ArticlePDF Available

Evolution of Turbulent Horseshoe Vortex System in Front of a Vertical Circular Cylinder in Open Channel

Authors:

Abstract and Figures

A turbulent horseshoe vortex (HV) system around a wall-mounted cylinder in open channel is characterized by random variations in vortex features and an abundance of vortex interactions. The turbulent HV system is responsible for initiating the local scour process in front of the cylinder. The evolution of the turbulent HV system is investigated statistically and quantitatively with time-resolved particle image velocimetry. The cylinder Reynolds numbers of the flow are 8600, 10,200, and 13,600, respectively. A novel vortex tracking method was proposed to obtain the variations in position, size, and strength of the primary HV (PHV) which dominates the system most of the time. Relationships between the various features of the PHV during its evolutionary process were obtained through correlation analyses. Results show that the dimensionless mean lifespan of the PHV is about 5.0. Statistically, the downstream movement of the PHV toward the cylinder is accompanied with its bed-approaching movement and decreasing in size, and the opposite is true. The circulation strength of the PHV decreases and increases dramatically in the region downstream of its time-averaged position when the PHV approaches and departs from the cylinder, respectively. Meanwhile, mechanisms responsible for the generation, movement, variation, and disappearance of the PHV are re-investigated and enriched based on its interactions with vortices in the separation region and structures in the incoming flow. The obtained change trends of the features of the PHV and the underlying mechanisms for its evolution are valuable for predicting and controlling the initial stage of the local scour in front of cylinders.
Content may be subject to copyright.
Water 2019, 11, 2079; doi:10.3390/w11102079 www.mdpi.com/journal/water
Article
Evolution of Turbulent Horseshoe Vortex System in
Front of a Vertical Circular Cylinder in Open Channel
Qigang Chen *, Zuolei Yang and Haojie Wu
School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China; 18121147@bjtu.edu.cn (Z.Y.);
18125879@bjtu.edu.cn (H.W.)
* Correspondence: chenqg@bjtu.edu.cn; Tel.: +86-151-2000-1870
Received: 9 August 2019; Accepted: 1 October 2019; Published: 5 October 2019
Abstract: A turbulent horseshoe vortex (HV) system around a wall-mounted cylinder in open
channel is characterized by random variations in vortex features and an abundance of vortex
interactions. The turbulent HV system is responsible for initiating the local scour process in front of
the cylinder. The evolution of the turbulent HV system is investigated statistically and
quantitatively with time-resolved particle image velocimetry. The cylinder Reynolds numbers of
the flow are 8600, 10,200, and 13,600, respectively. A novel vortex tracking method was proposed to
obtain the variations in position, size, and strength of the primary HV (PHV) which dominates the
system most of the time. Relationships between the various features of the PHV during its
evolutionary process were obtained through correlation analyses. Results show that the
dimensionless mean lifespan of the PHV is about 5.0. Statistically, the downstream movement of
the PHV toward the cylinder is accompanied with its bed-approaching movement and decreasing
in size, and the opposite is true. The circulation strength of the PHV decreases and increases
dramatically in the region downstream of its time-averaged position when the PHV approaches
and departs from the cylinder, respectively. Meanwhile, mechanisms responsible for the
generation, movement, variation, and disappearance of the PHV are re-investigated and enriched
based on its interactions with vortices in the separation region and structures in the incoming flow.
The obtained change trends of the features of the PHV and the underlying mechanisms for its
evolution are valuable for predicting and controlling the initial stage of the local scour in front of
cylinders.
Keywords: turbulent horseshoe vortex; evolution of vortex; circular cylinder flow; open channel
turbulence
1. Introduction
Flows around a wall-mounted circular cylinder appear in a large number of technical and
environmental applications, such as river flows past bridge piers and pile foundations [1–3]. When
the natural wall-bounded flow encounters a vertical cylinder, horseshoe vortices (HVs) are formed
in the junction region between the bed and the cylinder [4–6]. The HVs are a system of necklace
structures wrapping around the front and flanks of the cylinder. Depending on the regime of the
approaching flow at the location of the cylinder, the horseshoe vortex (HV) system appears as a
laminar or turbulent system, respectively [7]. The turbulent HV system oscillates randomly in front
of the cylinder, inducing highly elevated means and fluctuations in bed shear stress [8]. Therefore, a
full understanding of the evolution of the turbulent HV system is necessary for understanding,
predicting, and controlling the initial stage of the local scour in front of cylinders.
Due to the highly dynamical nature of the turbulent HV system, many investigations have
focused on interpreting its underlying dynamics with models of low complexity [9–13].
Water 2019, 11, 2079 2 of 18
The evolution of the instantaneous turbulent HV system, however, has received less attention,
partly due to its complexity manifesting as aperiodic interactions and variations in number, position,
size, and strength. Dargahi [14] made one of the earliest descriptions on the evolutionary process of
the turbulent HV system based on experimental observations conducted with flow visualization
method. Results showed the HV closest to the cylinder oscillates upstream and downstream along
the bed. When the HV moves downstream toward the cylinder, it approaches the bed, and its
cross-section area and circulation strength decreases. Latter, Agui and Andreopoulos [15] visualized
the flow structures around a circular cylinder for cylinder Reynolds numbers, ReD, of 1.0 × 105 and
2.2 × 105. They observed that the flow field upstream of the cylinder is always dominated by a much
more stable and larger primary HV (PHV). They also concluded the PHV wanders mostly in the
streamwise direction under the action of large-scale structures in the incoming flow.
More detailed descriptions on the evolution of the turbulent HV system were not available until
eddy-resolving numerical simulations were applied. Kirkil et al. [16] performed one of the earliest
large eddy simulations (LES) on flow around a circular cylinder at a Reynolds number of 18.000.
They found the junction region is not always dominated by a large relatively stable PHV. The PHV
can generate through growing of a small vortex or merging of several vortices with the same rotation
sense. Moreover, some of the vortices are separated from the attached boundary layer on the
upstream cylinder face instead of the upstream separation region. During its lifetime, the PHV gains
or loses vorticity due to interaction with co-rotating or counter-rotating vortices, respectively. In
some cases, the PHV was split or practically destroyed. Later, Paik et al. [10] carried out detached
eddy simulations (DES) for flow around a wing mounted on a flat bed at ReD = 1.15 × 105. They found
the flow is dominated by a coherent PHV. However, for flows around a circular cylinder with lower
Reynolds number, the DESs carried out by Escauriaza and Sotiropoulos [11] showed some
differences on the evolution of the turbulent HV system. For the flow at ReD = 39,000, the system was
found to be dominated by two primary horseshoe vortices (PHVs). These two HVs move upstream
and downstream, respectively. On the other hand, the HV system at ReD = 20,000 is composed of
four or five PHVs at all times, which move only in the downstream direction.
Recently, Kirkil and Constantinescu [17] adopted the LES and DES approaches to study flows
around a circular cylinder with ReD = 16,000 and 500,000, respectively. In both cases, the turbulent
HV system was found to dominate by one PHV. The main mechanism for increasing the coherence
of PHV is the merging and extraction of vorticity of the same sign from vortices originating in either
the down-flow or the separation region. Meanwhile, the core of the PHV is larger when it is located
away from the cylinder.
Quantitative experimental studies on the evolution of the turbulent HV system upstream of a
circular cylinder were reported recently by several groups. Apsilidis et al. [12] reported the influence
of cylinder Reynolds number on the dynamics of the turbulent HV system by using time-resolved
PIV. For the case with ReD = 29,000, the flow upstream of the cylinder is not dominated by a PHV
sometimes. However, the flows upstream of the cylinder with ReD = 47,000 and 123,000 are always
dominated by a PHV. The PHV can maintain its coherence by merging vortices originating in the
incoming flow, the down-flow along the cylinder face, or the upstream separation region. Schanderl
et al. [18] obtained the flow fields in front of a circular cylinder on a flat bed with ReD = 39,000 by
using PIV. The turbulent HV system was found to be dominated by a PHV.
The PHV undergoes relatively large streamwise displacements, and the closer to the cylinder it
locates the more coherent it would be. Recently, Li et al. [19] observed part of the evolutionary
process of turbulent HV in front of a circular cylinder with ReD = 9400 and 13,500 by using
time-resolved PIV. The strength and size of the PHV were found to decrease gradually when it
retreats back to the cylinder.
