiella.
Type family: Aureoconidiellaceae Hern.-Restr. & Crous
Aureoconidiellaceae Hern.-Restr. & Crous, fam. nov. MycoBank
MB833917.
Descripon: See descripon of Aureoconidiella.
Type genus: Aureoconidiella Hern.-Restr. & Crous
Aureoconidiella Hern.-Restr. & Crous, gen. nov. MycoBank
MB833915.
Etymology: Name refers to the golden brown colour of its
conidia.
Conidiophores macronematous, simple, septate, brown.
Conidiogenous cells integrated, terminal, polyblasc, with
thickened scars, brown to pale brown. Conidia globose to
subglobose with apiculate base, inially subhyaline, golden
brown at maturity, verrucose.
Type species: Aureoconidiella foliicola Hern.-Restr. & Crous
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
3
Table 1. GenBank accession numbers of taxa included in this study.
Tax a Isolates1Country Substrate GenBank accession numbers2References
ITS LSU act/SSU
Dothideomycetes
Aliquandospite khaoyaiensis CBS 118232 Thailand Twig GU301796.1 Schoch et al. (2009)
SS3028 Thailand EF175649.1 Campbell et al. (2007)
Alternaria tenuissima CBS 918.96 UK Dianthus chinensis KC584311.1 Woudenberg et al. (2013)
Alysidiella parasica CBS 120088 South Africa Leaves Eucalyptus sp. DQ923525.1 Summerell et al. (2006)
Apiosporina collinsii CBS 118973 Canada Amelanchier alnifolia GU301798.1 Schoch et al. (2009)
Arthrographis arxii CBS 203.78 India Dung of herbivore GQ272638.1 AB213426.1 HG316563.1/- Murata et al. (2005), Kang et al. (2010),
Giraldo et al. (2014a)
Arthrographis chlamydospora CBS 135936 USA Human urine HG004554.1 HG004543.1 HG316560.1/- Giraldo et al. (2014a)
Arthrographis curvata CBS 135933 USA Human nails HG004557.1 HG004539.1 HG316557.1/- Giraldo et al. (2014a)
CBS 135934 Spain River sediment HG004556.1 HG004542.1 HG316558.1/- Giraldo et al. (2014a)
Arthrographis globosa UTHSC 11-757 USA Bronchial wash HG004553.1 HG004541.1 HG316561.1/- Giraldo et al. (2014a)
Arthrographis grakisi JW 22011 = CBS 145529 The Netherlands Soil MN794359 MN794336 MN816497 This study
JW 22015 The Netherlands Soil MN794360 MN794337 MN816498 This study
JW 22019 The Netherlands Soil MN794361 MN794338 MN816499 This study
JW 49011 The Netherlands Soil MN794362 MN794339 MN816500 This study
JW 49012 The Netherlands Soil MN794363 MN794340 MN816501 This study
JW 180011 The Netherlands Soil MN794364 MN794341 MN816502 This study
JW 190014= CBS 145530 The Netherlands Soil MN794365 MN794342 MN816503 This study
JW 199018 The Netherlands Soil MN794366 MN794343 MN816504 This study
JW 209002 The Netherlands Soil MN794367 MN794344 MN816505 This study
JW 209003 The Netherlands Soil MN794368 MN794345 MN816506 This study
Arthrographis kalrae CBS 693.77 India Sputum AB116536.1 AB116544.1 HG316544.1/- Xi et al. (2004), Giraldo et al. (2014a)
JW 21004 The Netherlands Soil MN794369 MN794346 MN816507 This study
JW 21008 = CBS 145527 The Netherlands Soil MN794370 MN794347 MN816508 This study
JW 21029 The Netherlands Soil MN794371 MN794348 MN816509 This study
Arthrographis longispora CBS 135935 USA Human foot HG004555.1 HG004540.1 HG316559.1/- Giraldo et al. (2014a)
JW 22007 = CBS 145528 The Netherlands Soil MN794372 MN794349 MN816510 This study
Asterina chrysophylli VIC 42823 Brazil Leaves Henrieea
succosa
KP143738.1 Guamosim et al. (2015)
Asterina melastomas VIC 42822 Brazil Leaves Miconia sp. NG_057055.1 Guamosim et al. (2015)
Asterotexis cucurbitacearum PMA M141224 Panama Sechium edule HQ610510.1 Unpublished
VIC 24814 Brazil Leaves Cucurbita pepo NG_057054.1 Guamosim et al. (2015)
Aulographina eucalyp CPC 12986 Australia Eucalyptus cloeziana HM535600.1 Cheewangkoon et al. (2012)
Aureoconidiella foliicola CBS 145943 South Africa Leaves Syzygium
cordatum
MN794373 MN794350 This study
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
4
Table 1. (Connued).
Tax a Isolates1Country Substrate GenBank accession numbers2References
ITS LSU act/SSU
Bezerromyces brasiliensis URM7411 Brazil Tacinga inamoena KX518623.1 Bezerra et al. (2017)
Bezerromyces pernambucoensis URM7412 Brazil Tacinga inamoena KX518624.1 Bezerra et al. (2017)
Blastacervulus eucalyp CBS 124759 Australia Eucalyptus robertsonii
subsp. hemisphaerica
GQ303302.1 Cheewangkoon et al. (2009)
Blastacervulus robbenensis CBS 124780 Cyprus Eucalyptus sp. HM628777.1 Cheewangkoon et al. (2012)
Botryosphaeria dothidea CBS 115476 Switzerland Prunus sp. DQ377852.1 Crous et al. (2006b)
Brachiosphaera tropicalis E192 EF175653.1 Campbell et al. (2007)
Byssosphaeria jamaicana SMH 1403 GU385152.1 Mugambi & Huhndorf (2009a)
Byssosphaeria salebrosa SMH 2387 GU385162.1 Mugambi & Huhndorf (2009a)
Capnodium coeae CBS 147.52 Zaire Berry Coea robusta MH868489.1 Vu et al. (2019)
Cladoriella eucalyp CBS 115899 South Africa Leaves Eucalyptus EU040224.1 Crous et al. (2007b)
Cladoriella kinglakensis CPC 32730 Australia Leaves Eucalyptus MG386126.1 Crous et al. (2017)
Cladoriella paleospora CBS 124761 Australia Leaves Eucalyptus GQ303303.1 Cheewangkoon et al. (2009)
Cladoriella rubrigena CBS 124760 Australia Leaves Eucalyptus MH874921.1 Vu et al. (2019)
Cladoriella xanthorrhoeae CBS 143398 Australia Leaves Xanthorrhoea sp. NG_059054.1 Crous et al. (2017)
Cladosporium halotolerans CBS 127371 Cuba Human MH875988.1 Vu et al. (2019)
Cladosporium variabile CBS 121636 USA Spinacia oleracea MH874684.1 Vu et al. (2019)
Clavaspora thailandica MFLUCC 17-2237 Thailand Hevea brasiliensi MH062960.1 Unpublished
MFLUCC 10-0107 Thailand Dead stems NG_058863.1 Boonmee et al. (2014)
Dibotryon morbosum N/A USA Prunus sp. EF114694.1 Winton et al. (2007)
Diplodia mula CBS 431.82 The Netherlands Dead branches Fraxinus
excelsior
DQ377863.1 Crous et al. (2006b)
Dissoconium aciculare CBS 204.89 Germany Astragalus GU214419.1 Crous et al. (2009a)
Eremomyces bilateralis CBS 781.70 USA Dung of pack rat HG004552.1 HG004545.1 HG316562.1/- Giraldo et al. (2014a)
Fusicladium pini CBS 463.82 The Netherlands Needle Pinus sylvestris EU035436.1 Crous et al. (2007c)
Fusicladium ramoconidii CBS 462.82 The Netherlands Needle Pinus sp. EU035439.1 Crous et al. (2007c)
Gibbera conferta CBS 191.53 Switzerland Vaccinium uliginosum GU301814.1 Schoch et al. (2009)
Gloniopsis arciformis GKM L166A GU323211.1 Schoch et al. (2009)
Glonium circumserpens CBS 123342 Tasmania Wood FJ161208.1 Boehm et al. (2009)
Glonium circumserpens CBS 123343 Tasmania Saxicolous on limestone FJ161200.1 Boehm et al. (2009)
Helicomyces roseus CBS 283.51 Switzerland Dead bark AY856881.1 Tsui et al. (2006)
Herpotrichia juniperi AFTOL-ID 1608 Switzerland Juniperus nana DQ678080.1 Schoch et al. (2009)
Heteroconium eucalyp CBS 120122 Uruguay Leaves Eucalyptus dunnii DQ885893.1 Crous et al. (2006a)
Hysterium angustatum CBS 123334 USA Bark Pinus rigida FJ161207.1 Boehm et al. (2009)
Hysterium pulicare ANM1455 USA GQ221904.1 Mugambi & Huhndorf (2009b)
Hysteropatella clavispora CBS 247.34 USA Salix sp. AY541483.1 Lumbsch et al. (2005)
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
5
Table 1. (Connued).
Tax a Isolates1Country Substrate GenBank accession numbers2References
ITS LSU act/SSU
Hysteropatella prosi H.B. 9934b Germany Malus domesca KT876980.1 Unpublished
Jahnula appendiculata SS2900 Thailand EF175654.1 Campbell et al. (2007)
Jahnula aquaca R68-1 USA EF175655.1 Campbell et al. (2007)
Jahnula bipileata F49-1 USA EF175657.1 Campbell et al. (2007)
Jahnula seychellensis SS2113.1 Thailand EF175665.1 Campbell et al. (2007)
Leptoxyphium fumago CBS 123.26 Indonesia Hibiscus liaceus GU214430.1 Crous et al. (2009a)
Macrophomina phaseolina CBS 227.33 Zea mays DQ377906.1 Crous et al. (2006b)
Melanomma pulvis-pyrius CBS 124080 France Bark Salix caprea GU456323.1 Zhang et al. (2009a)
Melnikomyces thailandicus CBS 145767 Thailand Soil MN794374 MN794351 This study
Melnikomyces vietnamensis CBS 136209 Vietnam Leaves NG_058087.1 Crous et al. (2014b)
Mycosphaerella puncformis CBS 113265 The Netherlands Dead leaves Quercus
robur
DQ470968.1 Spatafora et al. (2006)
Neocoleroa metrosideri PDD107531 New Zealand Metrosideros excelsa NG_059638.1 Johnston & Park (2016)
Neofusicoccum mangiferae CBS 118532 Australia Mangifera indica NG_055730.1 Crous et al. (2006b)
Neofusicoccum nonquaesitum CBS 126655 USA Umbellularia californica NG_058258.1 Yang et al. (2017)
Ochroconis constricta CBS 202.27 USA Soil KF156147.1 Samerpitak et al. (2014)
Ochroconis gamsii CBS 239.78 Sri Lanka Leaf Caryota plumosa NG057992.1 Samerpitak et al. (2014)
Patellaria cf. atrata BCC 28876 Thailand GU371828.1 Schoch et al. (2009)
BCC 28877 Thailand GU371829.1 Schoch et al. (2009)
Phaeocryptopus gaeumannii CBS 267.37 Germany Pseudotsuga menziesii EF114698.1 Winton et al. (2007)
Phaeotrichum benjaminii CBS 541.72 Dung of rodent AY779311.1 Lumbsch et al. (2005)
Phoma herbarum CBS 567.63 USA Fruit Malus sylvestris MH869982.1 Vu et al. (2019)
Pirozynskiella laurisilvaca CBS 138109 Spain Leaves Laurus sp. NG_058462.1 Hernández-Restrepo et al. (2017)
Psiloglonium simulans CBS 206.34 USA Tilia sp. FJ161178.1 Boehm et al. (2009)
Rhexothecium globosum CBS 955.73 Egypt Desert soil MH860827.1 HG004544.1 Giraldo et al. (2014a), Vu et al. (2019)
Rhydhysteron rufulum CBS 306.38 Pistacia chinensis FJ469672.1 Schoch et al. (2009)
Schizothyrium pomi CBS 228.57 Italy EF134947.1 Batzer et al. (2008)
CBS 486.50 The Netherlands Polygonum sachalinense EF134948.1 Batzer et al. (2008)
Scolecobasidiella avellanea CBS 772.73 Somalia Soil EF204505.1 Unpublished
Stemphylium herbarum CBS 191.86 India Leaf Medicago sava JX681120.1 Verkley et al. (2014)
Sympoventuria capensis CBS 120136 South Africa Leaf lier Eucalyptus sp. NG_057984.1 Samerpitak et al. (2014)
Teratosphaeria destructans CBS 111369 Indonesia Eucalyptus grandis EU019287.2 Crous et al. (2007a)
Teratosphaeria brillosa CBS 121707 South Africa Leaves Protea sp. KF902075.1 Quaedvlieg et al. (2014)
Teratosphaeria stellenboschiana CBS 116428 South Africa Leaf lier Eucalyptus sp. EU019295.1 Crous et al. (2007a)
Trichodelitschia bisporula CBS 262.69 The Netherlands Dung of Rabbit GU348996.2 Schoch et al. (2009)
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
6
Table 1. (Connued).
Tax a Isolates1Country Substrate GenBank accession numbers2References
ITS LSU act/SSU
Tubeua paludosa CBS 245.49 The Netherlands Corylus avellana MH856510.1 Vu et al. (2019)
Uwebraunia commune CBS 110747 South Africa Eucalyptus nitens GQ852589.1 Crous et al. (2009b)
Uwebraunia dekkeri CBS 111282 Zambia Eucalyptus globulus GU214425.1 Crous et al. (2009b)
Venturia inaequalis CBS 176.42 France GU348998.1 Schoch et al. (2009)
Venturia populina CBS 256.38 Italy Populus canadensis GU323212.1 Schoch et al. (2009)
Verruconis calidiuminalis CBS 125818 Japan Hot spring euent NG_057985.1 Samerpitak et al. (2014)
Verruconis gallopava CBS 547.81 New Zealand KF156109.1 Samerpitak et al. (2014)
CBS 437.64 USA Brain abscess Meleagris
gallopavo
NG_58016.1 Machouart et al. (2014)
Verruconis thailandica CBS 145768 Thailand Soil MN794375 MN794352 This study
Verruconis verruculosa CBS 119775 Malaysia Root Hevea species KF282668.1 Machouart et al. (2014)
Xiliomyces brasiliensis URM7413 Brazil Tacinga inamoena KX518625.1 Bezerra et al. (2017)
Zasmidium cellare CBS 146.36 Wall in wine cellar EU041878.1 Arzanlou et al. (2007)
Euroomycetes
Aculeata aquaca MFLUCC 11-0529 Thailand Submerged wood MG922575.1 MG922579.1 /MG922571.1 Dong et al. (2018)
Capronia pilosella AFTOL-ID 657 – – DQ823099.1 DQ823106.1 /DQ826737.1 James et al. (2006)
Cladophialophora carrionii CBS 160.54 Australia Man FJ358234.1 FJ358302.1 /AF050262.1 Gueidan et al. (2008), Untereiner &
Naveau (1999)
Cladophialophora minourae CBS 556.83 Japan Decaying wood FJ358235.1 FJ358303.1 /AY251087.1 Braun et al. (2003), Gueidan et al.
