PreprintPDF Available

Supercentenarians and the oldest-old are concentrated into regions with no birth certificates and short lifespans

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

The observation of individuals attaining remarkable ages, and their concentration into geographic sub-regions or 'blue zones', has generated considerable scientific interest. Proposed drivers of remarkable longevity include high vegetable intake, strong social connections, and genetic markers. Here, we reveal new predictors of remarkable longevity and 'supercentenarian' status. In the United States, supercentenarian status is predicted by the absence of vital registration. The state-specific introduction of birth certificates is associated with a 69-82% fall in the number of supercentenarian records. In Italy, which has more uniform vital registration, remarkable longevity is instead predicted by low per capita incomes and a short life expectancy. Finally, the designated 'blue zones' of Sardinia, Okinawa, and Ikaria corresponded to regions with low incomes, low literacy, high crime rate and short life expectancy relative to their national average. As such, relative poverty and short lifespan constitute unexpected predictors of centenarian and supercentenarian status, and support a primary role of fraud and error in generating remarkable human age records.
Content may be subject to copyright.
1
Supercentenarian and remarkable age records exhibit patterns indicative of clerical errors
and pension fraud
Saul Justin Newman*1
1Biological Data Science Institute, Australian National University
5
*Correspondence to: saul.newman@anu.edu.au
Abstract
The observation of individuals attaining remarkable ages, and their concentration into geographic
sub-regions or ‘blue zones’, has generated considerable scientific interest. Proposed drivers of
10
remarkable longevity include high vegetable intake, strong social connections, and genetic
markers. Here, we reveal new predictors of remarkable longevity and ‘supercentenarian’ status.
In the United States supercentenarian status is predicted by the absence of vital registration. In
the UK, Italy, Japan, and France remarkable longevity is instead predicted by regional poverty,
old-age poverty, material deprivation, low incomes, high crime rates, a remote region of birth,
15
worse health, and fewer 90+ year old people. In addition, supercentenarian birthdates are
concentrated on the first of the month and days divisible by five: patterns indicative of
widespread fraud and error. As such, relative poverty and missing vital documents constitute
unexpected predictors of centenarian and supercentenarian status, and support a primary role of
fraud and error in generating remarkable human age records.
20
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
2
Introduction
The concentration of remarkable-aged individuals, within geographic regions or ‘blue zones’ [1]
or within databases of people exceeding extreme age thresholds [2,3], has stimulated diverse
efforts to understand factors driving survival patterns in these populations [4,5]. Populations
25
within remarkable-age databases and ‘blue zone’ regions have been subject to extensive analysis
of lifestyle patterns [5–8], social connections [4,9], biomarkers [10,11] and genomic variants
[12], under the assumption that these represent potential drivers behind the attainment of
remarkable age.
30
However, alternative explanations for the distribution of remarkable age records appear to have
been overlooked or downplayed. Previous work has noted the potential of bad data [13],
population illiteracy [14] or population heterogeneity [15] to explain remarkable age patterns.
More recent investigations revealed a potential role of errors [16–19], and potential operator
biases [20] in generating old-age survival patterns and data. In turn, these findings prompted a
35
response with potentially disruptive implications: that, under such models, the majority if not all
remarkable age records may be errors [21].
Here, we explore this possibility by linking civil registration rates and socioeconomic data to
per-capita rates of remarkable age attainment, using data from every known centenarian
40
(individuals aged 100 or over), semisupercentenarian (SSCs; aged 105 or over), and
supercentenarian (aged 110 or over) from the USA, France, Japan, the United Kingdom, and
Italy (Fig 1).
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
3
These data reveal that remarkable age attainment is predicted by regional indicators of error and
45
fraud including greater poverty, higher illiteracy, higher crime rates, worse population health,
greater levels of material deprivation, shorter average lifespans, fewer old people, and the
absence of birth certificates. In addition, French and Italian historical data indicate that
supercentenarians are not likely to be born into longer-lived cohorts, but are born into
undifferentiated or shorter-lived populations relative to their contemporary national averages.
