ArticlePDF AvailableLiterature Review

Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion

Authors:

Abstract and Figures

Conducting polyaniline (PANI) with high conductivity, ease of synthesis, high flexibility, low cost, environmental friendliness and unique redox properties has been extensively applied in electrochemical energy storage and conversion technologies including supercapacitors, rechargeable batteries and fuel cells. Pure PANI exhibits inferior stability as supercapacitive electrode, and can not meet the ever-increasing demand for more stable molecular structure, higher power/energy density and more N-active sites. The combination of PANI and other active materials like carbon materials, metal compounds and other conducting polymers (CPs) can make up for these disadvantages as supercapacitive electrode. As for rechargeable batteries and fuel cells, recent research related to PANI mainly focus on PANI modified composite electrodes and supported composite electrocatalysts respectively. In various PANI based composite structures, PANI usually acts as a conductive layer and network, and the resultant PANI based composites with various unique structures have demonstrated superior electrochemical performance in supercapacitors, rechargeable batteries and fuel cells due to the synergistic effect. Additionally, PANI derived N-doped carbon materials also have been widely used as metal-free electrocatalysts for fuel cells, which is also involved in this review. In the end, we give a brief outline of future advances and research directions on PANI.
Content may be subject to copyright.
Materials2020,13,548;doi:10.3390/ma13030548www.mdpi.com/journal/materials
Review
ResearchProgressonApplicationsofPolyaniline
(PANI)forElectrochemicalEnergyStorage
andConversion
ZhihuaLi*andLiangjunGong
MaterialsSciencesandEngineering,CentralSouthUniversity,Changsha41000,Hunan,China
*Correspondence:ligfz@mail.csu.edu.cn;Tel.:+13873120818
Received:29November2019;Accepted:20January2020;Published:23January2020
Abstract:Conductingpolyaniline(PANI)withhighconductivity,easeofsynthesis,highflexibility,
lowcost,environmentalfriendlinessanduniqueredoxpropertieshasbeenextensivelyappliedin
electrochemicalenergystorageandconversiontechnologiesincludingsupercapacitors,
rechargeablebatteriesandfuelcells.PurePANIexhibitsinferiorstabilityassupercapacitive
electrode,andcannotmeettheeverincreasingdemandformorestablemolecularstructure,higher
power/energydensityandmoreNactivesites.ThecombinationofPANIandotheractivematerials
likecarbonmaterials,metalcompoundsandotherconductingpolymers(CPs)canmakeupforthese
disadvantagesassupercapacitiveelectrode.Asforrechargeablebatteriesandfuelcells,recent
researchrelatedtoPANImainlyfocusonPANImodifiedcompositeelectrodesandsupported
compositeelectrocatalystsrespectively.InvariousPANIbasedcompositestructures,PANIusually
actsasaconductivelayerandnetwork,andtheresultantPANIbasedcompositeswithvarious
uniquestructureshavedemonstratedsuperiorelectrochemicalperformanceinsupercapacitors,
rechargeablebatteriesandfuelcellsduetothesynergisticeffect.Additionally,PANIderivedN
dopedcarbonmaterialsalsohavebeenwidelyusedasmetalfreeelectrocatalystsforfuelcells,
whichisalsoinvolvedinthisreview.Intheend,wegiveabriefoutlineoffutureadvancesand
researchdirectionsonPANI.
Keywords:PANI;electrochemicalenergystorageandconversion;composites;supercapacitor;
rechargeablebattery;fuelcell
1.Introduction
Withtherapiddevelopmentofenergy,supplyingofenergycannotmeettheemergingdemand
[1]duetotheincreasingenergyconsumption,whichacceleratesenergyshortage,henceenergy
storageandconversionplayasignificantroleinovercomingthechallenge.Todate,differentkinds
ofenergystorageandconversiontechnologieshavebeendevelopedtodealwiththeenergycrisis.
Amongthem,threekindsofcrucialelectrochemicalenergystorageandconversiontechnologies
includingsupercapacitors,rechargeablebatteriesandfuelcells[1,2]takethedominance.Figure1
showstheRagoneplotofsupercapacitors,rechargeablebatteriesandfuelcells.
Materials2020,13,5482of45
Figure1.Ragoneplotforvarioussupercapacitors,batteriesandfuelcells[20](reproducedwith
permissionfromElsevier).
Toalargeextent,theperformanceofelectrochemicalenergystorageandconversiondevicesare
determinedbytheelectrodematerials[2].Carbonspecies,metalcompoundsandconducting
polymers(CPs)arethemaintypesusedaselectrodematerials.Carbonspeciesthatusedaselectrode
materialstypicallyincludegraphene[4–7],carbonnanotubes[1],porousnanocarbons[4,8,9]and
activatedcarbon[10]duetotheirfastchargingcapabilitiesandhighconductivity[1].However,their
lowloadingdensitywillresultinlowenergydensity,whichlargelylimitstheirapplicationsfor
energystorageandconversion.Metalcompoundsexhibitnaturalabundanceandmultielectronredox
capability,buttheyareassociatedwithlowconductivityandeaseofselfaggregation.
Conductingpolymers(CPs)arederivedfromintrinsicallyconductingpolymers(ICPs)that
discoveredin1960[11].Itcausedmuchattractionfromresearchersbecauseofthepromising
propertiesandpotentialapplicationsofICPssincethediscovery.CPbaseddevicesexhibithigher
specificcapacitancethandoublelayercapacitors,moreover,theyhavefasterkineticsthanmost
inorganicbatteries,whichcannarrowthegapbetweencarbonbasedcapacitorsandinorganic
batteries,indicatingthepromisingpotentialofCPsinelectrochemicalenergystorageandconversion
Materials2020,13,5483of45
[3].AmongseveralcommonCPslikepolyphenyl,polypyrrole,polythiophene,polyphenylacetylene
andpolyaniline(PANI),PANIgeneratesthemostattractionowingtoitseasiersynthesis,lowercost
monomer,highertheoreticalconductivity(3407Fg1),widerrangeofworkingpotentialwindowand
betterstabilitycomparedwiththeotherCPs[11].Therefore,PANIhasbeenarisingsuperstarinthe
fieldofelectrochemicalenergystorageandconversion.
TheconductivityofPANIisderivedfromitsuniquemolecularstructure.In1987,AlanGMac
Diarmid[12]proposedaPANIstructuralmodelinwhichbenzenestructuralunitsandquinoid
structuralunitscoexisted,thisstructuralmodelhasbeenwidelyrecognizedbythescientific
community.DiarmidbelievesthattheconductivityofPANIisobtainedviadopinganddedoping
thePANImolecularchain,thatis,thePANImolecularchaincontainsaseriesofreducedstructural
unitsandoxidizedstructuralunits,anditsstructuralformulaisasfollows(Figure2):
Figure2.Molecularstructureofpolyaniline(PANI).
Where:yrepresentsthedegreeofreductionofPANI,andmayalsoindicatethedegreeofdoping
ofthemolecularchain.Wheny=1,itmeansthatPANIisinafullyreducedstate(benzenetype
structuralunit),itiscalledleucoemeraldinebase(LEB);wheny=0,itmeansthatPANIisinafully
oxidizedstate(quinoidtypestructuralunit),itiscalledpernigranilinebase(PB);whenyisbetween
0and1,indicatingadopedstateinwhichanoxidationstateandareducedstatecoexist(thebenzene
structuralunitandthequinoidstructuralunitcoexist).Wherein,wheny=0.5,thatis,thedopantis
alternatelydopedinthePANImolecularchain,atthistime,thePANIisinanintermediateoxidation
state,andtheconductivityofthePANIafterdopingisoptimal,theoptimalstateiscalledemeraldine
base(EB).Ingeneral,thePANIthatemployedaselectrodeisthemixtureofthethreestates,butthe
highportionoftheEBstateisgreatlydesirableinordertoobtaintheoptimalperformanceofPANI.
PANIcanbesynthesizedbychemicalorelectrochemicalpolymerizationofmonomeraniline
[13].VariousmorphologiesofPANIcanbeobtainedthroughdifferentsynthesismethods:chemical
polymerizationusuallyleadstonanotubes,nanofibers,nanospheres,nanorods,nanoflakesandeven
nanoflowers,theaccuratemorphologiesarestronglydependedonreactiveconditionsandthespecies
ofoxidants;whileelectrochemicalpolymerizationonlyleadstonanofibersandfilms.Differentfrom
thechemicalpolymerization,themorphologiesofPANImainlyrelyonthenaturesofthesubstrates.
PANIcancombinewithotheractivematerialstoformahybridsystem.PANIbasedcompositeshave
extraadvantagescomparedwithpurePANI,theextraadvantagesdependonthetypesofextraactive
materials,andthecompositesusuallyshowimprovedproperties.InvariousPANIbasedcomposite
structures,PANIusuallyactsasaconductivelayerandnetwork,andtheresultantPANIbased
compositeswithvariousuniquestructureshavedeliveredsuperiorelectrochemicalperformancedue
tothesynergisticeffect,whichwillbeintroducedinthefollowingsections.
PANIhasbeenwidelyusedinenergystorageandconversion,includingsupercapacitors,
rechargeablebatteriesandfuelcells.Whenusedforsupercapacitors,PANIistheactiveelectrode
materialthatactsasachargecarrierduringtheredoxreaction.However,purePANIoftensuffers
fromseveredegradationofcapacitanceandinefficientcapacitancecontributionduring
pseudocapacitiveprocess,whichcanbeattributedtotheinvolvementoftheswelling,shrinkageand
crackingofPANIwhiledoping/dedopingofPANI.Fortunately,PANIwithhighflexibilitycanwell
combinewithotheractivematerialslikecarbonmaterials,metalcompoundsandCPstoformPANI
basedcompositeswithenhancedsupercapacitiveperformance.Asforrechargeablebatteries,itisa
smartstrategytodesignPANImodifiedelectrodematerials.TheadditionofPANIcannotonlymake
upforthedisadvantageslikecyclinginstability,lowconductivityandstructuralinstabilitythatexist
Materials2020,13,5484of45
inconventionalinorganicelectrodes,butalsoexploittheadvantagestocontributesynergisticeffect.
Besides,thehybridstructuresalsoplayanimportantroleinelectrochemicalperformanceofthe
compositeelectrodes.Todatenow,Ptsupportedonporouscarbonmaterialsisstillthemostusedas
anelectrocatalystforfuelcells.However,highcostofPtseverelyhindersthecommercializationof
fuelcells.Toenlargeitsutilization,variousinexpensivemetalslikeFe,Mo,Mn,Niandtheir
compoundsarechosentofabricatenonnoblemetalelectrocatalysts,andthealternativeshavebeen
demonstratedtoaddressexcellentelectrocatalyticperformanceforoxygenoxidationreaction(ORR),
hydrogenevolutionreaction(HER)andhydrogenoxidationreaction(HOR).Formethanoloxidation
reaction(MOR),hithertothemainstrategyistodesignPt–M(Co,Mo,Ni,Fe,MnandRu)alloys
catalystswithlowerPtcontent.PANIwithhighconductivity,tunablemorphologiesandhigh
flexibilityisanidealsupportasmetalelectrocatalysts.PANIsupportedmetalelectrocatalystsshow
goodelectrocatalyticactivity,furthermore,PANIcanbeusedassupportfornonnoblemetal
electrocatalysts,whichcancutthecost.Apartfromhighconductivity,tunablemorphologiesand
highflexibility,PANIsupportedmetalelectrocatalystscaneffectivelysuppresstheagglomeration
throughimprovingthedispersionoftheactivecatalysts.Inaddition,PANIanditsderivativescan
beusedasthecarbonprecursortopreparemetalfreenonnobleORRelectrocatalysts[14]with
enhancedelectrocatalyticactivityowingtoitshighNcontent.Nevertheless,therearefewerreports
oncatalystsforoxygenevolutionreaction(OER)relatedtoPANI,henceitmaybeanother
challengingdirectionforfuelcells.
SeveralreviewsonelectrochemicalapplicationofPANIhavebeenpublishedinrecentyears.
However,mostofthemonlyreportexclusiveaspectofapplicationinthefieldofelectrochemistry.
Forexample,Snooketal.[3]summarizedmajorconductingpolymers(CPs)includingPANI,PPy
andPThappliedinsupercapacitors,aswellastheircompositeswithCNTsandinorganicbattery.
Mengetal.[20]reviewedconductingpolymers(CPs)includingPANI,PPyandPThusedas
supercapacitorelectrodematerials,andpointedoutdevelopmentdirectionsofCPbased
supercapacitorsinthefuture.Luoetal.[173]reportedapplicationsofPANIforLiionbatteries,Li
sulfurbatteriesandsupercapacitors.Itisseenfromtheabovementionedthatmajorworkon
electrochemicalapplicationsofPANIarefocusedonneithersupercapacitorsnorbatteries,butPANI
hasbeendemonstratedtoshowgreatpotentialinvariousaspectsonelectrochemistry.Therefore,
herewemeanacomprehensivereviewisdesirabletofillinthegap.Inthisreview,thewiderangeof
applicationsofPANIforelectrochemicalenergystorageandconversiontechnologiesincluding
supercapacitors,rechargeablebatteriesandfuelcellsareaddressedindetail(asseeninFigure3),
including:(1)PANIbasedsupercapacitorelectrodes;(2)PANImodifiedrechargeablebatteries
electrodesincludinglithiumionbatteries,lithiumsulfurbatteriesandsodiumionbatteriesand(3)
PANIbasedsupportedmetalelectrocatalystsandPANIderivedcarbonbasedmetalfree
electrocatalystsforfuelcells.Intheend,wealsodiscussthefutureadvancesandresearchdirections
onPANI.
Materials2020,13,5485of45
Figure3.Thearchitectureofthisreview.
2.ApplicationsofPANIforSupercapacitors
Supercapacitors,namelyultracapacitorsorelectrochemicalcapacitors,anewenergystorage
devicebetweenconventionalcapacitorsandbatteries[15],areconsideredasthepromising
electrochemicalenergystorage/conversiontechnologyduetoitshighspecificpower,longcycle
lifespanandfastcharge/dischargerate[16].Supercapacitorsaregenerallysortedintotwocategories
[17,18]basedonastoragemechanism:anelectrostaticdoublelayercapacitor(EDLC)and
pseudocapacitor.EDLCsmainlygenerate/storeenergyviaadsorbing/desorptiononthesurfaceofthe
electrodebyapureelectrostaticcharge.Pseudocapacitors,alsoknownasFaradayquasicapacitors,
mainlygeneratepseudocapacitancebyareversibleredoxreactiononthesurfaceandnearthesurface
ofpseudocapacitoractiveelectrodematerials(transitionmetaloxides(TMOs)andconducting
polymers(CPs)[19]),therebyrealizingenergystorageandconversion.Theschematicsofan
electrostaticdoublelayercapacitor(EDLC)(a)andpseudocapacitorareillustratedinFigure4.
Materials2020,13,5486of45
Figure4.Schematicsofanelectrostaticdoublelayercapacitor(EDLC)(a)andpseudocapacitor;(b)
[20](reproducedwithpermissionfromElsevier).
Asweknow,theperformanceofsupercapacitorsstronglydependsonthepropertiesofthe
employedelectrodematerials.Therearethreecategoriesofmainelectrodematerialsthatareadopted
insupercapacitors:(1)carbonmaterials;(2)conductingpolymers(CPs)and(3)transitionmetal
oxides(TMOs)[19,21].CarbonbasedmaterialsusedaselectrodematerialsofEDLCshavebeen
extensivelystudied,anditisdemonstratedthattheyexhibitEDLCtypebehaviorwithhighpower
density,lowcostandtunableporosity,buttheysufferfromlowenergydensity[14,22–24].For
pseudocapacitors,transitionmetaloxides(TMOs)andconductingpolymers(CPs)aretwotypesof
electrodematerialsthatarewidelyemployed.TMOscandisplaymultipleoxidationstates[1,14]
underlowactivationenergy,buttheyregrettablysufferfromlowcapacitance,inflexibleand
instability[14].
CPs,anotherpromisingelectrodematerialacknowledgedashavinghighspecificcapacitance,
perfectflexibility,goodstabilityandeaseofsynthesis,showafascinatingprospectinsupercapacitive
(pseudocapacitive)electrodes.Asmentionedabove,PANIhasmoreadvantagesovertheotherCPs
likeeaseofsynthesis,lowcostmonomer,hightheoreticalconductivity(3407Fg1),awiderangeof
workingpotentialwindowandgoodstability,thereforePANIisthemostexploredmaterialthatis
usedaspseudocapacitiveelectrodesamongCPs[25–28].Inordertoimproveitsproperties,extensive
effortshavebeenmade,whicharemainlyassociatedwithcombiningPANIwithothermaterials(like
carbonbasedmaterials,TMOs).Inrecentyears,substantialworkhasbeendevotedintocarbonbased
materialsandTMOs,howeverreportsonPANIarerelativelyrare.Asakindofnovelelectrode
materialwithpromisingproperties,itdeservesmoreresearchandreportsbecauseitprovidesnew
thoughtforobtainingsupercapacitorelectrodewithsuperiorperformance.Inthissection,wereview
theresearchprogressofpurePANIorPANIbasedcompositesaspseudocapacitiveelectrode
materials.
2.1.PurePANI
AsanoutstandingCPwithuniquecharacteristics,PANIwithmultipleredoxstateshasexcellent
pseudocapacitiveperformance,thereforemanyresearchershavetriedtoutilizePANIin
supercapacitorssinceitsdiscovery.Anearlierreportonitsapplicationinsupercapacitorsappeared
in2001,FlorenceFusalbaetal.[29]studiedelectrochemicalcharacterizationofPANI.Theyevaluated
stabilityofPANIPANIsupercapacitorviaconstantcurrentcycling,alossofabout60%oftheinitial
chargeafter1000cycleswasdeliveredintheend.Theyattributedittohighionicorelectronic
Materials2020,13,5487of45
resistanceduetothecompactPANIfilms,andviewedthatthemorphologyofPANIstrongly
impactedelectrochemicalpropertiesbyinfluencingiondiffusionintothePANImatrixduringredox
reaction.MoreandmoreresearchesjustdemonstratedthatPANImorphologyplaysacrucialrolein
itselectrochemicalproperties.ChenHongandhiscoworkers[30,31]investigatedsupercapacitive
performancesofPANIunderdifferentmorphologies(granular,flakeandnanofiber)ofPANIfilms
preparedbythepulsegalvanostaticmethod(PGM)andgalvanostaticmethod(GM).Thenanofibrous
PANIdisplayedbettercapacitiveperformance,whichattributedtoitslagerspecificsurfaceand
betterelectronicorionicconductivity.
Obviouslyitisimportanttodesignarationalnanostructureforthepurposeofenhancingthe
propertiesofPANIsupercapacitiveelectrodes.Infact,thenanostructureofPANIisstrongly
determinedbythesynthesismethod,thereforeitiscrucialtofindarationalsynthesismethod.Liuet
al.[32]preparedporousPANIviatheinsituaqueouspolymerizationmethod,andcomparedits
electrochemicalcapacitanceperformancewithnonporousPANI.TheporousPANIpossesssmaller
andmorepores,furthermoretheporespresentedmorerandomarrangementcomparedtothe
nonporousPANI(Figure5).Morefascinatingly,theporousPANIexhibitedhighspecificcapacitance
as837Fg1underthecurrentdensityof10mAg1,muchhigherthanthatofthenonporousones(519
Fg1),whileitsexperimentalcapacitance(1570Fg1)wasjustabout77%oftheoreticalvalue(2027F
g1),indicatingthatonly77%ofPANImakesacontributiontothecapacitanceability.Sivakkmarand
hiscoworkers[33]fabricatedPANInanofiberswithinterfacialpolymerizationandinvestigatedits
propertieswhenusedasasupercapacitorelectrode.Thetestshowedthattheinitialspecific
capacitance(554Fg1)decreasedrapidlywhilecycling,andthevaluedecreasedto57Fg1after1000
cycles.Furthermoretheyfoundthatonlyafraction(31%)ofthetheoreticalvalueofPANInanofibers
wasutilized.
Figure5.SEMimages:(a)nonporousPANIand(b)porousPANIandTEMimages:(c)nonporous
PANIand(d)porousPANI[32](reproducedwithpermissionfromElsevier).
Insummary,purePANIusedassupercapacitorelectrodematerialshasbeeninvestigatedalot,
howeveritsunstablecyclingandinefficientcontributionsignificantlylimititspracticalapplications
forsupercapacitors.HenceitisurgenttofabricatevariousPANIbasedcompositesforthepurpose
ofenhancingtheelectrochemicalpropertiesofsupercapacitors.
Materials2020,13,5488of45
2.2.PANIBasedComposites
Asdiscussedabove,purePANImaybeunsatisfactorytobeappliedinthesupercapacitor
electrodebecauseofitsinstabilityandlimitedcapacitancecontribution.Togetoverthesechallenges,
researchersaretryingtocombinePANIwithothermaterialstopreparebetterelectrochemical
propertiesofsupercapacitorelectrodes.Fortunately,highflexibilityofPANImakesitavailablefor
PANItocombinewithotheractivematerialstoformPANIbasedcomposites[1],moresatisfyingly,
thesePANIbasedcompositesshowpromisingpropertieswhenusedassupercapacitorelectrodes.
ThePANIbasedcompositescanbesimplycategorizedintotwotypes:binaryandternary.Herewe
willreviewtherecentdevelopmentandprogressofbinaryandternaryPANIbasedcompositesin
detail.
2.2.1.PANIBasedBinaryComposites
ItisprovedthatPANIiscompatiblewithmanytypesofmaterialslikecarbonmaterials,metal
compoundsandCPs.Inthefollowingsection,wewilldiscusstheresearchprogressofvariousPANI
basedbinarycomposites.
PANI/CarbonBinaryComposites
Carbonmaterialsascommonsupercapacitorelectrodeshaveattractedmuchconcernfrom
researchers.Knownasacknowledged,carbonmaterialshavelotsofoutstandingadvantages,suchas
highconductivity,highspecificsurfacearea,goodstability,perfectelectricalpropertiesandsoon
[34–36].PANI/carbonbinarycompositesarepromisingtoachieveenhancedperformancedueto
excellentelectricalpropertiesandgreatstabilityofPANIandcarbonmaterials.Manyidealcarbon
materialsincludingporouscarbon,CNTs,grapheneandcarbonnanofibershavebeendemonstrated
toexhibitoutstandingpropertieswhencombinedwithPANI.Porouscarbonpossesshighspecific
surfacearea,goodstabilityandlargeporositythatPANIlacks,whichindicatesthatitisavailableto
preparePANI/porouscarboncompositeswithimprovedproperties.Chenetal.[34]preparedPANI
viaelectrochemicalpolymerization,andloadeditontheaspreparedporouscarbonelectrodes.It
wasdisplayedthattheinitialspecificcapacitanceofthePANIbasedcapacitor(PC)wasashighas
180Fg1,thatis,almostdoubleasthebarecarboncapacitor(BC,92Fg1).After1000cycles,the
specificcapacitanceofPCdecreasedfrom180to163Fg1,indicatingitsgoodcyclingstability.More
recently,Zhangetal.[35]adoptedafacileandeconomicalmethodtoobtainpolyaniline/cellulous
derivedhighlyporousactivatedcarbons(PANI/CACs)composites.TheyfabricatedCACsskeleton
viathe“selectivesurfacedissolution”(SSD)method[36],inwhichfilterpaperwasusedasthecarbon
precursor,thenPANInanorodswereuniformlygrownontotheaspreparedCACsskeleton.Figure
6illustratedtheprocedureofPANI/CACssynthesis.Whileusingitassupercapacitorelectrode,it
exhibitedexcellentspecificcapacitance(765Fg1at1A/g)andhighcyclingstability(capacitance
retentionas91%after5000cycles),whichwasmuchbetterthanpurePANI.Besidesactivatedcarbon
(AC),orderedmesoporouscarbon(OMC)isalsoatypeofporouscarbonwithhigherspecificsurface
area(1000–2000m2/g)thanordinaryporouscarbon.Asatypeofcarbonspecieswithuniqueelectrical
doublelayercapacitance,OMCisdesiredtocombinewithPANIwithexcellentfaradaiccapacitance,
thePANI/OMCcompositesarepromisingtolargelyimprovesupercapacitorperformances.Basedon
thefeasibility,somesignificantresearch[37–41]onPANI/OMCcompositeshasbeendone.Intheir
reports,PANI/OMCcompositesaresuccessfullysynthesizedbyinsitupolymerizationorchemical
polymerization,andtheirsuperiorityinsupercapacitorelectrodeshavebeenillustratedindetail.