To summarize, despite many valuable contributions by using flow visualization methods,
eddy-resolving simulations, and quantitative measurements, the evolutionary process of the
turbulent HV system is far to be well understood. On one hand, existing observations based on
different methods, especially numerical simulations, have shown some discordances. On the other
hand, many existing investigations on the evolution of turbulent HV system have been based merely
Water 2019, 11, 2079 3 of 18
on the observations of instantaneous velocity fields, which is insufficient for building a statistically
reliable description on the evolutionary process of the turbulent HV system. Therefore, the present
study uses quantitative and statistical methods to investigate the evolution of the turbulent HV
system. It expands upon the previously published work by Chen et al [13]. Especially, relationships
between the various features of the PHV dominating the turbulent HV system during its evolution
were investigated. Meanwhile, the underlying mechanisms responsible for the generation,
disappearance, large-scale streamwise movements, and strength variations of the PHV were
re-investigated.
2. Datasets and Methodology
2.1. Datasets
Three experimental datasets were used for the present investigation. The experiments were
carried out in a recirculating tilting water flume that was 20 m long and 0.3 m wide. Figure 1 shows
two diagrams and a photograph of the experimental setup. A circular cylinder with a diameter of 3.2
cm was mounted vertically on the flat bed of the flume. The length of the cylinder is larger than the
water depth to avoid submergence. The distance between the axis of the cylinder and the entrance of
the flume is 12 m to ensure a fully developed turbulent open channel flow. The cylinder Reynolds
number ReD, defined with the diameter of the cylinder, D, and the bulk mean velocity, Um, was 8600,
10,200, and 13,900, respectively. The detailed flow characteristics for each experimental case are
summarized in Table 1. For the sake of distinction, each case is named by its cylinder Reynolds
number preceded by the letter “C”. According to the results of Wei et al. [7], the HV systems in the
minimum and maximum ReD cases considered here are intermittently and fully turbulent,
respectively. The 2D instantaneous velocity fields in the symmetry plane upstream of the cylinder
were measured using a time-resolved PIV system. For each flow condition, two or three sequences of
continuous velocity fields were measured with a frequency larger than 500 Hz. The total numbers of
velocity fields for each case are 21,000, 21,000, and 24,000, respectively. More details about the
experimental setup, PIV system, and the validation of the experiment data can be found in Chen et
al. [13].
As shown in Figure 1, the origin of the coordinate system used to describe the results is defined
to lie at the center of the cylinder on its bottom surface. The x axis is oriented along the main flow
and parallel to the flume bed. The y axis is normal to the bed and coincides with the central axis of
the cylinder. The transverse z axis is normal to the side walls of the flume. The instantaneous
velocity components in the x, y, and z directions are denoted by U, V, and W, respectively.
Water 2019, 11, 2079 4 of 18
Figure 1. (a) Cross section, (b) side view, and (c) a photograph of the experimental setup.
Table 1. Details of the bed and flow characteristics: S, bed slope; H, water depth; Um, bulk mean
velocity; Re, Reynolds number;
Case S (‰) H (cm)
U
m (cm/s) Re ReD Fr
C8600 0.5 3.0 22.4 8100 8600 0.41
C10200 0.5 4.0 26.4 12,700 10,200 0.42
C13900 1.5 3.5 36.9 15,200 13,900 0.63
ReD, cylinder Reynolds number; Fr, Froude number.
2.2. Vortex Identification and Characterization Methods
The turbulent HVs are usually identified as closed or spiral streamlines. However, this method
fails when the convection velocity of a vortex becomes non-ignorable [20]. Meanwhile, quantitative
features of vortices can hardly be read out from the streamline patterns. Therefore, a number of
recent investigations used kinematics implied by the velocity gradient tensor as the indicators of
HVs. For instance, Paik et al. [10], Kirkil and Constantinescu [17], and Apsilidis et al. [12] adopted
the Q criterion to visualize vortices within the HV system.
The present investigation uses the swirling strength criterion to identify HVs. The criterion
adopts the imaginary part of the eigenvalues of the velocity gradient tensor (termed swirling
strength and denoted by λci) as the vortex indicator [21]. When λci is non-zero at a point, the local
streamline around the point is swirling, and the strength of the local swirling motion is represented
by its value. For real vortices in turbulent flows, the strength of swirling motion shows maximum
value at the center and decreases monotonously along the radius. Therefore, vortices are detected as
non-zero clusters around the peaks of λci [22]. Since the imaginary part of the eigenvalues is always
positive, we define Λci = λcisign(ωz) to distinguish between vortices rotating in the clockwise and
counterclockwise sense, where ωz is the spanwise vorticity. The peak position of each cluster of Λci
indicates the center of each vortex, and the peak value, Λv, denotes the coherence of each vortex.
Figure 2 presents the streamlines and contours of Λci in an instantaneous velocity field in front of the
cylinder for case C8600. According to the streamline patterns, two HVs and one secondary vortex
(SV) are observed in the junction region. The swirling strength criterion correctly identifies these
vortices.
Figure 2. Streamlines and contours of swirling strength in an instantaneous flow field in front of the
cylinder for case 8600.
Water 2019, 11, 2079 5 of 18
The swirling strength criterion can determine the center and coherence of each vortex, but
methods are still required to determine their core size and circulation strength. Traditionally, two
categories of methods were widely used. The first kind of methods define the boundary of a vortex
as an isoline of vortex indicators, of which the value equals to a given threshold [22]. The circulation
strength of the vortex is then calculated by integrating the vorticity within the vortex core. These
methods are simple and intuitive, but the results depend on the selected threshold. The second kind
of methods extract the features of a vortex by fitting the local velocity field with a standard vortex
model [23]. By properly selecting the model, results of this kind of method would be more objective.
However, it is computationally intense and may lose its superiority in treating instantaneous
vortices.
We adopted a revised version of the threshold method to determine the size and circulation
strength of instantaneous HVs. Instead of selecting a universal and constant threshold for all
vortices, we defined the threshold for each vortex based on its own coherence as
0.25=v
εΛ
(1)
where Λv is the swirling strength at the center of each vortex. The threshold is selected based on the
following relation holding for a standard Oseen vortex [24]
()
0.25=≈
ci v v
rR
ΛΛ
. (2)
2.3. Vortex Tracking Method
In order to quantitatively investigate the evolution of turbulent HV system, vortices comprising
the system should be tracked. However, as shown in Figure 2, the instantaneous turbulent HV
system is usually composed of more than one vortex with different size and strength, making it
impractical to track all these vortices. According to existing investigations, most of the time the
turbulent HV system is dominated by a primary vortex which relates tightly with the dynamics of
the system. Therefore, only the PHV is selected as the representative vortex in the turbulent HV
system and tracked. Nevertheless, one difficulty still exists, as no clear and universal definition for
the PHV is available even though it is commonly used. In a laminar HV system, the PHV is typically
the standing HV closest to the cylinder base [7]. For the turbulent HV system, however, the most
coherent HV seems a more intuitively accepted definition for the PHV. Therefore, we chose the HV
with the highest peak of Λci in a given velocity field as the PHV.
To track a PHV in successive velocity fields, we treated the spatial distribution of Λci within its
vortex core as the gray-level intensity of a particle image. Following some basic ideas of the particle
tracking velocimetry technique, the method for tracking vortex contains the following steps, as
illustrated in Figure 3.
Step 1. Vortices in all instantaneous velocity fields of a sequence are identified with the swirling
strength criterion. The core of each vortex is represented by the contours of swirling strength within
its boundary, defined by Equation (1).
Step 2. The PHV in the first snapshot (V0) is selected as the tracking object and candidates of
this vortex in the next snapshot (V1–V4) are determined by a displacement threshold (denoted by a
circle). The threshold is defined as
=+
th c v
DVtR
Δ
(3)
where Vc is the convective velocity of the vortex V0 defined as the instantaneous velocity at its
center; Δt is the time interval between two successive velocity fields; Rv is the radius of the vortex V0.
The introduction of Rv is based on the observation that the center of HV can vary dramatically within
its core.
Water 2019, 11, 2079 6 of 18
Figure 3. Major steps of the method for tracking a vortex in successive velocity fields.
Step 3. Counterpart of the object vortex in the second snapshot is detected by a
cross-correlation analysis. The cross-correlation analysis is performed between the swirling strength
distribution of snapshot one and that of snapshot two. In the resulted correlation map, the
maximum peak represents the correlation coefficient between the object vortex and its counterpart,
and its coordinate represents the displacement of the object vortex during Δt.
After obtaining the displacement of the object vortex, the position of its counterpart in the
second snapshot (V1) is determined. The detected counterpart is defined as the new object vortex in
the next step.
Step 4. Steps 2 and 3 are conducted repeatedly until the correlation coefficient between the
object vortex and its counterpart is smaller than 0.5. The threshold of 0.5 has been selected based on
pre-conducted sensitive analysis. Such a circumstance means that the old PHV disappears. Then a
new PHV is defined in the next snapshot and the tracking process restarts.