(2008)
Cladophialophora parmeliae CBS 129337 Portugal JQ342182.1 – –/JQ342180.1 Diederich et al. (2013)
Cladophialophora sublis CBS 122642 The Netherlands Ice tea NG_058961.1 KX822283.1 /NR_111363.1 Badali et al. (2008), Vasse et al. (2017)
Cyphellophora oxyspora CBS 698.73 Sri Lanka KC455262.1 KC455305.1 /KC455249.1 Réblová et al. (2013)
Cyphellophora sessilis CBS 243.85 The Netherlands Resin Picea abies EU514700.1 KC455308.1 /EU514700.1 Untereiner et al. (2008), Réblová et al.
(2013)
Exophiala jeanselmei CBS 507.90 Uruguay Man FJ358242.1 FJ358310.1 /NR_111129.1 Gueidan et al. (2008)
Exophiala nigra dH 12,296 – – FJ358244.1 FJ358312.1 Gueidan et al. (2008)
Exophiala pisciphila CBS 537.73 USA Ictalurus punctatus MH872483.1 JN856018.1 /AF050272.1 de Hoog et al. (2011), Untereiner &
Naveau (1999), Vu et al. (2019)
AFTOL-ID 669 – – DQ823101.1 DQ823108.1 /DQ826739.1 Gueidan et al. (2008)
Exophiala salmonis AFTOL-ID 671 – – EF413609.1 EF413608.1 Geiser et al. (2006)
CBS 157.67 Canada Salmo clarkii MH870616.1 JN856020.1 /NR_121270.1 de Hoog et al. (2011), Schoch et al.
(2014), Vu et al. (2019)
Exophiala xenobioca CBS 115831 Germany Browncol FJ358246.1 FJ358314.1 /AY857539.1 Gueidan et al. (2008)
Fonsecaea monophora CBS 102243 FJ358247.1 FJ358315.1 /EU938579.1 Gueidan et al. (2008)
Melanoctona tectonae MFLUCC 12-0389 Thailand Tectona grandis KX258779.1 KX258780.1 /KX258778.1 Unpublished
Phialophora americana AFTOL-ID 658 – – FJ358226.1 FJ358294.1 Gueidan et al. (2008)
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
7
Table 1. (Connued).
Tax a Isolates1Country Substrate GenBank accession numbers2References
ITS LSU act/SSU
Phialophora verrucosa AFTOL-ID 670 – – EF413615.1 EF413614.1 Geiser et al. (2006)
Rhinocladiella anceps AFTOL-ID 659 – – DQ823102.1 DQ823109.1 /DQ826740.1 James et al. (2006)
Rhinocladiella anceps CBS 181.65 Canada Soil EU041862.1 AY554292.1 /MH858534.1 Arzanlou et al. (2007)
Thysanorea asiaca MFLUCC 15-0237 China Submerged wood KR215610.1 KR215615.1 /KR215604.1 Liu et al. (2015)
Thysanorea cantrelliae CBS 145909 USA Unidened twig MN794376 MN794353 /MN794382 This study
Thysanorea curvata MFLUCC 15-0259 China Submerged wood KR215609.1 KR215614.1 /KR215605.1 Liu et al. (2015)
Thysanorea lotorum CBS 235.78 USA Root Lotus corniculatus MH872892.1 – –/MH861130.1 Vu et al. (2019)
KUMCC 15-0206 China Submerged wood KX789215.1 – –/KX789212.1 Liu et al. (2015)
Thysanorea melanica MFLUCC 15-0415 China Submerged wood KR215613.1 KR215618.1 /KR215608.1 Liu et al. (2015)
Thysanorea nonramosa MFLUCC 17-2378 Thailand Wood MH532970.1 – –/MH532971.1 Wang et al. (2019)
Thysanorea obscura MFLUCC 15-0416 China Submerged wood KR215611.1 KR215616.1 /KR215606.1 Liu et al. (2015)
Thysanorea papuana CBS 212.96 Papua New Guinea EU041871.1 – –/EU041814.1 Arzanlou et al. (2007)
MFLUCC 15-0966 Thailand Submerged wood MG922576.1 MG922580.1 /MG922572.1 Dong et al. (2018)
Thysanorea rousseliana CBS 126086 Spain Dead branches Quercus
ilex
MH875246.1 – –/MH863784.1 Vu et al. (2019)
Thysanorea seiferi CBS 145910 USA Unidened twig MN794377 MN794354 /MN794383 This study
Thysanorea thailandensis MFLUCC 15-0971 Thailand Submerged wood MG922577.1 MG922581.1 /MG922573.1 Dong et al. (2018)
Thysanorea yunnanense MFLUCC 15-0414 Thailand Submerged wood KR215612.1 KR215617.1 /KR215607.1 Liu et al. (2015)
Veronaea botryosa CBS 254.57 Italy Sansa olive EU041873.1 JN856021.1 /EU041816.1 Arzanlou et al. (2007)
MFLUCC 11-0072 Thailand Submerged wood MG922574.1 MG922578.1 /MG922570.1 Dong et al. (2018)
Veronaea compacta CBS 268.75 South Africa EU041876.1 – –/EU041819.1 Arzanlou et al. (2007)
Veronaea japonica CBS 776.83 Japan Dead bamboo culm EU041875.1 – –/EU041818.1 Arzanlou et al. (2007)
Sordariomycetes
Anthostomella sp. SMH3101 USA AY780050.1 Miller & Huhndorf (2005)
Camarops tubulina SMH4614 Denmark AY346266.1 Huhndorf et al. (2004)
Camarops ustulinoides SMH1988 USA AY346267.1 Huhndorf et al. (2004)
Chaetosphaeria ovoidea SMH2605 USA AF064641.1 Fernandez et al. (1999)
Coniochaeta discoidea SANK 12878 AY346297.1 Huhndorf et al. (2004)
Coniochaedium savoryi TRTC 51980 AY346276.1 Huhndorf et al. (2004)
Cytospora ceratosperma AR3426 Austria Quercus robur AF408387.1 Castlebury et al. (2002)
Diaporthe phaseolorum FAU458 USA AY346279.1 Huhndorf et al. (2004)
Echinosphaeria canescens JHC97-006 KF765604.1 Miller et al. (2014)
SMH4666 KF765605.1 Miller et al. (2014)
SMH4791 AY436403.1 Miller & Huhndorf (2004)
TL5730 AY436404.1 Miller & Huhndorf (2004)
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
8
Table 1. (Connued).
Tax a Isolates1Country Substrate GenBank accession numbers2References
ITS LSU act/SSU
Eutypa sp. SMH3580 Panama Branch AY346280.1 Huhndorf et al. (2004)
Fusarium ambrosium SMH1999 AY780077.1 Miller & Huhndorf (2005)
Helminthosphaeria carpathica SMH3903 KF765606.1 Miller et al. (2014)
Helminthosphaeria cf. stuppea JF04120 KF765611.1 Miller et al. (2014)
TL11998 KF765612.1 Miller et al. (2014)
Helminthosphaeria clavariarum SMH4609 Denmark Clavulina cristata AY346283.1 Huhndorf et al. (2004)
Helminthosphaeria corciorum JF04225 KF765607.1 Miller et al. (2014)
Helminthosphaeria odonae ANM928 KF765610.1 Miller et al. (2014)
Helminthosphaeria tomaculum SMH2485 KF765613.1 Miller et al. (2014)
Helminthosphaeria triseptata JF04015 KF765614.1 Miller et al. (2014)
Hilberina caudata SMH1542 KF765615.1 Miller et al. (2014)
Hilberina munkii SMH1531 KF765616.1 Miller et al. (2014)
Kramasamuha sibiki CPC 35619 = CBS 146338 Australia Leaves Lophostemon
confertus
MN794378 MN794355 This study
CPC 36725 = CBS 146339 Malaysia Needles Pinus
tecunumanii
MN794379 MN794356 This study
CBS 146133 = CPC 36153 South Africa Leaves Syzygium
cordatum
MN794380 MN794357 This study
COAD 2632 Brazil Leaves Hypericum
innodorum
MN794381 MN794358 This study
Lasiosphaeria ovina SMH1538 AF064643.1 Fernandez et al. (1999)
Neurospora crassa MUCL 19026 AF286411.1 Untereiner et al. (2001)
Ruzenia spermoides ANM163 KF765618.1 Miller et al. (2014)
SMH4606 AY436422.1 Miller & Huhndorf (2004)
SMH4655 KF765619.1 Miller et al. (2014)
Sporoschisma hemipsila SMH2125 AY346292.1 Huhndorf et al. (2004)
Synaptospora plumbea ANM963 KF765620.1 Miller et al. (2014)
SMH3962 KF765621.1 Miller et al. (2014)
Valsonectria pulchella SMH1193 AY346304.1 Huhndorf et al. (2004)
1 BCC: BIOTEC Culture Collecon, Naonal Center for Genec Engineering and Biotechnology (BIOTEC), Bangkok, Thailand; CBS: Culture Collecon of the Westerdijk Fungal Biodiversity Instute, Utrecht,
The Netherlands; COAD: Coleção Octávio de Almeida Drummond, Viçosa, Brazil; CPC: Culture Collecon of Pedro Crous, Utrecht, The Netherlands; JW: Johanna Westerdijk Culture Collecon, Utrecht, The
Netherlands; MFLUCC: Mae Fah Luang University Culture Collecon, Chiang Rai, Thailand; UTHSC: Fungus Tesng Laboratory of the University of Texas Health Science Center at San Antonio, USA. For other
acronyms see references.
2 LSU: Large subunit of the nrDNA; SSU: Small subunit of the nrDNA; ITS: internal transcribed spacer regions of the nrDNA and intervening 5.8S nrDNA; act: paral acn gene. Accession numbers of sequences
newly generated in this study are indicated in bold.
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
9
Melanommataceae
Gloniaceae
Hysteriaceae
Pleosporaceae
Didymellaceae
Botryosphaeriaceae
Tubeufiaceae
Eremomycetaceae
Bezerromycetaceae
Patelleriaceae
Asterotexiaceae
Incertae sedis
Schizothyriaceae
Dissoconiaceae
Aliquandostipitaceae
HYSTERIALES
MYTILIDINALES
PLEOSPORALES
BOTRYOS-
PHAERIALES
TUBEUFIALES
BEZERRO-
MYCETALES
JAHNULALES
ASTERO-
TEXIALES
CAPNODIALES
PATELLERIALES
I
EREMO-
MYCETALES
INCERTAE SEDIS
JW190014
Jahnula bipileata F49-1
Hysterium pulicare ANM1455
Eremomyces bilateralis CBS 781.70
Arthrographis globosa UTHSC 11-757
Aliquandostipite khaoyaiensis SS3028
Uwebraunia dekkeri CBS 111282
Gloniopsis arciformis GKM L166A
Diplodia mutila CBS 431.82
Brachiosphaera tropicalis E192-1
Arthrographis curvata CBS 135934
Botryosphaeria dothidea CBS 115476
Aliquandostipite khaoyaiensis CBS 118232
Rhytidhysteron rufulum CBS 306.38
Asterotexis cucurbitacearum VI 24814
Rhexothecium globosum CBS 955.73
Jahnula appendiculata SS2900
Byssosphaeria salebrosa SMH 2387
Asterotexis cucurbitacearum PMM 0141224
Arthrographis longispora CBS 135935
Herpotrichia juniperi AFTOL-ID 1608
Dissoconium aciculare CBS 204.89
Pirozynskiella laurisilvatica CBS 138109
Phoma herbarum CBS 567.63
Neofusicoccum nonquaesitum CBS 126655
Arthrographis kalrae CBS 693.77
Alternaria tenuissima CBS 918.96
Tubeufia paludosa CBS 245.49
Neofusicoccum mangiferae CBS 118532
Macrophomina phaseolina CBS 227.33
Schizothyrium pomi CBS 486.50
Hysterium angustatum CBS 123334
Xiliomyces brasiliensis URM 7413
Uwebraunia communis CBS 110747
Schizothyrium pomi CBS 228.57
JW209002
Helicomyces roseus CBS 283.51
Glonium circumserpens CBS 123343
Psiloglonium simulans CBS 206.34
Byssosphaeria jamaicana SMH 1403
Arthrographis arxii CBS 203.78
Hysteropatella prostii H-9934b
Jahnula aquatica R68-1
Melanomma pulvis-pyrius CBS 124080
Hysteropatella clavispora CBS 247.34
Glonium circumserpens CBS 123342
Pleospora herbarum var. herbarum CBS 191.86
Bezerromyces brasiliensis URM 7411
Bezerromyces pernambucoensis URM 7412
JW49012
Jahnula seychellensis SS2113-1
Arthrographis grakistii sp. nov.
97
97
87
100
98
93
100
96
99
100
96
100
95
85
100
98
88
100
96
96
75
94
98
97
100
90
90
99
100
99
100
76
100
100
80
100
Fig. 1. Maximum composite likelihood tree obtained from the RAxML analysis of the LSU sequence alignment of selected Dothideomycetes. Bootstrap
support values above 70 % are shown at the nodes. Families and orders are indicated with coloured blocks to the right of the tree. Taxonomic
noveles described in this study are indicated in boldface. The tree was rooted to Yarrowia hollandica (CBS 4855).