HoweverdifferentnanostructuresofPANIusuallyexhibitdifferentelectrochemicalperformances,
nanofibers,nanorodsandnanowhiskersofPANIthatdepositedontothesurfaceofOMCshowed
differentspecificsurfaceareasandcyclingstabilitiesduetodifferentstructureactivityrelationships.
HereinwetaketheworkofYanetal.asanexample.They[40]synthesizedPANInanowhiskers
(PANINWs)/orderedmesoporouscarbon(CMK3)compositethroughchemicaloxidative
polymerization,andstudieditselectrochemicalperformanceswhileusedasasupercapacitor
electrode.CMK3,ahighlyorderedhexagonallymesoporouscarbon,ownsmoresuperior
Materials2020,13,5489of45
electrochemicalperformancesthanordinarycarbonmaterials.Asexpected,thePANINWs/CMK3
showedexcellentcapacitanceretention(90.4%after1000cycles)andhighelectrochemicalcapacitance
attributingtouniqueverticalarraysofPANINWsandorderedframeworkofCMK3.Asanother
porouscarbon,orderedmacroporouscarbonsareverysimilartoOMCinmanyaspects.Itcanalso
combinewithPANI,andexhibitsbetterelectricaldoublelayercapacitancethanPANI/OMC
compositesowingtoitsmacroporestructuresthatdifferentfromOMC[20].Carbonspheretype
materialsarealsoakindofimportantporouscarbonmaterials.Likeotherporouscarbon,they
usuallypossesshighspecificsurfaceareaandporestructures,whiletheirporestructureisverysmall,
soitismoreconvenientforelectronstotransportfromtheelectrolytetosupercapacitorelectrode
surface,whichcancontributetohighconductivityandgoodEDLCperformancessignificantly,
whereasitisapopularstrategytocombineitwithPANIwithgoodFaradaiccapacitiveproperties.
Shenetal.[42]fabricatednanohollowcarbonspheres(nanoHCS)/PANIcompositesviainsitu
chemicaloxidativepolymerization.Anelectrochemicaltestdisplayedthatthemaximumspecific
capacitancereached435Fg1,andthecapacitanceretentionwasabout60%after2000cycles.They
declaredthatthecompositesarepromisingforsupercapacitorapplications.
Figure6.SchematicofPANI/CACssynthesisprocedure[35](reproducedwithpermissionfrom
Elsevier).
Carbonnanotubes(CNTs)havebeenatypeofhotmaterialssincethediscoveryin1991.
Especiallyinenergystorage/conversion,itholdsmuchpromiseduetoitsoutstandingelectrical
properties,whileitscapacitancevalueisfairlylow(generally40–80Fg1)attributingtoitssmall
specificsurfacearea[43],soitisurgenttoimproveitscapacitanceproperties.Severalreversible
oxidationstatesofPANIendowsitwiththefeasibilitythatenhancingthepropertiesofCNTsthrough
fabricatingPANI/CNTscomposites.Khomenkoetal.[43]firstlyemployedPANI/multiwallcarbon
nanotubes(MWCNTs)compositesinsupercapacitorelectrodes.Theyobtainedthecompositesvia
chemicaloxidativepolymerizationmethod,thePANIdepositedontothesurfaceoftheasprepared
MWCNTsduringthepolymerization.Thecompositesasapositiveelectrodeexhibitedaspecific
capacitanceof320Fg1(almosteighttimesasthatofMWCNTs)andalossofabout8%ofinitial
capacitanceafter50cycles.RightafterKhomenko,Dengetal.[44]synthesizedCNTs/PANI
nanocompositeviathedepositionofPANIonthesurfaceofCNTs,whichisafacileandcheapmethod
astheyclaimed.Inthenanocomposite,CNTsworkedastheskeletonsoastoincreasethespecific
surfaceareaofdepositedPANI,whichservedastheskin.Theuniqueskeleton/skinstructureand
Materials2020,13,54810of45
excellentpseudocapacitanceofuniformlycoatedPANIlargelyenhancedthespecificcapacitanceof
thecompositewherethevaluereached183Fg1,muchhigherthantheCNTsas47Fg1.Yang’sgroup
[45]preparednitrogencontainingCNTs/PANInanocompositewithtunablemorphologiesbyhigh
temperaturetreatment.WhenthecompositewasusedasthesupercapacitorelectrodeinKOH
solution,theyshowedhighspecificcapacitance(163Fg1at700°Cand0.1Ag1)andgoodcycling
stability.Morerecently,Wangandhiscoworkers[46]reportedanovelmethodtofabricateflexible
ultrathinallsolidstatesupercapacitorswithexcellentelectrochemicalperformances.They
synthesizedasinglewallcarbonnanotubes(SWCNTs)/PANIelectrodefilmandaPVA/H3PO4
electrolytethroughsprayprintingandspincoatingmethodsrespectively.TheSWCNT/PANI
electrodepresentedaconsiderableinitialspecificcapacitanceof355.5Fg1whenthemassratioof
SWCNT:PANIis1:1.Moreover,itscapacitanceretentionreached87.2%ofitsinitialspecific
capacitanceafter5000cycles,whoseelectrochemicalpropertiesaresuperiortotheformer[43–45],the
authorheldtheviewthattheflexibleultrathinallsolidstatesupercapacitorispromisingtopavethe
wayforadvancedapplicationsofenergystorage.
Graphene,apopularlystudiedmaterialwithextraordinaryelectrical,mechanicalandthermal
properties,hasattractedextensiveconcernfromresearchers.Furthermore,graphenehasbeenthehot
materialsservedassupercapacitorelectrodesduetoitsexcellentconductivityandconsiderable
theoreticalsurfacearea(2630m2/g)[47–49].Additionally,graphenepossesseshighstructuralstability
thatPANIlacks,henceitisafairlyidealmaterialtocombinewithPANIforthepurposeofoptimizing
supercapacitorperformances.Wuetal.[47]preparedafreestanding,flexiblechemicallyconverted
graphene(CCG)/polyanilinenanofibers(PANINFs)compositefilmwithalayeredstructureinthe
stableaqueousdispersionsbyvacuumfiltrationofthemixeddispersions.Theaspreparedcomposite
filmwaswithhighconductivityof550S/m,highspecificcapacitanceof210Fg1at0.3Ag1and
stablecyclingproperty(94%ismaintainedafter1000cycles),muchbetterthanthatofpurePANI
NFs,indicatingthattheadditionofgraphenedisplaysanoticeablepromotiononPANI.Zhangetal.
[48]obtainedagraphene/PANInanofibercompositebyinsitupolymerizationinthepresenceof
grapheneoxide(GO).Theyfoundthatcomposites’electrochemicalpropertieswereatdifferent
conditionswhenthecontentofGOchanged,moreover,thehighestspecificcapacitanceof480F/gat
0.1A/gwasachievedwhenGOcontent(massratio)was80%,and70%ofinitialcapacitancewas
retainedover1000cycles.Theyexplainedthattheindividualgraphenesheetiseasytoagglomerate
whileatservice,butitcanbeimprovedbytheadditionofGOthatishardtoagglomerate.Generally,
grapheneappliedinsupercapacitorsissynthesizedthroughtheHummer’smethodorthemodified
Hummer’smethodonaccountofitslowcostandhighyields[1],thenextractsthegrapheneoxide
(GO)andreducedGO(RGO),twoimportantgraphenederivatives,andPANI/GO(orRGO)
compositeshavebeenextensivelystudiedinrecentyears.Xuetal.[49]reportedafacilemethodto
fabricatetheGO/PANInanocompositeviainsitupolymerizationwiththeassistanceofsupercritical
carbondioxide(SCCO2).Figure24demonstratesthesynthesisprocess.AswecanseeinFigure7,
polymerizationoccurredunderCO2atmosphere,whichcaneffectivelypromotethedispersionofthe
anilinemonomer.TunablemorphologyofthePANI/GOnanocompositecanbeachievedthrough
controllingtheconcentrationofanilineduringpolymerization.Whentheconcentrationwas0.1M,
thenanocompositeachievedahighspecificcapacitanceof425F/gat0.2A/gandstillretained83%of
initialcapacitanceover500cycles,superiortoindividualPANIatthesamecondition.Asthegroup
illustrated,thesynergisticeffectbetweenthenanosizedPANIandGOwithhighspecificsurfacearea
leadstotheexcellentelectrochemicalproperties.Wangandcoworkers[50]designedasoftchemical
routetopreparePANIdopedwithGOsheet.Theobtainednanocompositepossesshighconductivity
of10S/mat22°Candhighspecificcapacitanceof531F/gat0.2A/g,betterthanthatofpurePANI
(216F/g).However,PANI/GOcomposites’capacitanceisstillnotsohighduetotheintrinsicsurface
natureofGO[51],whichmightinfluencetheefficientelectrontransfer,that,inturn,couldhinderits
usageinsupercapacitors.ReducedGO(RGO)cansignificantlyincreasecapacitanceandconductivity
becauseofadecreaseofoxygencontainingfunctionalgroupsandrecoveryoftheperfectgraphene
structure,anditisstronglydemonstratedbyLuo’swork[51].Intheirwork,RGOwascompounded
Materials2020,13,54811of45
withPANIbythefollowingstrategy:firstly,GOwasreducedbyglucoseandammonia;thenPANI
wasuniformlyinsitupolymerizedontotheaspreparedRGOnanosheets.Thereductiondegreeof
GOwasmeasuredbythereductiontime.ConductivityandcapacitanceofRGOwasincreasedwith
anincreaseofreductiontimeduetodecreaseofOcontentonthesurfaceofGO.Particularly,the
optimumPANI/RGOsupercapacitiveperformanceswereachievedwherespecificcapacitancewasas
highas1045F/gandahighretentionof97%after1000cyclesoccurredatareductiontimeof1h.
Figure7.SchematicdemonstrationofthesynthesisprocessofPANI/GOnanocomposite.(reprinted
withpermissionfrompreviousliterature[49]©2012AmericanChemicalSociety).
Carbonnanofibersalsoattractsomeattentionfromresearchers.Morerecently,Meltem’sgroup
[52,53]reportedonthepreparationoffreestandingflexiblePANI/carbonnanofiberelectrodesbythe
sol–gelandelectrospinningmethod.Comparedwithanindividualcarbonnanofiberelectrode,the
hybridelectrodewaswithhighspecificcapacitanceof234F/gandgreatcyclingstabilitywitha
capacitanceretentionof90%after1000cycles,alongwithhighenergydensityof32Wh/kgatapower
densityof500W/kgbenefitingfromexcellentpseudocapacitivepropertiesofPANIcoatingontothe
carbonnanofiber.
Inconclusion,itisapromisingstrategytopreparePANI/carbonbinarycompositestooptimize
theelectrochemicalperformances.Morphologyandstructureofthecompositeshaveakeyimpacton
theelectrochemicalpropertiesofPANIbasedelectrodes,henceitiscrucialtodesignarationalway
toachievethetargets.Ingeneral,themorphologyofnanofiber,nanowhiskerorfreestandingflexible
3Dstructureworksbetterthanothermorphologiesandstructures.However,thelimited
improvementofspecificcapacitanceisstilltheproblemofcarbonmaterials[20],fortunately,metal
compounds(especiallymetaloxides)makeupfortheshortage,therefore,PANI/metalcompound
deservesextensiveinvestigationsinsupercapacitors.
PANI/MetalCompoundsBinaryComposites
Exceptforcarbonmaterials,metalcompoundsalsohavebeenpopularlystudiedduetotheir
largecapacitanceabilityandexcellentstability.However,theirconductivityisfairlylow,thusitis
necessarytoinvolveintheassistanceofCPs(especiallyPANI)withhighconductivity.Inrecent
Materials2020,13,54812of45
years,metaloxides,metalchlorides,metalsulfidesandmetalnitridesarecommonlyusedtocombine
withPANIassupercapacitorelectrodesforimprovingtheelectrochemicalperformance.
Metaloxides,especiallytransitionmetaloxides,recognizedasacandidateinthefieldofa
supercapacitorbenefitingfromtheirextraordinarystabilityandoutstandingelectronstorageability,
aremostusedamongmetalcompounds.Howevertheirinferiorconductivityandpoorresistanceto
acidgreatlyhindertheirapplication.Inordertoovercomethelimitation,manyresearchersfabricate
CPs/metaloxideshybridswithexcellentconductivity,andPANI/metaloxidesaremorecommonly
reported.InthefieldofPANI/metaloxideshybrids,MnO2ismostwidelystudiedbecauseofitslower
cost,availableinabundance,excellentelectricalandcapacitivebehaviors,alongwithenvironmental
friendliness[54–58].Liuetal.[59]reportedafacileonestepmethodtoelectrochemicallysynthesize
thePANI/MnO2compositeviapulseelectrodeposition.Wherein,MnO2particleswereuniformly
dispersedontothesurfaceofPANInanorods.Thepreparedcompositepossessesahighspecific
capacitanceof810F/gat0.5A/gandacapacitanceretentionof86.3%after1000cycles,muchhigher
thanpurePANI,reflectingthattheadditionofMnO2hassynergisticeffectsbetweentheinvolved
materials.NovelworkwasdonebyHuo’sgroup[60].Firstly,theypreparedPANI/MnO2nanofibers
throughinterfacialchemicalpolymerization.Duringthesynthesis,4aminothiophenol(4ATP)
actedasthestructuredirectingagentontheAusubstrate;thenthenanofibercompositewithasize
of30nmtransferredintothemicrospherebyselfassembly.ThePANI/MnO2nanofibermicrosphere
electrodeobtainedpreferablespecificcapacitanceof765F/gat1mA/cm2in1MNa2SO4solution,and
highcyclingstability(acapacitancedecreaseofjust14.9%after400cycles),whichconfirmthatthe
hybridmightbeapromisingsupercapacitorelectrodematerial.Ranandcoworkers[61]fabricateda
nanoPANI@MnO2hybridwithatubularshapeviaasurfaceinitiatedpolymerizationtechnique.The
compositeelectrodeshowedgoodelectrochemicalperformancesincludingaspecificcapacitanceof
386F/gin1MNaNO3electrolytewiththepotentialwindowrangefrom0to0.6V,excellentstability
(aretentionof79.5%after800cycles)aswellasperfectEDLCperformance.Comparedwith
individualPANIorMnO2,thehybrid’sperformancesignificantlyimproved,whichcanascribetoa
synergisticeffectbetweenthetwocompositions,Xieetal.[62]revealedthatthestructureofMnO2
coulddecidethepropertiesofPANI/MnO2compositeelectrodesintheirstudy.Fourcrystal
structuresofMnO2werefabricatedintheirwork,theyareα‐MnO2,βMnO2,γMnO2andδMnO2
respectively.Wherein,γMnO2exhibitedthebesteffectthroughcomparingtheelectrochemical
performanceofthefourcrystallographicstructures,thusitwaselectedtosynthesisγ‐MnO2/PANI
nanocompositeelectrodethroughtheinsitupolymerizationmethod.TheγMnO2/PANImodified
electrodeshowedenhancedelectrochemicalperformance(493F/gat0.5A/gand95%capacitance
retentionafter1000cycles)thanindividualγ‐MnO2orPANIwhilethemassratioofγ‐MnO2toPANI
was1:5.Theauthorfurtherexplainedthatthreecrucialfactorsleadtothat:highenergydensityand
excellentcyclingstabilityofγ‐MnO2,highconductivityofPANI,alongwithinterconnectedreticular
structurebetweenthetwocompositions.
BesidesMnO2,PANI/othermetaloxidescompositeelectrodes’propertiesarealsostudied
extensivelyandalotofprogresshasbeenmadeinrecentyears.Forinstance,Atesetal.[63]compared
electrochemicalperformanceofPANI/CuO,PPy/CuOandPEDOT/CuOnanocompositefilmsthat
electrochemicallyfabricatedonglassycarbonelectrode.ResultsdisplayedthatPANI/CuOhas
advantagesovertheotherswithahighestspecificcapacitanceof286.35F/gat20mV/s,whilethe
highestspecificcapacitancevalueofPPy/CuOandPEDOT/CuOwas20.78F/gand198.89F/gat5
mV/srespectively.ItcanbeobviouslyincludedthatPANI/CuOwasthemostidealcandidatefor
supercapacitorelectrodematerials.Giri’sgroup[64]successfullyobtainedRuO2/PANIcompositevia
insituoxidativepolymerizationandinvestigatedtheeffectonelectrochemicalperformancewhile
dopingwithRu(Ш).Astheelectrochemicalcharacterizationsshowed,aspecificcapacitanceof425
F/ghadbeenachievedafteradditionofRuO2,whilethepurePANIwas160F/g,meanwhile,the
composite’scyclingstabilityalsolargelyincreased,reflectingthatRuO2broughtaboutasynergistic
effect.Morerecently,Prasankumarandcoworkers[65]preparedthePANI/Fe3O4compositeviain
situpolymerizationinthepresenceofmicrowaveobtainedFe3O4nanoparticles.Theprepared
Materials2020,13,54813of45
compositeexhibitedhighspecificcapacitanceof572F/gat0.5A/gandpronouncedlongtermcycling
stability(82%capacitanceretentionover5000cycles).Thegroupviewedthatitisofgreatpotential
tobeappliedasefficientsupercapacitorelectrodes.Wang’sgroup[75]successfullypreparedthe
SnO2@PANInanocompositeasbelow(schematicallyillustratedinFigure8):Tostart,SnOwas
obtainedbyultrasonicationinthepresenceofethanolamine(ETA).Thenfollowedbyoxidationto
SnO2byinsituoxidationandthepolymerizationofaniline.TheoptimumSnO2@PANIcomposite
(18.73wt%PANI)possessesaspecificcapacitanceashighas335.5F/gat0.1A/g,excellentrate
capability(108.8F/gat40A/g)andperfectcyclingstability(nocapacitancedecayafter1000cycles),
superiortopurePANI,whichbenefitsfromthesynergisticeffectwheretheenhancedstabilityis
derivedfromSnO2andtheenhancedcapacitanceisderivedfromPANI.
Figure8.SchematicdiagramofpreparationofSnOandSnO2@PANInanocomposite(reproduced
from[75]withpermissionfromTheRoyalSocietyofChemistry).
Apartfrommetaloxides,othermetalcompoundslikemetalchlorides,metalsulfidesandmetal
nitridesalsoareappropriatetobeexploitedaselectrodematerialsforsupercapacitor.Comparedwith
metaloxides,theyaremorestableinacidicelectrolyte,buttheirelectricalconductivityand
electrochemicalperformancearenotsowellasmetaloxides.Dhibaretal.[66]synthesized
PANI/CuCl2compositeswithvariousdopinglevelsofCuCl2(1,2,3and4wt%)throughinsitu
oxidativepolymerization,usingAPS (Ammonium persulphate)asanoxidantintheHClmedium.
ElectrochemicalmeasuresshowedthatPANI/CuCl2(2wt%)exhibitedthemaximumspecific
capacitanceof626F/gat10mV/s,meanwhilethecompositeelectrodewaswiththemaximumpower
density(8158.5W/kgat200mV/s)andmaximumenergydensity(222.57Wh/kgat10mV/s),which
indicatethatthecontentofCuCl2hasanimportanteffectoncomposites’electrochemical
performance.Morelately,Zhangetal.[67]developedatemplateassistedtechniquetosynthesize
MoS2/PANIhollowmicrospheres.PANIwasdepositedontothesurfaceofhollowMoS2
microspheres.TheformationprocessofMoS2/PANIhollowmicrospheresisvividlydisplayedin
Figure9.TheypointedoutthathollowMoS2microspherestructureprovidealargenumberofion
channelsandlargesurfacearea,whichisintheflavorofiontransportinanelectrolyte.Whenthe
massratioofMoS2:PANIwas1:2,theelectrodepossessmaximumspecificcapacitanceof364F/gat5
mV/sandcapacitanceretentionof84.3%after8000cyclesat10A/g.FromDhibarandZhang’swork,
wecanseethatthecontentofmetalcompoundhasacrucialeffectoncomposites’electrochemical
performance,anditisnotalinearrelationshipbetweenthecontentandelectrochemicalperformance,
thebestelectrochemicalperformancecorrespondstoacertainvalueofcontent.Xiaetal.[77]designed
aPANI/TiNcore–shellnanowirearrays(NWAs)structurebyafacileelectrodepositiontechnique.
ThePANI/TiNNWAselectrodewaswithaveryhighspecificcapacitanceof1064F/gat1A/ganda
stablecapacitanceretentionof95%after200cyclesbenefitingfromhighelectronicconductivityand
capacitystoragederivedfromthecore–shellNWAsstructure.
Materials2020,13,54814of45
Figure9.SchematicillustrationoftheformationofMoS2/PANIhollowmicrospheres[67](reproduced
withpermissionfromElsevier).
PANI/CPsBinaryComposites
PANIcancombinewithotherCPstoformcopolymers.Duetotheintrinsicelectrical
conductivityinCPs,alongwiththeirexcellentpseudocapacitiveperformance,thesecopolymers
usuallypossessenhancedsupercapacitiveperformancederivedfromasynergisticeffect.
Additionally,thecopolymersaredesirablebecauseoftheirlowcostsynthesis,highenergystorage
capacity,highyieldsandenvironmentalfriendliness[68–72].
Inrecentyears,moreandmoreinvestigationsonPANI/CPscompositesaredone,andmoreand
moresatisfactoryproperties(especiallyelectrochemicalproperties)onthemareexploredout,
obviouslytheymightholdmuchpromiseforservingforsupercapacitors.Zhangetal.[72]designed
novelPANI/PPydoublewallednanotubearrays(DNTAs;asschematicallyillustratedinFigure10).
ThefabricatedhybridDNTAswereusedastheworkingelectrodetostudyitselectrochemical
properties.ThestudiesshowedthatthePANI/PPyDNTAsexhibitedahighspecificcapacitanceof
693F/gat5mV/s,whichwasmuchhigherthanPPyDNTAs(250F/gatsamecondition),outstanding
ratecapabilityandexcellentlongtermcyclingstability(7.6%capacitancelossafter1000cycles).They
highlightedthatbothofPANIandPPymadeacontributiontoimprovedelectrochemical
performance.Veryrecently,Yangetal.[73]copolymerizedPANIandPEDOTbyamolecularbridge
providedbyphyticacid.ThePANI/PEDOTcopolymerhydrogelwaswitha3Dnetworkstructure
ofPEDOTsheetswherePANIwasinlaid.Whileusedasasupercapacitorelectrode,itshowed
outstandingelectrochemicalperformanceandhighlyenhancedmechanicalpropertiesascribingtoa
synergisticeffectanduniquemolecularinteractionsbetweenPANIandPEDOT.
Figure10.SchematicdiagramofthesynthesisofPANI/PPydoublewallednanotubearrays(DNTAs;
reprintedwithpermissionfrompreviousliterature[72]©2014AmericanChemicalSociety).
Materials2020,13,54815of45
OtherPANIBasedBinaryComposites
Apartfromcarbon,metalcompoundsandCPs,somecompositesthatconsistofPANIandother
materialsalsohavebeenfoundtoshowimprovedpropertiesrecently,includingPANI/puremetal,
PANI/otherorganicmaterialsandsoon.Tangetal.[74]developedagreenstrategytoobtaina
PANI/AgcompositewhereAgnanoparticleswereuniformlydispersedontothesurfaceofPANIvia
reductionAgsubstratewiththeassistanceofvitaminC.Thecompositeachievedthemaximum
specificcapacitanceof553F/gat1A/g,whichwasmuchhigherthanpurePANI(316F/gat1A/g),
attributingtothesynergisticeffectbetweenPANIandAg.Itscyclingstability(about90%capacitance
retentionafter1000cycles)andratecapabilitywereingoodcondition.Moreover,itexhibitedahigh
electricalconductivityof215.8S/m,itisbecauseAgnanoparticlespromotechargetransferbetween
theactivecomponents,thusleadingtoenhancedspecificcapacitanceandconductivity.Chenetal.