Step 5. The tracking results for each velocity field sequence are double checked manually to
avoid possible mismatch. The image of streamlines and contours of Λci in each instantaneous
velocity field is converted into a frame of a video animation. By replaying the videos, incorrect
tracking results are identified and revised. Meanwhile, the videos are used to assist analyzing the
evolution behaviors of the PHV.
Figure 4 presents the time histories of the streamwise position, xv, vertical position, yv,
coherence, Λv, core area, Av, and circulation strength, Γv, of several PHVs that appeared one after
another in case C13900. A color change on the time histories indicates the disappearance of an old
Water 2019, 11, 2079 7 of 18
PHV and the generation of a new PHV. The horizontal dashed line indicates the time-averaged
value of the corresponding feature. Figures 4(a) and 4(b) reveal the aperiodic oscillation, both
streamwise and vertical, of the PHV. The streamwise position of the PHV changes from -0.91D to
-0.53D with a mean value of about -0.7D. The vertical position lies in the range of 0.02D to 0.13D,
with a mean value of about 0.06D. The instantaneous and mean positions of the PHV obtained by
vortex tracking are in accordance with previous observations [12,18,25]. These agreements validate
the reasonableness of the current definition of PHV and the reliability of the tracking results. In
Figures 4(c)–4(e), the size, coherence, and circulation strength of the PHV also show chaotic
variations with time. These features indicate that the investigated HV system is fully turbulent, at
least in the case of C13900. The mean diameter and circulation strength are 0.033D and -0.08DUm,
respectively.
Figure 4. Time histories of (a) streamwise position, (b) vertical position, (c) coherence, (d) core area,
and (e) circulation strength of several primary horseshoe vortices for case C13900.
2.4. Correlation Analysis Between the Features of PHV
Despite their chaotic variations, a scrutiny of Figure 4 reveals that the variations of different
features are quasi-synchronous with each other. For example, the moment indicated by the arrows
corresponds to local minima in the streamwise position, coherence, and circulations strength, and
local maxima in the vertical position and core area, respectively. To explore the inter-relationships
among these features, temporal cross-correlation analyses were conducted between the streamwise
position and the other features of the PHV. As an example, the temporal cross-correlation function
between the streamwise and vertical positions is calculated as follows:
Water 2019, 11, 2079 8 of 18
()
() ()
() ()
,,
1
22
,,
11
=
==
 
−+
 
=
 
−+
 

N
vn v vn v
n
xy NN
vn v vn v
nn
xtx yt ty
Rt
xtx yt ty
Δ
Δ
Δ
(4)
Here, N is the sample number of velocity fields and the overbar represents time-averaging. For
the sake of interpretation, absolute value of the coherence (swirling strength) and the circulation
strength, which were negative by definition, were used to calculate the correlation functions.
3. Results and Discussion
3.1. Generation of PHV
Instantaneous velocity fields show that although the junction region between the bed and the
cylinder is dominated by a PHV most of the time, there are instants where no typical HV is observed
for all cases in the present study. Therefore, each PHV undergoes a complete evolutionary process
consisted of generation, life, and disappearance stages. The occasional absence of a PHV in the
junction region was also observed by Kirkil et al. [16] at a Reynolds number of ReD = 18,000 and by
Apsilidis et al. [12] at ReD = 29,000. For cases with higher Reynolds number, both experimental and
numerical results showed the persistent existence of the PHV [11,12,18].
The sequence of instantaneous velocity fields in Figure 5 shows the most frequently observed
mechanisms for the generation of the PHV. In Figure 5a,b, no coherent HV is observed in the
junction region. Then a weak HV, as indicated by the black arrow, is generated in the separation
region in Figure 5c. This vortex increases in size and strength while moving downstream slowly.
Finally, it grows up into a PHV dominating the junction region in Figure 5d. The growth of a HV
shedding from the separation region into a PHV is natural and well-accepted since all PHVs are
generated in the separation region for a laminar HV system [26].
Figure 5. Sequence of instantaneous velocity fields illustrating the generation of a PHV for case
C13900. (a) t = 0; (b) t = 0.29D/Um; (c) t = 0.58D/Um; (d) t = 0.87D/Um; (e) t = 1.13D/Um; (f) t = 1.40D/Um
Figure 6 presents another less frequently observed mechanism for the generation of the PHV.
In Figure 6a, no PHV is observed in the junction region. Instead, a newly generated HV (HV1) is
shedding away from the separation region, and a relatively weak prograde vortex (PV1, vortex
with negative vorticity) originating in the incoming flow is convected toward the junction region by
the down-flow in front of the cylinder. The vortex PV1 becomes stronger while approaching the
bed. At the same time, a second HV (HV2) is generated in the separation region in Figure 6b.
Instead of growing up into PHVs, the vortex HV1 dissipates gradually, and the vortex HV2 is partly
engulfed by the vortex PV1 in Figure 6c,d. Meanwhile, another prograde vortex (PV2) convected by
Water 2019, 11, 2079 9 of 18
the down-flow is engulfed by the vortex PV1 in Figure 6e. After merging with vortices HV1 and
PV2, the vortex PV1 becomes a relatively large and coherent PHV in Figure 6f. The generation of a
PHV through the merging of several prograde vortices originating in the incoming flow and the
down-flow is observed in all experimental cases of the present study. Very occasionally, even a
single prograde vortex is observed to grow up into a PHV. A similar mechanism for the generation of a
PHV was also observed by Kirkil et al. [16] in their LES investigation at ReD = 16,000. However, it is
unclear whether such a mechanism exists for junction flows with larger cylinder Reynolds number.
Figure 6. Sequence of instantaneous velocity fields illustrating the generation of a PHV for case
C13900. (a) t = 0; (b) t = 0.40D/Um; (c) t = 0.60D/Um; (d) t = 0.81D/Um; (e) t = 1.01D/Um; (f) t = 1.22D/Um
3.2. Lifespan of PHV
The lifespan of each PHV can be obtained directly from the vortex tracking method. However,
due to the finite number of PHVs measured in each experimental case, only the probability density
function (PDF) of the lifespan of PHVs is presented in Figure 7. The result shows the lifespan of
PHVs varies in quite a large range. No obvious Reynolds number dependence of the lifespan is
observed. Although not converged yet, the calculated mean lifespans of PHVs are 6.04D/Um,
4.81D/Um, and 4.64D/Um for case C8600, C10900, and C13900, respectively. Even though the mean
lifespan of PHVs was not reported directly, Kirkil and Constantinescu [17] showed the mean period
of a full transition among flow modes of the turbulent HV system is about 5.32D/Um at ReD = 16.000.
Since the PHV is usually found to lose coherence strongly when the HV system transits from the
backflow mode to the zero-flow mode [10], it is reasonable to conjecture that the disappearance of
PHVs happens mainly after the mode transition. Therefore, the mean period of the transition could
be a reasonable estimation of the mean lifespan of PHVs. To this end, the calculated mean lifespans
are not inconsistent with existing findings. Meanwhile, as a preliminary estimation, the value of
5.0D/Um seems a reasonable approximation of the mean lifespan of PHVs.
Water 2019, 11, 2079 10 of 18
Figure 7. Probability density function (PDF) of the lifespan of PHVs.
3.3. Oscillation of PHV
During their lifetimes, the PHVs undergo oscillations in both the streamwise and vertical
directions. Meanwhile, the core size of PHVs was observed to change with their streamwise
position. Figure 8 presents the temporal cross-correlation functions of the streamwise position and
the vertical position, Rxy, and of the streamwise position and the core area, RxA. In Figure 8a, the
correlation function, Rxy, exhibits a distinct negative peak on the right-hand side of the origin. It
means that the PHV tends to approach the bed while moving toward the cylinder and the opposite is
true. This movement trend agrees with the evolution model proposed by Dargahi [14]. In Figure
8(b), the correlation function, RxA, also exhibits a distinct negative peak on the right-hand side of the
origin. It means that the PHV decreases in size while approaching the cylinder and the opposite is
also true. The statistical result supports the observations by Dargahi [14], Kirkil and Constantinescu
[17], and Li et al. [19] in instantaneous velocity fields. The positions of the peaks indicate that the
variations in vertical position and core size occur slightly later than the corresponding variation in
streamwise position. Therefore, it is conjectured that the streamwise movement induces the
variations in the vertical position and size of the PHV.
Figure 8. Correlation functions of (a) streamwise and vertical positions, (b) streamwise position and
core area.
The mechanism for the streamwise oscillation is complicated. However, observations of
instantaneous velocity fields indicate that the large-amplitude streamwise movements relate tightly
with the incoming flow. Figure 9 presents the downstream movement of a PHV during a time interval
of about 1.6D/Um. Both streamlines and contours of the instantaneous streamwise velocity are plotted for
better interpretation. At the beginning of this process, the PHV locates at about x/D = 0.78 in Figure 9a.