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
10
Teratosphaeriaceae
Cladosporiaceae
Capnodiaceae
Asterinaceae
Patelleriaceae
Cladoriellaceae
Sympoventuriaceae
Venturiaceae
Phaeotrichaceae
Mycosphaerellaceae
0.2
CAPNODIALES
PATELLARIALES
II
ASTERINALES
CLADORIELLA-
LES
VENTURIALES
PHAEOTRICHA-
LES
Fusicladium ramoconidii CBS 462.82
Aulographina eucalypti CPC 12986
Verruconis calidifluminalis CBS 125818
Blastacervulus eucalypti CBS 124759
Melnikomyces thailandicus sp. nov. CBS 145767
Blastacervulus robbenensis CBS 124780
Ochroconis constricta CBS 202.27
Leptoxyphium fumago CBS 123.26
Venturia inaequalis CBS 176.42
Cladoriella rubrigen CBS 124760
Saccharomyces cerevisiae DAOM 216365
Phaeocryptopus gaeumannii CBS 267.37
Scolecobasidiella avellanea CBS 772.73
Cladosporium halotolerans CBS 127371
Verruconis gallopava CBS 547.81
Yarrowia hollandica CBS 4855
Cladoriella xanthorrhoeae CBS 143398
Patellaria cf. atrata BCC 28876
Asterina chrysophylli VI 42823
Clavatispora thailandica MFLUCC 10-0107
Venturia populina CBS 256.38
Neocoleroa metrosideri PDD 107531
Apiosporina collinsii CBS 118973
Asterina melastomatis VI 42822
Teratosphaeria destructans CBS 111369
Teratosphaeria fibrillosa CBS 121707
Capnodium coffeae CBS 147.52
Clavatispora thailandica MFLUCC 17-2237
Trichodelitschia bisporula CBS 262.69
Cladosporium variabile CBS 121636
Patellaria cf. atrata BCC 28877
Cladoriella paleospora CBS 124761
Melnikomyces vietnamensis CBS 136209
Alysidiella parasitica CBS 120088
Verruconis thailandica sp. nov. CBS 145768
Ochroconis gamsii CBS 239.78
Cladoriella kinglakensis CPC 32730
Fusicladium pini CBS 463.82
Cladoriella eucalypti CBS 115899
Apiosporina morbosa N/A
Sympoventuria capensis CBS 120136
Zasmidium cellare CBS 146.36
Phaeotrichum benjaminii CBS 541.72
Gibbera conferta CBS 191.53
Verruconis verruculosa CBS 119775
Teratosphaeria stellenboschiana CBS 116428
Ramularia punctiformis CBS 113265
Heteroconium eucalypti CBS 120122
Verruconis gallopava CBS 437.64
87
97
100
74
100
100
92
98
100
80
91
86
92
92
83
100
82
91
92
99
100
91
99
82
100
100
84
100
99
99
100
91
93
100
100
100
Aureoconidiella foliicola gen. et sp. nov. CBS 145943 Aureoconidiellaceae fam. nov. AUREOCONIDIELLALES
ORD. NOV.
Fig. 1. (Connued).
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
11
Sordariaceae
Chaetosphaeriaceae
Helminthosphaeriaceae
Boliniaceae
Lasiosphaericeae
Coniochaetaceae
Valsaceae
Diaporthaceae
Nectriaceae
Bionectriaceae
Xylariaceae
Diatrypaceae
Ruzenia spermoides SMH4606
Helminthosphaeria cf. stuppea JF04120
Hilberina caudata SMH1542
Helminthosphaeria triseptata JF04015
Echinosphaeria canescens SMH4666
Echinosphaeria canescens TL5730
Valsonectria pulchella SMH1193
Helminthosphaeria clavariarum SMH4609
Echinosphaeria canescens JHC97 006
Helminthosphaeria corticiorum JF04225
Synaptospora plumbea ANM963
Camarops tubulina SMH4614
Ruzenia spermoides SMH4655
Chaetosphaeria ovoidea SMH2605
Synaptospora plumbea SMH3962
Helminthosphaeria tomaculum SMH2485
Helminthosphaeria cf. stuppea TL11998
Helminthosphaeria odontiae ANM928
Fusarium ambrosium SMH1999
Coniochaeta discoidea SANK 12878
CBS 146133
Camarops ustulinoides SMH1988
Helminthosphaeria carpathica SMH3903
Orbilia auricolor AFTOL-ID 906
Orbilia vinosa AFTOL-ID 905
Eutypa sp SMH3580
Sporoschisma hemipsila SMH2125
Diaporthe phaseolorum FAU458
Coniochaetidium savoryi TRTC 51980
Hilberina munkii SMH1531
Ruzenia spermoides ANM163
Echinosphaeria canescens SMH4791
Cytospora ceratosperma AR3426
Neurospora crassa MUCL 19026
COAD 2632
Lasiosphaeria ovina SMH 1538
Anthostomella sp. SMH3101
CBS 146338
CBS 146339
Kramasamuha sibiki
0.06
100
77
100
100
100
77
86
86
100
97
93
97
99
96
100
100
96
92
99
76
100
100
100
72
SORDARIALES II
HYPOCREALES
XYLARIALES
SORDARIALES I
CHAETOS-
PHAERIALES
BOLINIALES
CONIOCHAETA-
LES
DIAPORTHALES
Fig. 2. Maximum composite likelihood tree obtained from the RAxML analysis of the LSU sequence alignment of selected Sordariomycetes. Bootstrap
support values above 70 % are shown at the nodes. Families and orders are indicated with coloured blocks to the right of the tree. Included strains
described in this study are indicated in boldface. The tree was rooted to Orbilia vinosa (AFTOL-ID 905) and Orbilia auricolor (AFTOL-ID 906).
Aureoconidiella foliicola Hern.-Restr. & Crous, sp. nov.
MycoBank MB833916. Fig. 4.
Etymology: The epithet “foliicola” refers to its habitat on a dead
leaf.
Mycelium consisng of septate, smooth, brown, 1–2.5 µm wide
hyphae. Conidiophores macronematous, simple, septate, brown,
40–85 × 3–5.5 µm. Conidiogenous cells integrated, terminal,
polyblasc, with thickened scars, brown to pale brown, 25–53
× 3–4.5 µm. Conidia globose to subglobose with apiculate base,
inially subhyaline, golden brown at maturity, verrucose, 5–8
µm diam, base 1–2 µm wide.
Culture characteriscs: On MEA and OA surface coony aerial
mycelium Fawn, sepia to dark brick close to the agar, margin
euse, enre; reverse sepia to black.
Typus: South Africa, KwaZulu-Natal, Richards Bay, on living
leaves of Syzygium cordatum (Myrtaceae), Jun. 2016, M.J.
Wingeld (holotype CBS H-24099, culture ex-type CPC 36154 =
CBS 145943).
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
12
0.03
Cyphellophora sessilis CBS 243.85
Veronaea japonica CBS 776.83
Exophiala xenobiotica CBS 115831
Exophiala jeanselmei CBS 507.90
Veronaea botryosa MFLUCC 11-0072
Capronia pilosella AFTOL-ID 657
“Minimelanolocus submersus” KUMCC 15-0206
Rhinocladiella anceps CBS 181.65
“Minimelanolocus obscurus” MFLUCC 15-0416
“Minimelanolocus aquaticus” MFLUCC 15-0414
Exophiala nigra dH 12,296
Rhinocladiella anceps AFTOL-ID 659
Exophiala salmonis CBS 157.67
“Minimelanolocus melanicus” MFLUCC 15-0415
Exophiala salmonis AFTOL-ID 671
Fonsecaea monophora CBS 102243
Phialophora americana AFTOL-ID 658
Cyphellophora oxyspora CBS 698.73
Thysanorea seifertii sp. nov. CBS 145910
Phialophora verrucosa AFTOL-ID 670
Cladophialophora parmeliae CBS 129337
Melanoctona tectonae MFLUCC 12-0389
“Minimelanolocus asiaticus” MFLUCC 15-0237
Cladophialophora subtilis CBS 122642
Veronaea compacta CBS 268.75
Cladophialophora minourae CBS 556.83
Exophiala pisciphila AFTOL-ID 669
Veronaea botryosa CBS 254.57
Thysanorea papuana MFLUCC 15-0966
Thysanorea papuana CBS 212.96
“Minimelanolocus thailandensis” MFLUCC 15-0971
Aculeata aquatica MFLUCC 11-0529
“Pseudospiropes lotorum” CBS 235.78
Exophiala pisciphila CBS 537.73
Cladophialophora carrionii CBS 160.54
“Minimelanolocus nonramosus” MFLUCC 17-2378
“Minimelanolocus rousselianus” CBS 126086
97
80
100
100
89
100
76
100
99
94
89
73
86
100
100
97
98
73
88
100
100
75
81
98
99
100
Herpotrichiellaceae
Thysanorea
Thysanorea cantrelliae sp. nov. CBS 145909
Fig. 3. Maximum composite likelihood tree obtained from the RAxML analysis of the ITS/LSU/SSU sequence alignment of selected Herpotrichiellaceae.
Bootstrap support values above 70 % are shown at the nodes. Taxonomic noveles described in this study are indicated in boldface. The tree was
rooted to Cyphellophora oxyspora (CBS 698.73) and Cyphellophora sessilis (CBS 243.85).
Notes: This new lineage is introduced to accommodate a fungus
characterised by unbranched conidiophores, cicatrised and
sympodial conidiogenous cells with thickened scars, producing
sub-globose, verruculose, and golden brown conidia. Other
related lineages are those accommodang Asterinales and
Cladoriellales (Fig. 1). However, they dier from those in the
Aureoconidiellales based on the morphology of the asexual
morphs. The Asterinales is mainly characterised by taxa that are
coelomycetes with pycnothyrial conidiomata (Guamosim et
al. 2015, Jaklitsch et al. 2016). The Cladoriellales is a monotypic
order related to cladosporium-like hyphomycetous fungi with
conidia frequently remaining aached in long acropetal chains
(Crous et al. 2006c, 2017).
Authors: M. Hernández-Restrepo, P.W. Crous and M.J. Wingeld
Arthrographis Sigler & J.W. Carmich., Mycotaxon 4: 359. 1976.
Synonym: [Arthrographis G. Cochet, Annls Parasit. Hum. Comp.
17: 97. 1939. (Nom. inval., Art. 39.1)]
Vegetave hyphae septate, hyaline, smooth- and thin-walled.
Conidiophores macro- or micronematous, erect, simple or
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
13
poorly branched, hyaline, smooth-walled. Conidiogenous
hyphae simple or branched, thin-walled, forming septa
basipetally to form arthroconidia released by schizolyc
secession. Arthroconidia unicellular, cylindrical or cuboid,
straight, subhyaline, thick- and smooth-walled. Synasexual
morph trichosporiella-like, with conidia growing directly on
undierenated hyphae, sessile, lateral, terminal, globose,
subglobose or clavate, subhyaline, thin- and smooth-walled.
Sexual morph not observed.
Type species: Arthrographis kalrae (R.P. Tewari & Macph.) Sigler
& J.W. Carmich.
Arthrographis kalrae (R.P. Tewari & Macph.) Sigler & J.W.
Carmich., Mycotaxon 4: 360. 1976.
Basionym: Oidiodendron kalrae R.P. Tewari & Macph., Mycologia
63: 603. 1971 [as ‘kalrai’].
Synonym: [Arthrographis langeronii G. Cochet (as langeroni’),
Annls Parasit. hum. comp. 17: 97. 1939. (Nom. inval., Art. 39.1)]
Descripons and illustraons: Sigler & Carmichael (1976, 1983),
Giraldo et al. (2014a).
Specimens examined: The Netherlands, Utrecht, isolated from
soil, 2017, E. Kieviet (JW 21004 = CBS 145527), ibid. JW 21008,
ibid. JW 21029.
Arthrographis grakisi Giraldo López & Hern.-Restr., sp. nov.
MycoBank MB833677. Fig. 5.
Etymology. Named aer Ewan Grakist, who collected the soil
sample. This species was discovered as part of a Cizen Science
project in the Netherlands.
Fig. 4. Aureoconidiella foliicola gen. et sp. nov. (CBS 145943). A. Conidiophores and conidia. B. Conidiophore with conidiogenous cell. C, D.
Conidiogenous cells giving rise to conidia. E. Conidia. Scale bars: A = 20 μm, all others = 10 μm.
Fig. 5. Arthrographis grakisi sp. nov. (CBS 145530). A. Poorly branched conidiophores and arthroconidia. B, C. Trichosporiella-like synasexual morph.
Scale bars = 10 μm.
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
14
Vegetave hyphae septate, hyaline, smooth- and thin-
walled, 1.5–2 μm wide. Conidiophores semi-macronematous
or micronematous, erect, simple, hyaline, smooth-walled.
Conidiogenous hyphae simple or branched, 1.5–2 μm wide, thin-
walled, forming septa basipetally to form arthroconidia released
by schizolyc secession. Arthroconidia unicellular, cylindrical or
cuboid, straight, 2–4 × 2–3 μm, subhyaline, thick- and smooth-
walled. Synasexual morph trichosporiella-like with conidia
growing directly on undierenated hyphae, sessile, somemes
with a subcylindrical to clavate intercalary cell, lateral, terminal,
globose, subglobose or clavate, 3–5 × 2–3 μm, subhyaline, thin-
and smooth-walled. Sexual morph not observed.
Culture characteriscs: Colonies at 25 °C aer 14 d: on OA
reaching 13–14 mm, at, glabrous to occose, surface and
reverse bu. On MEA and PDA reaching 11–13 mm and
12–17 mm, respecvely; at or raised, dusty to coony at
centre, glabrous toward the periphery, bu to honey, reverse
uncoloured. No growth at 37 °C.
Typus: The Netherlands, Utrecht Province, Wijk bij Duurstede,
from garden soil, 2017, E. Grakist (holotype CBS H-23912,
culture ex-type CBS 145530 = JW 190014).
Addional materials examined: The Netherlands, Utrecht Province,
IJsselstein, from garden soil, 2017, J. Brus (JW 209002, JW 209003);
from garden soil, 2017, R. de Bruyn (JW 180011); Utrecht, from garden
soil, 2017, M. Wickham (JW 199018); Zeeland Province, Vlissingen,
from garden soil, 2017, N. Penabad (CBS 145529 = JW 22011, JW 22015,
JW 22019); Gelderland Province, Zaltbommel, from garden soil, 2017,
K. & T. de Man (JW 49011, JW 49012).
Notes: Based on a BLAST search using the ITS and LSU loci
several soil isolates (JW isolates listed in Table 1) were idened
as belonging to Arthrographis. In order to conrm their identy
at the species level, a combined analysis of the LSU/ITS/act loci
was performed, including all members from Eremomycetaceae.
The ML tree (Fig. 6) showed that three isolates (JW 21004,
JW 21008 and JW 21029) grouped with the type species of A.
kalrae (CBS 693.77) and one (JW 22007) with A. longispora (CBS
135935). However, most of the isolates formed a well-supported
clade that represents the new species A. grakisi.
The phylogenec analyses showed that A. grakisi is closely
related to A. longispora (Figs 1, 6). The laer species, however,
has longer and narrower arthroconidia [5–10(–13) × 1–1.5 μm
in A. longispora vs. 2–4 × 2–3 μm in A. grakisi] and does not
produce the trichosporiella-like synasexual morph in culture
(Giraldo et al. 2014a).
Morphologically, A. grakisi resembles A. kalrae and A.
curvata in having cylindrical arthroconidia and a trichosporiella-
like synasexual morph. Arthrographis kalrae and A. curvata are
able to grow at 37 °C (Sigler & Carmichael 1983, Giraldo et al.