[85]designedacabbagelikePANI/hydroquinonecompositemicrospherethroughinsitu
polymerization.Electrochemicalinvestigationsdemonstratedthatthenanocompositeexhibitedgreat
electrochemicalproperties,thatis,ahighspecificcapacitanceof126F/gat5mV/sand85.1%
capacitanceretentionafter500cyclesat1A/g.Astheauthorviewed,PANIprovidedelectronic
conductivechannelsforthehydroquinoneandhydroquinonethatactasapseudocapacitance
component.
2.2.2.PANIBasedTernaryComposites
Asreviewedabove,PANIbasedbinarycompositeshavemadealotofcontributionto
supercapacitorelectrodes,however,theoptimumelectrochemicalpropertiessuchasconductivity,
specificcapacitanceandcyclingstabilitystillcannotbeachievedfully[20].Currently,inorderto
reachtheutmostelectrochemicalperformancelevels,moreandmoreattentionsarefocusedon
ternarycomposites.
PANI/metaloxides/carbonmaterialsternarycompositesaremostappliedinsupercapacitors
sinceCPs,metaloxidesandcarbonmaterialsarethemostoutstandingactivematerialsfor
supercapacitorelectrodes.SankarandSelvan[76]designedaternaryhybridsupercapacitorelectrode
wheretheobtainedMnFe2O4nanoparticlesweredispersedontheflexiblegraphenesheetsviathe
hydrothermalmethodandwerewrappedwithPANIviatheinsituchemicalpolymerizationmethod.
IntheternaryMnFe2O4/graphene/PANIhybridstructure,theMnFe2O4andPANIfunctionedasa
spacerthatavoidsreattachmentbetweentheflexiblegraphenesheets,andPANIandgraphene
functionedasaconductivenetworkthatpromotesiontransferfromanelectrolyteintoanelectrode.
Asexpected,thecompositeexhibitedsatisfactoryelectrochemicalperformance,includingahigh
specificcapacitanceof241F/gat0.5mA/cm2(7.5timeshigherthanMnFe2O4)andperfectcycling
stability(100%capacitanceretentionafter5000cycles).Aswecansee,theternarypossessesmore
pronouncedelectrochemicalperformance(especiallycyclingstability)thanthebinarycomposites,it
mainlyattributestothestrongersynergisticeffectbetweenthethreeconstituentsthanthebinary
ones.Fu’sgroup[78]developedafacileelectropolymerizationstrategytofabricatea3Dpolystyrene
microspherereducedgrapheneoxide/MnO2/PANI(3DrGNMnO2PANI)coaxialarrayscomposite.
Duringthefabricationprocessofthe3DrGNMnO2PANIcomposite,thepolystyrene(PS)was
insertedbetweentherGNtemplates,whichenlargedthespecificsurfaceareaoftherGN;PANIand
MnO2dispersedontotherGNtemplateswitharraysandnanoflakestructurerespectively,which
shortenedtheiondiffusionpath,enlargedinterfacialareaandfastenselectricalpathways.As
expected,theternarycompositefilmelectrodeshowedahighspecificcapacitanceof1181F/gat1
A/gandgoodcyclingstabilitywith89.1%capacitanceretentionafter1000cyclesat20A/g.The
enhancedelectrochemicalperformanceprovesthatthe3DrGNMnO2PANIwouldplayasignificant
roleinenergystoragesystems.ItisveryrecentlythatJeyaranjanandcoworkers[79]reportedahighly
scalableternaryporoushierarchicalPANI/RGO/CeO2hybridmicrospherepreparedbyaspray
dryingmethod.Theobtainedternarymicrospherewaswithahighspecificcapacitanceof684F/g,
goodratecapabilityandexcellentlongtermcyclingstabilitywith92%capacitanceretentionafter
Materials2020,13,54816of45
6000cycles.Theimprovedelectrochemicalpropertiesattributetothefunctionalandsynergisticeffect
betweenthethreeconstituents.
PANI/metaloxides/carbonmaterialsarenottheexclusivePANIbasedternarycompositesfor
supercapacitorelectrodes.Infact,theothercomponentsexceptPANIneedtomakeupforthe
shortagesofPANIforthepurposeoffulfillingthemaximumsynergisticeffectlevelaspossible.As
forPANI,thedisadvantagesincludingthepoorstability,notsohighspecificsurfacearea,relatively
lowelectronicconductivityandeaseofagglomerationareurgenttobeenhancedinthePANIbased
ternarysystems,thustheothertwocomponentsthatcanactasoptimizingthesedisadvantagesof
PANIaresuitabletoformPANIbasedternarysystems.Forexample,Kimetal.[80]synthesized
ternaryAg/MnO2/PANInanocompositefilmsforsupercapacitorelectrodesthroughanovelpulsed
potentialelectrodepositionstrategy.Inthecomposite,Agprovidesahighelectronicconductivity
andfastiontransfer,furthermore,AgandMnO2shapedasuniformvermicularmorphologywhile
thepurePANIshapedasagglomeratedvermicularlikestructure,bothofwhichimprovethe
electrochemicalperformanceofthecompositeelectrode.Asaresult,theternarycompositeexhibited
muchbetterelectrochemicalperformancethanpurePANIfilmwithahighcalculatedspecific
capacitanceof621F/gand800F/gfromCVandCDrespectively,aswellasgoodstability(83%
capacitanceretentionafter750cycles).Luetal.[81]preparedPANI@TiO2/Ti3C2Txternarycomposite
withahierarchicalstructureviaahydrothermaltreatmentwithadditionoftheinsitupolymerization
process.Asnewactivematerials,thelayeredTi3C2Txprovidedahighspecificsurfaceareaandanice
frameworkthatisbeneficialtoiontransfer,andPANInanoflakesandTiO2nanoparticlescanincrease
theactivematerials’surfacearea.Aselectrochemicalmeasuresshowed,thenanocompositea
remarkablestabilityof94%capacitanceretentionafter8000cyclesat1A/g.Theyexplainedthatthe
highspecificcapacitanceof188.3F/gat10mV/s,whileTiO2/Ti3C2Txwasabouthalfofthat,anda
hierarchicalarchitectureandthesynergisticeffectofcombiningPANInanoflakeswithTiO2/Ti3C2Tx
compositeresultedintheenhancedelectrochemicalperformance.Morerecently,Zhuandcoworkers
[82]developedaneffectivemethodtoconstructhierarchicalZnO@metalorganicframework
(MOF)@PANIcore–shellnanorodarraysoncarboncloth(CC)forasupercapacitorelectrode.The
schematicconstructionofZnO@MOF@PANInanoarraysonCCisvividlyillustratedinFigure11.As
risingporousmaterials,MOFisassociatedwithconsiderablehighspecificsurfaceareaandfast
electronandiontransfer,andZnOisrelatedwithexcellentstability,hencetheZnO@MOF@PANI
mightbeagoodcombinationforasupercapacitorelectrode.Inthecompositearchitecture,ZnO
nanorodsactedasthecorethatsupportstheMOF@PANIshell.Resultsshowedthattheternary
compositepossessesahighspecificcapacitanceof340.7F/gat1.0A/g,goodratecapabilitywith84.3%
capacitanceretentionfrom1.0to10A/gandlongtermcyclingstabilityof82.5%capacitanceretention
after5000cyclesat2.0A/g.Theenhancedelectrochemicalpropertiesbenefitedfromtheunique
hierarchicalcore–shellarchitectureandthesynergisticeffectofthethreecomponentsastheauthor
viewed.
Figure11.SchematicillustrationofsynthesisofZnO@MOF@PANInanoarraysoncarboncloth(CC)
[82](reproducedwithpermissionfromElsevier).
Materials2020,13,54817of45
Table1presentsthepreparationmethodandelectrochemicalperformanceofsometypicalPANI
basedsupercapacitorelectrodematerials.
Insummary,PANIbasedternarycompositesshowgreatpotentialinsupercapacitors.
Furthermore,theelectrochemicalperformanceisdeeplyinfluencedbythenatureofthecomponents
thatcombinedwithPANIandthestructureormorphologyofthecomposites,thusitisimportantto
lookformaterialswithasynergisticeffect,andtodesignasuitablenanostructureormorphology,
thenresultinextensiveinvestigations.Obviously,studyonPANIbasedternaryelectrodematerials
hasbecomeahotdirectioninthefieldofenergystorageandconversion.
Table1.ThepreparationmethodandelectrochemicalperformanceofsometypicalPANIbased
supercapacitorelectrodematerials.
MaterialsPreparationMethodMaximumSpecific
CapacitanceCycleStability
PANI[33]interfacialpolymerization554Fg1at10mAg157Fg1after
1000cycles
PANI/POROUSCARBON[34]electrochemical
polymerization180Fg1at1Ag1163Fg1after
1000cycles
PANI/CACS[35]selectivesurface
dissolution(SSD)method765Fg1at1A/g91%after5000
cycles
PANINWS/CMK3[40]chemicaloxidative
polymerization90.4%after1000
cycles
NANOHCS/PANI[42]insituchemicaloxidative
polymerization435Fg1at1Ag160%after2000
cycles
PANI/MWCNTS[43]chemicaloxidative
polymerization320Fg1at10mAg18%after50
cycles
CNTS/PANI[44]depositionofPANIonthe
surfaceofCNTs183Fg1at10mAg1
NITROGENCONTAINING
CNTS/PANI[45]hightemperaturetreatment163Fg1at700°C
and0.1Ag1
SWCNTS/PANI[46]sprayprintingmethod355.5Fg1at0.1A
g1
87.2%after5000
cycles
CCG/PANINFS[47]vacuumfiltrationthe
mixeddispersions210Fg1at0.3Ag194%after1000
cycles
GRAPHENE/PANI
NANOFIBER[48]insitupolymerization480F/gat0.1A/g70%after1000
cycles
GO/PANI[49]insitupolymerization425F/gat0.2A/g83%after500
cycles
GO/PANI[50]asoftchemicalroute531F/gat0.2A/g
RGO/PANI[51]insitupolymerization1045F/gat0.1A/g97%after1000
cycles
PANI/CARBONNANOFIBER
[52,53]
sol–gelandelectrospinning
method234F/gat0.1A/g90%after1000
cycles
PANI/MNO2[59]pulseelectrodeposition810F/gat0.5A/g86.3%after1000
cycles
PANI/MNO2NANOFIBER
MICROSPHERE[60]
interfacialchemical
polymerization765F/gat1mA/cm285.1%after400
cycles
NANOPANI@MNO2[61]surfaceinitiated
polymerization
386F/gwiththe
potentialwindow
rangefrom0to0.6V
79.5%after800
cycles
PANI/CUO[63]insitupolymerization286.35F/gat20mV/s
RUO2/PANI[64]insituoxidative
polymerization425F/gat1mA/cm2
PANI/FE3O4[65]insitupolymerization572F/gat0.5A/g82%over5000
cycles
Materials2020,13,54818of45
SNO2/PANI[75]insituoxidative
polymerization335.5F/gat0.1A/g
nocapacitance
decayafter1000
cycles
PANI/CUCL2[66]insituoxidative
polymerization626F/gat10mV/s
MOS2/PANI[67]templateassistedtechnique364F/gat5mV/s84.3%after8000
cycles
PANI/TINNWAS[77]electrodepositiontechnique1064F/gat1A/g95%after200
cycles
PANI/PPYDNTAS[72]PPycoatedontothePANI693F/gat5mV/s92.4%over1000
cycles
PANI/AG[74]Agnanoparticlesdispersed
ontothesurfaceofPANI553F/gat1A/g90%after1000
cycles
MNFE2O4/GRAPHENE/PANI
[76]
insituchemical
polymerization
241F/gat0.5
mA/cm2
100%after5000
cycles
3DRGNMNO2PANI)[78]electropolymerization1181F/gat1A/g89.1%after1000
cycles
PANI/RGO/CEO2[79]spraydryingmethod684F/gat1A/g92%after6000
cycles
AG/MNO2/PANI[80]pulsedpotentialelectro
deposition
621F/gand800F/g
at1A/gfromCV
andCDrespectively
83%after750
cycles
PANI@TIO2/TI3C2TX[81]
hydrothermaltreatment
withadditionofinsitu
polymerizationprocess
188.3F/gat10mV/s94%after8000
cycles
3.ApplicationsofPANIforRechargeableBatteries
Asanotherimportantelectrochemicalenergystorageandconversiondevice,rechargeable
batteries,alsocalledsecondarybatteries,havebeenextensivelyusedowningtoitshighenergy
density,goodportability,lowcost,safeandexcellentstability.Justlikesupercapacitors,their
electrochemicalperformancesaregreatlyrelatedwithelectrodeproperties.Conventionalelectrode
materialsforrechargeablebatteriesaremainlymetalormetallicderivatives,buttheyusuallysuffer
frompoorstability,inferiorconductivity,lowratecapabilityandvoltagedecrease[83].PANI
providesnovelfeasibilityfordesigningelectrodesofrechargeablebatteriesduetoitshighflexibility,
highelectricalconductivityandlowcostsynthesis.Moreover,lotsofresearchhasprovedthe
applicationsofPANIforimprovingtheelectrochemicalperformanceofrechargeablebatteries,thus
PANIiswidelyusedinthatfield.Inthischapter,wewillemphaticallydiscussthethreetypesof
rechargeablebatteriesthataremostappliedandstudied:lithiumionbatteries(LIBs),lithiumsulfur
batteries(LSBs)andsodiumionbatteries(SIBs).Theelectrodematerials’designforLIBs,LSBsand
SIBsthatareassociatedwithPANIwillbealsoreviewedindetail.
3.1.LithiumIonBatteries(LIBs)
Amongrechargeablebatteries,LIBsarethemostpromisingsuperstarusedinportableelectronic
devicesduetotheirhighpower/energydensity,goodportability,excellentcyclingstabilityand
environmentalfriendliness.Asarisingsecondarybatteries,LIBsmainlyrelyonlithiumionsmoving
betweenthepositiveelectrode(cathode)andthenegativeelectrode(anode)tooperate.Whenitis
charging,Li+ionstransferfromthecathodetotheanodethroughtheelectrolyte,thenresultsinaLi
richstateinananode;whendischarging,itisthecontrary,thatis,thecathodeisinaLirichstate.
ThemechanismisillustratedinFigure12.
Materials2020,13,54819of45
Figure12.SchematicillustrationoftheworkingmechanismofLIBs.
SincethecathodeandanodeprovidethespaceforLi+ionstransfer,manyresearchershavebeen
tryingtoseekelectrodematerialswithsuperiorelectrochemicalperformancetooptimizethe
characteristicsofLIBs.Inthenextsection,wewilldiscusstherecentresearchprogressonPANI
modifiedcathode/anodematerialsforLIBsindetail.
3.1.1.PANIModifiedCathodeMaterials
Asoneofthemostpromisingenergystoragedevices,LIBshavebeenextensivelyinvestigated
andrapidlydevelopedsincethe1970s[84].Ingeneral,mostcathodematerialsforLIBsaremadefrom
Licontainingtransitionmetaloxides,furthermore,thehigherLicontentinthecompoundendows
thecathodewithbetterelectrochemicalperformance,whereasLirichTMOsarethepromising
cathodematerials.However,relativelylowconductivity,cyclinginstabilityandstructuralinstability
arechallengesthatremaintobetackled.Fortunately,PANIwithhighconductivity,goodstability
andexcellentflexibilitycanovercometheseproblems,soPANImodifiedcathodematerialsare
wanted.Uptodatenow,LirichcathodematerialshaveundergonevariousgenerationslikeLiMxOy
(M=Co,Ni,Mn,V),LiFePO4,Li(Ni1xCox)O2,Li(Ni1xyMnxFey)O2andLi(Ni1xyCoxMy)O2(M=Fe,Al,
Mn).Amongthem,LiCoO2,LiFePO4,LiV3O8,Li(NixCoyMn1xy)O2andLi(NixMnyFe1xy)O2havebeen
commonlychosentopreparePANImodifiedcathodematerialsforLIBs.
AsthefirstgenerationofthepromisingcathodematerialsforLIBs,LiCoO2hasbeen
commerciallyappliedduetoitshighLicontentandstablecyclicbehavior.Infact,LiCoO2isdispersed
ontotheelectrodesurfacewithasolidpowder,itisnecessarytodopeconductivemediumintothe
electricalwiringofLiCoO2powder[86].PANIissuitabletoactastheconductivemediumduetoits
highelectricalconductivity.Karimaetal.[86,87]developedaPickeringemulsionroutetoproduce
PANI/LiCoO2nanocompositeswithwellorderedlayeredstructure.ConductiveandflexiblePANI
additivecanconnecttheLiCoO2powderswell,andshortenchargetransportpathways,thereby
realizingincreasedconductivityandcapability.Asaconsequence,allofthenanocompositeswith
variousmassratioofPANIshowedenhancedspecificcapabilitiescomparedwiththatofpristine
LiCoO2of136mAh/g.
Materials2020,13,54820of45
LiFePO4(LFP)isthenextgenerationofpromisingcathodematerialafterLiCoO2owningtoits
excellentcyclingstability,lowcost,securityandlargecapacity.However,blamingforits1Dchannels
forLiextraction[88],therearestilltwolimitationsincludingpoorelectronicconductivityandslow
Li+iondiffusionthathinderitsapplicationsforLIBs[89].Carboncoatingisausefulstrategyto
improvetheelectronicconductivityofLFP,butaCLFPcompositeiselectrochemicallyinactive,
fortunately,electrochemicallyactivePANIispromisingtoformaPANI/CLFPcompositeby
combiningwithCLFPorsubstituteCLFPforPANILFPcomposite.InSu’swork[90],aPANICSA
(camphorsulfonicacid)/CLFPcompositewaspreparedbycoatingCLFPwithPANICASinm
cresolsolution.Thecompositecathodesdeliveredenhancedspecificdischargespecificcapacityand
ratecapability.Inparticular,10%PANICSA/CLFPachievedaspecificcapacityvalueashighas
165.3mAh/g.TheyattributedittotheelectrochemicallyactivePANIadditives.Recently,Fagundes
andcoworkers[91]reportedaPANI/LFPcompositecathodematerialforLIBs.Thecompositewas
fabricatedviaanalternativesynthesisroute,whichwasbeneficialtoenhancedelectrochemical
propertiesandfastelectrontransferrateoftheLPF.Therefore,thecompositeshowedalower
oxidationandreducingpotential(ΔEp=0.20V)thanthatofLFP(ΔEp=0.41V)accordingtotheCV.
Gongetal.[92]adoptedaPANI/poly(ethyleneglycol)(PEG)copolymertosimultaneouslymodify
theelectronicconductivityandLiiondiffusionrateoftheLFP.Themodificationwasderivedfrom
thesynergisticeffectbetweenPANIandPEG:PANIservedasasuperiorconductivemedium,while
PEGservedasanexcellentsolventforlithiumsaltsandbecamethebestknownpolymerionic
conductor.Inreturn,thePANI/PEGcopolymermodifiedCLFPbasedcathodeachievedahigh
specificcapacityof125.3mAh/gat5°C,aswellasexcellentcyclingstabilityof95.7%capacity
retentionafter100cyclesat0.1°C.
LiV3O8iswellknownasapromisingcathodematerialforLIBsduetoitslargecapacity,being
chemicallystableanditslowcost,butpureLiV3O8suffersfromashortcycliclifeandpoorrate
capability.CoatingPANIonLiV3O8isofgreatusetomakeupforthedisadvantagesofpureLiV3O8.
Guoetal.[93]chemicallysynthesizedaLiV3O8/PANInanocompositeviatheoxidative
polymerizationmethod.Inthenanocompositecathode,PANIcoatingactedasaconductivenetwork
structure,moreoverwellcrystallizedregionsandamorphouslikeregionscoexistinit,bothofwhich
boostelectrontransferandlithiumionchemicalcoefficients,thenresultinginbetterelectrochemical
propertiesthanpristineLiV3O8,whichincludedanenhancedcyclicstability(about95%capacity
retentionafter55cycles)andsuperiorratecapability.
Inrecentyears,thetrimetallicLicontainingoxidescathodematerialslikeLi(NixCoyMn1xy)O2
andLi(NixMnyFe1xy)O2arouselotsofinterestbecauseoftheirwellratecapability,highspecific
capacity,lowcostandenvironmentalfriendliness.However,withtheincreaseofNicontent,they
usuallyundergotheevaporationlossduringtheLiioncalcinationandinferiorcyclicstabilitydueto
residualLi2CO3andLiOHimpuritiesderivedfromsidereactionsaftereverycycle[94].Likewise,
coatingPANIontomonometallicandbimetallicLicontainingoxidestoformmodifiedcathode
materialscanovercometheseobstacles.Songetal.[95]obtainedPANImodifiedPANIcoated
Li(Ni0.8Co0.1Mn0.1)O2cathodematerialforLIBsviaasolutionmethod(Figure13c)andevaluatedits
electrochemicalperformance.PANIcoatingcanremovetheresidualLicompoundslikeLi2CO3and
LiOH(Figure13a,b)effectivelyandoptimizetheinterfacialelectrochemicalreactions.Thus,thePANI
modifiedcathodeachievedahighinitialdischargespecificcapacityof193.8mAh/gwithawell
capacityretentionof96.25%after80cyclesat1°Candremarkableratecapabilityathighcurrent
density(1°C,2°Cand5°C).Karthikeyanandhiscoworkers[96]testedthehybrid
PANI/Li(Ni1/3Mn1/3Fe1/3)O2(0.2molPANI)cathode’selectrochemicalcharacteristicsinhalfcell
configuration.Asaconsequence,itmaintained86%ofinitialdischargecapacityafter40cycles,
particularly,itcanexhibitremarkablecyclicabilityatultrahighcurrentdensitiesof5,30and40°C.
TheyattributedittothePANIadditive,thatis,PANIhighlyenhancedtheconductivenatureofthe
halfcellsystemandenabledefficientinsertionandextractionoftheLiion.
Materials2020,13,54821of45
Figure13.ReactionsofprotonatedPANIwithresiduallithiumcompoundslikeLi2CO3(a)andLiOH
(b)and(c)schematicillustrationofpreparationofPANIcoatedLi(Ni0.8Co0.1Mn0.1)O2cathodematerial.
InadditiontoPANImodifiedcathodematerials,otherPANIbasedcompositeslikePANI/Zn
[97],PANI/Cu/Li2MnSiO4[98]andPANI@RGO/PW12[99]havebeenrecentlyusedascathode
materialsforLIBsduetotheiruniqueelectrochemicalcharacteristics.Furthermore,theyachieved
enhancedelectrochemicalpropertiesincludingspecificcapacity,cyclicstabilityandratecapability,
hencetheyaresignificantlyhotdirectionsforcathodematerialsofLIBs.
Infact,PANIitselfcanalsobeemployedasacathodematerialforLIBs.Basedonhigh
conductivityandflexibilityprovidedbyPANI,togetherwithshortchargetransportpathways
providedbythenanostructure,thePANInanowirearraysascathodematerialforLIBsdeliveredan
initialdischargecapacityof159.83mAh/gandexceptionalcyclingstability(119.79mAh/gretained
after100cyclesat30mA/g)[134].
3.1.2.PANIModifiedAnodeMaterials
Todate,commonanodematerialsforLIBsincludesiliconbasedmaterials(SiandSiOx),metal
oxides(SnO2,TiO2,NiO,Fe2O3andFe3O4)andmetalsulfides(MoS2andSnS2).Nevertheless,theyare
usuallyrelatedtopoorconductivity,structuralinstabilityandeaseofselfaggregation.Aslike
cathodematerials,theseobstaclescanbealsoovercomebythePANIcoating.
Silicon(Si)anodematerialforLIBshasbeenapromisingresearchfocusbecauseofitshighest
everknowntheoreticalcapacityof4200mAh/g.However,Siisasemiconductoroflowconductivity,
additionally,itusuallyundergoesseverevolumeexpansion(>300%)duringintercalationand
extractionoftheLiion[100].Promisingly,thetwoproblemscanbegreatlysolvedbyPANIcoating.