Then it moves unidirectionally downstream toward the cylinder in Figure 9b–e. In Figure 9f, the
PHV arrives at about x/D = 0.61 and dissipates quickly.
Water 2019, 11, 2079 11 of 18
One notable observation is that the forward movement of the PHV is accompanied by an
inrush of high-momentum fluid from the incoming flow down to the bed upstream of it. The
downwards inclined streamlines and the relatively large streamwise velocity upstream of the PHV
in Figure 9 indicate clearly such an inrush structure. The inrush fluid penetrates the near-wall
separation region and pushes the PHV forward to the cylinder.
Figure 9. Sequence of instantaneous velocity fields illustrating the large-amplitude downstream
motion of a PHV for case C13900. (a) t = 0; (b) t = 0.32D/Um; (c) t = 0.65D/Um; (d) t = 0.96D/Um; (e) t =
1.29D/Um; (f) t = 1.60D/Um
Compared to the downstream movements, the large-amplitude upstream movements of PHVs
are less frequently observed. Figure 10 presents the upstream movement of a PHV during a time
interval of about 1.75D/Um. In Figure 10a, the HV system contains a relatively weak PHV at about
x/D = 0.62 and a stronger HV (HV1) at about x/D = 0.77. Then the PHV moves gradually upstream
and arrives at x/D = 0.83 in Figure 10f. During the movement process, another HV (HV2) is
shedding from the separation region in Figure 10c,d. However, due to the obstacle of the secondary
vortex upstream of the PHV, vortices HV1 and HV2 fail to merge with the PHV before their
disappearances. The engine of the upstream movement is hard to be recognized. However, two
exclusive features are observed during the movement. Firstly, no inrush of high-momentum fluid
from the incoming flow down to the bed upstream of the PHV is observed. Secondly, the PHV is
fed vertically by a patch of high-momentum fluid from the incoming flow above it. However, such
a feed is unnecessary for PHVs undergoing downstream movements.
Figure 10. Sequence of instantaneous velocity fields illustrating the large-amplitude upstream
motion of a PHV for case C13900. (a) t = 0; (b) t = 0.35D/Um; (c) t = 0.70D/Um; (d) t = 1.04D/Um; (e) t =
1.75D/Um; (f) t = 2.08D/Um
The influence of the incoming flow on the streamwise movements of the PHV was firstly
reported by Agui and Andreopoulos [15]. They found the streamwise oscillation of the PHV is
forced by large scale structures originating in the incoming flow.
Water 2019, 11, 2079 12 of 18
Later, Praisner and Smith [27] observed in their flow visualization and PIV measurement
results that the erupting of counter-rotating secondary vortex upstream of the PHV is followed by
an inrush of fluid from the incoming flow. During this eruptive process, the PHV is characterized
by obvious streamwise motions. On the other hand, Apsilidis et al. [12] observed in their
high-Reynolds-number experimental case (ReD = 123.000) that the rapid upstream motion of the
PHV is originated from an influx of high-momentum fluid from the incoming boundary layer
feeding it directly. Our present investigation shows that a similar mechanism exists in flows with
relatively low Reynolds numbers as well. In general, it can be confidently concluded that the
large-amplitude streamwise movements of the PHV are related with large-scale and
high-momentum structures in the incoming flow.
The streamlines in Figures 9 and 10 also show that the vertical positions of PHVs are lower
when they locate closer to the cylinder. The mechanism for this trend should be the strengthening of
the down-flow which pushes the PHV toward the wall while approaching the cylinder. Meanwhile,
the core sizes of PHVs decrease gradually while approaching the cylinder. The decreasing in size of
the PHV should be attributed to the enhanced stretching along its axis.
3.4. Strength Variation of PHV
Figure 11a,b present the temporal correlation functions of the streamwise position and swirling
strength, R
xΛ, and of the streamwise position and circulation strength, RxΓ, respectively. Both
functions contain peaks on both sides of the origin, and the correlation peaks on the right-hand side
are stronger than those on the left-hand side. The bimodal correlations indicate that a PHV might
undergo two different variation trends in strength with the variation of streamwise position.
Therefore, conditional cross-correlation analyses between the streamwise position and swirling
strength and between the streamwise position and circulation strength were conducted based on the
streamwise positions of HVs. Specifically, the correlation function defined in Equation (4) was
calculated separately for the instances when PHVs locate at the upstream and downstream of their
time-averaged streamwise position, xvavg. The region downstream of the time-averaged streamwise
position is termed the near-cylinder region hereafter.
Figure 11. Correlation functions of (a) streamwise position and swirling strength, and (b)
streamwise position and circulation.
Figure 12 shows the conditional cross-correlation functions between the streamwise position
and swirling strength of PHVs. In Figure 12a, the correlation functions exhibit a weak positive peak
on the left-hand side of the origin. It implies that for PHVs locating upstream of the time-averaged
position, increasing in coherence is necessary, at least partly, for their downstream movements. On
the other hand, typical negative peaks are observed on the right-hand side of the origin in Figure
12b. It suggests that for PHVs locating in the near cylinder region, the downstream movements
cause PHVs to lose coherence. The magnitude difference of the peaks indicates that the change of
coherence with the streamwise position is more pronounced when PHVs appear in the near-cylinder
region.
Water 2019, 11, 2079 13 of 18
Figure 12. Conditional correlation functions between the streamwise position and swirling strength
of PHVs locating at (a) upstream and (b) downstream of their time-averaged streamwise position.
Figure 13 presents the conditional cross-correlation functions between the streamwise position
and circulation strength of PHVs. In Figure 13a, the peaks on both sides of the origin are comparable,
indicating no dominant variation trend of the circulation strength with the streamwise position. This
is reasonable, as the coherence and size of PHVs vary differently with the changing of the
streamwise position in the region upstream of the time-averaged stream position. On the other hand,
typical negative peaks are observed on the right-hand side of the origin in Figure 13b, indicating the
weakening of PHVs while they move downstream in the near-cylinder region. Such a tendency
agrees with the results that both the size and coherence of PHVs decrease when they are moving
downstream in the near-cylinder region. Meanwhile, the statistical results support the evolution
model proposed by Dargahi [14] and the observations of Li et al. [19].
Figure 13. Conditional correlation functions between streamwise position and circulation strength
of PHVs locating at (a) upstream and (b) downstream of their time-averaged streamwise position.
The mutual interactions between the PHV and other vortices are found to be one of the major
mechanisms responsible for its variation in strength. The sequence of instantaneous velocity fields
in Figure 14 shows typical examples of such interactions. In Figure 14a, the turbulent HV system
consists of a PHV, an upstream HV (HV1), and a wall-attached secondary vortex (SC) with opposite
rotation sense between the two HVs. Meanwhile, several prograde vortices (PV1, PV2, and PV3) are
convected toward the junction region by the incoming flow and the down-flow in front of the
cylinder. These prograde vortices are engulfed partly or entirely by the PHV in Figure 14b–d,
causing the PHV to become larger and stronger. At the same time, the secondary vortex (SC) grows
and strengthens gradually. Finally, it is lifted off the wall in Figure 14f and interacts with the PHV,
causing the PHV becoming smaller and weaker.
Water 2019, 11, 2079 14 of 18
Except for the wall-attached secondary vortex, video animations show that the PHV also
interacts with retrograde vortices originating in the incoming flow and the down-flow.
Figure 14. Sequence of instantaneous velocity fields illustrating the interactions between a PHV and
other vortices for case C13900. (a) t = 0; (b) t = 0.17D/Um; (c) t = 0.34D/Um; (d) t = 0.51D/Um; (e) t =
0.68D/Um; (f) t = 0.84D/Um; (g) t = 1.02D/Um; (h) t = 1.18D/Um; (i) t = 1.35D/Um
The merging of the PHV with other co-rotating vortices has been widely reported in previous
research [12,14–19]. However, one notable observation is that with the increasing of Reynolds
number, more vortices being engulfed by the PHV are originating in the incoming flow and the
down-flow instead of in the separation region. One observed mechanism is that the HVs shedding
from the separation region become relatively weaker than the counter-rotating secondary vortex
appearing upstream of the PHV with the increasing of Reynolds number. Accordingly, it becomes
more difficult for the HVs to overcome the interactions with the secondary vortex in flows with
higher Reynolds number. Therefore, the secondary vortex works like a barrier and prevents the
merging of these HVs with the PHV. For example, the HV that appears in Figure 14a fails to merge
with the PHV until it is dissipated in Figure 14e. The experimental results of Apsilidis et al. [12] also
showed a similar mechanism. Meanwhile, previous research [28] has shown that the population of
prograde vortices in the incoming turbulent open channel flow changes with the Reynolds number.