2014a), while A. grakisi does not grow at this temperature.
Authors: A. Giraldo López and M. Hernández-Restrepo
Kramasamuha Subram. & Vial, Canad. J. Bot. 51: 1128. 1973.
Conidiophores erect, exuous, solitary to fasciculate, arising
from a swollen basal cell, which appears lobed due to rhizoids;
medium brown, smooth, mul-septate, simple or branched,
giving rise to parallel spes, becoming paler towards apex,
terminang in an acute conidiogenous cell. Conidiogenous
cells monoblasc, pale brown, ampulliform, straight to curved,
tapering to a truncate apex, thin-walled, solitary or in clusters,
integrated or discrete, terminal and intercalary. Conidia solitary,
smooth, septate, obovoid to pyriform; second cell from base
thick-walled, dark brown, somewhat swollen, basal and apical
cell subhyaline, with short narrow separang cell at base as
remnant from conidiogenous cell.
Type species: Kramasamuha sibika Subram. & Vial
Kramasamuha sibika Subram. & Vial, Canad. J. Bot. 51: 1129.
1973. Fig. 7.
Typus: India, Tamil Nadu, Chingleput district, Vandalur, on dead
leaves of Gymnosporia emarginata (Celastraceae), 23 Apr. 1971,
B.P.R. Vial, Herb. MUBL 2153 (not seen).
Occurring on leaf lier. Conidiophores erect, exuous, solitary
to fasciculate, arising from a swollen basal cell, 10–14 µm diam,
which appears lobed due to rhizoids; medium brown, thin-
walled, smooth, mul-septate, septa 17–30 µm apart, up to 550
µm tall, 3–5 µm diam, unbranched or branched, giving rise to
parallel spes, becoming paler towards apex, terminang in an
acute conidiogenous cell. Conidiogenous cells monoblasc, pale
brown, ampulliform, straight to curved, tapering to a truncate
apex, thin-walled, solitary or in clusters of 2–4, integrated or
discrete, terminal and intercalary, 4–8 × 3–4 µm. Conidia solitary,
smooth, (1–)2(–3)-septate, blastoconidia, obovoid to pyriform,
apex obtuse, (18–)25–27(–34) × (10–) 11(–12) µm; second cell
from base thick-walled, dark brown, somewhat swollen, basal
and apical cell subhyaline, with short narrow separang cell at
base as remnant from conidiogenous cell, 1–1.5 × 1 µm.
Culture characteriscs: Colonies on OA with scarce aerial
mycelium, coony to velvety, grey olivaceous, submerged
mycelium vinaceous, margin euse, irregular, reverse vinaceous.
Conidiophores, conidiogenous cells, and conidia very similar to
those observed in natural substrate. Conidiogenous cells 4.5–9 ×
2.5–4 µm. Conidia 14–32.5 × 9–14 µm, (0–)2(–3)-septate.
Materials examined: Australia, New South Wales, Mallanganee,
on leaves of Lophostemon confertus (Myrtaceae), 17 Apr. 2018,
A.J. Carnegie, CBS 146338. Brazil, state of Minas Gerais, Viçosa, on
Hypericum innodorum (Hypericaceae) leaves bearing necroc spots
caused by Seimatosporium hypericinum (Pinaceae), 4 Jul. 2017,
A.A. Colmán (VIC 47176, COAD 2632). Malaysia, on needles of Pinus
tecunumanii, Oct. 2018, M.J. Wingeld, CBS 146339. South Africa,
KwaZulu-Natal, Richards Bay, on living leaves of Syzygium cordatum
(Myrtaceae), Jun. 2016, M.J. Wingeld, CBS 146133 = CPC 36153.
Notes: Kramasamuha resembles the genus Garnaudia and
some species of Endophragmiella in having conidia with a
short narrow separang cell at the base as remnant from
the conidiogenous cell. However, species in these genera
can be disnguished by the arrangement and colour of the
conidiogenous cells. In Kramasamuha they are pale brown and
solitary or in clusters along the conidiophores (Subramanian &
Vial 1973). In Garnaudia, the conidiogenous cells are brown,
and vercillate in terminal branches (Borowska 1977), while
in Endophragmiella the conidiogenous cells are hyaline and
mainly solitary and terminal (Hughes 1979, Seifert et al. 2011).
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
15
Kramasamuha is a monotypic genus originally described from
India on Gymnosporia emarginata (Subramanian & Vial 1973).
However, the specimens examined here were from dierent
substrates and connents, i.e. Lophostemon confertus in
Australia, Hypericum×innodorum in Brazil, Pinus tecunumanii in
Malaysia, and Syzygium cordatum in South Africa and can thus
not serve as an epitype. This species has also been recorded
from leaves on Feijoa sellowiana in New Zealand, and on Psidium
guajava in Western Samoa (Landcare database 2019).
This is the rst me that DNA sequence data has become
available for K. sibika and shows that Kramasamuha is related to
Helminthosphaeriaceae (Sordariomycetes, Fig. 2). Asexual morphs
in Helminthosphaeria have been recognised as diplococcium-like
(Samuels et al. 1997, Réblová 1999) with trec conidiogenous
Eremomycetaceae, Eremomycetales
0.02
JW 22011
Arthrographis longispora JW 22007
Arthrographis kalrae JW 21008
Eremomyces bilateralis CBS 781.70T
JW 49011
JW 49012
JW 22015
Arthrographis kalrae JW 21029
Arthrographis kalrae JW 21004
JW 199018
JW 22019
JW 209002
Arthrographis longispora CBS 135935T
Arthrographis curvata CBS 135933T
Arthrographis curvata CBS 135934
Arthrographis kalrae CBS 693.77T
JW 209003
Arthrographis grakistii sp. nov.
JW 190014T
Arthrographis globosa CBS 135397T
Arthrographis arxii CBS 203.78T
JW 180011
Arthrographis chlamydospora CBS 135396T
Rhexothecium globosum CBS 955.73T
100
100
100
100
98
100
100
100
98
86
Fig. 6. Maximum composite likelihood tree based on paral sequences from the LSU, ITS and act regions from all members of Eremomycetales. Colour
boxes (blue and green) indicate the generic clades. Bootstrap support values above 70 % are shown at the nodes. Ex-type strains are in boldface. T =
Ex-type.
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
16
Fig. 7. Kramasamuha sibika (CBS 146133). A–C. Conidiophores overview on OA. D–F. Conidiophores, conidiogenous cells and conidia. G. Conidiogenous
cells and conidia. H–J. Conidiogenous cells. K–N. Conidia. Scale bars: D–F = 25 μm, all others = 10 μm.
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
17
cells, diering from the monoblasc conidiogenous cells observed
in Kramasamuha (Seifert et al. 2011).
Authors: M. Hernández-Restrepo, P.W. Crous, M.J. Wingeld,
A.A. Colmán, P.S.C. Mansur and R.W. Barreto
Melnikomyces Crous & U. Braun, Persoonia 32: 263. 2014.
Mycelium consisng of brown, septate, branched, smooth,
thick-walled hyphae. Conidiophores subcylindrical, brown,
smooth, erect, straight or geniculate, reduced to conidiogenous
cells, or long, exuous, mulseptate. Conidiogenous cells
polyblasc, subcylindrical to subclavate, terminal or intercalary,
brown, smooth, developing a rachis with numerous dencle-
like loci. Conidia solitary, brown, verruculose, fusoid-ellipsoidal,
1-septate, ends sub-obtuse, released by rhexolyc secession.
Chlamydospores terminal, globose to subglobose, in short
chains, simple or branched, brown, smooth (modied from
Crous et al. 2014b).
Type species: Melnikomyces vietnamensis Crous & U. Braun
Melnikomyces thailandicus Giraldo López, sp. nov. MycoBank
MB833678. Fig. 8.
Etymology: Name refers to Thailand where the fungus was
collected.
Mycelium consisng of brown, septate, branched, smooth, thick-
walled, 2–2.5 μm diam hyphae. Conidiophores macronematous,
arising directly from vegetave hyphae, erect, straight or
slightly bent, simple, mulseptate, cylindrical, 14–37 × 2–3 μm,
brown, paler apex, thick and smooth-walled. Conidiogenous
cells integrated, terminal, polyblasc, brown to pale brown,
sympodial, with long open dencles; dencles cylindrical,
pale brown, up to 1 μm long. Conidia fusoid, ends subobtuse,
1-septate, solitary, subhyaline, smooth-walled, (8–)9.5–12(–
13) × (2–)2.5(–3) μm. Chlamydospores lateral, globose to
subglobose, in short and simple chains, light brown, thick-and
smooth-walled, 5.5–10 μm diam.
Typus: Thailand, Nakhon Nayok Province, Mueang Nakhon Nayok
district, Wang Takrai waterfall, N14.330023° E101.307168°, 64
m above sea level, from soil, 22 Jul. 2008, P.W. Crous (holotype
CBS H-24236, culture ex-type CBS 145767).
Notes: The monotypic genus Melnikomyces was introduced by
Crous and Braun (Crous et al. 2014b), based on M. vietnamensis
collected from dry leaves in Vietnam. This species was treated as
incertae sedis in the Chaetothyriales, Euroomycetes (Crous et
al. 2014b). However, the results of this study show that it resides
in the Sympoventuriaceae (Venturiales, Dothideomycetes),
together with other genera producing septate conidia from
denculate conidiogenous cells, such as Ochroconis and
Verruconis (Machouart et al. 2014, Samerpitak et al. 2014).
Melnikomyces thailandicus is the second species described in
the genus, which diers morphologically from M. vietnamensis
in having shorter conidiophores (10–60 μm long vs.14–37 μm
long) and longer and narrower smooth-walled conidia (8–13 ×
(2 –3) μm vs. 7–11 × 2.5–3.5 μm). Originally, M. vietnamensis
was described with two types of conidiophores (Crous et al.
2014b), but in M. thailandicus one of the conidiophore types
more closely resembles chlamydospores, as they appear to stay
aached to the hyphae.
Authors: A. Giraldo López and P.W. Crous
Thysanorea Arzanlou, W. Gams & Crous, Stud. Mycol. 58: 80.
2007. emend.
Conidiophores micro- or macronematous, erect, simple or
apically branched, somemes proliferang percurrently in
the apex, brown, smooth. Conidiogenous cells terminal or
intercalary, polyblasc, smooth, brown at the base, paler
towards the apex, subcylindrical, clavate to doliiform, sympodial,
with crowded conidiogenous loci inconspicuous to slightly
prominent, refracve to somewhat obscure, slightly thickened.
Conidia solitary, oblong, obovoid, cylindrical, broadly fusiform
to subpyriform, pale brown, smooth, with a narrowly truncate
base and darkened hilum; conidial secession schizolyc.
Synasexual morph: Conidiophores erect, simple, brown, smooth.
Fig. 8. Melnikomyces thailandicus sp. nov. (CBS 145767). A–C. Conidiophores and denculated conidiogenous cells. D. Conidia. E. Chlamydospores.
Scale bars = 10 μm.
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
18
Conidiogenous cells terminal, discrete, phialidic, subglobose to
lageniform, with a balloon- to funnel-shaped collaree, brown,
oen in clusters at the apex of the conidiophores. Conidia
solitary, subglobose to obovate, unicellular, hyaline, guulate,
smooth.
Type species: Thysanorea papuana (Aptroot) Arzanlou et al.
Notes: Thysanorea was established for a genus similar to
Periconiella based on the branching paern of the conidiophores
(Arzanlou et al. 2007). However, recent studies have shown that
those branching paerns depend on culture condions, where
those on natural substrates or in young cultures are not as
prominently branched as previously described (Kirschner 2016,
Wang et al. 2019). The generic descripon is emended here to
include species with a phialidic synasexual morphs.
Phylogenecally, Thysanorea is closely related to
Minimelanolocus in the Chaetothyriales (Fig. 3). However,
the phylogenec posion of M. navicularis, the type species,
remains unknown since DNA sequence data are not available for
it, and the supposed phylogenec posion has been based on
other species (Liu et al. 2015, Wang et al. 2019).
Morphologically, M. navicularis is characterised by terminal
conidiogenous cells that produce navicular conidia with sub-
hyaline polar cells and darker central cells (Castañeda-Ruiz
1987). They consequently dier from those species placed in
Minimelanolocus based on DNA sequence data and in which
the conidiogenous cells are terminal and intercalary, and the
conidia are oblong, obovoid, cylindrical, broadly fusiform, and
uniformly pale brown (Liu et al. 2015, Wang et al. 2019). In
this regard, they would t beer with the generic concept of
Thysanorea (Arzanlou et al. 2007, Wang et al. 2019). Based on
these morphological dierences and phylogenec relaonships,
we propose new combinaons for those species that have been
shown as related to Thysanorea. The phylogenec placement of
other species for which DNA sequence data are not available,
including M. navicularis must sll be determined.
Thysanorea asiaca (H.Y. Su, et al.) Hern.-Restr. & Crous, comb.
nov. MycoBank MB833919.
Basionym: Minimelanolocus asiacus H.Y. Su, et al., Fungal Biol.
119: 1054. 2015.
Thysanorea cantrelliae Hern.-Restr., R. van Doorn & Crous, sp.
nov. MycoBank MB833914. Fig. 9.
Etymology: Named in honour of Sharon Cantrell, who was the
organizer of the IMC 11 (2018) in Puerto Rico. This fungus was
collected on a eld trip held during the IMC 11.
Mycelium composed of hyaline to pale brown, septate, smooth,
1–2 µm wide hyphae. Conidiophores semi-micronematous,
somemes reduced to conidiogenous cells, simple, erect,
straight or exuous, cylindrical, pale brown, smooth, 8–31 ×
2–3 µm. Conidiogenous cells holoblasc, polyblasc, mainly
terminal, integrated, sympodial, pale brown, 7–22 × 2–3
µm. Conidia solitary, fusiform to acicular, straight or curved,
(1–)3(–4)-septate, subhyaline to pale brown, smooth, 10–34 ×
1.5–3 µm, apex acute, base truncate.
Culture characteriscs: Colonies at 25 °C aer 14 d: on OA
reaching 22–25 mm, aerial mycelium moderate, coony
to occose, olivaceous black, margin euse enre; reverse
black. On MEA and PDA reaching 22–30 mm, aerial mycelium
abundant, coony to occose, olivaceous grey, black close to
the agar, margin euse, enre; reverse black.
Typus: USA, Puerto Rico, from unidened twig, 20 Jul. 2018,
M. Hernández-Restrepo (holotype CBS H-24100, culture ex-type
CBS 145909).
Notes: Thysanorea cantrelliae clustered in a separate clade
together with T. seiferi (Fig. 3). It can be disnguished from T.
seiferi and other species in the genus by its acicular conidia
(Fig. 9).