Manyefforts[100–105]havebeendevotedtomodifytheSianodebyfabricatingaSi/PANIcore–shell
nanocompositeanode.IntheSi/PANIcore–shellstructure,SiandPANIactascoreandshell
respectively,andPANIistightlyanchoredtonanoSibyacovalentbondbetweenPANIandSi.A
PANIencapsulatedshellprovidesalargespaceforvolumeexpansionandshrinkageofSicore
duringintercalationandextractionoftheLiion,whichpromotesthecontactofelectrodematerials,
thenbringsforthhigherreversiblecapacityandbettercyclingstability.Besides,thecoatingofthe
conductivePANIlayersignificantlyenablesafastLiionandelectronictransfer,thusresultingin
excellentconductivity.Inaddition,dopingPANI/Sicompositeswithotheractivematerialsisanother
smartstrategytomodifySianodes’electrochemicalproperties.Carbonmaterials(graphite[106],
Materials2020,13,54822of45
graphene[107–109],RGO[110]andCNTs[111])andmetaloxides(CeO2[112]andTiO2[113])are
conventionallychosentotheactivematerials.GraphitewithpowdersfacilitatesbetterdisperseofSi
nanoparticlesandelectriccontactofactivematerials,whicheffectivelyimproveselectrochemical
properties,sotheternaryPANI/Si/graphitecompositecanachieveahighinitialcapacityof1392
mAh/gandstablecapacityretentionof62.2%after95cycles[106].GrapheneandRGOsheetscanbe
tightlyattachedtothePANIlayerthroughintimateenhancementofπconjugationbetweenthem.
Thelayer–layerstructureofPANI/graphene(orRGO)sheetcanencapsulateSinanoparticlestoform
anewcore–shellarchitecture[107,109]orgluenanoSitoformsandwichlikenanoarchitecture
[108,110]withhighelasticmodulusandhightensilestrength.Bothofthearchitecturesprovided
conductiveandprotective3Dnetworktoavoidstructuraldamagederivedfromvolumeexpansion
duringintercalationandextractionoftheLiion.Additionally,the3Dnetworkcanpromisingly
promoteelectronandLiiontransfer,andthenresultinenhancedconductivity.Aunique
CNTs/PANI/Sicompositewithcore–sheatharchitecturebasedonCNTsfoamexhibitsenhanced
capacityandstabilityinZhou’sstudy[111].The3DinterconnectedporousCNTsprovidesubstantial
conductivechannelsfortheLiionandelectrontransfer.Moreover,aPANIsheathofferedSiwith
enoughspacetoexpand,ensuringstructuralintegrityofelectrodeduringLiioninsertionand
extraction.Inreturn,anenhancedinitialspecificcapacityof1954mAh/gandstablecyclicability(727
mAh/gmaintainedafter100cycles)wereachieved.Therearesimilarsynergisticeffectsthatexistin
theSi@PANI@CeO2composite[112]andSi@PANI@TiO2compositewithadoublecore–shell[113]
structure:ontheonehand,PANIservedasaprotectingelectrodeagainststructuredamagederived
fromvolumeexpansionofSi,ontheotherhand,PANIandlithiatedTiO2orCeO2highlypromoted
electronictransport.Asanoutcome,modifiedanodesexhibitedenhancedconductivityandcycling
stabilitycomparedtopristineSiandPANI/Sicomposite.
Siliconoxide(SiOx)isatypeofrisinganodematerialforLIBsinrecentyears,butlikeSi,low
conductivityandlargevolumeexpansionduringlithiation/delithiationseverelyhinderitspractical
applications.Theseobstaclescanbewelltackledbydesigningcore–shellsandwichlikePANI
wrappedSiOx/CNTs[114]orfabricatingSiOx/PANI/Cu2Ocompositeanodes[115,116].Inthedual
core–shellsandwichstructurePANI/SiOx/CNTscomposite(asseeninFigure14)[114],theCNTs
enhancetheconductivityofSiOxandthePANIendureslargevolumeexpansionduringlithiation/de
lithiationofSiOx.OwingtothesynergisticeffectbetweenPANIandSiOx,ahighcharge/discharge
capacityof1156/1178mAh/gat0.2A/gand728/725mAh/gretainedafter60cyclesat8A/gwas
achieved.AhollowSiOxcoatedwithPANI/Cu2OnanocompositecanbepreparedbytheStober
method[115,116].Thenanostructureeffectivelyrelievedthevolumeexpansionduringlithiation/de
lithiation,moreover,PANIandCu2Odualcoatingsignificantlyenhancedreversibilityand
conductivityofSiOxandpreventeditdroppingfromtheelectrodesurface.
SnO2hasbeenactivelyemployedasapromisinganodematerialforLIBsduetoitshigh
theoreticalspecificcapacityof790mAh/g,lowdischargepotential,lowcostandnaturalabundance.
However,therearestillthreeproblemsthathamperitscommercialization:(1)poorcyclingstability;
(2)lowelectronicandionicconductivityand(3)enormousvolumeexpansion(>200%)during
lithiation/delithiationprocess.Intensiveeffortshavebeendevotedtotacklethesedisadvantagesby
synthesizingPANI/SnO2basedternarycomposites.Guoetal.[117]reportedaninsitu
polymerizationsol–gelroutetoprepareSnO2Fe2O3@PANIcomposite.ThegrowthofSnO2Fe2O3
particleswasfirstlysuppressedbythePANIontheiroutersurfaceduringpolymerization,nextthe
fullcoatingofacarbonshellencapsulatedtheFe2O3particlesinthethermaltreatment,whichforms
auniqueSnO2Fe2O3@Cstructure,inwhichSnO2Fe2O3particlesweretightlycoatedwithPANIand
theouterPANIshelleffectivelyrestrictstheiragglomeration,resultinginenhancedstability.
Additionally,theintroductionofacarbonlayerachievesimprovedelectronicconductivity.Hence
theuniquestructureoftheSnO2Fe2O3@Cnanocompositesignificantlyimprovesitselectrochemical
properties,achievingthefullyreversiblereactionandalloyreactionofSnO2.Enhancedcapacity
retentionofover1000mAh/gat400mA/gafter380cyclesandexcellentrateperformanceof611
mAh/gat1600mA/gwerereported.Anovel3DternaryPANI/SnO2/RGOnanostructurewas
Materials2020,13,54823of45
successfullydesignedasananodeforLIBsviaaneasydipcoatingofPANI@SnO2andgraphene
dispersiononCufoam(Figure34c)inDing’s[118]study.Inthenanostructure,PANIactedasthe
conductivematrixaswellasthegluethatbindthehollowSnO2nanoparticlesonRGOsheetstightly
toavoidaggregationwhilecycling,whichgreatlyimprovedtherateperformance;thehollowSnO2
nanoparticlesactedasthebufferforenormousvolumechangesduringinsertion/extractionofLi,and
providedactivespotsforvitiation,whichresultedinenhancedcyclingstability;theassemblyof
PANI@SnO2,RGOandCufoamwithstrongcontactachievesultrafastelectrontransportbya3D
expressway,whicheffectivelyenhanceselectronicconductivityandrateperformance.Aspredicted,
thenanocompositeexhibitedexcellentrateperformanceof268mAh/gat1000mA/gandcycling
stability(749mAh/gofinitial772mAh/gwasretainedafter100cyclesat100mA/g),muchhigher
thanSnO2/RGO,PANI/SnO2andpureSnO2(Figure15a,b).Yietal.[119]synthesized3Dexpanded
graphite(EG)/PANI/SnO2compositebythesolvothermalmethodfollowedbyinsituoxidative
polymerization.Thelongordered3DEGlayerstructuregreatlyenduredvolumeexpansionofSnO2,
PANIcanreducetheelectriccontactbetweenelectrodematerials,thedoublesynergiesbroughtforth
enhancedelectrochemicalcharacteristicsincludingahighinitialreversiblecapacityof1021mAh/gat
0.1A/gand408mAh/gretainedafter100cycles.Recently,Wangandcoworkers[120]designeda
novel1DPANI@SnO2@MWCNTcompositeastheanodematerialforLIBs.TheMWCNTcanprovide
convenientelectrontransferchannelsandaneffectivebufferforhugevolumechangesofSnO2,
furthermore,thesynergyoftheconductivePANIandMWCNTskeletonsignificantlyenhancedthe
electronicandionicconductivityoftheternary1DPANI@SnO2@MWCNTcomposite.Inreturn,the
compositedeliveredahighreversiblecharge/dischargespecificcapacityof878/888mAh/gat0.2A/g
over100cyclesand524/527mAh/gat1.0A/gover150cycles.
Materials2020,13,54824of45
Figure14.(a)SchematicillustrationofpreparationofPANI/SiOx/CNTsand(b)digitalphotographics
ofPANI/SiOx/CNTs[114](reproducedwithpermissionfromElsevier).
Figure15.(a)RatecapabilitiesoftheSnO2@PANI/rGOnanocomposites,SnO2@PANI,SnO2/RGOand
SnO2respectively;(b)cyclicbehaviorsoftheSnO2@PANI/rGOcomposites,SnO2/rGO,SnO2@PANI
andSnO2atthecurrentdensityof100mA/gand(c)aschematicillustrationofthepreparationofthe
PANI/SnO2/RGOnanocomposite[118](reproducedwithpermissionfromElsevier).
ComparedtosiliconbasedmaterialsandSnO2,TiO2isasuperiorcandidateforLianode
materialsasaresultofitssmallvolumeexpansion(<4%),reliablesecurityandexcellentcycling
stability.Unfortunately,thenanoTiO2tendstoagglomerateanddecomposewhilecycling,which
resultincapacityfadinganddecreasesinelectroactivesites.Asaconsequence,therateof
lithiation/delithiationslowsdown.DopingtheconductivePANI/RGO[121]orPANI/GO[122]phase
inTiO2isaneffectivewaytoresolveit.BothofPANI/RGOandPANI/GOcanbeconstructedintoa
sandwichstructurewithTiO2.IntheTiO2/PANI/RGOsandwichstructure,theTiO2nanoparticles
sandwichedbetweenPANIandRGOnanosheets,whichcouldeffectivelypreventtheagglomeration
ofTiO2nanoparticlesandenablefastinsertionandextractionoftheLiion.Asaresult,thecomposite
anodeshowedenhancedrateperformanceandcyclingstability(dischargecapacityof149.8mAh/g
accompanyingCoulombicefficiencyof99.19%at1000mA/gafter100cycles)comparedwithpure
TiO2[121].Differentfromtheformer,PANInanorodswereverticallygrownonbothsidesof
amorphousTiO2GOnanosheetstoformastableTiO2/PANI/GOsandwichstructure.TheGO
networkprovidesmanyconductivechannelsforelectrontransportandallowednanoscalePANIand
TiO2tosettlewellontotheGOnetworktoformastablesandwichstructure,whichledtoenhanced
electronicconductivityandstability.Anexcellentinitialdischargecapacityof1335mAh/gat50mA/g
and435mAh/gafter250cyclesat100mA/gwerereported[122].
NiOisknownasasemiconductoroflowconductivity,andthenanoscaleNiOparticlesareeasily
convertedtoinactiveLi2Othroughthedischargereaction:NiO+2Li=Ni+Li2O,leadingtopoor
electriccontactbetweenLiactivenanoparticlesandsubstrate.Moreover,NiOnanoparticlestendto
agglomerateandforminactivebulkparticleswhilecycling.Inordertotackleit,Huangetal.[123]
Materials2020,13,54825of45
developedanickelfoamsupportedNiO/PANIcompositeasananodematerialforLIBs.Itwaswith
enhancedconductivityandstabilitybygluingNiOflakestightlyonthePANIlayer,whichcan
preventNiOlosscausedbyasideeffect.Furthermore,weakerpolarizationensuresbetter
reversibilityandcyclingperformance.TheNiO/PANIelectroderetained520mAh/gafter50cycles
at1°C,higherthanpristineNiOelectrodeof440mAh/g.TheNiO/PANIcompositecore–shellarrays
[124]couldworkbetterthantheformer.Itnotonlyexhibitedweakerpolarization,butalsoshowed
excellentLiionstoragecapabilityandenhancedelectronicconductivitywerederivedfromthe
introductionofconductivePANInetworkthatcouldenablefastelectronandiontransferand
improvestructuralstability.Therefore,anenhancedspecificcapacityof780mAh/gat0.1A/g,
superiorratecapabilityandcyclingstabilitytobareNiOwereobserved(Figure16).

(a)(b)
Figure16.ElectrochemicalcomparisonofNiOnanoflakearraysandNiO/PANIcore/shellarrays.(a)
Ratecapabilityand(b)cyclingstabilityat0.1A/g[124](reproducedwithpermissionfromElsevier).
Asakindofmetaloxideofnaturalabundance,hightheoreticalcapacity(1007mAh/g)andlow
cost,Fe2O3hasbeenpopularlydevelopedasanodematerialsforLIBs.Maetal.[125]successfully
synthesizedPANIcoatedhollowFe2O3nanoellipsoidsviaasolvothermaltechniquefollowedbya
postcoatingprocess.Theporousandhollowstructurecaneffectivelyaccommodatethevolume
changeofFe2O3,whilePANIcoatingactedasaconductivemediumthatgreatlyimprovedthe
electronicandionicconductivityinadditiontobufferingtheexpansion/contractionoftheactive
materialduringelectrochemicalreactions.Consequently,thePANI/Fe2O3compositedelivered
chargecapacitiesof366,223.4and105.8mAh/gat0.5,1.0and2.0Crespectively,andmaintaineda
chargecapacityof412.1mAh/gafter150cyclesat0.2°C,indicatingenhancedratecapabilityaswell
asextendedcycliclifespan.
Fe3O4,namelymagnetite,isnewlydevelopedasthePANImodifiedanodematerialforLIBs.
SimilartoFe2O3,naturalabundance,hightheoreticalcapacity(926mAh/g)andlowcostareits
attractions,buthugevolumeexpansionandsevereparticleagglomerationwhilecyclingneedtobe
overcome.AuniqueFe3O4@PANIcompositewithyolk–shellmicronanoarchitecturewasobtained
byWang’sgroup[126].Figure17vividlyillustratesitsformationprocess.Themicro/nanostructure
isfavoredforpreventingthebulkFe3O4fromaggregationwhilecycling,theporousyolksandvoid
spacescanshortentransportlengthforLiionsandelectrons,andalsoprovideextrasitesforion
storage,andthePANIlayercaneffectivelyimprovetheconductivity,resultinginenhanced
electrochemicalperformance.Asexpected,ahighreversiblecapacityof982mAh/gafter50cyclesat
100mA/gandanoutstandingratecapabilityof734.6mAh/gat1000mA/gwereachieved.Coating
layeredgrapheneontoPANInanofiberanchoredFe3O4isalsoasmartstrategy[127].Itwas
demonstratedthatthegraphene/Fe3O4/PANIshowedasuperiorreversiblespecificcapacityof1214
mAh/g,extraordinaryratecapability,lowvolumeexpansion,enhancedcyclingstabilityand99.6%
Materials2020,13,54826of45
coulombicefficiencyover250cycles,owingtothecollectiveeffectoflayeredgraphene,Fe3O4hollow
rods,aswellasthesuperiorconductivityofPANI.
Figure17.SchematicillustrationofformingofFe3O4@PANIyolk–shellmicronanoarchitecture[126]
(reproducedwithpermissionfromElsevier).
MoS2possessesaunique2DlayeredstructurethatenablesfastLiinsertionandextraction.
However,MoS2stillundergoespoorrateperformanceandfastcapacitydecaybecauseofpoor
electricalconductivitybetweenS–Mo–Ssheetswhileusedasanelectrodematerial.Aneffective
improvementistohybridMoS2withconductiveadditiveslikeconductingPANI[128]thatcan
greatlyimprovetheconductivityandstability.The3DhierarchicalMoS2/PANInanoflowers(Figure
18)werepreparedbyasimplehydrothermalmethod[129].Suchhierarchicalarchitecturesprovided
sufficientvoidspacefortheLiiontodiffuseandensuredstructuralintegrityoftheelectrodematerial.
TheflexiblePANIchainsnotonlyimprovedelectricalconductivity,butalsomaintainedhierarchical
architecturesofthenanoflowersduringheattreatment.Enhancedelectrochemicalperformancewas
achievedduetothesynergyofMoS2andPANI,aswellastheunique3Dhierarchicalstructuresof
MoS2/PANInanoflowers.
Materials2020,13,54827of45
Figure18.SEMimagesofthe3DhierarchicalMoS2/PANInanoflowers(a,b)andMoS2/Cnanoflowers
(d,e).PhotographsoftwotypesofChineseroses(c,f).Schematicillustrationofsynthesisof
MoS2/PANIandMoS2/Cnanoflowers(g;reprintedwithpermissionfrompreviousliterature[129]©
2014AmericanChemicalSociety).
SnS2hasasimilarlayeredstructurelikeMoS2thatisbeneficialtoLiioninsertion.The2D
SnS2@PANInanoplateswithalamellarsandwichnanostructurecanprovideagoodconductive
networkbetweenneighboringnanoplates,shortenthepathforiontransportintheactivematerial
andalleviatetheexpansionandcontractionoftheelectrodematerialduringcharge–discharge
processes,resultinginenhancedelectrochemicalperformance.Asaconsequence,theSnS2@PANI
nanoplateelectrodedeliveredahighinitialreversiblecapacityof968.7mAh/g,excellentcycling
stability(75.4%capacityretentionafter80cycles)andanoutstandingratecapability(356.1mAh/gat
5A/g)[130].
Inrecentyears,PANImodifiedbinarymetalorbinarymetaloxidescompositeshavebeentried
toemployasanodematerialsforLIBs.SuchasPANI/SnCunanotubes[131],PANI/Co3O4CuO[132]
andPANI/Cu3Mo2O9[133],inthesearchitectures,thePANIlayereffectivelyrelievesthestress
associatedwithvolumechangesofthebinarycompoundsandimprovesconductivity.Furthermore,
uniquecompositestructureshelpalot.Forexample,3DporousPANIhydrogel/SnCunanotubes
structureprovidesnetworkforelectronandLiiontransport,resultinginimprovedelectrical
conductivity;thePANI/Co3O4CuOraspberrydesigncanresultinlotsofadvantageslikesuppressed
agglomeration,aneffectiveelectricalcontact,enhancedcyclingstability,aswellasalowercharge
transferresistancewhilecycling.Asaresultofthesynergisticeffect,enhancedelectricalperformance
includingreversiblecapacity,cyclinglifespanandratecapabilitywereachieved[132].
3.2.LithiumSulfurBatteries(LSBs)
Lithiumsulfurbatteries(LSBs)arethenextgenerationofpromisingrechargeablebatterieswith
highspecificenergyof2600Wh/kgandhightheoreticalspecificcapacityof1675mAh/g.
ConventionalLSBschoosemetalLiastheanodematerialandsulfurasthecathodematerial,sulfur
canreactwithLitoformLi2S.However,theprocessofreductionreactionisverycomplicated,many
sidereactionsareinvolvedinthereduction,asaresult,manyresidualsideproductsfromS8tosoluble
lithiumpolysulfidesLi2SxwillbereducedontheLianodeinaparasiticreaction,resultinginthe
shuttlemechanismandlowcoulombicefficiency[135].Furthermore,theconductivityisverylowdue
totheinsulatingnatureofsulfur,andthesulfurcathodeusuallysuffersfromhugevolumechange
whilecycling,leadingtopoorcyclingstabilityandinferiorrateperformance.Considerableefforts
haverecentlybeenmadetomodifytheelectrochemicalperformanceofthesulfurcathodelikeadding
anabsorbingagenttoabsorbpolysulfides,designingLiprotectingseparatorsandencapsulating
sulfurinconductingpolymermatrix.PANIcoatingissuitabletoencapsulatesulfurinthePANI
matrixowningtoitsflexibility,highconductivity,slightsolubilityinorganicelectrolyteandporous
architecture.
TheprocessofencapsulatingsulfurinPANImatrixtoformPANI/Scompositecanbecalledthe
vulcanizationreaction.Duringthereaction,partialSatomssubstituteHatomsonthearomaticrings
byreactingwiththeunsaturatedbondsinPANIchainsduringheattreatment,theninter/intrachain
disulfidebondsareformedonthesidechain.Yanetal.[136]designedananoporoussulfur/PANI
(SPANI)compositebyinsituchlorinatedsubstitutionandvulcanizationreactions.Inthemain
backbonechaininSPANI,sulfurwasefficientlyencapsulatedinthePANIchain,andtheobtained
SPANIchainprovidedelectronicconductivityandelectrostaticattractionforcetostabilize
polysulfideanionswhilecycling,moreover,thedisulfidesidechaincanactasthesecond
electrochemicalredoxcomponent,resultinginenhancedcapacitybehavior.Consequently,excellent
reversiblecapacityof750mAh/g,superiorcyclingstability(89.7%capacityretentionafter200cycles
at0.3°C)andhighrateperformancewereobserved.Duanandcoworkers[137]producedaPANI
coatedsulfurcompositecathodeforLSBsbythelayerbylayerassemblymethod,followedbythe
Materials2020,13,54828of45
crosslinkingandheattreatmentprocess.TheouterPANIshellcanprotectthesulfur(S8)and
polysulfidesfromdissolutionintoLianode,whileallowingLitobepermeableduringthe
charge/dischargeprocess.Furthermore,theconductivePANIlayerprovidessubstantialconducting
channelsforelectrontransport.Thefinalproductshowedahighconductivityof0.23S/cm.
Structuralinstabilitywhilecyclingderivedfromsulfurseverelylowerthecyclingstability,
additionally,solublelithiumpolysulfideshavebeenapotentialhazardtoratecapability.Henceitis
crucialtodesignarationalstructuretosurpassthesedisadvantages.Maetal.[138]preparedahollow
PANIsphere/sulfurcompositeviaavaporphaseinfusiontechnique.Thesulfurwasdepositedonto
bothoftheinnerandouterofthePANIhollowsphere,thevoidspaceinthePANI/sulfur
nanoparticleseffectivelybufferedvolumeexpansionwhilecycling(Figure19).ThePANIshellalso
preventedthedissolutionandmigrationofpolysulfides,aswellasimprovedtheelectronicandionic
conductivity.Moreover,thechemicalbondbetweenPANIandSwasformedduringheattreatment,
whichinhibitedtheshuttleeffect.Aspredicted,excellentoverallelectrochemicalperformance
includinghighreversiblecapacityof602mAh/gafter1000cyclesat0.5°Candcoulombicefficiency
ashighas97%wererealized.Zhouetal.[139]obtainedPANI/Syolk–shellstructurenanocomposite
byinsitupolymerization,followedbytheheattreatmentprocess.Intheyolk–shellstructure,sulfur
astheyolkwasencapsulatedinPANIshell,whichhelpedtoimmobilizethepolysulfidesand
accommodatethevolumeexpansionofsulfur,asaresult,excellentperformanceincludingcycling
stabilityandhighcapacityretentionwereobtained.
Figure19.SchematicillustrationofthehollowspherePANI/Scompositeduringthecharge/discharge
process.(a)TheinitialPANIScomposite,(b)thecycledPANIScomposite,(c)thelithiatedPANIS
compositeand(d)theschematicillustrationofintegrityofthehollowPANIScathodewithsevere
volumechangeduringcharge/dischargeprocess(reproducedfrom[138]withpermissionfromThe
RoyalSocietyofChemistry).