Therefore, the evolution and dynamics of the turbulent HV system are anticipated to be influenced
by the Reynolds number, as indicated by previous investigations [12,17]. Another noteworthy
feature presented in Figure 14e–h is that the turbulent HV system is at the zero-flow mode when
the secondary vortex is lifted off the wall. This feature agrees well with previous research on the
multi-mode dynamics of the turbulent HV system [10–13]. However, two findings different from
previous suggestions in the literature on the back-flow mode can be read out in these figures.
Firstly, the zero-flow mode does not have preferential locations. It can take place at locations far
away from the cylinder. Similar conclusions were also given recently by Apsilidis et al. [12] and
Chen et al. [13]. Secondly, the PHV does not always retreat downstream toward the cylinder during
the interaction with the lifted secondary vortex, as is observed by Paik et al. [10] and Escauriaza and
Sotiropoulos [11]. As an example, the streamwise position of the PHV in Figure 14 is nearly
unchanged during the whole interaction process.
Water 2019, 11, 2079 15 of 18
In addition to the interactions with counter-rotating vortices, interaction with the bed plays an
important role in the weakening processes of PHVs. As indicated in Figure 8a, PHVs get closer to the
bed while moving downstream.
The shortening in distance intensifies the interactions between the PHV and the bed, causing
the weakening of the PHV. Therefore, for PHVs locating in the near-cylinder region, losing strength
is due to the dominance of interactions with counter-rotating vortices and the bed when they
approach closer to the cylinder.
3.5. Disappearance of PHV
Due to the enhanced stretching and bed interaction, PHVs become smaller and weaker while
approaching the cylinder. Therefore, the disappearances of PHVs are observed to take place mainly
in the near-cylinder region. Figure 15a–f presents a process by which a PHV disappears, and Figure
15g shows the variations of the strength and size of the PHV during this process. In Figure 15a, the
PHV locates at about x/D = -0.68. Then it moves gradually toward the cylinder through Figure
15b–d. The time histories of the circulation strength and core area of the PHV indicate that its
strength and size decrease significantly during the forward moving process. In Figure 15d, a weak
HV generates in the separation region upstream of the PHV. However, the PHV fails to merge with
this vortex and dissipates continually until its disappearance in Figure 15e.
Figure 15. (af) Sequence of instantaneous velocity fields illustrating a PHV dissipating in the
junction region, and (g) variations of the core area and circulation strength during the dissipation
process for case C13900. Each dashed line in (g) indicates the time of the flow field labelled by the
letter.
Several other mechanisms for the disappearance of the PHV were also reported in previous
research. Paik et al. [10] found that after being ground up by hairpin vortices originating underneath
it, the remnant of the PHV retreats downstream closer to the cylinder and is dissipated here.
Apsilidis et al. [12] observed that the disappearance of the PHV is preceded by the collision of it with
a fluid patch originating from the down-flow. Even though the proposed mechanisms for it show
Water 2019, 11, 2079 16 of 18
some differences, all observations agree the disappearance of the PHV mainly occurs in the region
very close to the cylinder surface.
The turbulent HV system triggers the local scour process in front of vertical piers on a flat loose
bed by significantly amplifying the bed shear stress in this region [6,8,14]. The amplification of the
bed shear stress is tightly related to the vertical position, size, and strength of the HVs as its
magnitude is determined directly by the wall-normal gradient of the streamwise velocity, U/y,
induced by the HVs at the bed surface. The present investigation shows that the vertical position,
size, and strength of the PHV vary regularly with its streamwise position. These change trends are
valuable for understanding and predicting the spatial distribution of the bed shear stress in front of
the cylinder. For instance, when other features of a PHV remain unchanged, the downward
movement and the weakening in circulation strength result in an increase and decrease in the bed
shear stress, respectively. Therefore, the peak value of the time-averaged bed shear stress is
anticipated to occur around the time-averaged streamwise position of PHVs, as has been reported in
previous investigations [5]. Meanwhile, both the present and many existing investigations indicate
that the evolution of turbulent HV system is strongly influenced by structures in the incoming flow
and the down-flow. The underlying mechanisms provide possible ways of controlling the local
scour around piers indirectly through manipulating the coherent structures in the incoming flow
and the down-flow. Nevertheless, due to the relatively low cylinder Reynolds number of flows
investigated here, experiments with much higher cylinder Reynolds number are needed for
completing our understanding on the evolution of turbulent HV system in practical flows.
4. Conclusions
The evolution of the turbulent HV system around a circular cylinder mounted on the flat bed of
an open channel was investigated quantitatively and statistically with time-resolve PIV
measurements. The cylinder Reynolds numbers of the flows were 8600, 10.600, and 13.600,
respectively. Among vortices comprising the turbulent HV system, the PHV was selected as the
representative vortex, and was tracked continuously in successive velocity fields with a novel
method to obtain the time histories of its position, size, coherence, and circulation strength. These
histories were cross-correlated to investigate the evolution trends of the PHV. Meanwhile,
mechanisms underlying the evolutionary process of the turbulent HV system were re-investigated
and enriched by using the time-resolved instantaneous velocity fields.
The PHV undergoes a complete evolutionary process composed of generation, life, and
disappearance stages. The generation of the PHV originates either from the growth of a HV
shedding from the separation region or the merging of several vortices from the incoming flow or
the down-flow. The dissipation of the PHV takes place mainly in the region very close to the cylinder
due to the enhanced interactions with counter-rotating vortices and the bed. The mean lifespan of
the PHV is estimated to be about 5.0D/Um. During its lifetime, the PHV undergoes large-amplitude
streamwise oscillation due to the action of large-scale and high-momentum structures from the
incoming flow. Meanwhile, the size and strength of the PHV varies dramatically due to frequent
interactions with vortices and the bed. The interaction of the PHV with secondary vortices lifted off
the wall is responsible for triggering the zero-flow mode. However, such interactions neither have
preferential locations nor always result in the downstream movement of the PHV. These
mechanisms imply that the evolution of the turbulent HV can be controlled indirectly through
manipulating coherent structures in the incoming flow and the down-flow.
The statistical relationships between the features of the PHV during its evolutionary process
were obtained. When a PHV moves downstream from the separation region toward the cylinder, it
approaches the bed and decreases in size. Its coherence first increases slightly and then decreases
quickly. Consequently, the circulation strength of the PHV shows no tendency variation and decreases
dramatically in the region upstream and downstream of its time-averaged position, respectively. The
opposite is true when the PHV moves upstream from the region very close to the cylinder. The change
trends of the vertical position, size, and circulation strength can correctly interpret and predict the spatial
distribution of the time-averaged bed shear stress in front of a vertical cylinder.
Water 2019, 11, 2079 17 of 18
Author Contributions: Q.C. conducted the experiment, proposed the methods, and wrote the initial paper.
Q.C. and Z.Y. completed the data analysis; H.W. helped with review and editing of the manuscript.
Funding: This research was funded by the Fundamental Research Funds for the Central Universities
(2016RC033) and the National Natural Science Foundation of China (51609002).
Acknowledgments: The authors thank Danxun Li and Qiang Zhong for their constructive suggestions for
preparing the paper.
Conflicts of Interest: The authors declare no conflict of interest.
References
1. Ettema, R.; Constantinescu, G.; Melville, B.W. Flow-Field Complexity and Design Estimation of Pier-Scour
Depth: Sixty Years since Laursen and Toch. J. Hydraul. Eng. 2017, 143, 03117006.
2. Heidari, M.; Balachandar, R.; Roussinova, V.; Barron, R.M. Characteristics of flow past a slender, emergent
cylinder in shallow open channels. Phy. Fluids 2017, 29, 065111.
3. Ouro, P.; Wilson, C.A.M.E.; Evans, P.; Angeloudis, A. Large-eddy simulation of shallow turbulent wakes
behind a conical island. Phy. Fluids 2017, 29, 126601.
4. Simpson, R.L. Junction flows. Annu. Rev. Fluid Mech. 2001, 33, 415–443.
5. Roulund, A.; Sumer, B.M.; Fredsoe, J.; Michelsen, J. Numerical and experimental investigation of flow and
scour around a circular pile. J. Fluid Mech. 2005, 534, 351–401.
6. Baker, C.J. The turbulent horseshoe vortex. J. Wind Eng. Ind. Aerod. 1980, 6, 9–23.
7. Wei, Q.D.; Chen, G.; Du, X.D. An experimental study on the structure of juncture flows. J. Visual. 2001, 3,
341–348.
8. Théberge, M.-A.; Ekmekci, A. Effects of an upstream triangular plate on the wing-body junction flow. Phy.
Fluids 2017, 29, 097105.
9. Devenport, W.J.; Simpson, R.L. Time-dependent and time-averaged turbulence structure near the nose of a
wing-body junction. J. Fluid Mech. 1990, 210, 23–55.