50
Supercentenarian birthdates also exhibit ‘age heaping’ distributional patterns that are strongly
indicative of manufactured birth data. Finally, fewer than 15% of exhaustively validated
supercentenarians are associated with either a birth certificate or a death certificate, even in
populations with over 95% death certificate coverage.
55
As such, these findings suggest that extreme age data are largely a result of vital statistics errors
and patterns of fraud, raising serious questions about the validity of an extensive body of
research based on the remarkable reported ages of populations and individuals.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
4
60
Figure 1. Regional distributions for the density of remarkable longevity. The large majority of SSCs
are concentrated in a few countries, each exhibiting large regional variation in density of remarkable
longevity records. Most supercentenarians are concentrated in the USA (a), with large numbers in France
and the UK (b), and Italy (c; life table estimated rates). Within these countries, there exists marked
variation in the density of remarkable age records: for example, variation in SSC density per capita across
65
the UK (d) includes a 19-fold difference in SSC abundance within London (e) between Tower Hamlets
(region 7; most) and Barnet (region 10; least), with similar variation in SSC density across the Italian
provinces (f).
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
5
70
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
6
Results
After removing countries with incomplete data or inadequate spatial resolution, and omitting
individuals with unknown birth locations, this analysis included all known individuals over age
100 in Japan and Italy, all known SSCs and supercentenarians in the UK, the 99.4% of known
75
GRG supercentenarians in the USA with documented birth locations (IDL data have had such
data removed or omitted), and all 175 supercentenarians in France with documented birth
locations. In total, over 81% of the total global supercentenarian population were located to their
region of birth.
80
Between the 1880 and 1900 census, a period covering 79% of US supercentenarian births, the
US population increased by 150% and average life expectancy by twenty per cent [22,23]. The
introduction of complete-coverage vital registration in the USA coincided with this rapid
increase in lifespan and population size, and was expected to result in a large increase in the
number of supercentenarian records per capita.
85
Instead, the introduction of state-wide birth certification coincides with a sharp reduction in the
number of supercentenarians born in each state. In total, 82% of the GRG supercentenarian
records from the USA predate state-wide birth certification. Forty-two states achieved complete
birth certificate coverage during the survey period. When these states transition to state-wide
90
birth registration, the number of supercentenarians falls by 80% per year overall (Fig 2a) and
69% per capita (Fig 2b) when adjusted relative to c.1900 state population sizes. The observed
drop in supercentenarian number after birth registration remained after right-censoring the GRG
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
7
data by as much as 10 years to allow for the delayed or incomplete reporting of recent deaths (S1
Code).
95
Figure 2. Number and per capita rate of attaining supercentenarian status across US states, relative
to the introduction of complete-area birth registration. Despite the combined effects of rapid
population growth and increasing life expectancy during this period the total number of US
100
supercentenarians in the GRG database (a) falls dramatically after birth certificates achieve state-wide
coverage (vertical blue line). This trend remains after adjusting for total population size c.1900 (b) within
each state.
105
In countries with more complete birth documentation, high poverty rates were the best predictor
remarkable age records. This interaction was unexpectedly positive, with increased poverty
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
8
predicting a higher density of centenarians per capita in Japan (Fig S1c), SSCs per capita in the
UK, and supercentenarians per capita in both France and the UK (Fig 3; S2 Code). Old-age
specific measures of poverty, available in France and the UK, increased the strength of this
110
relationship. Higher rates of old-age poverty are linked to higher densities of remarkably old
people: the amount of old-age poverty alone predicts up to seventy per cent of the variation in
extreme longevity (Fig 3; S2 Code).
When aggregated into the larger NUTS-3 regions containing at least one SSC, the level of
115
income deprivation in older people or IDOP, an indicator of the fraction of people aged 60+
suffering poverty and income stress, predicts around 40% of the variation in SSC abundance per
capita across regions in the UK (r =0.42; p = 0.0000009; 127 regions; Fig 3a). That is,
throughout the UK higher income deprivation rates in older people predict higher numbers of
people surviving past age 105. The accuracy of this basic poverty model improves markedly
120
when predicting the number of SSCs as a percentage of all 90+ year old residents, rather than the
number of SSCs per capita (r =0.70; p < 1x10-15; Fig 3d). As such, the highest concentration of
remarkable lifespans in the UK arise in London’s east end boroughs near Stepney and the Isle of
Dogs, followed by urban Manchester, Tyneside, and Liverpool: the UK ‘blue zones’ (Fig 1;
Table S1).