Thysanorea curvata (H.Y. Su et al.) Hern.-Restr. & Crous, comb.
nov. MycoBank MB833921.
Basionym: Minimelanolocus curvatus H.Y. Su et al., Fungal Biol.
119: 1055. 2015.
Thysanorea lotorum (Morgan-Jones) Hern.-Restr. & Crous,
comb. nov. MycoBank MB833922.
Basionym: Pseudospiropes lotorum Morgan-Jones, Mycotaxon
5: 481. 1977 [as ‘lotorus’]
Synonym: Nigrolenlocus lotorum (Morgan-Jones) R.F.
Castañeda & Heredia, Cryptog. Mycol. 22: 15. 2001.
Minimelanolocus submersus Z.L. Luo et al., Fungal Diversity 80:
143. 2016.
Thysanorea melanica (H.Y. Su, et al.) Hern.-Restr. & Crous, comb.
nov. MycoBank MB833923.
Basionym: Minimelanolocus melanicus H.Y. Su et al., Fungal Biol.
119: 1056. 2015.
Thysanorea nonramosa (X.D. Yu et al.) Hern.-Restr. & Crous,
comb. nov. MycoBank MB833924.
Basionym: Minimelanolocus nonramosus X.D. Yu et al., Mycol.
Progr. 18: 514. 2019.
Thysanorea obscura (Matsush.) Hern.-Restr. & Crous, comb.
nov. MycoBank MB833925.
Basionym: Pseudospiropes obscurus Matsush., Matsushima
Mycol. Mem. 3: 14. 1983.
Synonym: Minimelanolocus obscurus (Matsush.) R.F. Castañeda
& Heredia, Cryptog. Mycol. 22:10. 2001.
Thysanorea rousseliana (Mont.) Hern.-Restr. & Crous, comb.
nov. MycoBank MB833926.
Basionym: Helminthosporium rousselianum Mont., Ann. Sci.
Nat., Sér. 3, Bot., 12: 300. 1849.
Synonyms: Pleurophragmium rousselianum (Mont.) S. Hughes,
Canad. J. Bot. 36: 798. 1958.
Spiropes rousselianus (Mont.) de Hoog & Arx, Kavaka 1: 59.
1973.
Pseudospiropes rousselianus (Mont.) M.B. Ellis, More
Demaaceous Hyphomycetes: 221. 1976.
Minimelanolocus rousselianus (Mont.) R.F. Castañeda & Heredia,
Cryptog. Mycol. 22: 10. 2001.
Thysanorea seiferi Hern.-Restr., R. van Doorn & Crous, sp. nov.
MycoBank MB833920. Fig. 10.
Etymology: Named in honour of Prof. dr Keith A. Seifert, who was
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
19
Fig. 9. Thysanorea cantrelliae sp. nov. (CBS 145909). A. Conidiophore and conidium. B, C. Conidiophores. D–G. Conidiogenous cells. H, I. Conidia.
Scale bars = 10 μm.
President of the Internaonal Mycological Associaon during
the IMC 11 (2018) in Puerto Rico. This fungus was collected on a
eld trip during the IMC 11.
Mycelium composed of hyaline to pale brown, septate, smooth,
1–2 µm wide hyphae. Conidiophores mononematous, simple,
erect, straight or exuous, cylindrical, brown, paler towards
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
20
the apex, smooth, 30–133 × 2–3 µm. Conidiogenous cells
holoblasc, polyblasc, terminal or intercalary, integrated,
sympodial, pale brown to brown, 7.5–46.5 × 2–3 µm. Conidia
solitary, subcylindrical to clavate or oblong, straight or slightly
curved, (0–)1–3(–4)-septate, pale brown, smooth, 7–15 × 1.5–3
µm, apex rounded, base darkened and truncated. Synasexual
morph: Conidiophores micro- or macronematous, erect, straight
or exuous, cylindrical, brown, smooth, 10–51 × 2–4 µm.
Conidiogenous cells enteroblasc, phialidic, arranged around the
apex of the conidiophore, brown, subglobose to ampulliform,
2–4(–6) × 2–3 µm, with a balloon- to funnel-shaped collaree,
1–3 × 1–3 µm. Conidia solitary, subglobose to obovate, unicellular,
hyaline, guulate, smooth, 1–2 × 1–1.5 µm, base truncated.
Culture characteriscs: Colonies at 25 °C aer 14 d: on OA
reaching 22–25 mm, aerial mycelium moderate, coony to
occose, grey olivaceous to olivaceous black, margin euse,
enre; reverse black. On MEA and PDA reaching 18–20 mm,
aerial mycelium moderate to abundant, coony to occose,
olivaceous grey, black close to the agar, margin euse, enre;
reverse black.
Typus: USA, Puerto Rico, from unidened twig, 20 Jul. 2018,
M. Hernández-Restrepo (holotype CBS H-24101, culture ex-type
CBS 145910).
Notes: Some of the conidia in T. seiferi resemble those of T.
obscura in being 3-septate. However, conidia in T. seiferi are
smaller than those of T. obscura (7–15 × 1.5–3 μm vs. 20–31
× 5–8 μm, Castañeda-Ruiz et al. 2001). Thysanorea seiferi
is the only species in the genus known to produce a phialidic
synasexual morph.
Fig. 10. Thysanorea seiferi sp. nov. (CBS 145910). A. Conidiophores and conidia. B, C. Conidiogenous cells and conidia. D. Conidia. E–J. Synasexual
morph. E, F. Conidiophores. G–I. Conidiogenous cells and conidia. H. Conidia. Scale bars: G–J = 5 μm, all others = 10 μm.
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
21
Thysanorea thailandensis (W. Dong et al.) Hern.-Restr. & Crous,
comb. nov. MycoBank MB833927.
Basionym: Minimelanolocus thailandensis W. Dong et al., Mycol.
Progr. 17: 622. 2018.
Thysanorea yunnanensis Hern.-Restr. & Crous, nom. nov.
MycoBank MB833928.
Replaced synonym: Minimelanolocus aquacus H.Y. Su et al.,
Fungal Biol. 119: 1049. 2015 [non Thysanorea aquaca W. Dong,
H. Zhang & K.D. Hyde, 2018].
Etymology: The name refers to the Chinese Province of Yunnan
where the fungus was collected.
Authors: M. Hernández-Restrepo, R. van Doorn and P.W. Crous
Verruconis Samerp. et al., Fungal Diversity 65: 117. 2014.
Mycelium consisng of septate, pale brown, smooth and thick-
walled hyphae. Conidiophores dierenated, erect, straight
or slightly bent, unbranched, pale brown. Conidiogenous cells
mostly polyblasc, subcylindrical to narrowly mucronate,
producing conidia sympodially on long open dencles; dencles
cylindrical, pale brown, scaered at the apical third of the
conidiogenous cell. Conidia two-celled, ellipsoidal, cylindrical
or clavate, brown, verrucose or smooth-walled, released by
rhexolyc secession. Sexual morph unknown.
Type species: Verruconis gallopava (W.B. Cooke) Samerp. & de
Hoog
Verruconis thailandica Giraldo López & Crous, sp. nov.
MycoBank MB833679. Fig. 11.
Etymology: The name refers to Thailand where the fungus was
collected.
Mycelium consisng of septate, pale brown, smooth, thick-
walled, 2–2.5 μm diam hyphae. Conidiophores dierenated,
arising directly from vegetave hyphae, erect, straight or slightly
bent, simple, 0–1-septate, subcylindrical, (3.6–)4.1–7.1(–9)
× (1.3–)2(–2.3) μm, pale brown, thick- and smooth-walled,
producing conidia sympodially on long open dencles; dencles
cylindrical, pale brown, up to 1 μm long. Conidia abundant on
OA and PCA, scarce on PDA, two-celled, broadly ellipsoidal with
a protuberant hilum, constricted at the septum, (5–)5.8(–7) ×
(2.2–)2.6(–3.1) μm, brown, verrucose, thick-walled, somemes
with a wing-like gelanous brown sheath, released by rhexolyc
secession. Sexual morph not observed.
Cultural characteriscs: Colonies at 25 °C aer 14 d: on OA
and PCA, at, woolly at centre, glabrous at periphery, top and
reverse sepia. On PDA raised, felty, top and reverse olivaceous
with ochreous diusible pigment.
Typus: Thailand, Nakhon Nayok Province, Mueang Nakhon Nayok
district, Wang Takrai waterfall, N14.330023° E101.307168°, 64
m above sea level, from soil, 22 Jul. 2008, P.W. Crous (holotype
CBS H-24237, culture ex-type CBS 145768).
Notes: The genus Verruconis (Sympoventuriaceae, Venturiales,
Dothideomycetes) was established to accommodate
thermophilic species segregated from Ochroconis ( O. gallopava
and O. calidiuminalis) and Scolecobasidium ( S. verruculosum),
which produce septate conidia from sympodially proliferang
conidiophores, released by rhexolyc secession (Samerpitak et
al. 2014). These species have been isolated from hot spring
water, warm euents or as soil saprobes (Yarita et al. 2007,
Samerpitak et al. 2014, Giraldo et al. 2014b). However, the type
species, V. gallopava has been reported as an opportunisc
pathogen of humans and causing infecons in other warm-
blooded animals, mainly birds (Revankar & Suon 2010, de
Hoog et al. 2011).
Verruconis thailandica is phylogenecally related to V.
verruculosa (Fig. 1), but the two species can be disnguished by
the length of their conidiophores (up to 9 μm long in V. thailandica
vs. up to 45 μm long in V. verruculosa) and conidia (up to 7 μm
long in V. thailandica vs. up to 9 μm long in V. verruculosa;
Samerpitak et al. 2014). Recently, three new species were
added to the genus, namely V. panacis from Panax notoginseng
(Zhang et al. 2018), V. hainanensis and V. pseudotricladiata from
submerged decaying leaves (Qiao et al. 2019). These species
clustered in a separate clade phylogenecally distant from V.
thailandica. They can be disnguished by the presence of four-
celled conidia in V. panacis and V. hainanensis, and branched
Y-shaped conidia in V. pseudotricladiata (Zhang et al. 2018, Qiao
et al. 2019).
Authors: A. Giraldo López and P.W. Crous
Fig. 11. Verruconis thailandica sp. nov. (CBS 145768). A, B. Colonies on PDA and OA, respecvely, at 25 °C aer 14 d. C–E. Denculated conidiogenous
cells. F. Conidia with gelanous brown sheath (arrow). Scale bars = 10 μm.
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
22
ACKNOWLEDGEMENTS
The authors thank the technical sta, A. van Iperen and T. Merkx for
their valuable assistance with cultures.
Conict of interest: The authors declare that there is no conict
of interest.
REFERENCES
Arzanlou M, Groenewald JZ, Gams W, et al. (2007). Phylogenec and
morphotaxonomic revision of Ramichloridium and allied genera.
Studies in Mycology 58: 57–93.
Badali H, Gueidan C, Najafzadeh MJ, et al. (2008). Biodiversity of the
genus Cladophialophora. Studies in Mycology 61: 175–191.
Batzer JC, Arias MM, Harrington TC, et al. (2008). Four species of
Zygophiala (Schizothyriaceae, Capnodiales) are associated with
the sooty blotch and yspeck complex on apple. Mycologia 100:
246–258.
Bezerra JDP, Oliveira R, Paiva L, et al. (2017). Bezerromycetales and
Wiesneriomycetales ord. nov. (class Dothideomycetes), with two
novel genera to accommodate endophyc fungi from Brazilian
cactus. Mycological Progress 16: 297–309.
Boehm EW, Schoch CL, Spatafora JW (2009). On the evoluon of
the Hysteriaceae and Mylinidiaceae (Pleosporomycedae,
Dothideomycetes, Ascomycota) using four nuclear genes.
Mycological Research 113: 461–479.
Boonmee S, Bhat JD, Maharachchikumbura SSN, et al. (2014).
Clavaspora thailandica gen. et sp. nov., a novel taxon of Venturiales
(Dothideomycetes) from Thailand. Phytotaxa 176: 92–101.
Borowska A (1977). Garnaudia elegans gen. et sp. nov. and
Endophragmiella tenera sp. nov., new demaaceous hyphomycetes.
Acta Mycologica 13: 169–174.
Braun U, Crous PW, Dugan F, et al. (2003). Phylogeny and taxonomy
of Cladosporium-like hyphomycetes, including Davidiella gen. nov.,
the teleomorph of Cladosporium s. str. Mycological Progress 2:
3–18.
Campbell J, Ferrer A, Raja HA, et al. (2007). Phylogenec relaonships
among taxa in the Jahnulales inferred from 18S and 28S nuclear
ribosomal DNA sequences. Canadian Journal of Botany 85: 873–882.
Castañeda-Ruiz RF (1987). Fungi Cubenses II. Instuto de Invesgaciones
Fundamentales en Agricultura Tropical ‘Alejandro de Humboldt’, La
Habana: 1–22
Castañeda-Ruiz RF, Heredia G, Gusmao LFP (2016). Fungal diversity of
central and south America. In: Biology of microfungi (De-Wei L, ed).
Springer Internaonal Publishing, Switzerland: 197–218.
Castañeda-Ruiz RF, Heredia G, Reyes, et al. (2001). A revision of the
genus Pseudospiropes and some new taxa. Cryptogamie Mycologie
22: 1–18.
Castlebury LA, Rossman AY, Jaklitsch WJ, et al. (2002). A preliminary
overview of the Diaporthales based on large subunit nuclear
ribosomal DNA sequences. Mycologia 94: 1017–1031.
Cheewangkoon R, Crous PW, Hyde KD, et al. (2008). Species
of Mycosphaerella and related anamorphs on Eucalyptus leaves
from Thailand. Persoonia 21: 77–91.
Cheewangkoon R, Groenewald JZ, Hyde KD, et al. (2012). Chocolate
spot disease of Eucalyptus. Mycological Progress 11: 61–69.
Cheewangkoon R, Groenewald JZ, Summerell BA, et al. (2009).
Myrtaceae, a cache of fungal biodiversity. Persoonia 23: 55–85.
Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is
polyphylec. Studies in Mycology 58: 1–32.
Crous PW, Braun U, Schubert K, et al. (2007b). Deliming Cladosporium
from morphologically similar genera. Studies in Mycology 58: 33–
56.
Crous PW, Gams W, Stalpers JA, et al. (2004). MycoBank: an online
iniave to launch mycology into the 21st century. Studies in
Mycology 50: 19–22.
Crous PW, Giraldo A, Hawksworth DL, et al. (2014a). The Genera of
Fungi: xing the applicaon of type species of generic names. IMA
Fungus 5: 141–160.