10. Paik, J.; Escauriaza, C.; Sotiropoulos, F. On the bimodal dynamics of the turbulent horseshoe vortex
system in a wing-body junction. Phy. Fluids 2007, 19, 045107.
11. Escauriaza, C.; Sotiropoulos, F. Reynolds Number Effects on the Coherent Dynamics of the Turbulent
Horseshoe Vortex System. Flow Turbul. Combust. 2011, 86, 231–262.
12. Apsilidis, N.; Diplas, P.; Dancey, C.L.; Bouratsis, P. Time-resolved flow dynamics and Reynolds number
effects at a wall–cylinder junction. J. Fluid Mech. 2015, 776, 475–511.
13. Chen, Q.; Qi, M.; Zhong, Q.; Li, D. Experimental study on the multimodal dynamics of the turbulent
horseshoe vortex system around a circular cylinder. Phy. Fluids 2017, 29, 015106.
14. Dargahi, B. The turbulent flow field around a circular cylinder. Exp. Fluids 1989, 8, 1–12.
15. Agui, J.H.; Andreopoulos, J. Experimental investigation of a three-dimensional boundary layer flow in the
vicinity of an upright wall mounted cylinder. J. Fluids Eng. 1992, 114, 566–576.
16. Kirkil, G.; Constantinescu, G.; Ettema, R. The horseshoe vortex system around a circular bridge pier on a
flat bed. Presented at the XXXIst International Association Hydraulic Research Congress, Seoul, Korea,
September 2005.
17. Kirkil, G.; Constantinescu, G. Effects of cylinder Reynolds number on the turbulent horseshoe vortex
system and near wake of a surface-mounted circular cylinder. Phy. Fluids 2015, 27, 075102.
18. Schanderl, W.; Jenssen, U.; Strobl, C.; Manhart, M. The structure and budget of turbulent kinetic energy in
front of a wall-mounted cylinder. J. Fluid Mech. 2017, 827, 285–321.
19. Li, J.; Qi, M.; Fuhrman, D.R.; Chen, Q. Influence of turbulent horseshoe vortex and associated bed shear
stress on sediment transport in front of a cylinder. Exp. Therm. Fluid Sci. 2018, 97, 444–457.
20. Perry, A.E.; Chong, M.S. A Description of Eddying Motions and Flow Patterns using Critical-Point
Concepts. Annu. Rev. Fluid Mech. 1987, 19, 125–155.
21. Zhou, J.; Adrian, R.J.; Balachandar, S.; Kendall, T. Mechanisms for generating coherent packets of hairpin
vortices in channel flow. J. Fluid Mech. 1999, 387, 353–396.
22. Chen, Q.; Zhong, Q.; Qi, M.; Wang, X. Comparison of vortex identification criteria for planar velocity fields
in wall turbulence. Phy. Fluids 2015, 27, 085101.
23. Carlier, J.; Stanislas, M. Experimental study of eddy structures in a turbulent boundary layer using particle
image velocimetry. J. Fluid Mech. 2005, 535, 143–188.
Water 2019, 11, 2079 18 of 18
24. Wu, J.-Z.; Ma, H.-Y.; Zhou, M.-D. Vorticity and Vortex Dynamics. Springer: Berlin Heidelberg, Germany,
2006; pp. 260–263.
25. Ballio, F.; Bettoni, C.; Franzetti, S. A Survey of Time-Averaged Characteristics of Laminar and Turbulent
Horseshoe Vortices. J. Fluids Eng. 1998, 120, 233–242.
26. Kirkil, G.; Constantinescu, G. A numerical study of the laminar necklace vortex system and its effect on the
wake for a circular cylinder. Phy. Fluids 2012, 24, 073602.
27. Praisner, T.J.; Smith, C.R. The Dynamics of the Horseshoe Vortex and Associated Endwall Heat
Transfer—Part I: Temporal Behavior. J. Turbomach. 2006, 128, 747–754.
28. Chen, Q.; Adrian, R.J.; Zhong, Q.; Li, D.; Wang, X. Experimental study on the role of spanwise vorticity
and vortex filaments in the outer region of open-channel flow. J. Hydraul. Res. 2014, 52, 476–489.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
... In order to quantify the THV strength, Eckerle and Awad (1991) characterized the time-averaged THV strength by the circulation strength in a rectangular region within which the THV exists, and the circulation was normalized by the approaching boundary layer thickness and the reference velocity of an incoming flow, but their calculated values of normalized circulation occasionally became larger at lower velocities, which could be caused by the arbitrariness in selecting the region for calculating the circulation. Recently, Chen et al. (2019) investigated the strength of the instantaneous primary vortex (PV) in front of a cylinder with the time-resolved PIV technique. The circulation strength of PV was calculated by integrating the vorticity within the vortex core. ...
... in which C is the circulation of the THV, and A is the area of the THV (Chen et al., 2019). C can be calculated from the spanwise vorticity contours by using the Stokes theorem, ...
... According to its definition, x H is essentially the average value of the spanwise vorticity within the vortex core and can be interpreted as a global characterization of the THV strength. To determine the value of A, the following critical swirling strength X cr is adopted (Chen et al., 2019): ...
Article
Full-text available
The spatiotemporal evolution of the turbulent horseshoe vortex (THV) in front of a cylinder vertically mounted on a hydraulically smooth flat-bed was physically modeled in a large water flume. A particle image velocimetry (PIV) system with upward-illumination was, in particular, employed for the junction flow visualization. The examined Reynolds number was varied from 1.28 × 10⁴ to 1.08 × 10⁵, which is above the threshold of turbulent transition for a junction flow. Based on the PIV measurements, the characteristic features were presented for both the time-averaged and the instantaneous flow fields in a sheet flow at the upstream wall-cylinder junction. Statistical analyses on the experimental data are performed to characterize the spatial-temporal evolution of THV strength. The normalized THV strength in the time-averaged flow field increases first and then approaches a constant value with increasing the ratio of cylinder diameter to water depth. Two alternating patterns, i.e., the regular oscillation and the random wandering, are identified for the quasi-periodic oscillating behaviors of the instantaneous THV. It is found that the cumulative distribution curves for the normalized instantaneous THV strength can be described by the Weibul distribution. The present results provide a physical insight and quantitative characterization for the spatiotemporal evolution of THV, which is critical for predicting the associated wall shear stresses.
... Recently, Li et al. (2018) [24] used the high-resolution PIV system to study the flow characteristics induced by the horseshoe vortex in front of the pier. Similar experimental studies can be found by Chen et al. (2019) [25] who systematically analyzed the transient evolution process of horseshoe vortex. The previous relevant PIV studies are mainly confined on the flow of a pier mounted on a flatbed without scour hole, which can be regarded as the initial scour state. ...
... Recently, Li et al. (2018) [24] used the high-resolution PIV system to study the flow characteristics induced by the horseshoe vortex in front of the pier. Similar experimental studies can be found by Chen et al. (2019) [25] who systematically analyzed the transient evolution process of horseshoe vortex. The previous relevant PIV studies are mainly confined on the flow of a pier mounted on a flatbed without scour hole, which can be regarded as the initial scour state. ...
Article
Full-text available
This study concerns the turbulent flow field influenced by the scour development around a bridge pier. The scour hole evolution as well as the temporal variation of scour depth around the pier were firstly analyzed. Subsequently, the flow fields in front of the pier at different instants during the scour process were measured using particle image velocimetry (PIV). It shows that the scour depth at the pier front exceeds that of the pier side at the later scouring stage. The temporal development of scour depth can be well predicted by a simple practical engineering model based on an exponential function with a change in the two adjustable coefficients. The flow field indicates that with the development of scour hole, the downward flow in front of the pier becomes more prominent, meanwhile the flow becomes more turbulent. The variation tendency for both velocities and turbulence intensities along the streamwise direction in front the pier shows similarity. The Reynolds shear stress generally increases with developing scour hole, and the region with large value enlarges and moves upstream of the scour hole.
... Graf and Yulistiyanto (1998) also confirmed the formation of the horseshoe vortex in the upstream nose of the pier, which travelled through the side of the pier and stretched into the downstream of the pier. Chen et al. (2019) measured the strength of the horseshoe vortex and observed that the strength of the vortices increased while flow approached towards the pier and decreased as it departed from the pier in the downstream. ...
... The horseshoe vortex that continues downstream from the cylinder Figure 10(c), CRVP and similar mushroom vortex 1 can be detected. A mushroom vortex is often realized behind concave walls or along streamlines with a curvature form [36]. By reducing the perforation area distribution and pores'vertical distance (M5 scenario), the GÖrtler instability changes into the large dual mushrooms. ...