Encapsulatingsulfur/carboncompositesinPANIcoatingsisanothereffectiveway.Different
fromvulcanizedPANI/Scompositesastheformer,theinsitupolymerizationofPANIcoatingson
thesulfur/carboncompositescanbeaccomplishedwithoutheatreaction.Derivedfrompromising
advantagesofbothPANIandcarbonmaterials,theternarySC@PANIhybridcathodesforLSBshold
promiseforsuperiorelectrochemicalperformanceduetoasuperiorsynergisticeffect.PANIcanbe
polymerizedinsituontothegraphene(G)andGOsheettoobtainthePANIGandPANIGO
membrane,thesulfurnanoparticlesaresandwichedbetweenthemembranestoformaternary
sandwichstructure.TheconductivePANIGandPANIGOnetworksnotonlybufferedahuge
volumeexpansionofthesulfur,butalsomitigatedthediffusionoflithiumpolysulfidestotheLi
Materials2020,13,54829of45
anodebyachemicalinteractionbetweentheiminegroup(–N=)ofthequinoidringandpolysulfides,
finallyresultedinexcellentelectrochemicalperformance[140,141].CNTsarewidelyemployedas
supportingmaterialsbecauseofhighconductivity,largespecificsurfaceareaandexcellent
mechanicalproperties.ConsideringtheadvantagesofPANIandCNTs,itisasmartstrategyto
developaternarycompositewheresulfursupportedbyMWCNTsandcoatedwithPANI,thatis,the
MWCNTsS@PANIasacathodematerialforLSBs.Theuniquesandwicharchitectureeffectively
avoideddissolutionanddiffusionofpolysulfides,andtheMWCNTsprovidedconductivenetwork,
flexiblePANIaccommodatedvolumechangewhilecycling,resultinginenhancedcyclingbehavior
andratecapability[142].Porouscarbonmaterialslikeactivatedcarbonandmesoporouscarboncan
provideanefficientconductivenetworkforS,whilePANIcoatingfurtherreducesthevolumetric
effectofSandfacilitateselectronicconduction,aswellaspreventslithiumpolysulfidesfrom
dissolvinginanelectrolyte,thusthecompositeelectrodesexhibitedenhancedelectrochemical
characteristics[143,144].Inaddition,acetyleneblackisalsoapromisingcarbonmaterialtoform
PANI@SacetyleneblackcompositeascathodeforLSBs[145].Sacetyleneblackpowderwas
encapsulatedinPANIcoatingastheshell,whichaccommodatedvolumeexpansionwhilecycling.
Moreover,theefficientconductivenetworkprovidedbytheacetyleneblack,togetherwiththestrong
affinitytosulfurandpolysulfidesprovidedbyPANI,enabledtheuniformdispersionofthesulfur,
promotedthetransportationofionsandenhancedthecyclicperformanceoftheLSBs.
3.3.SodiumIonBatteries(SIBs)
SimilartoLIBs,sodiumionbatteries(SIBs)relyontheinsertionandextractionofNaionto
operate.ComparedtoLielement,Naelementisofhighernaturalabundanceandlowercost,hence
SIBshavegainedlotsofrecognitionasaneffectivealternativetoLIBs.Aswellknowntous,
electrochemicalperformanceofrechargeablebatteriesislargelydeterminedbyelectrochemical
propertiesofelectrodematerials.ThustheSIBsdesirablyrequireustobeequippedwithadvanced
electrodes.Justliketheothersecondarycells,PANIholdsmuchpromiseforSIBsduetoitsversatile
electrochemicalproperties.Similarly,inthenextsection,wewilloverviewtherecentdevelopment
onPANImodifiedcathode/anodematerialsforSIBsindetail.
3.3.1.PANIModifiedCathodeMaterials
Ironphosphate(FePO4)isanimportantcathodematerialinvestigatedforSIBs.However,poor
electronicconductivityandinferiorionicdiffusionseverelyhinderitscommercialization.Carbonized
PANInanorods(CPNRs)areofgreatpotentialforenhancingelectrochemicalpropertiesofFePO4
[146].TheCPNRs/FePO4compositewassynthesizedbyacarbonizationprocessofthePANI/FePO4
composite,whichwaspreparedthroughamicroemulsionmethod.IntheaspreparedCPNRs/FePO4
composite,CPNRsprovidedhighspeedpathwaysforelectrontransport,enablingfastcharge
transferduringtheprocesssodiation/desodiation,moreover,FePO4canloadonthesurfaceofCPNRs
byanoncovalentbond,decreasingtheresistanceofchargetransfer.Asthecathodematerial,ahigh
initialdischargespecificcapacityof140.2mAh/g,withthevaluebeingretainedat134.4mAh/gafter
120cycleswasachieved.
Na3V2(PO4)3(NVP)isapromisingcathodematerialforSIBswithasuperionicconductor
framework,largechannelsforchargetransferandexcellentthermalability.Nevertheless,bareNVP
ispoorofelectricalconductivity,whichgreatlyrestrictsitspracticalapplication.Chenetal.[147]
designeddoublecoatingNVP(NVP@C@HC)toimprovetheelectrochemicalproperties.Wherein,
theHCwasderivedfrompyrolyticPANI/NVPwastightlyanchoredtothesurfaceofCandPANI
coatingviachelatinginteractionsofcitricacidandvanadate,whicheffectivelysuppresses
agglomerationofNVPparticleswhilecyclingandenhancesconductivity.Furthermore,thedouble
carbonlayersbuffervolumechangeduringthecharge/dischargeprocess.Asexpected,thedouble
carboncoatedporousNVP@C@HCcompositedeliveredanexcellentratecapability(60.4mAh/gat
50°C)andalongtermcyclability(capacityretentionof83.3%at40°Cafter3000cycles).
Materials2020,13,54830of45
Veryrecently,anovelNa(Ni1/3Mn1/3 Fe1/3)O2(NNMF)embeddedontheconductivePANI
backbonewasdemonstratedtoexhibitenhancedelectrochemicalperformancewhileusedasa
cathodeforSIBs[148].TheuniformdispersionofNNMFonPANIensuredbetterelectricalcontact
betweenelectrolyteandactivematerials,moreover,shortNaiontransferpathwaysandbuffered
mechanicalstressprovidedbytheporousPANInetworksignificantlyleadtoenhancedcapacity
behaviorandcyclability.
SimilartoLIBs,asaconductivepolymer,PANIitselfisalsoanidealcathodematerialforSIBs.
NanostructuredPANIlikenanofiberPANIpresentedconsiderablespecificsurfaceareaandelectrical
conductivity,moreover,PANIwithhighflexibilityeffectivelyimprovedstructuralstabilityand
cyclingstability[149,150].
3.3.2.PANIModifiedAnodeMaterials
SinceNaion(0.102nm)isbiggerthantheLiion(0.076nm),itismorechallengingtoseeka
suitablehostanodematerialforSIBs.Inordertocopewiththischallenge,modifiedPANIbased
materialswithadvancedelectrochemicalperformancehaverecentlybeenemployedasanodematerials
forSIBs.
SnO2anodeperformancehasbeendemonstratedtoachievelongcycliclifeandexcellentrate
performancebyformingacore–shellstructuredSnO2hollowsphere(SnO2HS)/PANIcomposite
electrode[151].TheuniquehollowstructureoftheSnO2coreandtheflexiblePANIbufferlayercan
alleviatevolumeexpansionofSnO2andaggregationofgeneratedSnparticlesduringcycling.
Therefore,ahighreversiblecapacityof213.5mAh/gover400cyclesat300mA/gwasdelivered.
TransitionmetalsulfideslikeCo3S4andMoS2havebeenusedtofabricatethePANImodified
anodeforSIBs.Co3S4@PANInanotubeswereformedviatheuniformcoatingonbothouterandinner
surfacesofCo3S4nanotubes,whichwereobtainedbyafacileselftemplatehydrothermalroutebased
ontheKirkendaleffect[152].TheconductivePANIlayerenableselectronandNaiontransportand
preventsCo3S4nanotubesfromstructuralcollapseorpulverizationwhilecycling.Finally,the
compositeachievedahighmaintainedcapacityof252.2mAh/gofafter100cyclesat200mA/g,much
higherthanthatofbareCo3S4nanotubes(58.2mAh/gretainedofinitialvalueof815.3mAh/gafter
100cyclesat200mA/g).Theinterlayerspacingof2DMoS2canbeenlargedbytheintroductionofthe
conductivePANIlayertoformaMoS2/PANIheterostructure[153].Theenlargedinterlayerspacing
remarkablyfacilitateslargeNaiondiffusion,aswellasimprovesconductivity.Furthermore,the
interoverlappedMoS2/PANInanosheetscanretainstablestructuralintegritywhilecyclingdueto
thestrongcoordinationabilitybetweenMoandnitrogenatoms.Asaconsequence,thehybridanode
exhibitedhighcapacity,ratecapabilityandlongcycliclife.
InadditiontodirectlyfunctioningasactiveanodematerialsforSIBs,carbonizedPANIisalso
extensivelyutilizedduetosuperiorNastorageperformance.Forexample,PANIwasalso
investigatedastheSIBanodeinaPANIcarbonized3Dporouscarboncoatedgraphenehybrid
system[154],whereSiO2andPANIlayerweresuccessivelydepositedonthesurfaceof3Dporous
graphene(3DPG;Figure20A).Theuniquearchitecturethatiscomposedof3DPGnetworksanda
porousPANIconvertedcarboncoatingcanendowthehybridwithhighelectricalconductivity,rapid
ionintercalation,substantialactivesites,shortionicdiffusionpathwaysandhighstructuralstability
forefficientNastorage.Consequently,the3DPG@CcompositedisplayedremarkableNastorage
performance,initialdischargecapacityashighas824mAh/gat50mA/g,highreversiblecapacity,
enhancedcyclingstability(323mAh/g after1000cyclesat1000mA/g)comparedtopure3DPGand
carbon(Figure20B),alongwithexcellentratecapability(207mAh/gat10A/g).
Materials2020,13,54831of45
Figure20.(A)Schematicillustrationofformationof3Dporousgraphene@Cand(B)longtermcycling
behaviorofthe3Dporousgraphene@Ccompositeat1000mA/g[154](reproducedwithpermission
fromElsevier).
AsaNrichCPs,SandNcodopedS/Ncarbonnanotubes(S/NCT)systemcanbeformedvia
carbonizationofanScontainingPANIderivative[155].NincarbonizedPANIenablesefficientNa
adsorptionperformanceandhighelectricalconductivitytoenhanceNastorageperformance;the
introductionofSintoacarbonmatrixcanfurtherenlargeinterlayerspacing,offeractivesitesand
shorteniondiffusiondistancetoimproverateperformanceandcyclingstability.Inagreementwith
theprediction,theaspreparedS/NCTanodeforSIBsdeliveredareversiblecapacityashighas340
mAh/gat0.1A/gandanexcellentcyclingstability(94%capacityretentionafter3000cyclesat5A/g).
Table2presentsthepreparationmethodandelectrochemicalperformanceofsometypicalPANI
modifiedrechargeablebatterieselectrodematerials.
Table2.ThepreparationmethodandelectrochemicalperformanceofsometypicalPANImodified
rechargeablebatterieselectrodematerials.
MaterialsPreparationMethodMaximum
SpecificCapacityCycleStability
PANI/LICOO2[86,87]Pickeringemulsionroute136mAh/g
PANICSA/CLFP[90]coatingCLFPwithPANI
CASinmcresolsolution165.3mAh/g
PANI/PEG[92]125.3mAh/g95.7%after100
cycles
LIV3O8/PANI[93]oxidativepolymerization95%after55cycles
PANI/LI(NI0.8CO0.1MN0.1)O2
[95]solutionmethod193.8mAh/g96.25%after80
cycles
PANI/LI(NI1/3MN1/3FE1/3)O2[96] 86%after40cycles
PANI[134]chemicaloxidative
polymerization159.83mAh/g
119.79mAh/g
retainedafter100
cycles
PANI/SI/GRAPHITE[106] 1392mAh/g62.2%after95
cycles
CNTS/PANI/SI[111]1954mAh/g727mAh/gretained
after100cycles
PANI/SIOX/CNTS[114]1156mAh/g728mAh/gretained
after60cycles
Materials2020,13,54832of45
SIOX/PANI/CU2O[115,116] 1178mAh/g725mAh/gretained
after60cycles
PANI/SNO2/RGO[118]
dipcoatingofPANI@SnO2
andgraphenedispersionon
Cufoam
772mAh/g749mAh/gretained
after100cycles
EG/PANI/SNO2[119]
solvothermalmethod
followedbyinsitu
oxidativepolymerization
1021mAh/g408mAh/gretained
after100cycles
PANI@SNO2@MWCNT[120] 888mAh/g527mAh/gretained
after150cycles
TIO2/PANI/GO[122]1335mAh/g435mAh/gafter250
cycles
PANI/FE2O3[125]
solvothermaltechnique
followedbyapostcoating
process
366mAh/gat2.0C
412.1mAh/g
retainedafter150
cyclesat0.2C
FE3O4@PANI[126]997mAh/g982mAh/gretained
after50cycles
GRAPHENE/FE3O4/PANI[127] 1214mAh/g86%after50cycles
SNS2@PANI[130]968.7mAh/g75.4%after80
cycles
NANOPOROUS
SULFUR/PANI[136]
insituchlorinated
substitutionand
vulcanizationreactions
750mAh/g89.7%after200
cycles
CPNRS/FEPO4[146]microemulsionmethod140.2mAh/g
134.4mAh/g
retainedafter120
cycles
NVP@C@HC[147]
83.3%after3000
cycles
S/NCT[155]340mAh/g94%after3000
cycles
4.ApplicationsofPANIforFuelCells
Asatypeofnovelenergystorageandconversiondevicesofgreen,sustainableandefficient
energystorage,fuelcellshavebeenactivelydevelopedduringtheseyears.Unlikesupercapacitors
andrechargeablebatteries,thefuelcellscanrealizethedirectconversionfromchemicalenergyto
electricalenergy.Commonfuelcellsincludingdirectmethanolfuelcell(DMFC),protonexchange
membranefuelcell(PEMFC),polymerelectrolytemembranefuelcell(PEMFC),alkalinefuelcell
(AFC),Znaircellandmicrobialfuelcell(MFC)haveattractedsubstantialresearchfromscientistsin
thelastdecade.CPsholdalotofpromiseforuseaselectrocatalystsoffuelcellsduetotheirhigh
conductivity,tunablemorphologiesandhighflexibility.TheseCPsupportedandCPderived
electrocatalystsusuallyshowhighcatalyticactivityandgoodstability.AmongCPs,PANIbased
electrocatalystshavebeendemonstratedtodelivertheexcellentcatalyticactivityinahydrogen
oxidationreaction(HOR),oxygenreductionreaction(ORR),hydrogenevolutionreaction(HER)and
methanoloxidationreaction(MOR).Inthissection,wewillgiveasummaryofrecentresearchof
PANIsupportedmetalelectrocatalystsandPANIderivedmetalfreeelectrocatalysts.
4.1.PANIBasedSupportedMetalElectrocatalysts
PANIwithhighconductivity,varioustunablemorphologiesandhighflexibilitycaneffectively
enhancetheconductivity,catalyticactivityandstability,soithasbeenactivelyusedtosupportmost
metalelectrocatalysts.Platinum(Pt)isthemostusedmetalelectrocatalystsasaresultof
extraordinaryMOR,HERandORRcatalyticactivity[156,157].PANIwithananowiresnetwork
structurewasusedassupportforPtdispersioninordertoenlargetheapplicationofPt[158].The
PANInanowiresnetworkarchitecturewasbeneficialtodistributePtnanoparticlesandtocreate
conductivechannels,leadingtoformahybridnanocatalystwithexcellentelectrocatalyticactivityin
Materials2020,13,54833of45
MOR.InadditiontoindividualPANIsupportedPtcatalysts,PANIbasedcompositeslikePANI/C,
PANI/MWCNTsandPANI/SnO2havebeeninvestigatedasstableandMORcatalyticsystems[159–161].
Nevertheless,highcostofPtisthemainproblemthatlimitsitscommercialutilization,thusitis
desirabletolookfornonnoblemetalsortheircompoundsasthealternativestoreplacePtcatalyst.
Yuanetal.[162]designedanefficientPANI/carbonblack(PANI/C)compositesupportediron
phthalocyanine(FePc)asanORRelectrocatalystforFePcinanaircathodesinglechamberMFC.The
resultingPANI/FePc/CcompositecatalystexhibitedbettercatalyticactivitythanbarePt,PANI/Cand
FePc/C,reflectingPANIadditiveenhancedtheactivityofCinORR.Moreover,thepowerpercostof
thePANI/C/FePccatalystwas7.5timesgreaterthanthatofthebarePtcatalyst,whichindicatedthat
thePANI/FePc/CcompositecanbeapromisingalternativetoPtcatalystinMFC.Zhang’sgroup[163]
hasdemonstratedthataPANIsupportedMoS2electrocatalystachievedactiveHERcatalytic
performance.TheflexiblePANIeffectivelypreventsMoS2fromaggregation,ensuringtheuniform
andverticaldispersiononthePANIbrancheswithhighedgeexposureofMoS2nanosheets.Apart
fromMoandFe,variousnonnoblemetalelectrocatalysts,suchasMn,Co,Niandtheircompounds
havebeenstudiedtosubstituteforPt.
Protonexchangemembranefuelcell(PEMFC)isalsoapromisingfuelcellofhighpowerdensity.
PtbasedelectrocatalystsarecommonelectrodematerialsforORRandHOR.However,themain
obstacleisstillthedearcostofPt.ManyPtfreenonnoblemetalbasedcatalystshavebeendiscovered
asnovelcatalystswithhighORRactivity,butnonnoblematerialsasHORcatalystsarerarely
reported.Recently,Guoandcoworkers[164]discoveredthattheFeNPsPANI/CNTcatalyst
synthesizedbycontrollableselfassemblycouldbeanappropriateHORcatalystinthePEMFC.HOR
kineticscanbewrittenasH2HadH+,thewholekinetictransferefficiencyislargelydeterminedby
theintermediateHad.Promisingly,FeHadreversibilitywouldmaketheFebasedcatalystmaintain
stableintheacidcondition.Furthermore,PANI/FeNPsinterfacecaneffectivelystrengthenmass
transferandrealizedtherecoveryofactivesitesinthepresenceofconductiveandflexiblePANI
support,drivingHORintermittentlyevenathighpotential.Asaresult,theHad
adsorption/desorptionprocesscanberapidlydrivenatlowpotential,resultingintheremarkable
catalyticactivity,powerdensityashighas161W/kgandhighdurability.Theworkhaspavedthe
wayfornonnoblematerialsasHORcatalysts.
Asmentionedabove,PANIsupportedPtshowsgoodcatalyticbehaviorinMOR,thereforethe
PANI/Ptcatalystscouldhelpalotindirectmethanolfuelcell(DMFC).Forinstance,Gharibi’sstudy
[165]provedthatthePANI/C(vulcanXC72)supportedPtelectrocatalystexhibitedbettercatalytic
performancethantraditionalPt/CwithanafionelectrocatalystinDMFC.InconventionalDMFC,
carbonXC72actsassupportasPt,whilenafionactsasabinderandprotonconductor.However,the
agglomerationofcarbonparticlesandslowchargetransportseverelyhinderitspracticalapplication.
Gharibietal.substitutednafionforPANInanowires.ConductivePANInanowirestructureactedas
anefficientcarrierforelectronandprotontransport,enhancingelectricalconductivityandincreasing
methanoldiffusioncoefficient.Additionally,asaflexiblebinder,PANIwithuniquearchitecture
significantlysuppressedtheagglomerationofcarbonparticles.TheresultantPt/CPANI
electrocatalystshowedbetterelectrocatalyticperformancethanPt/Cwithnafionelectrocatalyst.
Meantime,highcostofPtmightbeadisadvantage,butitcouldbewellovercomebythebinarymetal
catalysts[159].
Anovelpoly(pyrrolecoaniline)(PPCA)hollownanosphere(HN)supportedPdnanoflowers
(PdNFs)wasdesignedformethanolelectrooxidation[166].ThePdNFswereelectrodepositedfrom
anaqueoussolutionof0.01MPdCl2and0.5MH2SO4inafacileonestepmethod,whilethePPCA
HNwasobtainedbyinsituemulsionpolymerization.PdNFsonaPPCAHNcoatedglassycarbon
electrode(GCE)wasfinallyfabricatedviatheelectrochemicalmethod.ConductivePPCAHNco
polymercouldsurpassinglyimproveconductivitycomparedtoexclusiveconductivePANIorPPy,
aswellasenlargedspecificsurfacearea.TheresultingPdNFs/PPCAHN/GCEdemonstratedbetter
electrocatalyticactivitythanPdNFs/PANI,PdNFs/PPyandindividualPdNFs.
Materials2020,13,54834of45
PANIfunctionalizedcanbeaneffectivesupportasmetalelectrocatalystsinfuelcells,especially
inprotonexchangemembranefuelcell(PEMFC).Pt/CNTcatalystsshowenhancedelectrocatalytic
activityandstabilitycomparedtoPtelectrocatalystsforPEMFC.However,Ptnanoparticleswere
hardtodeposituniformlyanddirectlyontohighlygraphitizedCNTsurfacewithoutactivefunctional
groups,theintroductionofbridgingconductiveandstablePANIwascapableofenhancingthe
bindingstrengthbetweenPtandCNTbyππbondingprovidedbyPANI(Figure21).Moreover,the
Pt–NbondingendowedPtnanoparticleswithhigherdispersion,whosesizedistributionrangedfrom
2to4nm,bringingforthenhancedelectrocatalyticactivityoftheresultantPtPANI/CNTcatalyst[167].
Figure21.MolecularinteractioninthepreparedPtPANI/CNTcatalyst(reprintedwithpermission
frompreviousliterature[167]©2011AmericanChemicalSociety).
AnewPtC@PANIcore–shellstructuredcatalystwasdevelopedforPEMFC.ThethinPANI
layerwasdirectlypolymerizedontothePtCsurface.TheuniqueThePANIdecoratedcore–shell
architecturecouldinduceelectrondelocalizationbetweenthePtdorbitalsandthePANIπ
conjugatedligandaccompanyingwithelectrontransferfromPttoPANI,whichexplainedthe
enhancedcatalyticactivityanddurability.Furthermore,thePtC@PANI(30%)addressedthebest
catalyticactivityandsuperiordurabilitycomparedwiththenonPANIdecoratedPtCcatalyst,
indicatingthethicknessofPANIshellmighthaveaninfluenceoncatalyticproperties,inwhichthe
suitablethickness(5nm)ofthePANIshellgreatlyprotectedthecarboncorefromdirectexposureto
thecorrosivesurroundings[168].
4.2.PANIDerivedCarbonBasedMetalFreeElectrocatalysts
AsaNcontainingcarbonmaterial,thepropertiesofPANIareexpectedtogetimprovedwhile
dopingheteroatoms(N,B,S,OandP)tothePANIchains,andPANIhasbeenwidelyattemptedto
fabricateadvancedmetalfreecatalystsupportbydopingheteroatomstoit.HeteroatomdopedPANI
derivedporouscarbonbasedcatalystsaregenerallyfocusedonmodifyingORRactivitysinceORR
isinhugedemandforsustainableandnonnobleelement.PANIderivedN‐ andOdoped
mesoporouscarbon(PDMC)asasustainableandnonnobleORRelectrocatalysthasbeen
demonstratedtodeliverextraordinaryelectrochemicalcatalyticactivitytowardORR[169].PDMC
Materials2020,13,54835of45
waspreparedbypolymerizingPANIinsituwithintheporesofSBA15mesoporoussilica,followed
bysubjectingPANI/SBA15tocarbonizationunderaninertatmosphere,andfinallyetchingawaythe
silicaframework(Figure22).ThefinalmetalfreePDMCtowardORRshowedevenbetter
electrocatalyticactivitythanPtPANI/SBA15athighcurrentdensityandachievedpreferablefour
electronspathwaytowardORR,whichcouldbeascribedtothesynergisticactivitiesofNandO
speciesthatwereimplantedintoit.ItissuggestedthatthemetalfreePDMCispromisingtochallenge
conventionalparadigmsthatPtbasedcatalysts.InspiredbySilva’swork,cheaperGOandgraphene
comparedwithSBA15wereusedtosynthesizePANIderivedcarbonbasedPNCNandGNR/PANI
metalfreeelectrocatalysts.OwingtohighspecificsurfaceareaandhighNcontentofGOand
graphene,aswellasrespectiveuniquestructures,idealcatalyticactivitiesandstabilitywere
deliveredforORR[170,171].