Crous PW, Groenewald JZ, Wingeld MJ (2006a) Heteroconium eucalyp.
Fungal Planet No. 10. Centraalbureau voor Scimmelcultures, the
Netherlands.
Crous PW, Schoch CL, Hyde KD, et al. (2009a). Phylogenec lineages in
the Capnodiales. Studies in Mycology 64: 17–47.
Crous PW, Schubert K, Braun U, et al. (2007c). Opportunisc, human-
pathogenic species in the Herpotrichiellaceae are phenotypically
similar to saprobic or phytopathogenic species in the Venturiaceae.
Studies in Mycology 58: 185–216.
Crous PW, Shivas RG, Quaedvlieg W, et al. (2014b). Fungal Planet
descripon sheets 214–280. Persoonia 32: 184–306.
Crous, PW, Slippers B, Wingeld MJ, et al. (2006b). Phylogenec lineages
in the Botryosphaeriaceae. Studies in Mycology 55: 235–253.
Crous PW, Summerell BA, Carnegie AJ, et al. (2009b). Unravelling
Mycosphaerella: do you believe in genera? Persoonia 23: 99–118.
Crous PW, Verkley GJM, Groenewald JZ (2006c). Eucalyptus microfungi
known from culture. 1. Cladoriella and Fulvoamma genera nova,
with notes on some other poorly known taxa. Studies in Mycology
55: 53–63.
Crous PW, Verkley GJM, Groenewald JZ, et al. (2019). Westerdijk
Laboratory Manual Series 1: Fungal Biodiversity. Westerdijk Fungal
Biodiversity Instute, Utrecht, the Netherlands.
Crous PW, Wingeld MJ, Burgess TI, et al. (2017). Fungal Planet
descripon sheets: 625–715. Persoonia 39: 270–467.
de Hoog GS, Vicente VA, Najafzadeh MJ, et al. (2011). Waterborne
Exophiala species causing disease in cold-blooded animals.
Persoonia 27: 46–72.
de Hoog GS, Gerrits van den Ende AHG (1998). Molecular diagnoscs
of clinical strains of lamentous Basidiomycetes. Mycoses 41: 183–
189.
de Hoog GS, Guarro J, Gené J, et al. (2011). Atlas of clinical fungi. CD-
ROM version 3.1. CBS-KNAW Fungal Biodiversity Centre, Utrecht,
the Netherlands.
Diederich P, Ertz D, Lawrey JD, et al. (2013). Molecular data place
the hyphomycetous lichenicolous genus Sclerococcum close to
Dactylospora ( Euroomycetes) and S. parmeliae in Cladophialophora
(Chaetothyriales). Fungal Diversity 58: 61–72.
Dong W, Hyde KD, Bhat DJ, et al. (2018). Introducing Aculeata aquaca
gen. et sp. nov., Minimelanolocus thailandensis sp. nov. and
Thysanorea aquaca sp. nov. (Herpotrichiellaceae, Chaetothyriales)
from freshwater in northern Thailand. Mycological Progress 17:
617–629.
Fernandez FA, Lutzoni FM, Huhndorf SM (1999). Teleomorph-anamorph
connecons: the new pyrenomycetous genus Carpoligna and its
Pleurothecium anamorph. Mycologia 91: 251–262.
Geiser DM, Gueidan C, Miadlikowska J, et al. (2006). Euroomycetes:
Euroomycedae and Chaetothyriomycedae. Mycologia 98:
1053–1064.
Giraldo A, Gené J, Cano J, et al. (2012). Two new species of Acremonium
from Spanish soils. Mycologia 104: 1456–1465.
Giraldo A, Gené J, Suon DA, et al. (2014a). Phylogenec circumscripon
of Arthrographis (Eremomycetaceae, Dothideomycetes). Persoonia
32: 102–114.
© 2020 Westerdijk Fungal Biodiversity Instute
Genera of Fungi – G6
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
23
Giraldo A, Hernández-Restrepo M, Crous PW (2019). New
Plectosphaerellaceous species from Dutch garden soil. Mycological
Progress 18: 1135–1154.
Giraldo A, Suon D, Samerpitak K, et al. (2014b). Occurrence of
Ochroconis and Verruconis species in clinical specimens from the
United States. Journal of Clinical Microbiology 52: 4189–4201.
Groenewald M, Lombard L, de Vries M, et al. (2018). Diversity of yeast
species from Dutch garden soil and the descripon of six novel
Ascomycetes. FEMS Yeast Research 18: 1–14.
Guamosim E, Firmino AL, Bezerra JL, et al. (2015). Towards a
phylogenec reappraisal of Parmulariaceae and Asterinaceae
(Dothideomycetes). Persoonia 35: 230–241.
Gueidan C, Villasenor CR, de Hoog GS, et al. (2008). A rock-inhabing
ancestor for mutualisc and pathogen-rich fungal lineages. Studies
in Mycology 61: 111–119.
Hernández-Restrepo M, Gene J, Castañeda-Ruiz RF, et al. (2017).
Phylogeny of saprobic microfungi from Southern Europe. Studies in
Mycology 86: 53–97.
Hughes SJ (1979). Relocaon of species of Endophragmia auct. with
notes on relevant generic names. New Zealand Journal of Botany
17: 139–188.
Huhndorf SM, Miller AN, Fernandez FA (2004). Molecular systemacs
of the Sordariales: the order and the family Lasiosphaeriaceae
redened. Mycologia 96: 368–387.
Jaklitsch WM, Baral HO, Lücking R, et al. (2016). Syllabus of plant families
A. Engler’s Syllabus der Panzenfamilien Part 1/2: Ascomycota,
13th edn. Borntraeger, Stugart, Germany.
James TY, Kau F, Schoch CL, et al. (2006). Reconstrucng the early
evoluon of Fungi using a six-gene phylogeny. Nature 443: 818–822.
Kang HJ, Sigler L, Lee J, et al. (2010). Xylogone ganodermophthora sp.
no v., an ascomycetous pathogen causing yellow rot on culvated
mushroom Ganoderma lucidum in Korea. Mycologia 102: 1167–1184.
Kearse M, Moir R, Wilson A, et al. (2012). Geneious Basic: an integrated
and extendable desktop soware plaorm for the organizaon and
analysis of sequence data. Bioinformacs 28: 1647–1649.
Kirschner R (2016). Revision of the morphology and biogeography of
Thysanorea papuana. Mycosphere 7: 820–827.
Landcare database (2019). New Zealand Fungi and Bacteria. hps://
nzfungi2.landcareresearch.co.nz/.
Liu XY, Udayanga D, Luo ZL, et al. (2015). Backbone tree for
Chaetothyriales with four new species of Minimelanolocus from
aquac habitats. Fungal Biology 119: 1046–1062.
Lumbsch HT, Schmi I, Lindemuth R, et al. (2005). Performance of
four ribosomal DNA regions to infer higher-level phylogenec
relaonships of inoperculate euascomycetes (Leoomyceta).
Molecular Phylogenecs and Evoluon 34: 512–524.
Machouart M, Samerpitak K, de Hoog GS, et al. (2014). A mulgene
phylogeny reveals that Ochroconis belongs to the family
Sympoventuriaceae (Venturiales, Dothideomycetes). Fungal
Diversity 65: 77–88.
Miller AN, Huhndorf SM (2004). A natural classicaon of Lasiosphaeria
based on nuclear LSU rDNA sequences. Mycological Research 108:
26–34.
Miller AN, Huhndorf SM (2005). Mul-gene phylogenies indicate
ascomatal wall morphology is a beer predictor of phylogenec
relaonships than ascospore morphology in the Sordariales
(Ascomycota, Fungi). Molecular Phylogenecs and Evoluon 35:
60–75.
Miller AN, Huhndorf SM, Fournier J (2014) Phylogenec relaonships
of ve uncommon species of Lasiosphaeria and three new species
in the Helminthosphaeriaceae (Sordariomycetes). Mycologia 106:
505–524.
Miller MA, Pfeier W, Schwartz T (2012). The CIPRES science gateway:
enabling high-impact science for phylogenecs researchers with
limited resources. In: Proceedings of the 1st Conference of the
Extreme Science and Engineering Discovery Environment: Bridging
from the extreme to the campus and beyond: 1–8. Associaon for
Compung Machinery, USA.
Mugambi GK, Huhndorf SM (2009a). Molecular phylogenecs of
Pleosporales: Melanommataceae and Lophiostomataceae
re-circumscribed (Pleosporomycedae, Dothideomycetes,
Ascomycota). Studies in Mycology 64: 103–121.
Mugambi GK, Huhndorf SM (2009b). Parallel evoluon of hysterothecial
ascomata in ascolocularous fungi (Ascomycota, Fungi). Systemacs
and Biodiversity 7: 453–464.
Murata Y, Sano A, Kamei K, et al. (2005). Arthrographis kalrae isolated
from the oral cavity of a house-hold dog. Program and Abstracts
of the 49th Annual Meeng of the Japanese Society for Medical
Mycology 49: 162.
Qiao M, Tian W, Castañeda-Ruiz RF (2019). Two new species of
Verruconis from Hainan, China. MycoKeys 48: 41–53.
Quaedvlieg W, Binder M, Groenewald JZ, et al. (2014). Introducing
the consolidated species concept to resolve species in the
Teratosphaeriaceae. Persoonia 33: 1–40.
Rayner RW (1970). A mycological colour chart. Brish Mycological
Society. Commonwealth Mycological Instute; Kew, Surrey.
Réblová M (1999). Teleomorph-anamorph connecons in Ascomycetes
3. Three new lignicolous species of Helminthosphaericeae. Sydowia
51: 223–244.
Réblová M, Untereiner WA, Réblová K (2013). Novel evoluonary
lineages revealed in the Chaetothyriales (fungi) based on mulgene
phylogenec analyses and comparison of its secondary structure.
PloS ONE 8: e63547.
Revankar SG, Suon D (2010). Melanized fungi in human disease.
Clinical Microbiology Reviews 23: 884–928.
Samerpitak K, Van der Linde E, Choi HJ, et al. (2014). Taxonomy of
Ochroconis, genus including opportunisc pathogens on humans
and animals. Fungal Diversity 65: 89–126.
Samuels GJ, Candoussau F, Magni JF (1997). Fungicolous pyrenomycetes
1. Helminthosphaeria and the new family Helminthosphaeriaceae.
Mycologia 89: 141–155.
Schoch CL, Crous PW, Groenewald JZ, et al. (2009). A class-wide
phylogenec assessment of Dothideomycetes. Studies in Mycology
64: 1–15.
Schoch CL, Robbertse B, Robert V, et al. (2014). Finding needles in
haystacks: linking scienc names, reference specimens and
molecular data for Fungi. Database (Oxford): doi:10.1093/
database/bau061.
Seifert K, Morgan-Jones G, Gams W, et al. (2011). The genera of
Hyphomycetes. CBS Biodiversity Series Vol. 9. Westerdijk Fungal
Biodiversity Instute, Utrecht, The Netherlands.
Sigler L, Carmichael JW (1976). Taxonomy of Malbranchea and some
other Hyphomycetes with arthroconidia. Mycotaxon 4: 349–488.
Sigler L, Carmichael JW (1983). Redisposion of some fungi referred to
Oidium microspermum and a review of Arthrographis. Mycotaxon
18: 495–507.
Smith H, Wingeld MJ, Crous PW, et al. (1996). Sphaeropsis sapinea and
Botryosphaeria dothidea endophyc in Pinus spp. and Eucalyptus
spp. in South Africa. South African Journal of Botany 62: 86–88.
Spatafora JW, Sung GH, Johnson D, et al. (2006). A ve-gene phylogeny
of Pezizomycona. Mycologia 98: 1018–1028.
Stamatakis A (2014). RAxML version 8: a tool for phylogenec analysis
and post-analysis of large phylogenies. Bioinformacs 30: 1312–
1313.
© 2020 Westerdijk Fungal Biodiversity Instute
Hernández-Restrepo et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
24
Subramanian CV, Vial BPR (1973). Three new Hyphomycetes from
lier. Canadian Journal of Botany 51: 1127–1132.
Summerell BA, Groenewald JZ, Carnegie AJ, et al. (2006). Eucalyptus
microfungi known from culture. 2. Alysidiella, Fusculina and
Phlogicylindrium genera nova, with notes on some other poorly
known taxa. Fungal Diversity 23: 323–350.
Tsui CK, Sivichai S, Berbee ML (2006). Molecular systemacs of
Helicoma, Helicomyces and Helicosporium and their teleomorphs
inferred from rDNA sequences. Mycologia 98: 94–104.
Untereiner WA, Angus A, Reblova M, et al. (2008). The systemacs of
the Phialophora verrucosa complex: new insights from B-tubulin,
large subunit nuclear rDNA and ITS sequence data. Botany 86:
742–750.
Untereiner WA, Debois V, Naveau FA (2001). Molecular systemacs
of the ascomycete genus Farrowia (Chaetomiaceae). Canadian
Journal of Botany 79: 321–333.
Untereiner WA, Naveau FA (1999). Molecular systemacs of the
Herpotrichiellaceae with an assessment of the phylogenec
posions of Exophiala dermadis and Phialophora americana.
Mycologia 91: 67–83.
Vasse M, Voglmayr H, Mayer V, et al. (2017). A phylogenec perspecve
on the associaon between ants (Hymenoptera: Formicidae) and
black yeasts (Ascomycota: Chaetothyriales). Proceedings Biological
Sciences 284: 1850.
Verkley GJ, Dukik K, Renfurm R, et al. (2014). Novel genera and species
of coniothyrium-like fungi in Montagnulaceae (Ascomycota).
Persoonia 32: 25–51.
Vigalys R, Hester M (1990). Rapid genec idencaon and mapping of
enzymacally amplied ribosomal DNA from several Cryptococcus
species. Journal of Bacteriology 172: 4238–4246.
Voigt K, Wöstemeyer J (2000). Reliable amplicaon of acn genes
facilitates deep-level phylogeny. Microbiological Research 155:
179–195.
Vu D, Groenewald M, de Vries M, et al. (2019). Large-scale generaon
and analysis of lamentous fungal DNA barcodes boosts coverage
for kingdom fungi and reveals thresholds for fungal species and
higher taxon delimitaon. Studies in Mycology 92: 135–154.
Wang GN, Yu XD, Dong W, et al. (2019). Freshwater hyphomycetes
in Euroomycetes: a new species of Minimelanolocus and a
new collecon of Thysanorea papuana (Herpotrichiellaceae).
Mycological Progress 18: 511–522.
White TJ, Bruns T, Lee S, et al. (1990). Amplicaon and direct sequencing
of fungal ribosomal RNA genes for phylogenecs. In: PCR protocols:
a guide to methods and applicaons (Innis MA, Gelfand DH, Sninsky
JJ, et al., eds). Academic Press, New York, USA: 315–322.