Article
Full-text available
Coral reefs are exposed to extinction due to the sediment blocking through coral colonies. In this condition, there is no practical solution that originates from nature. Among all aquatic animals, marine tubular sponges have marvelous mechanisms. These natural creatures can inspire the design of a device for managing sediment-flow hydrodynamics. They suck flow from body perforation and pump water and undigested materials from the top outlet. Therefore, coinciding with receiving nutrients, the flow becomes circulated. This may help the momentum transfer through the coral colonies. In the current study, a synthetic sponge by motivating the tubular sponges was designed. Synthetic sponges’ suction/pumping discharge was constant at 150 lit/hr. They have a body diameter of 8 and 15 cm and a height of 20 cm. The perforation area distribution changes to understand how it may influence sediment-flow hydrodynamics. The numerical modeling based on RANS equations and image processing technique (surfaceLIC) were deployed to determine the vortical flow patterns. Results confirmed that choosing the best body perforation configuration and area distribution can generate the dipole vortex. In this condition, a tornado combines with dipole and erodes the sediments to ≈ 30% near the bed. Moreover, the sediment concentration reduces to ≈ 20% in the water column at X/D =1. In this condition, it can be observed that the emergence of specific vorticities and re-circulations develops the suspension of particles. Therefore, the synthetic sponge with precise design can be practical for enhancing the momentum transferring and preventing pollutant blockage among coral colonies.
... In the case of upstream local scouring, the enlargement of the scour hole and its geometry are closely related to the HV as the main driver of sediment mobilization [57,58]. Within the local scour hole, the HV actually consists of several interacting and unsteady vortices [59]. ...
Article
Full-text available
Local scour holes are erosional bed structures that are related to different scientific disciplines in Earth science and hydraulic engineering. Local scouring at naturally placed boulders is ubiquitous, but many competing factors make it difficult to isolate the effects of a given variable. This is especially true for local scouring at natural instream obstacles that are exposed to unsteady flow conditions in the course of flood hydrograph experiments. Experimental investigations in laboratory flumes offer the advantage that boundary conditions can be systematically varied. We present novel experimental data on the impact of the submergence ratio, hydrograph skewness, and flow intensity on local scouring at boulder-like obstacles during unsteady flow and evaluate the effect of discharge chronologies. In total, 48 flume experiments on subcritical clear-water conditions and channel degradation were performed. The experimental results reveal that local scouring dominantly occurred at the rising limb when flow depth was comparable to the obstacle size, so the obstacle was unsubmerged. The steeper the rising limb, the quicker the local scour hole matured. The experimental results are relevant for the hydraulic interpretation of local scour holes found at boulders in the field. They may be utilized as a proxy for the minimum duration of the beginning stage of a flood.
... mean approach velocity < threshold velocity for general sediment movement) (Li et al. 2018;Link et al. 2012). The HV is the main driver of incision and spatial enlargement as it subsides into the bottom local scour where sediment is picked up and transported into the downstream wake by saltation and rolling (Chen et al. 2019;Dargahi 1990) The enlargement of the scour hole in length (l s ) and width (w s ) is forced by the depth-incision as steepening of the scour hole slopes causes mass movements into the local scour hole. The depth-incision is a non-linear process in time because the HV expands in diameter and the shear stress beneath the vortices decreases and equilibrium condition is approached when the HV is no longer capable of removing sediment (Kothyari et al. 1992). ...
... The largest and most stable vortex is denoted as the primary horseshoe vortex (HV1) and is located close to the obstacle base. During incision HV1 sinks into the frontal scour hole and extends down to Sb, where it promotes sediment mobilisation by saltation and rolling (Dargahi, 1990;Dey and Raikar, 2007;Chen et al., 2019). Upstream of HV1, a smaller and less coherent vortex (HV2) is located within the outer region of the frontal scour hole (Figure 1c and 2). ...
Article
Full-text available
Obstacle marks are instream bedforms, typically composed of an upstream frontal scour hole and a downstream sediment accumulation in the vicinity of an obstacle. Local scouring at infrastructure (e.g. bridge piers) is a well‐studied phenomenon in hydraulic engineering, while less attention is given to the time‐dependent evolution of frontal scour holes at instream boulders and their geometrical relations (depth to width, and length ratio). Furthermore, a comparison between laboratory studies and field observations are rare. Therefore, the morphodynamic importance of such scour features to fluvial sediment transport and morphological change is largely unknown. In this study, obstacle marks at boulder‐like obstructions were physically modelled in 30 unscaled process‐focussed flume experiments (runtime per experiment ≥ 5760 min) at a range of flows (subcritical, clear‐water conditions, emergent and submerged water levels) and boundary conditions designed to represent the field setting (i.e. obstacle tilting, and limited thickness of alluvial layer). Additionally, geometries of scour holes at 90 in‐situ boulders (diameter ≥ 1m) located in a 50‐km segment of the Colorado River in Marble Canyon (AZ) were measured from a 1‐m resolution DEM. Flume experiments reveal similar evolution of local scouring, irrespective of hydraulic conditions, controlled by the scour incision, whereas the thickness of the alluvial layer and obstacle tilting into the evolving frontal scour hole limit incision. Three temporal evolution phases ((1) rapid incision, (2) decreasing incision, and (3) scour widening) are identified based on statistical analysis of spatio‐temporal bed elevation time‐series. A quantitative model is presented that mechanistically predicts enlargement in local scour length and width based on (1) scour depth, (2) the inclination of scour slopes and (3) the planform area of the frontal scour hole bottom. The comparison of field observations and laboratory results demonstrates scale invariance of geometry that implies similitude of processes and form rather than equifinality.
Article
Full-text available
This study derives and compares vortex identification methods for detecting vortices in planar velocity fields. Two-dimensional (2D) forms of the commonly used ∆, Q, λci, and λ2 criteria are derived in detail based on the 2D counterpart of the full velocity gradient tensor. These four criteria are compared mathematically and experimentally in the case of using zero thresholds. The results show that while all methods are capable of extracting strong vortices, their efficiencies in identifying weaker vortices are not necessarily the same. The ∆ and λci criteria impose the least requirements on the identified structures and extract the most number of vortices, and the λ2 criterion is the most restrictive one and tends to discard the weakest vortices. However, non-zero thresholds are generally necessary for applying vortex identification criteria in real turbulent flows, and normalizing the vortex indicators with their root mean squares is needed to enable the selection of universal threshold for vortices residing at different wall-normal positions in wall turbulence. The introduction of threshold makes the four vortex identification criteria equally efficacious, and equivalent thresholds are proposed to facilitate quantitative comparison of results based on different criteria in wall turbulence.
Article
Full-text available
Large-Eddy Simulations (LES) and experiments were employed to study the influence of water depth on the hydrodynamics in the wake of a conical island for emergent, shallow and deeply submerged conditions. The Reynolds numbers based on the island's base diameter for these conditions range from 6,500 to 8,125. LES results from the two shallower conditions were validated against experimental measurements from an open channel flume, and captured the characteristic flow structures around the cone, including the attached recirculation region, vortex shedding and separated shear layers. The wake was impacted by the transition from emergent to shallow submerged flow conditions with more subtle changes in time-averaged velocity and instantaneous flow structures when the submergence increases further. Despite differences in the breakdown of the separated shear layers, vortex shedding and the upward flow region on the leeward face once the cone's apex is submerged, key flow structures common to cylinder flow were observed. These include: the existence of an arch vortex that was tilted in the downstream direction was observed. Spectra of velocity time series and drag coefficient indicated that the vortex shedding was constrained by the overtopping flow layer and thus the shedding frequency decreased as the cone's apex became submerged. Finally, generalised flow structures in the wake of a submerged conical body are outlined. a) ourobarbap@cardiff.ac.uk
Article
Full-text available
This paper, written to celebrate the 60th anniversary of the Journal of Hydraulic Engineering, presents a structured, contemporary approach to scour-depth estimation that matches design method practicality to pier flow-field complexity. The approach involves a mix of semiempirical formulation, advanced experimentation aided by new instruments, and computational fluid dynamics (CFD). Highly useful for understanding complex pier flow fields, CFD holds patent promise for substantial use in design estimation of scour depth. Presently, however, CFD's limited ability to simulate erosion and scour at a pier foundation hampers CFD's practicality for design estimation of pier-scour depth. The writers reflect back 60 years when Laursen and Toch's milestone publication provided major insights into pier scour, and when the hotfilm anemometer first became available for investigating complex flow fields. Sixty years ago, pier flow fields were thought too complex to measure, or even visualize. The writers indicate where, today, further research into pier flow fields would benefit design estimation of scour depth.