Inrecentyears,someresearchersdiscoveredthattheelectrocatalyticperformanceofthePANI
derivedmetalfreecatalystscouldbefurtherenhancedbycodopingoftransitionmetals.Inorderto
understandthemechanismonenhancedactivationrelatedtothetransitionmetaldopants,Penget
al.[172]studiedtheeffectoftheadditionofvarioustransitionmetals(Mn,Fe,Co,NiandCu)onthe
structureandperformanceofthedopedcarboncatalystsMPANI/CMela,accompaniedwitha
metalfreecatalystasareference.SEMshowedthatdopingwithFeandMnledtoagraphenelike
structure,whiledopingwithCo,NiandCuledtoadisorderedornanosheetstructure.Catalysts
dopedwithtransitionmetalsexhibitedenhancedcatalyticperformancecomparedtothemetalfree
reference,moreover,theirORRactivityfollowedtheorderofNi<Mn<Cu<Co<Fe(Figure23),
whichwasconsistentwiththeorderoftheiractiveNcontents.Assuggestedinthepaper,the
collectiveeffectofthethreeaspectsmayresultinthevariousperformanceenhancementofthe
transitionmetaldopants,thatis,theNcontent/activeNcontent,metalresidue,aswellasthesurface
areaandporestructureofthecatalyst.Nevertheless,theenhancedperformanceisnotdeterminedby
anysingerfactor.WecanfurthermeanthatthePANIwouldmakeanindispensablecontributiondue
totheextensiveactiveNsitesprovidedbyit.
Figure22.SchematicillustrationofsynthesisofthePDMC(reprintedwithpermissionfromprevious
literature[169]©2013AmericanChemicalSociety).
Materials2020,13,54836of45
Figure23.Halfwavepotentialvs.RHEandcurrentdensityofMPANI/CMelacatalystsin0.1M
KOH(reprintedwithpermissionfrompreviousliterature[172]©2014AmericanChemicalSociety).
5.ConclusionsandOutlook
Inthisreview,wepresentedhereimportantresearchprogressontheapplicationsofPANIfor
electrochemicalenergystorageandconversion.PurePANIwithhighconductivity,easeofsynthesis,
highflexibility,lowcost,environmentalfriendlinessanduniqueredoxcharacteristicsisakindof
activeandeconomicalelectrodematerialforsupercapacitors(pseudocapacitors)andrechargeable
batteries(cathodematerial).Duetoaconsiderablespecificsurfacearea,advantageousporestructures
andhighNcontent,PANIderivedporouscarbonmaterialsarealsosuitabletoserveassupportfor
anelectrocatalystoffuelcells.However,whileusedasasupercapacitiveelectrode,poorcycling
stabilityandinefficientcapacitancecontributionaredelivered.Additionally,withtherapid
developmentofenergy,morestablemoleculararchitecture,higherpower/energydensityandmore
Nactivesitesaregreatlydesirable,whileindividualPANIcannotmeettheeverincreasingdemand.
Therefore,itisnecessarytocombinePANIwithotheractivematerialslikecarbonmaterials,metal
compoundsandotherCPs.InvariousPANIbasedcompositestructures,PANIgenerallyactsasa
conductivelayerandnetwork,andtheresultantPANIbasedcompositeswithvariousunique
structureshaveexhibitedsuperiorelectrochemicalperformanceinsupercapacitors,rechargeable
batteriesandfuelcellsduetothesynergisticeffect.However,therestillaresomedisadvantagesthat
remaintobeimproved:
PANIishardtocommercializeintheelectrochemicalfieldduetoitsrelativelyhighcostandlow
practicabilitycomparedwithconventionalinorganicmaterials.
PANIishardtomaintainastablestructurebecauseofthededopingphenomenoncausedby
light,electricity,magnetism,thermal,etc.whenusedaselectrodematerialsforsupercapacitors
andrechargeablebatteries.
Itishardtobalancetheelectrochemicalperformanceandmechanicalpropertieswhileapplying
PANIinelectrochemicalenergystoragetechnologiesincludingsupercapacitors,rechargeable
batteriesandfuelcells.
Aswecansee,thecomprehensivepropertiesofPANIneedyettobeenhanced,thereforefuture
researchshouldfocusondevelopmentofuniquenanostructuresofPANIwithhighersurfaceareas
Materials2020,13,54837of45
andconductivitiesforsuchapplications.Inaddition,thereareyetsomeresearchgapsthatshouldbe
filled:forsupercapacitorsandrechargeablebatteries,worksondesigningtailormadederivativesof
PANIandfunctionalizedPANIneedtobedeeplyexplored;asforfuelcells,reportsoncatalystsfor
oxygenevolutionreaction(OER)relatedtoPANIarelacking,itshouldbedeeplyexplored.
PANIisconsideredasoneoftheusefulelectronicandintrinsicCPsanditsapplicationsin
electrochemicalenergystorageandconversionfieldhavebeendepictedminutelyinthisreview.We
knowthatPANIhasmanyuniqueproperties,anditislikelytobeusefulinotherfields,soitis
suggestedthattheapplicationofPANIshouldbeextendedtootherfields,whichcangreatlyenlarge
itsrangeofuse.Forinstance,instabilityofnanofluidscausedbythegradualsedimentation(orscale
formation)ofnanoparticlessimultaneouslywithagglomeratingorclusteringofnanoparticlesinside
thebasefluid[174]couldbeimprovedbyPANIcoating.PANIwithexcellentflexibilitycan
effectivelyencapsulatethenanoparticles,avoidingtheagglomeratingorclusteringofnanoparticles
insidethebasefluid,asaresult,highlyefficientheattransferofnanofluidswouldbeachieved.Itis
suggestedherePANIcouldbeexploredintheapplicationofnanofluidsforheattransfer,thatis,it
deservesmoreresearchinthisfield,andtogoastepfurther,itdeservesmoreresearchinothernovel
fields.Byreadingthisreview,researcherscanunderstandthedevelopmentaltendencyofPANIin
thefieldofelectrochemicalenergystorageandconversion,moreover,theycanbeinspiredtodiscuss
andstudywhetherPANIhavepotentialapplicationsinotherfields.
Finally,manufacturingcostisalsoacrucialfactorforcommercialization,insummary,future
advanceswillrequirecontinuousexplorationsandendeavorsindesigninguniquenanostructuresof
PANIwithhighersurfaceareasandconductivities,extendingapplicationfieldsanddevelopingcost
effectivemanufacturingtechnologies.
AuthorContributions:Allauthorscontributedequallytothismanuscript.Z.L.andL.G.were
responsiblefor
thereviewconceptanddesign.L.G.wereresponsible
fordraftpreparation.Z.L.andL.G.wereresponsiblefor
thereviewandeditingofthemanuscript.Z.L.andL.G.wereresponsiblefortherevisionofthemanuscript.All
authorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisworkwassupportedbyagrantofCentralSouthUniversity.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Wang,H.H.;Lin,J.Y.;Ze,X.S.Polyaniline(PANi)basedelectrodematerialsforenergystorageand
conversion.J.Sci.Adv.Mater.Devices2016,1,225–255.
2. Candelaria,S.L.;Shao,Y.;Zhou,W.;Li,X.;Xiao,J.;ZhangJ.G.;Wang, Y.;Liu,J.;Li,J.;Cao,G.
Nanostructuredcarbonforenergystorageandconversion.NanoEnergy2012,1,195–220.
3. Snook,G.A.;Kao,P.;Best,A.S.Conductingpolymerbasedsupercapacitordevicesandelectrodes.J.Power
Sources2011,196,1–12.
4. Li,F.;Ahmad,A.;Xie,L.;Sun,G.;Kong,Q.;Su,F.;Ma,Y.;Chao,Y.;Guo,X.;Wei, X.;etal.Phosphorus
modifiedporouscarbonaerogelmicrospheresashighvolumetricenergydensityelectrodefor
supercapacitor.Electrochim.Acta2019,218,151–160.
5. Chen,C.;Liang,T.;Chen,X.;Zhang,B.;Wa n g,L.;Zhang,J.Phosphorusassistedsolidphaseapproachto
threedimensionalhighlyporousgraphenesheetsandtheircapacitanceproperties.Carbon2018,132,8–15.
6. Wang,X.Y.;Wan,F.;Zhang,L.L.;Zhao,Z.;Niu,Z.;Chen,J.Largeareareducedgrapheneoxidecomposite
filmsforflexibleasymmetricsandwichandmicrosizedsupercapacitors.Adv.Funct.Mater.2018,28,
1707247.
7. Jiang,Y.;Xu,Z.;Huang,T.;Liu,Y.;Guo,F.;Xi,J.;Gao,W.;Gao,C.Direct3Dprintingofultralightgraphene
oxideaerogelmicrolattices.Adv.Funct.Mater.2018,28,1707024.
8. Liu,S.;Zhao,Y.;Zhang,B.;Xia,H.;Zhou,J.;Xie,W.;Li,H.Nanomicrocarbonspheresanchoredonporous
carbonderivedfromdualbiomassashighrateperformancesupercapacitorelectrodes.J.PowerSources
2018,381,116–126.
Materials2020,13,54838of45
9. Zhu,J.;Xu,Y.;Zhang,Y.;Feng,T.;Wang,J.;Mao,S.;Xiong,L.Porousandhighelectronicconductivity
nitrogendopednanosheetcarbonderivedfrompolypyrroleforhighpowersupercapacitors.Carbon2016,
107,638–645.
10. Zhao,J.S.;Tian,Y.;Liu,A.F.;Song,L.;Zhao,Z.S.TheNiOelectrodematerialsinelectrochemicalcapacitor:
Areview.Mater.Sci.Semicond.Process.2019,96,78–90.
11. Bhadra,S.;Khastgir,D.;Singha,N.K.;Lee,J.H.Progressinpreparation,processingandapplicationsof
polyaniline.Prog.Polym.Sci.2009,34,783–810.
12. MacDiarmid,A.G.;Huang,W.;Humphrey,B.D.;Somasiri,N.L.D.Polyaniline:Protonicaciddopingtothe
metallicregime.Mol.Cryst.Liq.Cryst.1985,125,309–318.
13. Hatchett,D.W.;Josowicz,M.;Ianata,J.Comparisionofchemicallyandelectrochemicallysynthesized
polyanilinefilms.J.Electrochem.Soc.1999,146,4535–4538.
14. Zhang,Y.;Zhuan,X.;Su,Y.;Zhanf,F.;Feng,X.PolyanilinenanosheetderivedB/Ncodopedcarbon
nanosheetsasefficientmetalfreecatalystsforoxygenoxidationreaction.J.Mater.Chem.A2014,2,7742–
7746.
15. Simon,P.;Gogotsi,Y.Materialsforelectrochemicalcapacitors.Nat.Mater.2008,7,845–854.
16. Bi,Z.H.;Kong,Q.Q.;Cao,Y.F.;Sun,G.H.;Su,F.Y.;Wei,X.X.;Li,X.M.;AhmadA;Xie,L.J.;Chen,C.M.
Biomassderivedporouscarbonmaterialswithdifferentdimensionsforsupercapacitorelectrodes:A
review.J.Mater.Chem.A2019,7,16028–16045.
17. Bonaccorso,F.;Colombo,L.;Yu,G.H.;Stoller,M.;Tozzini,V.;Ferrari,A.C.;Ruoff,R.S.;Pellegrini,V.
Graphene,relatedtwodimensionalcrystals,andhybridsystemsforenergyconversionandstorage.Science
2015,347,UNSP1246501.
18. Hall,P.J.;Mirzaeian,M.;Fletcher,S.I.;Sillars,F.B.;Rennie,A.J.R.;ShittaBey,G.O.;Wilson,G.;Cruden,A.;
Carter,R.Energystorageinelectrochemicalcapacitors:Designingfunctionalmaterialstoimprove
performance.EnergyEnviron.Sci.2010,3,1238–1251.
19. Peng,C.;Zhang,S.;Jewell,D.;Chen,G.Z.Carbonnanotubeandconductingpolymercompositesfor
supercapacitors.Prog.Nat.Sci.2008,18,777–788.
20. Meng,Q.F.;Cai,K.F.;Chen,Y. X. ;Chen,L.D.Researchprogressonconductingpolymerbased
supercapacitorelectrodematerials.NanoEnergy2017,36,268–285.
21. Gracita,M.;Tomboc,H.K.DerivationofbothEDLCandpseudocapacitancecharacteristicsbasedon
synergisticmixtureofNiCo2O4andhollowcarbonnanofiber:Anefficientelectrodetowardshighenergy
densitysupercapacitor.Electrochim.Acta2019,318,392–404.
22. ElKady,M.F.;Strong,V.;Dubin,S.;Kaner,R.B.Laserscribingofhighperformanceandflexiblegraphene
basedelectrochemicalcapacitors.Science2012,335,1326–1330.
23. Stoller,M.D.;Park,S.;Zhu,Y.;An,J.;Ruoff,R.S.Graphenebasedultracapacitors.NanoLett.2008,8,3498–
3502.
24. Xia,J.;Chen,F.;Li,J.;Tao,N.Measurementofthequantumcapacitanceofgraphene.Nat.Nanotechnol.2009,
4,505–509.
25. Das,S.;Dutta,K.;Kundu,P.P.;Bhattacharya,S.K.Nanostructuredpolyaniline:Anefficientsupportmatrix
forplatinumrutheniumanodecatalystindirectmethanolfuelcell.FuelCells2018,18,369–378.
26. Dutta,K.;Das,S.;Kundu,P.P.Polyanilinenanowhiskersinducedlowmethanolpermeabilityandhigh
membraneselectivityinpartiallysulfonatedPVdFcoHFPmembranes.RSCAdv.2016,6,107960–107969.
27. Dutta,K.;Das,S.;Kundu,P.P.Highlymethanolresistantandselectiveternaryblendmembranecomposed
ofsulfonatedPVdFcoHFP,sulfonatedpolyanilineandnafion.J.Appl.Polym.Sci.2016,133,43294.
28. Dutta,K.;Das,S.;Kundu,P.P.Effectofthepresenceofpartiallysulfonatedpolyanilineontheprotonand
methanoltransportbehaviorofpartiallysulfonatedPVDFmembrane.Polym.J.2016,48,301309.
29. Florence,F.;Pascal,G.;Dominique,V.;Daniel,B.ElectrochemicalCharacterizationofPolyanilinein
NonaqueousElectrolyteandItsEvaluationasElectrodeMaterialforElectrochemicalSupercapacitors.J.
Electrochem.Soc.2001,148,A1–A6.
30. Chen,H.;Chen,J.J.;Zhou,H.H.;Jiao,S.Q.;Chen,J.H.;Kuang,Y.F.Theapplicationofnanofibrous
polyanilineinelectrochemicalcapacitor.ActaPhys.Chim.Sin.2004,20,593–597.
31. Zhou,H.H.;Chen,H.;Luo,S.L.;Lu,G.W.;Wei,W.Z.;Kuang,Y.F.Theeffectofthepolyanilinemorphology
ontheperformanceofpolyanilinesupercapacitors.J.SolidStateElectrochem.2005,9,574–580.
32. Liu,J.L.;Zhou,M.Q.;Fan,L.Z.;Li,P.;Qu,X.H.Porouspolyanilineexhibitshighlyenhancedelectrochemical
capacitanceperformance.Electrochim.Acta2010,55,5819–5822.
Materials2020,13,54839of45
33. Sivakkumar,S.R.;Kim,W.J.;Choi,J.A.;Douglas,R.;MacFarlane;Forsyth,M.;Kim,D.W.Electrochemical
performanceofpolyanilinenanofibresandpolyaniline/multiwalledcarbonnanotubecompositeasan
electrodematerialforaqueousredoxsupercapacitors.J.PowerSources2007,171,1062–1068.
34. Chen,W.C.;Wen,T.C.;Teng,H.Polyanilinedepositedporouscarbonelectrodeforsupercapacitor.
Electrochim.Acta2003,48,641–/649.
35. Zhang,Y.S.;Zhang,J.M.;Hua,Q.S.;Zhao,Y.L.;Yin,H.;Yuan,J.S.;Dai,Z.Q.;Zheng,L.L.;Tang,J.
Synergisticallyreinforcedcapacitiveperformancefromahierarchicallystructuredcompositeofpolyaniline
andcellulosederivedhighlyporouscarbons.Mater.Lett.2019,244,62–65.
36. Zhang,J.M.;Hua,Q.S.;Li,J.;Yuan,J.S.;Peijs,T.;Dai,Z.Q.;ZhangY.S.;Zheng,Z.M.;Zheng,L.L.;Tan g , J.
CelluloseDerivedHighlyPorousThreeDimensionalActivatedCarbonsforSupercapacitors.ACSOmega
2018,3,1493314941.
37. Wang,Y.G.;Li,H.Q.;Xia,Y.Y.Orderedwhiskerlikepolyanilinegrownonthesurfaceofmesoporouscarbon
anditselectrochemicalcapacitanceperformance.Adv.Mater.2006,18,2619–2623.
38. Li,L.;Song,H.;Zhang,Q.;Ya o , J.;Chen,X.Effectofcompoundingprocessonthestructureand
electrochemicalpropertiesoforderedmesoporouscarbon/polyanilinecompositesaselectrodesfor
supercapacitors.J.PowerSources2009,187,268–274.
39. Dou,Y.Q.;Zhai,Y.;Liu,H.;Xia,Y.;Tu ,B.;Zhao,D.;Liu,X.X.Synthesesofpolyaniline/ordered
mesoporouscarboncompositeswithinterpenetratingframeworkandtheirelectrochemicalcapacitive
performanceinalkalinesolution.J.PowerSources2011,196,1608–1614.
40. Yan, Y.F. ; Cheng,Q.L.;Wan g , G.C.;Li,C.Z.Growthofpolyanilinenanowhiskersonmesoporouscarbon
forsupercapacitorapplication.J.PowerSources2011,196,7835–7840.
41. Lei,Z.;Sun,X.;Wang, H.;Liu,Z.;Zhao,X.S.PlateletCMK5asanExcellentMesoporousCarbontoEnhance
thePseudocapacitanceofPolyaniline.ACSAppl.Mater.Interfaces2013,5,7501–7508.
42. Shen,K.;Ran,F.;Zhang,X.;Liu,C.;Wang, N.;Niu,X.;Liu,Y.;Zhang,D.;Kong,L.;Kang,L.;etal.
Supercapacitorelectrodesbasedonnanopolyanilinedepositedonhollowcarbonspheresderivedfrom
crosslinkedcopolymers.Synth.Met.2015,209,369–376.
43. Khomenko,V.;Frackowiak,E.;Beguin,F.Determinationofthespecifificcapacitanceofconducting
polymer/nanotubescompositeelectrodesusingdifferentcellconfifigurations.Electrochim.Acta2005,50,
2499–2506.
44. Deng,M.G.;Yang,B.C.;Hu,Y.D.Polyanilinedepositiontoenhancethespecifificcapacitanceofcarbon
nanotubesforsupercapacitors.J.Mater.Sci.2005,40,5021–5023.
45. Yang,M.;Cheng,B.;Song,H.;Chen,X.Preparationandelectrochemicalperformanceofpolyanilinebased
carbonnanotubesaselectrodematerialforsupercapacitor.Electrochim.Acta2010,55,7021–7027.
46. Zhang,R.;Rong,Q.;Yao,M.J.;Chen,K.N.;Wang,X.Y.;Liu,L.L.;Niu,Z.Q.;Chen,J.Flexibleultrathin
allsolidstatesupercapacitors.RareMet.2018,37,536–542.
47. Wu,Q.;Xu,Y.X.;Yao, Z.;Liu,A.;Shi,G.SupercapacitorsBasedonFlexibleGraphene/Polyaniline
NanofifiberCompositeFilms.ACSNano2010,4,1963–1970.
48. Zhang,K.;Zhang,L.L.;Zhao,X.S.;Wu,J.Graphene/PolyanilineNanofiberCompositesasSupercapacitor
Electrodes.Chem.Mater.2010,22,1392–1401.
49. Xu,G.;Wang,N.;Wei,J.;Lv,L.;Zhang,J.;Chen,Z.;Xu,Q.PreparationofGrapheneOxide/Polyaniline
NanocompositewithAssistanceofSupercriticalCarbonDioxideforSupercapacitorElectrodes.Ind.Eng.
Chem.Res.2012,51,14390–14398.
50. Wang,H.;Hao,Q.;Yang,X.;Lu,L.;Wang,X.Grapheneoxidedopedpolyanilineforsupercapacitors.
Electrochem.Commun.2009,11,1158–1161.
51. Luo,Z.;Zhu,L.;Huang,Y.;Tang,H.Effectsofgraphenereductiondegreeoncapacitiveperformancesof
graphene/PANIcomposites.Synth.Met.2013,175,88–96.
52. Yanilmaz,M.;Dirican,M.;Asiri,A.M.;Zhang,X.Flexiblepolyanilinecarbonnanofibersupercapacitor
electrodes.J.EnergyStorage2019,24,UNSP100766.
53. Dirican,M.;Yanilmaz,M.;Zhang,X.Freestandingpolyaniline–porouscarbonnanofifiberelectrodesfor
symmetricandasymmetricsupercapacitors.RSCAdv.2014,4,59427–59435.
54. Xu,M.;Kong,L.;Zhou,W.J.;Li,H.Hydrothermalsynthesisandpseudocapacitancepropertiesofalpha
MnO2hollowspheresandhollowurchins.J.Phys.Chem.C2007,111,19141–19147.
55. Devaraj,S.;Munichandraiah,N.EffectofcrystallographicstructureofMnO2onitselectrochemical
capacitanceproperties.J.Phys.Chem.C2008,112,4406–4417.
Materials2020,13,54840of45
56. Toupin,M.;Brousse,T.;Belanger,D.Influenceofmicrostuctureonthechargestoragepropertiesof
chemicallysynthesizedmanganesedioxide.Chem.Mater.2002,14,3946–3952.
57. Li,Q.;Olson,J.B.;Penner,R.M.NanocrystallinealphaMnO2nanowiresbyelectrochemicalstepedge
decoration.Chem.Mater.2004,16,3402–3405.
58. Sen,P.;De,A.;Chowdhury,A.D.;Bandyopadhyay,S.;Agnihotri,N.;Mukherjee,M.Conductingpolymer
basedmanganesedioxidenanocompositeassupercapacitor.Electrochim.Acta2013,108,265–273.
59. Liu,T.T.;Shao,G.J.;Ji,M.;Wang,G.Polyaniline/MnO2CompositewithHighPerformanceas
SupercapacitorElectrodeviaPulseElectrodeposition.Polym.Compos.2015,36,113–120.
60. Huo,Y.Q.;Zhang,S.B.;Zhang,H.Y.CapacitivePerformanceofPolyaniline/ManganeseDioxide
NanofiberMicrosphere.J.Appl.Polym.Sci.2014,131,40575.
61. Ran,F.;Yang,Y.;Zhao,L.;Niu,X.;Zhang,D.;Kong,L.;Luo,Y.;Kang,L.PreparationofnanoPANI@MnO2
bysurfaceinitiatedpolymerizationmethodusingasananotubularelectrodematerial:Theamounteffect
ofanilineonthemicrostructureandelectrochemicalperformance.J.EnergyChem.2015,24,388–393.
62. Xie,A.;Tao,F.;Jiang,C.;Sun,W.;Li,Y.;Hu,L.;Du,X.;Luo,S.;Yao,C.Acoralliformstructuredγ
MnO2/polyanilinenanocompositeforhighperformancesupercapacitors.J.Electroanal.Chem.2017,789,29–
37.
63. Ates,M.;Serin,M.A.;Ekmen,I.;Ertas,Y.N.Supercapacitorbehaviorsofpolyaniline/CuO,
polypyrrole/CuOandPEDOT/CuOnanocomposites.Polym.Bull.2015,72,2573–2589.
64. Giri,S.;Ghosh,D.;Das,C.K.Effectofruthenium(III)incorporationinpolyanilinebackbone:Materialsfor
supercapacitiveenergystorageapplication.NANO2013,8,UNSP1350026.
65. Prasankumar,T.;Wiston,B.R.;Gautam,C.;Ilangovan,R.;Jose,S.P.Synthesisandenhanced
electrochemicalperformanceofPANI/Fe3O4nanocompositeassupercapacitorelectrode.J.AlloysCompd.
2018,757,466–475.
66. Dhibar,S.;Sahoo,S.;Das,C.K.;Singh,R.Investigationsoncopperchloridedopedpolyanilinecomposites
aseffificientelectrodematerialsforsupercapacitorapplications.J.Mater.Sci.Mater.Electron.2013,24,576–
585.