125
As in the UK data, the density of French supercentenarians is also predicted by higher poverty
rates in the population age 75 and over (r = 0.42; p = 0.0003). However, this number was
markedly reduced by the three overseas departments (Guadeloupe, Martinique and La Réunion)
included in the regression which were marked outliers for both poverty and supercentenarian
130
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
9
rates (S2 Code). If these three outliers were trimmed, correlations between over-75 poverty rates
and supercentenarian abundance increased (r = 0.58; p = 3e-07; Fig 3e; S2 Code). Again, like the
UK data, these estimates also improved for predictions of the percentage of 90+ year-olds who
also exceeded age 110. Across the 66 regions of France with sufficient data, the poverty rate over
age 75 predicted half of the variation in supercentenarian abundance per 90+ year old (r=0.51, p=
135
0.00001; Fig. 3e).
Figure 3. Old-age poverty and the density of remarkable lifespans. A higher percentage of people are
centenarians, SSCs and supercentenarians in high-poverty and income-deprived regions of rich countries.
140
Metrics of poverty and old-age poverty are positively correlated with the density of SSCs per capita in the
United Kingdom (a; r = 0.42; p < 0.000001; 127 regions), supercentenarians in France (b; r = 0.42; p =
0.0004; 66 departments; r = 0.58 in the 63 mainland departments), and centenarians in Japan (c; r = 0.36;
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
10
p = 0.01; 47 prefectures). These relationships strengthen if density is instead measured by the fraction of
90+ year old people who exceed age 105 (d, UK; r = 0.71, p < 2e-16), age 110 (e, France; r = 0.51; p =
145
0.00001), or age 100 (f, Japan; r = 0.62, p = 0.000004).
In Japan, poverty rates in the general population were also positively correlated with the density
of remarkable lifespans (r = 0.36; p = 0.01; Fig 3c). Again, this interaction strengthens when
poverty rates are used to predict the fraction of 90+ year old people living past age 100 (r = 0.62;
150
p = 4e-06; Fig 3f). While old-age specific estimates of poverty in Japan appear to be unavailable,
although language barriers made this uncertain, such estimates are forthcoming. It can be
predicted that these estimates of old-age poverty may provide an even better predictor of
centenarian abundance than overall poverty rates.
155
In addition to the unexpected relationship with poverty rates, the number of centenarians in
Japan is also negatively correlated with income per capita (r = -0.44, p=0.001), the minimum
wage (r = -0.64; p = 1e-09), and the Japanese financial strength index (r = -0.70; p = 3e-08)
across all 47 Japanese prefectures. Prefectures that spend more money on old-age welfare per
capita, a disincentive for welfare fraud, also produce fewer centenarians per capita (r = -0.49; p=
160
0.0004). These factors share latent drivers and are highly autocorrelated: prediction models for
centenarians per capita based solely on poverty (R2 = 0.37; p= 0.0001; S2 Code) approach the
accuracy of linear mixed models containing all available socioeconomic variables (R2 = 0.43; p =
3e-06) yet have a lower Akaike’s information Criteria (S2 Code).