Winton LM, Stone JK, Hansen EM, et al. (2007). The systemac posion
of Phaeocryptopus gaeumannii. Mycologia 99: 240–252.
Woudenberg JH, Groenewald JZ, Binder M, et al. (2013). Alternaria
redened. Studies in Mycology 75: 171–212.
Xi L, Fukushima K, Changming L, et al. (2004). First case of Arthrographis
kalrae ethmoid sinusis and ophthalmis in the people’s Republic
of China. Journal of Clinical Microbiology 42: 4828–483.
Yang T, Groenewald JZ, Cheewangkoon R, et al. (2017). Families, genera,
and species of Botryosphaeriales. Fungal Biology 121: 322–346.
Yarita K, Sano A, Murata Y, et al. (2007). Pathogenicity of Ochroconis
gallopava isolated from hot spring in Japan and a review of
published reports. Mycopathologia 164: 135–147.
Zhang TY, Yu Y, Zhang MY, et al. (2018). Verruconis panacis sp. nov., an
endophyte isolated from Panax notoginseng. Internaonal Journal
of Systemacs and Evoluonary Microbiology 68: 2499–2503.
... Molecular data are available for only five species (Hilberina caudata, H. sphagnorum, H. punctata, H. robusta and H. munkii). The members of Hilberina are very closely related to Synaptospora, Ruzenia and Helminthosphaeria (Helminthosphaeriaceae) in morphological characteristics and phylogenetic placements [56,57]. To date, 20 species records of Hilberina are in Species Fungorum (2023) [58], and many of them were transferred from Lasiosphaeria and Sphaeria based on morphology [56]. ...
... The phylogram based on a Maximum Likelihood analysis of combined LSU and tub2 sequence datasets. Related sequences were taken from Hernández-Restrepo et al.[57]. The analyzed gene contains 54 fungal strains and 1688 total characters including gaps (LSU: 1-849 bp, tub2: 850-1688 bp). ...
Article
Full-text available
Fungi are a large and diverse group of microorganisms, and although the estimated number of species ranges between 2 and 11 million, only around 150,000 species have been described thus far. The investigation of plant-associated fungi is beneficial for estimating global fungal diversity, for ecosystem conservation, and for the continued development of industry and agriculture. Mango, one of the world’s five most economically important fruit crops, is grown in over 100 countries and has been demonstrated to have a great economical value. During surveys of mango-associated saprobic fungi in Yunnan (China), we discovered three new species (Acremoniisimulans hongheensis, Chaenothecopsis hongheensis and Hilberina hongheensis) and five new records. The phylogenetic analyses of multi-gene sequences (LSU, SSU, ITS, rpb2, tef1-α and tub2) coupled with morphological examinations were used to identify all the taxa.
... Notes: Arzanlou et al. (2007) established the genus Thysanorea based on T. papuana (basionym: Periconiella papuana), which has apically branched conidiophores. In the phylogenetic studies, Thysanorea nested within Minimelanolocus clade in Herpotrichiellaceae (Dong et al. 2018;Wang et al. 2019;Hernández-Restrepo et al. 2020;Wan et al. 2021). However, the molecular data is unavailable for the type species of Minimelanolocus. ...
... The generic type Minimelanolocus navicularis is characterized by macronematous, mononematous, terminal conidiophores, polyblastic conidiogenous cells and navicular, versicolor conidia with a thickened and darkened middle septum, while species in Minimelanolocus clade produce terminal and intercalary conidiophores and clavate, cylindrical, ellipsoidal, or fusiform, subhyaline to pale brown conidia Costa et al. 2017;Dong et al. 2018;Wang et al. 2019;Wan et al. 2021). Hernández-Restrepo et al. (2020) consequently transferred the Minimelanolocus species that grouped with Thysanorea to the latter genus as they are congeneric in phylogeny. However, the Minimelanolocus species without sequence data remained in the genus. ...
Article
Freshwater fungi comprises a highly diverse group of organisms occurring in freshwater habitats throughout the world. During a survey of freshwater fungi on submerged wood in streams and lakes, a wide range of sexual and asexual species were collected mainly from karst regions in China and Thailand. Phylogenetic inferences using partial gene regions of LSU, ITS, SSU, TEF1α, and RPB2 sequences revealed that most of these fungi belonged to Dothideomycetes and Sordariomycetes and a few were related to Eurotiomycetes. Based on the morphology and multi-gene phylogeny, we introduce four new genera, viz. Aquabispora, Neocirrenalia, Ocellisimilis and Uvarisporella, and 47 new species, viz. Acrodictys chishuiensis, A. effusa, A. pyriformis, Actinocladium aquaticum, Annulatascus tratensis, Aquabispora setosa, Aqualignicola setosa, Aquimassariosphaeria vermiformis, Ceratosphaeria flava, Chaetosphaeria polygonalis, Conlarium muriforme, Digitodesmium chishuiense, Ellisembia aquirostrata, Fuscosporella atrobrunnea, Halobyssothecium aquifusiforme, H. caohaiense, Hongkongmyces aquisetosus, Kirschsteiniothelia dushanensis, Monilochaetes alsophilae, Mycoenterolobium macrosporum, Myrmecridium splendidum, Neohelicascus griseoflavus, Neohelicomyces denticulatus, Neohelicosporium fluviatile, Neokalmusia aquibrunnea, Neomassariosphaeria aquimucosa, Neomyrmecridium naviculare, Neospadicoides biseptata, Ocellisimilis clavata, Ophioceras thailandense, Paragaeumannomyces aquaticus, Phialoturbella aquilunata, Pleurohelicosporium hyalinum, Pseudodactylaria denticulata, P. longidenticulata, P. uniseptata, Pseudohalonectria aurantiaca, Rhamphoriopsis aquimicrospora, Setoseptoria bambusae, Shrungabeeja fluviatilis, Sporidesmium tratense, S. versicolor, Sporoschisma atroviride, Stanjehughesia aquatica, Thysanorea amniculi, Uvarisporella aquatica and Xylolentia aseptata, with an illustrated account, discussion of their taxonomic placement and comparison with morphological similar taxa. Seven new combinations are introduced, viz. Aquabispora grandispora (≡ Boerlagiomyces grandisporus), A. websteri (≡ Boerlagiomyces websteri), Ceratosphaeria suthepensis (≡ Pseudohalonectria suthepensis), Gamsomyces aquaticus (≡ Pseudobactrodesmium aquaticum), G. malabaricus (≡ Gangliostilbe malabarica), Neocirrenalia nigrospora (≡ Cirrenalia nigrospora), and Rhamphoriopsis glauca (≡ Chloridium glaucum). Ten new geographical records are reported in China and Thailand and nine species are first reported from freshwater habitats. Reference specimens are provided for Diplocladiella scalaroides and Neocirrenalia nigrospora (≡ Cirrenalia nigrospora). Systematic placement of the previously introduced genera Actinocladium, Aqualignicola, and Diplocladiella is first elucidated based on the reference specimens and new collections. Species recollected from China and Thailand are also described and illustrated. The overall trees of freshwater Dothideomycetes and Sordariomycetes collected in this study are provided respectively and genera or family/order trees are constructed for selected taxa.
... The authors considered that these isolates were unsuitable to serve as an epitype yet are distinct enough for the phylogenetic classification of the genus into Helminthosphaeriaceae. Kramasamuha sibika is apparently not host-specific, because it has been consistently recorded in various plant hosts as well (Subramanian and Vittal 1973;Matsushima 1975;Hernández-Restrepo et al. 2020; Manaaki Whenua-Landcare Research 2023). ...
... The genus Melnikomyces, introduced by Crous et al. [32], is a relatively new taxonomic entity, comprising only three known species, M. vietnamensis, M. thailandicus, and M. longisporum. Melnikomyces vietnamensis was initially collected from dry leaves in Vietnam [32], M. thailandicus was isolated from soil near a waterfall [33], and M. longisporum was identified from forest litter in China [34]. In this study, Melnikomyces sp. ...
Article
Full-text available
Root development is critical to successful establishment after seedlings are out-planted on a forest restoration site. However, the restoration of an endangered Cinnamomum kanehirae using cuttings was limited by the lack of axial roots. Dark septate endophytes (DSEs) are an important group of asexual filamentous ascomycetous fungi and could promote the performance of host plants. In the current study, we explored the effects of four DSE strains (Melnikomyces sp., Acrocalymma vagum, Wiesneriomyces sp., and Tricholomataceae sp.) on the growth of C. kanehirae cuttings under nursery conditions. The results show that four DSE isolates are able to form symbiotic relationships with C. kanehira, enhancing the seedling height, fresh weight, and chlorophyll concentrations. Notably, the Melnikomyces sp. (DB5) showed significant improvements, secreting peroxidase and indole acetic acid. To facilitate the detection of DB5 within the host roots, we developed specific primers (DB5-1F/DB5-1R). We recommend the adoption of the endophyte inoculation approach and molecular detection methods in forestry nurseries as valuable tools to enhance silvicultural practices and contribute to the conservation of C. kanehirae.
... To further determine the phylogenetic disposition of this strain, we taxon sampled 10 of the 16 genera currently in the Herpotrichiellaceae [35]. Approximately 36 ITS sequences of Herpotrichiellaceae were obtained from a recent phylogenetic study [36] along with two outgroup taxa in the Cyphellophoraceae. Maximum likelihood analysis was implemented using IQ-TREE in PhyloSuite [37]. ...
Article
Full-text available
As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A ( 1 ), was discovered from strain MSX53339 ( Herpotrichiellaceae ). The structure and sequence of 1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey’s method. In an in vitro assay for antimalarial potency, 1 displayed a pEC 50 value of 5.75 ± 0.49 against malaria-causing Plasmodium falciparum . Compound 1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC 50 value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes 1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity.
... Sub-clade B comprises Verruconis hainanensis (YMF1-04165) and V. pseudotricladiata (YMF1-04915), and sub-clade C includes V. mangrovei (NFCCI 4390,. In addition to these three sub-clades, several other Verruconis species clustered in Clade A. This topology agrees with that of Zhang et al. (2018), Qiao et al. (2019), andHernández-Restrepo et al. (2020). Since these studies used different gene combinations and did not include all the available species, several inconsistencies and topological dissimilarities are observed compared to our study. ...
Article
Full-text available
Fungi are adapted to diverse environments, where the forest soils have complex fungal communities with a wide range of lifestyles. This study aims to explore and isolate Dothideomycetes from the forest soils in Thailand. Sampling sites were located in Chiang Rai and Krabi provinces. Cultures were obtained through soil dilution series, and the strains were subjected to morphological observations and multigene phylogenetic analyses for identification. Maximum likelihood and Bayesian inference analyses were conducted to clarify their phylogenetic affinities using partial nuclear ribosomal DNA (ITS, LSU, and SSU) and the protein-coding genes (tef1-α and GADPH). Herein, two new species (Curvularia chiangraiensis sp. nov. and Verruconis soli sp. nov.) and two new records (C. chiangmaiensis and V. thailandica) are described based on the morphological and phylogenetic evidence. Curvularia chiangraiensis sp. nov. is distinguished by its relatively smaller conidia and the presence of sympodial proliferation of conidiogenesis and Verruconis soli sp. nov. exhibits micronematous conidiophores and obovoid conidia that transform into sub-cylindrical or ellipsoidal shapes, and becoming 1-septate when mature. These unique characteristics set them apart from closely related taxa. The newly described taxa have been subjected to a thorough comparison with closely related species, enabling a comprehensive analysis. The study offers detailed descriptions and includes high-quality micrographs, with the aim of providing a comprehensive understanding of these newly identified taxa
Article
Sympoventuriaceae (Venturiales, Dothideomycetes) comprises genera including saprophytes, endophytes, plant pathogens, as well as important animal or human opportunistic pathogens with diverse ecologies and wide geographical distributions. Although the taxonomy of Sympoventuriaceae has been well studied, generic boundaries within the family remain poorly resolved due to the lack of type materials and molecular data. To address this issue and establish a more stable and reliable classification system in Sympoventuriaceae, we performed multi-locus phylogenetic analyses using sequence data of seven genes (SSU, ITS, LSU, act1, tub2, tef1 and rpb2) with increased taxon sampling and morphological analysis. The molecular data combined with detailed morphological studies of 143 taxa resolved 22 genera within the family, including one new genus, eight new species, five new combinations and one new name. Finally, we further investigated the evolutionary history of Sympoventuriaceae by reconstructing patterns of lifestyle diversification, indicating the ancestral state to be saprophytic, with transitions to endophytic, animal or human opportunistic and plant pathogens. Citation: Wei TP, Zhang H, Zeng XY, et al. 2022. Re-evaluation of Sympoventuriaceae. Persoonia 48: 219–260. https://doi.org/10.3767/persoonia.2022.48.07.. Effectively published online: 17 June 2022 [Received: 2 February 2022; Accepted: 27 April 2022].
Article
Coffee is one of the most important cash crops native to north-central Africa, and the second most popular beverage ingredient worldwide. Coffee-associated fungal pathogens have been well studied, but few studies have reported saprobes of coffee. In China, Yunnan Province is the main region of coffee plantations and production. To investigate saprobic fungi of coffee plants, dead branches of Coffea with fungal fruiting bodies were collected in Baoshan City, Yunnan Province, China. Multi-gene phylogenetic analyses of SSU, ITS, LSU, RPB2, and TEF1-α sequence data indicated that our collections formed an independent branch within Brunneofusispora and sister to B. sinensis. The new species B. baoshanensis, characterized by uniloculate ascomata with an erumpent long neck, and inequilateral, ends acute, 1-septate, constricted at the septum ascospores with mucilaginous sheath, was identified based on morphology and multi-gene phylogeny. This is the first report of Brunneofusispora species isolated from Coffea in China. A complete description, micrographs, and a phylogenetic tree showing the placement of the new species are provided.
Article
Full-text available
Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.