67. Zhang,S.;Song,X.;Liu,S.;Sun,F.;Liu,G.;Tan,Z.TemplateassistedsynthesizedMoS2/polyanilinehollow
microsphereelectrodeforhighperformancesupercapacitors.Electrochim.Acta2019,312,1–10.
68. Subramania,A.;Devi,S.L.Polyanilinenanofifibersbysurfactantassisteddilutepolymerizationfor
supercapacitorapplications.Polym.Adv.Technol.2008,19,725–727.
69. Guan,H.;Fan,L.Z.;Zhang,H.;Qu,X.Polyanilinenanofifibersobtainedbyinterfacialpolymerizationfor
highratesupercapacitors,Electrochim.Acta2010,56,964–968.
70. Mi,H.;Zhou,J.;Zhao,Z.;Yu,C.;Wang,X.;Qiu,J.Blockcopolymerguidedfabricationofshuttlelike
polyanilinenanoflflowerswithradiatingwhiskersforapplicationinsupercapacitors.RSCAdv.2015,5,
1016–1023.
71. Mahdavi,H.;Kahriz,P.K.;Ranjbar,H.G.;Shahalizade,T.Enhancingsupercapacitiveperformanceof
polyanilinebyinterfacialcopolymerizationwithmelamine.J.Mater.Sci.Mater.Electron.2016,27,7407–
7414.
72. Wang,Z.L.;He,X.J.;Ye,S.;Tong,Y.;Li,G.R.DesignofPolypyrrole/PolyanilineDoubleWalledNanotube
ArraysforElectrochemicalEnergyStorage.ACSAppl.Mater.Interfaces2014,6,642–647.
73. Yang,Z.;Ma,J.;Bai,B.;Qiu,A.;Losic,D.;Shi,D.;Chen,M.FreestandingPEDOT/polyanilineconductive
polymerhydrogelforflexiblesolidstatesupercapacitors.Electrochim.Acta2019,332,UNSP134769.
74. Tang,L.;Duan,F.;Chen,M.Q.Greensynthesisofsilvernanoparticlesembeddedinpolyanilinenanofibers
viavitaminCforsupercapacitorapplications.J.Mater.Sci.Mater.Electron.2017,28,7769–7777.
75. Wang,L.;Chen,L.;Yan,B.;Wang,C.;Zhu,F.;Jiang,X.;Chao,Y.;Yang,G.Insitupreparationof
SnO2@polyanilinenanocompositesandtheirsynergeticstructureforhighperformancesupercapacitors.J.
Mater.Chem.A2014,2,8334–8341.
76. Sankar,K.V.;Selvan,R.K.TheternaryMnFe2O4/graphene/polyanilinehybridcompositeasnegative
electrodeforsupercapacitors.J.PowerSources2015,275,399–407.
77. Xia,C.;Xie,Y.;Wang,W.;Du,H.Fabricationandelectrochemicalcapacitanceofpolyaniline/titanium
nitridecore–shellnanowirearrays.Synth.Met.2014,192,93–100.
78. Fu,S.N.;Ma,L.;Gan,M.;Wang,S.;Zhang,X.;Zhang,J.;Zhou,T.;Wang,H.3Dreducedgraphene
oxide/MnO2/polyanilinecompositeforhighperformancesupercapacitor.J.Mater.Sci.Mater.Electron.2017,
28,3621–3629.
Materials2020,13,54841of45
79. Jeyaranjan,A.;Sakthivel,T.S.;Neal,C.J.;Seal,S.Scalableternaryhierarchicalmicrospherescomposedof
PANI/rGO/CeO2forhighperformancesupercapacitorapplications.Carbon2019,151,192–202.
80. Kim,J.;Ju,H.;Inamdar,A.I.;Jo,Y.;Han,J.;Kim,H.;Im,H.Synthesisandenhancedelectrochemical
supercapacitorpropertiesofAgMnO2polyanilinenanocompositeelectrodes.Energy2014,70,473–477.
81. Lu,X.;Zhu,J.;Wu,W.;Zhang,B.HierarchicalarchitectureofPANI@TiO2/Ti3C2Txternarycomposite
electrodeforenhancedelectrochemicalperformance.Electrochim.Acta2017,228,282–289.
82. Zhu,C.;He,Y.;Liu,Y.;Kazantseva,N.;Saha,P.;Cheng,Q.ZnO@MOF@PANIcoreshellnanoarrayson
carbonclothforhighperformancesupercapacitorelectrodes.J.EnergyChem.2019,35,124–131.
83. Wang,D.;Wang,X.;Yang,X.;Yu,R.;Ge,L.;Shu,H.Polyanilinemodificationandperformance
enhancementoflithiumrichcathodematerialbasedonlayeredspinelhybridstructure.J.PowerSources
2015,293,89–94.
84. Whittingham,M.S.Electricalenergystorageandintercalationchemistry.Science.1976,192,1126–1127.
85. Chen,C.N.;Fan,W.;Zhang,Q.;Ma,T.;Fu,X.;Wang,Z.Insitusynthesisofcabbagelike
polyaniline@hydroquinonenanocompositesandelectrochemicalcapacitanceinvestigations.J.Polym.Sci.
2015,132,42290.
86. Karima,F.;Souhaira,H.;Noureddine,A.;Valerie,P.;Yves,C.Pickeringemulsionpolymerizationof
polyaniline/LiCoO2nanoparticlesusedascathodematerialsforlithiumbatteries.Ionics2014,20,1301–1314.
87. Karima,F.;Souhaira,H.;Noureddine,A.;Valerie,P.;Yves,C.Structuralandelectrochemical
characterizationofpolyaniline/LiCoO2nanocompositespreparedviaaPickeringemulsion.J.SolidState
Electrochem.2013,17,1435–1447.
88. Huang,Y.H.;Goodenough,J.B.HighRateLiFePO4LithiumRechargeableBatteryPromotedby
ElectrochemicallyActivePolymers.Chem.Mater.2008,20,7237–7241.
89. Chen,W.M.;Huang,Y.H.;Yuan,L.X.SelfassemblyLiFePO4/polyanilinecompositecathodematerialswith
inorganicacidsasdopantsforlithiumionbatteries.J.Electroanal.Chem.2011,660,108–113.
90. Su,C.;Lu,G.Q.;Xu,L.H.;Zhang,C.PreparationofLiFePO4/Carbon/PANICSACompositeandIts
PropertiesasHighCapacityCathodesforLithiumIonBatteries.J.Electrochem.Soc.2012,159,A305–A309.
91. Fagundesa,W.S.;Xavier,F.F.S.;Santana,L.K.;deAzevedo,M.E.;Canobre,S.C.;doAmaral,F.A.PAni
coatedLiFePO4SynthesizedbyaLowTemperatureSolvothermalMethod.Mater.Res.2019,22,UNSP
e20180566.
92. Gong,C.L.;Deng,F.L.;Tsui,G.;Xue,Z.;Ye,Y.S.;Tang,C.Y.;Zhou,X.;Xie,X.PANI–PEGcopolymer
modifiedLiFePO4asacathodematerialforhighperformancelithiumionBatteries.J.Mater.Chem.A2014,
2,19315–19323.
93. Guo,H.;Liu,L.;Wei,Q.;Shu,H.;Yang,X.;Yang,Z.;Zhou,M.;Tan,J.;Yan,Z.;Wang,X.Electrochemical
characterizationofpolyaniline–LiV3O8nanocompositecathodematerialforlithiumionbatteries.
Electrochim.Acta2013,94,113–123.
94. Xu,S.;Du,C.;Xu,X.;Han,G.;Zuo,P.;Cheng,X.;Ma,Y.;Yin,G.AMildSurfaceWashingMethodUsing
ProtonatedPolyanilineforNirichLiNi0.8Co0.1Mn0.1O2MaterialofLithiumIonBatteries.Electrochim.Acta
2017,248,534–540.
95. Song,L.;Tang,F.;Xiao,Z.;Cao,Z.;Zhu,H.;Li,A.EnhancedElectrochemicalPropertiesofPolyaniline
CoatedLiNi0.8Co0.1Mn0.1O2CathodeMaterialforLithiumIonBatteries.J.Electron.Mater.2018,47,5896–
5904.
96. Karthikeyan,K.;Amaresh,S.;Vanchiappan,A.;Kim,W.J.;Nan,K.W.;Yang,X.Q.;Lee,Y.S.
Li(Mn1/3Ni1/3Fe1/3)O2Polyanilinehybridsascathodeactivematerialwithultrafastchargeedischarge
capabilityforlithiumbatteries.J.PowerSources2013,232,240–245.
97. Li,Z.H;Shen,Y.T.;Li,Y.;Zheng,F.;Liu,L.;Liu,X.;Zou,D.Preparationofpolyanilinehollow
microspheres/zinccompositeanditsapplicationinlithiumbattery.HighPerform.Polym.2019,31,178–185.
98. Lee,S.N.;Baek,S.;Amaresh,S.;Aravindan,V.;Chung,K.Y.;Cho,B.W.;Yoon,W.S.;Lee,Y.S.Cu
Li2MnSiO4polyanilinecompositehybridsashighperformancecathodeforlithiumbatteries.J.Alloys
Compd.2015,630,292–298.
99. Ni,L.;Yang,G.;Sun,C.;Niu,G.;Wu,Z.;Chen,C.;Gong,X.;Zhou,C.;Zhao,G.;Gu,J.;etal.Selfassembled
threedimensionalgraphene/polyaniline/polyoxometalatehybridascathodeforimprovedrechargeable
lithiumionbatteries.Mater.TodayEnergy2017,6,53–64.
100. Tu,J.;Hu,L.;Wang,W.;Hou,J.;Zhu,H.;Jiao,S.InSituSynthesisofSilicon/PolyanilineCore/ShellandIts
ElectrochemicalPerformanceforLithiumIonBatteries.J.Electrochem.Soc.2013,160,A1916–A1921.
Materials2020,13,54842of45
101. Tao,H.C.;Yang,X.L.;Zhang,L.L.;Ni,S.B.Polyanilineencapsulatedsiliconnanocompositeashigh
performanceanodematerialsforlithiumionbatteries.J.SolidStateElectrochem.2014,18,1989–1994.
102. Feng,M.;Tian,J.;Xie,H.;Kang,Y.;Shan,Z.Nanosilicon/polyanilinecompositeswithanenhanced
reversiblecapacityasanodematerialsforlithiumionbatteries.J.SolidStateElectrochem.2015,19,1773–
1782.
103. Lin,H.Y.;Li,C.H.;Wang,D.Y.;Chen,C.C.Chemicaldopingofacoreshellsilicon
nanoparticles@polyanilinenanocompositefortheperformanceenhancementofalithiumionbattery
anode.Nanoscale2016,8,1280–1287.
104. Xiong,J.PANIEncapsulatedSiNanocompositeswithaChemicalBondLinkageintheInterfaceExhibiting
HigherElectrochemicalStabilityasAnodeMaterialsforLithiumIonBatteries.Nano2019,14,128–141.
105. Liu,S.W.;Xu,W.H.;Ding,C.H.;Yu,J.J.;Fang,D.;Ding,Y.C.;Hou,H.Q.Boostingelectrochemical
performanceofelectrospunsiliconbasedanodematerialsforlithiumionbatterybysurfacecoatinga
secondlayerofcarbon.Appl.Surf.Sci.2019,494,94100.
106. Chen,M.;Du,C.Y.;Wang,L.;Yin,Y.;Shi,P.Silicon/Graphite/PolyanilineNanocompositewithImproved
LithiumStorageCapacityandCyclabilityasAnodeMaterialsforLithiumionBatteries.Int.J.Electrochem.
Sci.2012,7,819–829.
107. Mi,H.;Li,F.;He,C.;Chai,X.;Zhang,Q.;Li,C.;Li,Y.;Liu,J.Threedimensionalnetworkstructureofsilicon
graphenepolyanilinecompositesashighperformanceanodesforLithiumionbatteries.Electrochim.Acta
2016,190,1032–1040.
108. Huang,R.A.;Guo,Y.;Chen,Z.;Zhang,X.;Wang,J.;Yang,B.Aneasyandscalableapproachtosynthesize
threedimensionalsandwichlikeSi/Polyaniline/Graphenenanoarchitectureanodeforlithiumion
batteries.Ceram.Int.2018,44,4282–4286.
109. Li,Z.F.;Zhang,H.;Liu,Q.;Liu,Y.;Stanciu,L.;Xie,J.NovelPyrolyzedPolyanilineGraftedSilicon
NanoparticlesEncapsulatedinGrapheneSheetsasLiIonBatteryAnodes.ACSAppl.Mater.Interfaces2014,
6,5996–6002.
110. Zhang,X.S.;Xu,X.M.;Guo,Y.Z.;etal.PreparationandElectrochemicalPropertiesofSandwichlike
Si/RGO@PANINanocompositeasAnodeforLithiumIonBattery.Chin.J.Inorg.Chem.2017,33,377–382.
111. Zhou,X.;Liu,Y.;Du,C.;Ren,Y.;Mu,T.;Zuo,P.;Yin,G.;Ma,Y.;Cheng,X.;Gao,Y.Polyaniline
encapsulatedsilicononthreedimensionalcarbonnanotubesfoamwithenhancedelectrochemical
performanceforlithiumionbatteries.J.PowerSources2018,381,156–163.
112. Bai,Y.;Tang,Y.;Wang,Z.;Jia,Z.;Wu,F.;Wu,C.;Liu,G.Electrochemicalperformanceof
Si/CeO2/Polyanilinecompositesasanodematerialsforlithiumionbatteries.SolidStateIon.2015,272,24–
29.
113. Gu,Z.;Liu,C.;Fan,R.;Zhou,Z.;Chen,Y.;He,Y.;Xia,X.;Wang,Z.;Liu,H.Doublecoreshellof
Si@PANI@TiO2nanocompositeasanodeforlithiumionbatterieswithenhancedelectrochemical
performance.Int.J.HydrogenEnergy2018,43,20843–20852.
114. Liu,H.;Zou,Y.;Huang,L.;Yin,H.;Xi,C.;Chen,X.;Shentu,H.;Li,C.;Zhang,J.;Lv,C.;etal.Enhanced
electrochemicalperformanceofsandwichstructuredpolyanilinewrappedsiliconoxide/carbonnanotubes
forlithiumionBatteries.Appl.Surf.Sci.2018,442,204–212.
115. Fan,M.Q.HollowSiliconOxideSphereCoatedwithCuprousOxideandPolyanilineasanAnodeforHigh
PerformanceLithiumIonBatteries.Nano2019,14,77–86.
116. LuoJ.Y.;ZhaoX.;WUJ.S.;JangH.D.;KungH.H;,HuangJ.X.CrumpledGrapheneEncapsulatedSi
NanoparticlesforLithiumIonBatteryAnodes.J.Phys.Chem.Lett.2012,3,18241829..
117. Guo,J.;Chen,L.;Wang,G.;Zhang,X.;Li,F.InsitusynthesisofSnO2Fe2O3@polyanilineandtheir
conversiontoSnO2Fe2O3@Ccompositeasfullyreversibleanodematerialforlithiumionbatteries.J.Power
Sources2014,246,862–867.
118. Ding,H.;Jiang,H.;Zhu,Z.;Hu,Y.;Gu,F.;Li,C.TernarySnO2@PANI/rGOnanohybridsasexcellentanode
materialsforlithiumionbatteries.Electrochim.Acta2015,157,205–210.
119. Yi,L.;Liu,L.;Guo,G.;Chen,X.;Zhang,Y.;Yu,S.;Wang,X.Expandedgraphite@SnO2@polyaniline
CompositewithEnhancedPerformanceasAnodeMaterialsforLithiumIonBatteries.Electrochim.Acta
2017,240,63–71.
120. Wang,M.S.;Wang,Z.Q.;Chen,Z.;Yang,Z.L.;Tang,Z.L.;Luo,H.Y.;Huang,Y.;Li,X.;Xu,W.One
dimensionalandcoaxialpolyaniline@tindioxide@multiwallcarbonnanotubeasadvancedconductive
additivefreeanodeforlithiumionBattery.Chem.Eng.J.2018,334,162–171.
Materials2020,13,54843of45
121. Zhang,F.;Cao,H.;Yue,D.;Zhang,J.;Qu,M.EnhancedAnodePerformancesofPolyanilineTiO2Reduced
GrapheneOxideNanocompositesforLithiumIonBatteries.Inorg.Chem.2012,51,9544–9551.
122. Ye,Y.;Wang,P.;Sun,H.;Tian,Z.;Liu,J.;Liang,C.StructuralandelectrochemicalevaluationofaTiO2
grapheneoxidebasedsandwichstructureforlithiumionbatteryanodes.RSCAdv.2015,5,45038–45043.
123. Huang,X.H.;Tu,J.P.;Xia,X.H;Wang,X.L.;Xiang,J.Y.NickelfoamsupportedporousNiO/polyaniline
fifilmasanodeforlithiumionbatteries.Electrochem.Commun.2008,10,1288–1290.
124. Ma,H.;Liu,X.F.;Zhang,D.;Xiang,J.Y.Synthesisofpolyanilineshellonnickeloxidenanoflakearraysfor
enhancedlithiumionstorage.Mater.Res.Bull.2017,96,301–305.
125. Ma,R.;Wang,M.;Dam,D.T.;Yoon,Y.J.;Chen,Y.;Lee,J.M.PolyanilineCoatedHollowFe2O3
NanoellipsoidsasanAnodeMaterialforHighPerformanceLithiumIonBatteries.Chemelectrochem2015,
2,503–507.
126. Wang,X.;Zhang,M.;Zhao,J.;Huang,G.;Sun,H.Fe3O4@polyanilineyolkshellmicro/nanospheresas
bifunctionalmaterialsforlithiumstorageandelectromagneticwaveabsorption.Appl.Surf.Sci.2018,427,
1054–1063.
127. Bahadur,A.;Iqbal,S.;Shoaib,M.;Saeed,A.ElectrochemicalstudyofspeciallydesignedgrapheneFe3O4
polyanilinenanocompositeasahighperformanceanodeforlithiumionbattery.DaltonTrans.2018,47,
15031–13037.
128. Liu,H.;Zhang,F.;Li,W.;Zhang,X.;Lee,C.S.;Wang,W.;Tang,Y.PoroustremellalikeMoS2/polyaniline
hybridcompositewithenhancedperformanceforlithiumionbatteryanodes.Electrochim.Acta2015,167,
132–138.
129. Hu,L.R.;Ren,Y.M.;Yang,H.X.;Xu,Q.Fabricationof3DHierarchicalMoS2/PolyanilineandMoS2/C
ArchitecturesforLithiumIonBatteryApplications.ACSAppl.Mater.Interfaces2014,6,14644–14652.
130. Wang,G.;Peng,J.;Zhang,L.;Dai,B.;Zhu,M.;Xia,L.;Yu,F.TwodimensionalSnS2@PANInanoplateswith
highcapacityandexcellentstabilityforlithiumionBatteries.J.Mater.Chem.A2015,3,3659–3666.
131. Zhang,L.;Dou,P.;Wang,W.;Zheng,J.;Xu,X.SnCunanotubesenvelopedinthreedimensional
interconnectedpolyanilinehydrogelframeworkasbinderfreeanodeforlithiumionbattery.Appl.Surf.
Sci.2017,423,245–254.
132. Navid,Z.;Reza,M.A.A.;Meissam,N.;Javanbakht,M.Theimprovedperformanceoflithiumionbatteries
viathenovelelectrontransportcatalyticroleofpolyaniline(PANI)inPANI/Co3O4CuOraspberryasnew
anodematerial.J.Appl.Electrochem.2019,49,327–340.
133. Zhang,Y.;Zhao,G.;Jiang,Y.;Hong,W.;Zhang,Y.;Deng,M.;Shuai,H.;Xu,W.;Zou,G.;Hou,H.;etal.
MonocrystalCu3Mo2O9ConfinedinPolyanilineProtectiveLayer:AnEffectiveStrategyforPromoting
LithiumStorageStability.Chemelectrochem2019,6,1688–1695.
134. Li,X.;Wu,Y.;Hua,K.;Li,S.;Fang,N.;Luo,Z.;Bao,R.;Fan,X.;Yi,J.Verticallyalignedpolyanilinenanowire
arraysforlithiumionbattery.ColloidPolym.Sci.2018,296,1395–1400.
135. Li,G.C.;Li,G.R.;Ye,S.H.;Gao,X.P.APolyanilineCoatedSulfur/CarbonCompositewithanEnhanced
HighRateCapabilityasaCathodeMaterialforLithium/SulfurBatteries.Adv.EnergyMater.2012,2,1238–
1245.
136. Yan,J.H.;Li,B.Y.;Liu,X.B.Nanoporoussulfur–polyanilineelectrodesforlithiumsulfurbatteries.Nano
Energy2015,18,245–252.
137. Duan,L.;Lu,J.;Liu,W.;Huang,P.;Wang,W.;Liu,Z.Fabricationofconductivepolymercoatedsulfur
compositecathodematerialsbasedonlayerbylayerassemblyforrechargeablelithiumsulfurbatteries.
ColloidsSurf.A2012,414,98–103.
138. Ma,G.;Wen,Z.;Jin,J.;Lu,Y.;Wu,X.;Wu,M.;Chen,C.Hollowpolyanilinesphere@sulfurcompositesfor
prolongedcyclingstabilityoflithium–sulfurBatteries.J.Mater.Chem.A2014,2,10350–10354.
139. ZhouW;YuY;Chen,H.;Disalvo,F.J.;Abruña,H.D.Yolkshellstructureofpolyanlinecoatedsulfurfor
lithiumsulfurbatteries.JACS2013,135,16736–16743.
140. Liu,Y.;Zhang,J.;Liu,X.;Guo,J.;Pan,L.;Wang,H.;Su,Q.;Du,G.Nanosulfur/polyaniline/graphene
compositesforhighperformancelithiumsulfurbatteries:Onepotinsitusynthesis.Mater.Lett.2014,133,
193–196.
141. Yin,L.;Dou,H.;Wang,A.;Xu,G.;Nie,P.;Chang,Z.;Zhang,X.Afunctionalinterlayerasapolysulfides
blockinglayerforhighperformancelithium–sulfurbatteries.NewJ.Chem.2018,42,1431–1436.
Materials2020,13,54844of45
142. Li,X.;Rao,M.;Chen,D.;Lin,H.;Liu,Y.;Liao,Y.;Xing,L.;Li,W.Sulfursupportedbycarbonnanotubes
andcoatedwithpolyaniline:Preparationandperformanceascathodeoflithiumsulfurcell.Electrochim.
Acta2015,166,93–99.
143. Tang,Z.;Jiang,J.;Liu,S.;Chen,L.;Liu,R.;Zheng,B.;Fu,R.;Wu,D.PolyanilineCoatedActivatedCarbon
Aerogel/SulfurCompositeforHighperformanceLithiumSulfurBattery.NanoscaleRes.Lett.2017,12,617–
625.
144. Ding,Z.W.;Zhao,D.L.;Yao,R.R.;Li,C.;Cheng,X.W.;Hu,T.Polyaniline@sphericalorderedmesoporous
carbon/sulfurnanocompositesforhighperformancelithiumsulfurbatteries.Int.J.HydrogenEnergy2018,
43,10502–10510.
145. Sun,Y.;Wang,S.;Cheng,H.;Dai,Y.;Yu,J.;Wu,J.Synthesisofaternarypolyaniline@acetyleneblacksulfur
materialbycontinuoustwostepliquidphaseforlithiumsulfurbatteries.Electrochim.Acta2015,158,143–
151.
146. Liu,Y.;Zhou,Y.R.;Zhang,S.M.;Zhang,J.;Pen,P.;Qian,C.Amorphousironphosphate/carbonized
polyanilinenanorodscompositeascathodematerialinsodiumionbatteries.J.SolidStateElectrochem.2016,
20,479–487.
147. Chen,L.;Zhao,Y.M.;Liu,S.H.;Zhao,L.HardCarbonWrappedNa3V2(PO4)3@CPorousComposite
ExtendingCyclingLifespanforSodiumIonBatteries.ACSAppl.Mater.Interfaces2017,9,44485–44493.