Article
Full-text available
A turbulent horseshoe vortex (HV) system is generated around a wall-normal cylinder when the approaching boundary layer separates from the wall. This study investigates the dynamics of the turbulentHVsystem around a circular cylinder in open channel flows with cylinder Reynolds numbers ranging from 8600 to 13 900. The velocity fields in the upstream symmetry plane of the cylinder are measured using time-resolved particle image velocimetry. The joint probability density function of the streamwise and vertical velocities in the HV system region is found to exhibit three peaks, indicating that three major types of flowevents are induced by the turbulentHVsystem. The conditional averaged velocity fields based on the characteristic velocity vectors of these events are obtained by using the method of linear stochastic estimation. The estimated flow fields reveal that the turbulent HV system interplays mainly among the back-flow, intermediate, and zero-flow modes. These modes are present for the smallest, moderate, and largest percentage of time, respectively, within the present Reynoldsnumber range. The major mechanism for triggering the zero-flow mode is the occurrence of an inrush of high-momentum fluid from the inner region of the approaching flow. The intermediate mode appears when the inrush of fluid is weaker than the reverse flow below the primary HV or a tertiary vortex approaches the primary HV.
Article
Full-text available
This study derives and compares vortex identification methods for detecting vortices in planar velocity fields. Two-dimensional (2D) forms of the commonly used Δ, Q, λci , and λ 2 criteria are derived in detail based on the 2D counterpart of the full velocity gradient tensor. These four criteria are compared mathematically and experimentally in the case of using zero thresholds. The results show that while all methods are capable of extracting strong vortices, their efficiencies in identifying weaker vortices are not necessarily the same. The Δ and λ ci criteria impose the least requirements on the identified structures and extract the most number of vortices, and the λ 2 criterion is the most restrictive one and tends to discard the weakest vortices. However, non-zero thresholds are generally necessary for applying vortex identification criteria in real turbulent flows, and normalizing the vortex indicators with their root mean squares is needed to enable the selection of universal threshold for vortices residing at different wall-normal positions in wall turbulence. The introduction of threshold makes the four vortex identification criteria equally efficacious, and equivalent thresholds are proposed to facilitate quantitative comparison of results based on different criteria in wall turbulence.
Article
This study concerns the flow and associated sediment transport in front of a cylinder in steady currents. The study comprises (i) flow characteristics induced by the turbulent horseshoe vortex (THV), (ii) bed shear stress within the THV region, and (iii) predicted sediment transport rates. The velocity fields in front of a wall-mounted circular cylinder were measured using time-resolved particle image velocimetry (PIV). The flow haracteristics show that two time-averaged THVs are formed, and the dynamics of instantaneous THVs exhibit a quasi-periodic process from generation to death. Both the mean and fluctuations of bed shear stress within the THV region are significantly amplified, and their values are comparable. The probability density function of the instantaneous bed shear stress exhibits a double-peaked distribution and cannot be represented by the normally-used log-normal distribution for uniform channel-open flows. The comparisons of sediment transport rates where turbulent fluctuations in the bed shear stress are, or are not, taken into account show that the sediment transport rates calculated by the mean bed shear stress are under-predicted. Furthermore, a new sediment transport model incorporating the influence of bed shear stress fluctuations is proposed and validated by comparing the initial scour rate in front of the cylinder.
Article
The use of a short triangular leading-edge plate at the base of a wing-body junction is experimentally evaluated as a passive control method to eliminate the horseshoe vortices or at least to subdue their strength. The impact of the plate geometry on the efficacy of the control is assessed by considering triangular plates that have a length of 1T, 2T, and 3T, a width of 0.1T and 0.2T, and a height of 1.5T, where T is the maximum thickness of the wing. The wing model is a NACA 0020 airfoil. The Reynolds number based on the chord length is varied from Rec = 25 000 to 75 000. The incoming boundary layer is laminar in all experiments. Particle Image Velocimetry is utilized to characterize the temporal behavior and circulation strength of horseshoe vortices. The λ2-criterion is used as the vortex identification method. All the triangular leading-edge plates investigated in this study are found to decrease the circulation strength of the horseshoe vortices in the symmetry plane, although by varying degrees, compared to the baseline configuration that has no plate control. An increase in the upstream reach of the leading-edge plate significantly mitigates the vortical organization, vorticity, size, and circulation strength of horseshoe vortices. Although all plate lengths in question achieve a regression in the horseshoe vortex regime and, at the lowest Reynolds number considered, they all reduce the number of horseshoe vortices compared to the uncontrolled case, as the Reynolds number increases, longer plates are needed for such an effect. On the other hand, an increase in the thickness of the leading-edge plate deteriorates the desired control by increasing the vortical organization, vorticity magnitude, size, and circulation strength of horseshoe vortices. At higher Reynolds numbers, a thicker plate performs even poorer, resulting in extra horseshoe vortices, which can be unsteady depending on the Reynolds number. Nevertheless, all the triangular plates considered in this investigation, including the thickest one, outperform the baseline case. Overall, the proposed method is found to be an effective way for the mitigation of horseshoe vortices at the wing-body junction. The longer and thinner the plate, the better the vortex mitigation.
Article
We investigate the flow and turbulence structure in front of a cylinder mounted on a flat plate by a combined study using highly resolved large-eddy simulation and particle image velocimetry. The Reynolds number based on the bulk velocity and cylinder diameter is $Re_{D}=39\,000$ . As the cylinder is placed in an open channel, we take special care to simulate open-channel flow as the inflow condition, including secondary flows that match the inflow in the experiment. Due to the high numerical resolution, subgrid contributions to the Reynolds stresses are negligible and the modelled dissipation plays a minor role in major parts of the flow field. The accordance of the experimental and numerical results is good. The shear in the approach flow creates a vertical pressure gradient, inducing a downflow in the cylinder front. This downflow, when deflected in the upstream direction at the bottom plate, gives rise to a so-called horseshoe vortex system. The most upstream point of flow reversal at the wall is found to be a stagnation point which appears as a sink instead of a separation point in the symmetry plane in front of the cylinder. The wall shear stress is largest between the main (horseshoe) vortex and the cylinder, and seems to be mainly governed by the strong downflow in front of the cylinder as turbulent stresses are small in this region. Due to a strong acceleration along the streamlines, a region of relatively small turbulent kinetic energy is found between the horseshoe vortex and the cylinder. When passing under the horseshoe vortex, the upstream-directed jet formed by the deflected downflow undergoes a deceleration which gives rise to a strong production of turbulent kinetic energy. We find that pressure transport of turbulent kinetic energy is important for the initiation of the large production rates by increasing the turbulence level in the upstream jet near the wall. The distribution of the dissipation of turbulent kinetic energy is similar to that of the turbulent kinetic energy. Large values of dissipation occur around the centre of the horseshoe vortex and near the wall in the region where the jet decelerates. While the small scales are nearly isotropic in the horseshoe vortex centre, they are anistotropic near the wall. This can be explained by a vertical flapping of the upstream-directed jet. The distribution and level of dissipation, turbulent and pressure transport of turbulent kinetic energy are of crucial interest to turbulence modelling in the Reynolds-averaged context. To the best of our knowledge, this is the first time that these terms have been documented in this kind of flow.
Article
The complex wake created by an emergent cylinder with a large aspect ratio in a shallow open channel flow is studied experimentally using particle image velocimetry. The unique characteristics of the bed-mounted slender cylinder wake are analysed. Velocity fields, turbulence parameters, and wake development in shallow open channel flow are studied at two different Reynolds numbers and subcritical Froude numbers by carrying out measurements in different horizontal and vertical planes. In the mid-depth plane, velocity and turbulence statistics are independent of Reynolds number, while higher turbulence intensities and Reynolds shear stresses were observed in the near-bed plane for the low Reynolds number case. The narrower wake is observed in the near-bed plane due to the effect of the bed. Combined with stronger vertical velocity and turbulence intensities noted near the bed in the vertical midplane, this suggests increased activity of the vortex structures in the low Reynolds number case. Under shallow conditions, stronger disturbances of the free surface are observed for the case of high Reynolds and Froude numbers. The study also revisits the definition of the wake stability parameter and proposes a new definition which incorporates not only the bed friction but also the drag experienced by the cylinder.
Article
The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on the results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder’s base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. This is because even at very high cylinder Reynolds numbers, ReD, the flow regime remains subcritical in the vicinity of the bed surface due to the reduction of the incoming flow velocity within the bottom boundary layer. The paper provides a detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (ReD = 16 000, subcritical flow regime) and Reynolds numbers at which the transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (ReD = 5 ∗ 105, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed. Being able to quantitatively and qualitatively describe these changes is critical to understand Reynolds-number-induced scale effects on sediment erosion mechanisms around cylinders mounted on a loose bed, which is a problem of great practical relevance (e.g., for pier scour studies).