Article
Full-text available
Three new genera, six new species, three combinations, six epitypes, and 25 interesting new host and / or geographical records are introduced in this study. New genera: Neoleptodontidium (based on Neoleptodontidium aquaticum), and Nothoramularia (based on Nothoramularia ragnhildianicola). New species: Acremonium aquaticum (from cooling pad water, USA, Cladophialophora laricicola (on dead wood of Larix sp., Netherlands), Cyphellophora neerlandica (on lichen on brick wall, Netherlands), Geonectria muralis (on moss growing on a wall, Netherlands), Harposporium illinoisense (from rockwool, USA), and Neoleptodontidium aquaticum (from hydroponic water, USA). New combinations: Cyphellophora deltoidea (based on Anthopsis deltoidea), Neoleptodontidium aciculare (based on Leptodontidium aciculare), and Nothoramularia ragnhildianicola (based on Ramularia ragnhildianicola). Epitypes: Cephaliophora tropica (from water, USA), Miricatena prunicola (on leaves of Prunus serotina, Netherlands), Nothoramularia ragnhildianicola (on Ragnhildiana ferruginea, parasitic on Artemisia vulgaris, Germany), Phyllosticta multicorniculata (on needles of Abietis balsamea, Canada), Thyronectria caraganae (on twigs of Caragana arborescens, Ukraine), and Trichosphaeria pilosa (on decayed Salix branch, Netherlands). Furthermore, the higher order phylogeny of three genera regarded as incertae sedis is resolved, namely Cephaliophora (Ascodesmidaceae, Pezizales), Miricatena (Helotiales, Leotiomycetes), and Trichosphaeria (Trichosphaeriaceae, Trichosphaeriales), with Trichosphaeriaceae being an older name for Plectosphaerellaceae. Citation: Crous PW, Akulov A, Balashov S, Boers J, Braun U, Castillo J, Delgado MA, Denman S, Erhard A, Gusella G, Jurjević Ž, Kruse J, Malloch DW, Osieck ER, Polizzi G, Schumacher RK, Slootweg E, Starink-Willemse M, van Iperen AL, Verkley GJM, Groenewald JZ (2023). New and Interesting Fungi. 6. Fungal Systematics and Evolution 11: 109–156. doi: 10.3114/fuse.2023.11.09
Article
Full-text available
During 2017, the Westerdijk Fungal Biodiversity Institute (WI) and the Utrecht University Museum launched a Citizen Science project. Dutch school children collected soil samples from gardens at different localities in the Netherlands, and submitted them to the WI where they were analysed in order to find new fungal species. Around 3000 fungal isolates, including filamentous fungi and yeasts, were cultured, preserved and submitted for DNA sequencing. Through analysis of the ITS and LSU sequences from the obtained isolates, several plectosphaerellaceous fungi were identified for further study. Based on morphological characters and the combined analysis of the ITS and TEF1-α sequences, some isolates were found to represent new species in the genera Phialoparvum, i.e. Ph. maaspleinense and Ph. rietveltiae, and Plectosphaerella, i.e. Pl. hanneae and Pl. verschoorii, which are described and illustrated here.
Article
Full-text available
During our studies of freshwater fungi from Thailand, a new species Minimelanolocus nonramosus and a new collection of Thysanorea papuana were identified using morphological characters and phylogenetic analyses based on LSU, SSU, and ITS genes. After re-examination of herbarium material, Thysanorea aquatica is synonymized with Th. papuana. The description of the new species is provided with notes. This study increases our understanding of the freshwater hyphomycetes in Eurotiomycetes. © 2019, German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature.
Article
Full-text available
Two new species of the genus Verruconis , V.hainanensis and V.pseudotricladiata , were described using combined morphological and DNA sequence data. The DNA sequences of respective strains including nuclear ribosomal DNA genes (nuSSU, ITS, nuLSU) and fragments of three protein-coding genes (ACT1, BT2, TEF1) were sequenced and compared with those from closely-related species to genera Ochroconis and Verruconis (Family Sympoventuriaceae, Order Venturiales). Morphologically, both species showed typical ampulliform conidiophores and conidiogenous cells, features not seen in other species of Verruconis . The conidia of V.hainanensis are fusiform and those of V.pseudotricladiata are Y or T shaped, similar to old members of a closely-related genus Scolecobasidium . The addition of these two new species provides a new perspective on the heterogeneity of Scolecobasidium .
Article
Full-text available
A Citizen Science initiative by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum gave rise to a project where fungal and yeast isolates were obtained and identified from Dutch soil samples. During the current study 386 yeast strains were isolated from 157 different locations in the Netherlands. These strains were identified using sequence data of the large-subunit rRNA gene (D1/D2 region) and the internal transcribed spacer 1 and 2 (ITS1 and ITS2) regions. A total of 53 different yeast species were found as well as 15 potentially novel species. Six novel ascomycetous species are described during this study that include Hanseniaspora mollemarum sp. nov., Ogataea degrootiae sp. nov., Pichia gijzeniarum sp. nov., Saccharomycopsis oosterbeekiorum sp. nov., Trichomonascus vanleenenius sp. nov. and Zygoascus flipseniorum sp. nov. This study made it possible to incorporate numerous yeast isolates into the CBS collection without any restrictions, that make these isolates readily available for use by others. Many of the isolates represented species of which only a few isolates or even only a single ex-type strain were available. Therefore, it is a clear indication that such biodiversity-orientated Citizen Science projects can enrich the pool of available yeasts for future research projects.
Article
Full-text available
Species identification lies at the heart of biodiversity studies that has in recent years favoured DNA-based approaches. Microbial Biological Resource Centres are a rich source for diverse and high-quality reference materials in microbiology, and yet the strains preserved in these biobanks have been exploited only on a limited scale to generate DNA barcodes. As part of a project funded in the Netherlands to barcode specimens of major national biobanks, sequences of two nuclear ribosomal genetic markers, the Internal Transcribed Spaces and 5.8S gene (ITS) and the D1/D2 domain of the 26S Large Subunit (LSU), were generated as DNA barcode data for ca. 100 000 fungal strains originally assigned to ca. 17 000 species in the CBS fungal biobank maintained at the Westerdijk Fungal Biodiversity Institute, Utrecht. Using more than 24 000 DNA barcode sequences of 12 000 ex-type and manually validated filamentous fungal strains of 7 300 accepted species, the optimal identity thresholds to discriminate filamentous fungal species were predicted as 99.6 % for ITS and 99.8 % for LSU. We showed that 17 % and 18 % of the species could not be discriminated by the ITS and LSU genetic markers, respectively. Among them, ∼8 % were indistinguishable using both genetic markers. ITS has been shown to outperform LSU in filamentous fungal species discrimination with a probability of correct identification of 82 % vs. 77.6 %, and a clustering quality value of 84 % vs. 77.7 %. At higher taxonomic classifications, LSU has been shown to have a better discriminatory power than ITS. With a clustering quality value of 80 %, LSU outperformed ITS in identifying filamentous fungi at the ordinal level. At the generic level, the clustering quality values produced by both genetic markers were low, indicating the necessity for taxonomic revisions at genus level and, likely, for applying more conserved genetic markers or even whole genomes. The taxonomic thresholds predicted for filamentous fungal identification at the genus, family, order and class levels were 94.3 %, 88.5 %, 81.2 % and 80.9 % based on ITS barcodes, and 98.2 %, 96.2 %, 94.7 % and 92.7 % based on LSU barcodes. The DNA barcodes used in this study have been deposited to GenBank and will also be publicly available at the Westerdijk Institute's website as reference sequences for fungal identification, marking an unprecedented data release event in global fungal barcoding efforts to date.
Article
Full-text available
Aculeata gen. nov., Minimelanolocus thailandensis sp. nov., Thysanorea aquatica sp. nov. and Veronaeabotryosa are described and illustrated from submerged wood collected from a freshwater habitat in Thailand. Morphological examination and phylogenetic analyses support the classification of the four isolates in Herpotrichiellaceae. Their relationships with other morphologically similar taxa are discussed. Veronaeabotryosa is reported for the first time from a freshwater habitat. © 2018 German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature
Article
Full-text available
Novel species of fungi described in this study include those from various countries as follows: Antarctica: Cadophora antarctica from soil. Australia: Alfaria dandenongensis on Cyperaceae, Amphosoma persooniae on Persoonia sp., Anungitea nullicana on Eucalyptus sp., Bagadiella eucalypti on Eucalyptus globulus, Castanediella eucalyptigena on Eucalyptus sp., Cercospora dianellicola on Dianella sp., Cladoriella kinglakensis on Eucalyptus regnans, Cladoriella xanthorrhoeae (incl. Cladoriellaceae fam. nov. and Cladoriellales ord. nov.) on Xanthorrhoea sp., Cochlearomyces eucalypti (incl. Cochlearomyces gen. nov. and Cochlearomycetaceae fam. nov.) on Eucalyptus obliqua, Codinaea lambertiae on Lambertia formosa, Diaporthe obtusifoliae on Acacia obtusifolia, Didymella acaciae on Acacia melanoxylon, Dothidea eucalypti on Eucalyptus dalrympleana, Fitzroyomyces cyperi (incl. Fitzroyomyces gen. nov.) on Cyperaceae, Murramarangomyces corymbiae (incl. Murramarangomyces gen. nov., Murramarangomycetaceae fam. nov. and Murramarangomycetales ord. nov.) on Corymbia maculata, Neoanungitea eucalypti (incl. Neoanungitea gen. nov.) on Eucalyptus obliqua, Neoconiothyrium persooniae (incl. Neoconiothyrium gen. nov.) on Persoonia laurina subsp. laurina, Neocrinula lambertiae (incl. Neocrinulaceae fam. nov.) on Lambertia sp., Ochroconis podocarpi on Podocarpus grayae, Paraphysalospora eucalypti (incl. Paraphysalospora gen. nov.) on Eucalyptus sieberi, Pararamichloridium livistonae (incl. Pararamichloridium gen. nov., Pararamichloridiaceae fam. nov. and Pararamichloridiales ord. nov.) on Livistona sp., Pestalotiopsis dianellae on Dianella sp., Phaeosphaeria gahniae on Gahnia aspera, Phlogicylindrium tereticornis on Eucalyptus tereticornis, Pleopassalora acaciae on Acacia obliquinervia, Pseudodactylaria xanthorrhoeae (incl. Pseudodactylaria gen. nov., Pseudodactylariaceae fam. nov. and Pseudodactylariales ord. nov.) on Xanthorrhoea sp., Pseudosporidesmium lambertiae (incl. Pseudosporidesmiaceae fam. nov.) on Lambertia formosa, Saccharata acaciae on Acacia sp., Saccharata epacridis on Epacris sp., Saccharata hakeigena on Hakea sericea, Seiridium persooniae on Persoonia sp., Semifissispora tooloomensis on Eucalyptus dunnii, Stagonospora lomandrae on Lomandra longifolia, Stagonospora victoriana on Poaceae, Subramaniomyces podocarpi on Podocarpus elatus, Sympoventuria melaleucae on Melaleuca sp., Sympoventuria regnans on Eucalyptus regnans, Trichomerium eucalypti on Eucalyptus tereticornis, Vermiculariopsiella eucalypticola on Eucalyptus dalrympleana, Verrucoconiothyrium acaciae on Acacia falciformis, Xenopassalora petrophiles (incl. Xenopassalora gen. nov.) on Petrophile sp., Zasmidium dasypogonis on Dasypogon sp., Zasmidium gahniicola on Gahnia sieberiana. Brazil: Achaetomium lippiae on Lippia gracilis, Cyathus isometricus on decaying wood, Geastrum caririense on soil, Lycoperdon demoulinii (incl. Lycoperdon subg. Arenicola) on soil, Megatomentella cristata (incl. Megatomentella gen. nov.) on unidentified plant, Mutinus verrucosus on soil, Paraopeba schefflerae (incl. Paraopeba gen. nov.) on Schefflera morototoni, Phyllosticta catimbauensis on Mandevilla catimbauensis, Pseudocercospora angularis on Prunus persica, Pseudophialophora sorghi on Sorghum bicolor, Spumula piptadeniae on Piptadenia paniculata. Bulgaria: Yarrowia parophonii from gut of Parophonus hirsutulus. Croatia: Pyrenopeziza velebitica on Lonicera borbasiana. Cyprus: Peziza halophila on coastal dunes. Czech Republic: Aspergillus contaminans from human fingernail. Ecuador: Cuphophyllus yacurensis on forest soil, Ganoderma podocarpense on fallen tree trunk. England: Pilidium anglicum (incl. Chaetomellales ord. nov.) on Eucalyptus sp. France: Planamyces parisiensis (incl. Planamyces gen. nov.) on wood inside a house. French Guiana: Lactifluus ceraceus on soil. Germany: Talaromyces musae on Musa sp. India: Hyalocladosporiella cannae on Canna indica, Nothophoma raii from soil. Italy: Setophaeosphaeria citri on Citrus reticulata, Yuccamyces citri on Citrus limon. Japan: Glutinomyces brunneus (incl. Glutinomyces gen. nov.) from roots of Quercus sp. Netherlands (all from soil): Collariella hilkhuijsenii, Fusarium petersiae, Gamsia kooimaniorum, Paracremonium binnewijzendii, Phaeoisaria annesophieae, Plectosphaerella niemeijerarum, Striaticonidium deklijnearum, Talaromyces annesophieae, Umbelopsis wiegerinckiae, Vandijckella johannae (incl. Vandijckella gen. nov. and Vandijckellaceae fam. nov.), Verhulstia trisororum (incl. Verhulstia gen. nov.). New Zealand: Lasiosphaeria similisorbina on decorticated wood. Papua New Guinea: Pseudosubramaniomyces gen. nov. (based on Pseudosubramaniomyces fusisaprophyticus comb. nov.). Slovakia: Hemileucoglossum pusillum on soil. South Africa: Tygervalleyomyces podocarpi (incl. Tygervalleyomyces gen. nov.) on Podocarpus falcatus. Spain: Coniella heterospora from herbivorous dung, Hymenochaete macrochloae on Macrochloa tenacissima, Ramaria cistophila on shrubland of Cistus ladanifer. Thailand: Polycephalomyces phaothaiensis on Coleoptera larvae, buried in soil. Uruguay: Penicillium uruguayense from soil. Vietnam: Entoloma nigrovelutinum on forest soil, Volvariella morozovae on wood of unknown tree. Morphological and culture characteristics along with DNA barcodes are provided.
Article
Helminthosphaeria, a genus of pyrenomycetes, is monographed. Its members occur on basidiomata of species of the Aphyllophorales. The following species are included: H. clavariarum, the type, H. odontiae, H. corticiorum, and the new species H. hyphodermiae. A new family, Helminthosphaeriaceae, is proposed for the genus. Litschaueria is found to be a synonym of Helminthosphaeria.
Article
An endophytic strain (designated as strain SYPF 8337T) was isolated from the root of 3-year-old Panax notoginseng in Yunnan province of China. Strain SYPF 8337T grew slowly and formed pale brown to brown colonies. Phylogenetic analyses indicated that strain SYPF 8337T was placed in the Verruconis clade. Different from other Verruconis species, strain SYPF 8337T produced four-cell conidia. Furthermore, strain SYPF 8337T is the first fungus isolated as an endophyte of P. notoginseng in the genus Verruconis. Combined with the morphology and molecular analyses, a new species named Verruconis panacis sp. nov. is proposed.