148. Kaliyappan,K.;Bai,Z.Y.;Chen,Z.W.RationalDesignofEnvironmentalBenignOrganicInorganicHybrid
asaProspectiveCathodeforStableHighVoltageSodiumIonBatteries.J.Phys.Chem.2019,123,11464–
11475.
149. Han,H.;Lu,H.;Jiang,X.;Zhong,F.;Ai,X.;Yang,H.;Cao,Y.Polyanilinehollownanofiberspreparedby
controllablesacrificetemplaterouteashighperformancecathodematerialsforsodiumionbatteries.
Electrochim.Acta2019,301,352–358.
150. Manuel,J.;Salguero,T.;Ramasamy,R.P.Synthesisandcharacterizationofpolyanilinenanofibersas
cathodeactivematerialforsodiumionbattery.J.Appl.Electrochem.2019,49,529–537.
151. Zhao,X.;Lai,Y.;Zhang,Z.;Yang,F.;Fu,Y.;Li,J.Core–shellstructuredSnO2hollowspheres–polyaniline
compositeasananodeforsodiumionbatteries.RSCAdv.2015,5,31465–31471.
152. Zhou,Q.;Liu,L.;Huang,Z.;Yi,L.;Wang,X.;Cao,G.Co3S4@polyanilinenanotubesashighperformance
anodematerialsforsodiumionbatteries.J.Mater.Chem.A2016,4,5505–5516.
153. Wang,H.;Jiang,H.;Hu,Y.;Zhao,X.;Li,C.2DMoS2/polyanilineheterostructureswithenlargedinterlayer
spacingforsuperiorlithiumandsodiumstorage.J.Mater.Chem.A2017,5,5383–5389.
154. Zhou,D.;Liu,Y.;Song,W.L.;Li,X.;Fan,L.Z.;Deng,Y.Threedimensionalporouscarboncoated
graphenecompositeashighstableandlonglifeanodeforsodiumionbatteries.Chem.Eng.J.2017,316,
645–654.
155. He,Y.;Han,X.;Du,Y.;Song,B.;Zhang,B.;Zhang,W.;Xu,P.Conjugatedpolymermediatedsynthesisof
sulfur‐andnitrogendopedcarbonnanotubesasefficientanodematerialsforsodiumionbatteries.Nano
Res.2018,11,2573–2585.
156. Grzeszczuk,M.;Porks,P.TheHERperformanceofcolloidalPtnanoparticlesincorporatedinpolyaniline.
Electrchim.Acta2000,45,4171–4177.
157. Luna,A.M.C.Anovelelectrocatalyticpolyanilineelectrodeformethanoloxidation.J.Appl.Electrochem.
2000,30,1137–1142.
158. Liu,F.J.;Huang,L.M.;Wen,T.C.;Gopalan,A.Largeareanetworkofpolyanilinenanowiressupported
platinumnanocatalystsformethanoloxidation.Synth.Met.2007,157,651–658.
159. Wu,G.;Li,L.;Li,J.H.;Xu,B.Q.PolyanilinecarboncompositefifilmsassupportsofPtandPtRuparticles
formethanolelectrooxidation.Carbon2005,43,2579–2587.
160. Xu,Y.;Lin,S.;Peng,X.;Luo,W.A.;Gal,J.Y.;Dai,L.Insituchemicalfabricationofpolyaniline/multi
walledcarbonnanotubescompositesassupportsofPtformethanolelectrooxidation.Sci.ChinaChem.2010,
53,2006–2014.
161. Pang,H.L.;Huang,C.T.;Chen,J.H.;Liu,B.;Kuang,Y.F.;Zhang,X.H.Preparationofpolyaniline–tindioxide
compositesandtheirapplicationinmethanolelectrooxidation.J.SolidStateElectrochem.2010,14,169–174.
162. Yuan,Y.;Ahmed,J.;Kim,S.Polyaniline/carbonblackcompositesupportedironphthalocyanineasan
oxygenreductioncatalystformicrobialfuelcells.J.PowerSources2011,196,1103–1106.
Materials2020,13,54845of45
163. Zhang,N.;Ma,W.;Wu,T.;Wang,H.;Han,D.;Niu,L.EdgerichMoS
2
nanosheetsrootingintopolyaniline
nanofibersaseffectivecatalystforelectrochemicalhydrogenrevolution.ElectrochimcaActa2015,180,155–
163.
164. Guo,K.;Shi,K.M.;Guo,J.W.;Xie,X.L.TodriveFebasedcatalysttowardscompleteapplicationinproton
exchangemembranefuelcells(PEMFCs).Electrochim.Acta2017,229,183–196.
165. Gharibi,H.;Kakaei,K.;Zhiani,M.PlatinumNanoparticlesSupportedbyaVulcanXC72andPANIDoped
withTrifluoromethaneSulfonicAcidSubstrateasaNewElectrocatalystforDirectMethanolFuelCells.J.
Phys.Chem.C2010,114,5233–5240.
166. Fard,L.A.;Ojani,R.;Raoof,J.B.;Zare,E.N.;Lakouraj,M.M.Poly(pyrrolecoaniline)hollownanosphere
supportedPdnanoflflowersashighperformancecatalystformethanolelectrooxidationinalkalinemedia.
Energy2017,127,419–427.
167. He,D.;Zeng,C.;Xu,C.;Cheng,N.;Li,H.;Mu,S.;Pan,M.PolyanilineFunctionalizedCarbonNanotube
SupportedPlatinumCatalysts.Langmuir2011,27,5582–5588.
168. Chen,S.;Wei,Z.;Qi,X.;Dong,L.;Guo,Y.G.;Wan,L.;Shao,Z.;Li,L.NanostructuredPolyaniline
DecoratedPt/C@PANICoreShellCatalystwithEnhancedDurabilityandActivity.JACS2012,134,
1325213255.
169. Silva,R.;Voiry,D.;Chhowalla,M.;Asefa,T.EfficientMetalFreeElectrocatalystsforOxygenReduction:
PolyanilineDerivedN‐andODopedMesoporousCarbons.JACS2013,135,7823–7826.
170. Wen,Q.;Wang,S.;Yan,J.;Cong,L.;Chen,Y.;Xi,H.Porousnitrogendopedcarbonnanosheetongraphene
asmetalfreecatalystforoxygenreductionreactioninaircathodemicrobialfuelcells.Bioelectrochemistry
2014,95,23–28.
171. Liu,M.;Song,Y.;He,S.;Tjiu,W.W.;Pan,J.;Xia,Y.Y.;Liu,T.NitrogenDopedGrapheneNanoribbonsas
EfficientMetalFreeElectrocatalystsforOxygenReduction.ACSAppl.Mater.Interfaces2014,6,42144222.
172. Peng,H.;Liu,F.;Liu,X.;Liao,S.;You,C.;Tian,X.;Nan,H.;Luo,F.;Song,H.;Fu,Z.;etal.EffectofTransition
MetalsontheStructureandPerformanceoftheDopedCarbonCatalystsDerivedfromPolyanilineand
MelamineforORRApplication.ACSCatal.2014,4,3797–3805.
173. Luo,Y.N.;Guo,R.S.;Ti,T.;Li,F.;Liu,Z.;Zheng,M.;Wang,B.;Yang,Z.;Luo,H.;Wan,Y.Applicationsof
polyanilineforLiionbatteries,Lisulfurbatteriesandsupercapacitors.ChemSusChem2019,12,1591–1611.
174. Kamalgharbi,M.;Hormozi,F.;Zamzamian,S.A.H.;Sarafraz,M.M.Experimentalstudiesonthestabilityof
CuOnanoparticlesdispersedindifferentbasefluids:Influenceofstirring,sonicationandsurfaceactive
agents.HeatMassTransfer2016,52,55–62.
©2020bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).
... Because of its high conductivity, its, electrical chemical and environmental stability, easy preparation ecological dependability, and their optical properties it is the most widely used conducting polymer [2] [4,5]. It is used in many applications like electrochromic display, energy storage devices, corrosion resistance coatings, organic light emitting diode, organic solar cell, chemical sensors and biosensor [6][7][8][9][10][11][12][13]. ...
Conference Paper
Abstract— In the recent years, research on synthesis of conducting polymer nanocomposites has gained momentum due to its numerous applications in designing of sensors. The commonly used material is polyaniline and its composites. Here we report the synthesis of polyaniline nanocomposite featuring a combination of sheet-shaped and fiber like morphology using in situ chemical polymerization method. Hydrochloric acid (HCl) and nitric acid (HNO3) are used as doping agents. By scanning electron microscope (SEM) the surface morphology of synthesized polymer nano-composites were analysed The structural features of polymer nano-composites were analysed by Fourier transform infrared spectroscopy (FTIR) which revealed thc creation of emeraldine salt of PAni in acidic medium. The absorption kinetics of the polymer nano-composites were studied using UV-Vis spectroscopy. The conductivity of Polyaniline doped with HCl is higher compare to the polyaniline doped with HNO3 hence it is found to be more suitable for sensing application. Keywords—PAni, nanocomposite, SEM, FTIR
... To address these limitations, integrating PANI with other active materials like metal compounds, carbon, or other conducting polymers proves effective in compensating for these drawbacks in supercapacitive electrodes. PANI typically functions as a conductive network and layer within diverse composite structures, yielding PANI-based composites characterized by distinctive structures that showcase enhanced electrochemical performance in supercapacitors and rechargeable batteries, because of the synergistic effects [3]. ...
Article
Full-text available
In the wake of global energy demands and the urgent need for sustainable solutions, flexible energy storage systems have emerged as a cornerstone for innovation in the electronics industry. These systems are pivotal in addressing the challenges posed by the depletion of fossil fuels and the adverse environmental impacts associated with their consumption. This paper investigates the evolution of flexible energy storage systems, emphasizing the significance of advanced materials, including conductive polymers, flexible carbon nanomaterial electrodes, and metal foil substrates, in developing technologies that promise enhanced electrochemical performance and environmental sustainability. The paper also examines flexible batteries, supercapacitors, and piezoelectric devices, outlining their applications, challenges, and the balance between electrochemical performance and flexibility. The overarching goal is to navigate the dual environmental impact of energy storage systems, striving for solutions that minimize emissions and material disposal issues while enhancing the efficiency and safety of flexible energy storage technologies. This research underscores the pivotal role of flexible energy storage systems in fostering a sustainable electronic landscape, driven by advancements in material science and manufacturing techniques.
... The polyaniline/starch composites are expected to be adaptable materials that will increase the range of uses for colloidal PANI. These may include the following: (i) use as conductive coatings on various substrates such as plastics, glass, and textiles, with applications in antistatic coatings, electromagnetic shielding, and corrosion protection [79]; (ii) incorporation into chemical sensors and smart devices for environmental monitoring and healthcare diagnostics [80]; (iii) preparation of electrode materials, where they can enhance the energy storage capacity and cycling stability of supercapacitors and batteries, due to their high capacitance and electrochemical stability [81]. ...
Article
Full-text available
Conductive polymers, such as polyaniline (PANI), have interesting applications, ranging from flexible electronics, energy storage devices, sensors, antistatic or anticorrosion coatings, etc. However, the full exploitation of conductive polymers still poses a challenge due to their low processability. The use of compatible stabilizers to obtain dispersible and stable colloids is among the possible solutions to overcome such drawbacks. In this work, potato starch was used as a steric stabilizer for the preparation of colloidal polyaniline (emeraldine salt, ES)/starch composites by exploiting the oxidative polymerization of aniline in aqueous solutions with various starch-to-aniline ratios. The polyaniline/starch bio-composites were subjected to structural, spectroscopic, thermal, morphological, and electrochemical analyses. The samples were then tested for their dispersibility/solubility in a range of organic solvents. The results demonstrated the formation of PANI/starch biocomposites with a smaller average size than starch particles, showing improved aqueous dispersion and enhanced solubility in organic solvents. With respect to previously reported PANI-EB (emeraldine base)/starch composites, the novel colloids displayed a lower overall crystallinity, but the conductive nature of PANI-ES enhanced its electrochemical properties, resulting in richer redox chemistry, particularly evident in its oxidation behavior, as observed through cyclic voltammetry. Finally, as proof of the improved processability, the colloids were successfully integrated into a thin polyether sulfone (PES) membrane.
... rGO and PANI are highly desirable electrode materials for supercapacitors due to their exceptional properties, such as high surface area, excellent electrical conductivity, remarkable chemical stability, and flexibility [29]. These properties improve cycling stability and long-term durability, making them ideal for energy storage applications [30][31][32]. Researchers have developed multiple approaches to synthesize metal oxides, and sulfides, including sol-gel, solvothermal, antisolvent, precipitation, microwave, solid state, hydrothermal and chemical bath deposition [38][39][40]. ...
Article
Full-text available
The worldwide dramatic increase in energy consumption is depleting its natural resources and growing its demand day to day, which thus forth compelled us to develop various effective novel techniques for energy generation elongate its storage mechanisms to encounter obvious challenges facing the academicians/researchers of the era. In order to cope up such need of the era, using hydrothermal and in situ approaches, Lanthanum sulfide (La2S3), Polyaniline (PANI), and N-rGO (Nitrogen-doped reduced graphene oxide) composites are synthesized. The in-depth structural and electrochemical properties analyses have asserted that the considered materials are truly synthesized. The physiochemical characterizations comprising the structural through XRD, EDX, FESEM, FTIR, IV, BET (Brunauer–Emmett–Teller), and TGA are performed. Where, the CV has determined the pseudocapacitive nature of La2S3/PANI/N-rGO electrodes that have exhibited high specific capacitance (Csp) ~ 2627.17 F/g at 5 mV/s. These attain 94.87% capacitive retention over 8000 charging-discharging cycles, which is considered high enough compared to the formerly fabricated electrodes. The galvanostatic charge–discharge test has further established a narrative that La2S3/PANI/N-rGO electrodes possess a high Csp of 2311.2 F/g, high-energy density of 51.35 W/Kg, and power density of 616.27 Wh/Kg at 0.5 A/g. Inclusively, it is noticed that this way of synthesizing the considered materials has triggered its performance for electrode materials to be employed for supercapacitors.
... In 2009, Wang et al [46] prepared graphene-polyaniline composite materials for the first time, which are of great significance in the research of SC electrode materials. In the past few years, there were many reports about the composite application of polyaniline and graphene in the field of SCs [47][48][49][50]. In this work, the latest research progress of polyaniline/graphene nanocomposite electrode materials is reviewed, as displayed in figure 2, and this review summarizes five kinds of common preparation methods and four kinds of optimization strategies of electrode structure. ...
Article
Full-text available
Supercapacitors (SCs) have become one of the most popular energy-storage devices for high power density and fast charging/discharging capability. Polyaniline is a class of conductive polymer materials with ultra-high specific capacitance, and the excellent mechanical properties will play a key role in the research of flexible SCs. The synergistic effect between polyaniline and graphene is often used to overcome their respective inherent shortcomings, thus the high-performance polyaniline-graphene based nanocomposite electrode materials can be prepared. The development of graphene-polyaniline nanocomposites as electrode materials for SCs depends on their excellent microstructure design. However, it is still difficult to seek a balance between graphene performance and functionalization to improve the weak interfacial interaction between graphene and polyaniline. In this manuscript, the latest preparation methods, research progress and research results of graphene-polyaniline nanocomposites on SCs are reviewed, and the optimization of electrode structures and performances is discussed. Finally, the prospect of graphene-polyaniline composites is expected.
Article
Full-text available
In this work, an anode material with improved thermal stability, charge capacity, charge capacity retention, energy density, cyclic performance, operation safety, reversible capacity, and rate capability was synthesized for battery applications. The graphene-magnetite-polyaniline (Gr-Fe 3 O 4-PANI) nanocomposites (NCs) are believed to deliver outstanding performance owing to the collective effect of the layered gra-phene (Gr) and magnetite (Fe 3 O 4) hollow rods (HRs), as well as the better conductivity of polyaniline (PANI). The Gr-Fe 3 O 4-PANI NCs easily enable the insertion and deinsertion of Li + , the passage of ions in the electrode, fast kinetics of Li + , and low volume expansion. Gr-Fe 3 O 4-PANI NC was prepared by poly-merizing aniline in the presence of already prepared Fe 3 O 4 HRs, then dispersing in Gr. Fe 3 O 4 HRs were synthesized by a hydrothermal route. Electrochemical properties were investigated by galvanostatic charge-discharge analysis and cyclic voltammetry. A lithium-ion battery (LIB) based on the Gr-Fe 3 O 4-PANI exhibited a superior reversible current capacity of 1214 mA h g −1 , excellent power capability, low volume expansion, high cycling stability and 99.6% coulombic efficiency over 250 cycles.
Article
The energy crisis is currently a major concern worldwide due to the limited natural resources. Accordingly, lithium-ion batteries (LIBs) are in the focus of forefront energy storage investigations in our 21st century. Traditional lithium-insertion compounds for cathode materials, such as LiCoO2, LiMn2O4, LiNiO2 and LiFePO4, have been highly successful but they face serious limitations in energy storage density and production cost associated with their use. Therefore, the design of novel molecular cluster batteries (MCBs) as the next-generation energy storage device is an extremely important and hot topic of current research. Here, we first report preparation of zero-dimensional (OD) polyaniline/polyoxometalates [PW12O40]³⁻ (PANI/PW12) nanospheres, and then have successfully embedded PANI/PW12 nanospheres into three-dimensional (3D) graphene sponge to construct a novel 3D graphene/polyaniline/polyoxometalates hybrid ([email protected]/PW12) as new cathode material in LIBs. The as-prepared [email protected]/PW12 hybrid in half-cell exhibits extraordinary electrochemical performances with high specific capacity (around 285 mAh g⁻¹ at 50 mA g⁻¹), excellent rate capability (140 mAh g⁻¹ at 2 A g⁻¹), and outstanding cycling stability (capacity fade rate of 0.028% per cycle even after 1000 cycles at 2 A g⁻¹), representing the best performance for long-cycle POMs-based cathode in LIBs to date. Furthermore, a [email protected]/PW12-C lithium ion full-cell is first fabricated with an initial discharge specific capacity of 145 mAh g⁻¹ at 2 A g⁻¹, and then shows excellent cycling stability with a capacity decay rate of 0.035% per cycle over 1000 cycles at 2 A g⁻¹. Importantly, the discharge and degradation mechanisms of [email protected]/PW12 cathode in LIBs are further deeply investigated. The electron-transfer (ET) from reduced PANI polymer to PW12 polyanion as well as the “electron reservoir” model on PW12 molecule both contribute to the high electroactivity. This study sheds thus new lights to the design of new generation electrode materials for lithium-ion batteries.
Article
In comparison with inorganic and dry polymeric materials, conductive polymer hydrogels are promising soft electrode materials due to their unique solid-liquid interface. Nevertheless, the existing hydrogels lack either excellent electrochemical performance or mechanical resilience. Here we report a strategy to overcome this limitation by integrating two types of conducting polymers – polyaniline and PEDOT – through a molecular bridge provided by phytic acid. The acid replaces some of PSS, promoting transformation of PEDOT chains from the benzoic structure to the quinoid structure. The resulting hydrogel consists of a 3D network of PEDOT sheets where PANi are inlaid; it has highly improved mechanical properties in comparison with PEDOT hydrogel due to molecular interactions between PANi and PEDOT. A flexible solid-state supercapacitor based on PEDOT/PANi hydrogel delivered a high volumetric energy density of 0.25 mWh cm⁻³ at a power density of 107.14 mW cm⁻³, surpassing many of previously reported solid-state supercapacitors based on PEDOT and hydrogels of other conducting polymers and graphene oxide. This study represents a new direction for the development of conductive polymer composite hydrogels which combine excellent electrochemical performance with mechanical resilience.
Article
Flexible polyaniline-carbon nanofiber (PANI-CNF) composites were fabricated and evaluated for use as supercapacitor electrodes. Sol-gel and electrospinning techniques were employed to produce flexible carbon nanofibers and polyaniline coating was applied via in-situ chemical polymerization to further improve the electrochemical properties of the electrodes. The performance of flexible PANI-CNF electrodes was investigated in symmetric supercapacitor cells. Results showed that binder-free flexible PANI-CNF electrodes had high capacitance of 234 F/g and excellent cycling stability with capacitance retention of about 90% after 1000 cycles. Ragone plots were also presented and a high energy density of 32 Wh/kg at the power density of 500 W/kg was achieved for the flexible PANI-CNF electrode prepared with 12 h polymerization. In addition, mechanical tests demonstrated that free-standing PANI-CNF electrodes were durable and highly flexible. Therefore, combining sol-gel and electrospinning techniques is a facile and effective way to achieve flexible carbon nanofiber electrodes and this work provides a new approach for designing flexible electrodes with exceptional electrochemical performance, which is very promising for practical application in the energy storage field.
Article
Electrospun carbon nanofibers (CNFs) encapsulated Si nanoparticles (Si NPs) are effective anode materials for lithium-ion batteries (LIBs), however, the cycle stability is poor due to the volume expansion of Si NPs during charging/discharging. We herein report a strategy to further improve the cycle stability by coating a second layer of carbon on the surface of CNFs/Si nanofibers. The secondary carbon coated composite nanofibers (CNFs/[email protected]) were produced by growing a layer of polyaniline (PANI) on the surface of electrospun CNFs/Si nanofibers followed by high-temperature pyrolysis. The CNFs/[email protected] material demonstrated a specific capacity of 936.1 mAh g⁻¹ at the first discharge cycle and 753.5 mAh g⁻¹ at the 100th cycle, which has a retention rate of 80.5%, much higher than that of the pristine CNFs/Si. Obviously, the secondary carbon coating strategy is effective to promote the cycle stability of Si-based anode materials.
Article
Exploring renewable, cost-effective and environmentally friendly electrode materials with high adsorption, fast ions/electrons transports and tunable surface chemistry are urgently needed for the development of next-generation biocompatible energy-storage devices. In recent years, biomass-derived carbon electrode materials for energy storage have attracted a great deal of attention because of their widespread availability, renewable nature and low cost. More importantly, their inborn uniform and precise biological structures can be utilized as the templates for fabricating electrode materials with controlled and well-defined geometries. Meanwhile, the basic elements of biomass are carbon, sulfur, nitrogen and phosphorus. The speical naturally ordered hierarchical structures as well as abundant surface properties of biomass-derived carbon materials can be well compatible with electrochemical reaction process, such as ions transfer and diffusion. To date, a series of novel porous carbon materials with different dimensionalities have been made by various methods using biomass as raw material, which is an important field in the fabrication of supercapacitor electrode materials. Herein, we summarize the recent reported biomass-derived carbon materials with 1-Dimension, 2-Dimension to 3-Dimension and their applications as carbon-based electrode materials for supercapacitors. Finally, the current challenges and future perspectives of carbon-based electrode materials on the supercapacitor’s performance are closely highlighted.
Article
A covalent linkage between polyaniline (PANI) and Si nanoparticles in PANI-encapsulated Si nanocomposites was proposed and achieved by a facile and economical synthetic strategy, in which NH 2 -grafted Si was first obtained via a chemical modification of Si surface and the polymerization of aniline initiated at NH 2 group surface was readily accomplished to get PANI shell. The characterizations suggested that NH 2 groups were successfully introduced onto Si surface and PANI-encapsulated Si nanocomposites with a core/shell structure were fabricated. Electrochemical tests showed that our proposed Si nanocomposites delivered a high initial specific capacity of 2135[Formula: see text]mAh/g and retained 848[Formula: see text]mAh/g after 100 charge/discharge cycles at a current density of 0.1[Formula: see text]A/g, which were superior than that of the normal PANI-encapsulated Si nanocomposites with the absence of chemical bonds in the interface. The enhanced electrochemical performance was ascribed to the surface chemical modification and the introduction of chemical bond in the interface. NH 2 group function of Si could improve the homogeneity of encapsulated PANI shell. Additionally, PANI was tightly anchored to Si nanoparticles via a covalent bond between silicon and PANI, which would greatly inhibit the separation of PANI from Si surface during the expansion/contraction of Si particles. Thus, the structural integrity was maintained. Besides, PANI layer with a unique structure promoted the transport of both electrons and lithium ions.