165
In the UK, which had the most abundant granular data available at the NUTS-3 regional level,
socioeconomic indicators collectively predicted half of the regional variation in SSC density
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
11
when fitted as interactive effects in a linear mixed model (Fig 4; adjusted R2 = 0.0.39; p = 6.09e-
05; S2 Code). Under a one-way analysis of variance, the best predictors of SSC density per capita
were the Indices of Multiple Deprivation or IMD, a multidimensional indicator of area-level
170
hardship and poverty (Fig 4a; F value = 20.3; p = 2e-05), the IDOP indicator of old-age poverty
(Fig 5b; F value = 16.5; p = 9e-05), and purchase-power standard adjusted gross domestic
product or PPS-adjusted GDP (F value = 10.3; p = 0.002; S2 Code). When predicting the number
of SSCs per 90+ year old across the UK, this socioeconomic model captures 80% of the variance
in SSC abundance (adjusted R2 = 0.80; p < 2.2e-16; S2 Code), again largely through the effect of
175
IMD (F value = 61.8; p = 6e-12), IDOP (F value = 326.4; p < 2.2e-16), and the interaction
between IDOP and the UK crime index (F value = 29.7; p = 4e-07), all of which predict higher
SSC density under worse conditions.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
12
180
Figure 4. Social hardship and the distribution of 105+ year old people in the United Kingdom.
Across 128 regions containing at least one semisupercentenarian, the number of SSCs per capita is
highest in regions where: (a) people are more deprived overall (r = 0.28; p = 0.001), (b) people over age
185
60 are more income-deprived (r = 0.42; p < 0.000001), (c) multidimensional health indices are worse (r =
0.23; p =0.01), and (d) crime rates are higher (r = 0.22; p= 0.01). In contrast, regions with a higher
fraction of people surviving past 90 years of age (e), have significantly fewer SSCs per capita (r = -0.18, p
= 0.04). A simple linear mixed model (f) fit to these five variables, PPS-adjusted GDP, and employment
rates (S2 Code), accurately predicts the regional density of SSCs across the UK (r = 0.74; adjusted R2 =
190
0.39; p = 1e-06).
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
13
Fitted as interactive effects in a linear mixed model, general and old-age poverty rates predicted
46% of the variance in supercentenarian density across France (overseas territories included,
adjusted R2 = 0.44; p = 1e-08; S2 Code). When PPS-adjusted GDP per capita, unemployment
195
and murder rates per capita were also included as fixed effects, these inputs collectively captured
46% of the variance in supercentenarian density across France, an increase caused by
interactions of PPS-adjusted GDP with both overall and old-age poverty rates (adjusted R2 =
0.56; p = 1e-08; S2 Code).
200
Direct measurements of provincial poverty rate were not available for Italy at the NUTS-3
regional level. Instead, the attainment of remarkable age in Italy is predicted by worse early- and
mid-life health. While survival to age 55 is positively correlated with life expectancy at all ages
at all ages from 60 to 95, higher early- and mid-life survival are inversely correlated with
mortality rates after age 95 (Fig 5a). Cohort survival to age 55 is increasingly negatively
205
correlated with survival to ages 100 (Fig 5b), 105 (Fig 5c) and 110 years (Fig 5d), and with life
expectancy at age 100 (r = -0.4; p=0.00001; S2 Code). That is, autocorrelation between age-
specific survival breaks down and inverts at advanced ages, such that better survival to mid-life
is linked to worse survival in advanced age. Contrary to expectations yet again, both a lower
probability of survival to age 55, and higher probability of death at age 55, are linked to a higher
210
density of remarkable age records (S2 Code).
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
14
Figure 5. Relationship between mid-life and late-life survival across Italian provinces. Across Italian
provinces (points), probabilities of survival in mid-life are positively correlated with the probability of
215
survival at older ages until around age 95 (a; r = 0.15; p=0.1; N=116). However, this relationship inverts
at advances ages: better mid-life and early-life probabilities of survival, and higher average longevity, are
linked to significantly lower probabilities of survival at 100 years (b), 105 years (c), or 110 years (d) of
age. Sardinian provinces shown in blue.
220
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
15
Population sizes, GDP per capita, PPS-adjusted GDP per capita and employment rates were
available at a sufficiently granular level across Italy for basic analysis. Individuals across Italy
were more likely to attain supercentenarian ages if their province has a worse economy (Fig S2a-
c), higher unemployment rates (Fig S2d-f), and fewer people over the age of 90 (Fig S2g-I; S2
225
Code). However, a linear mixed model with cohort life expectancy to age 55 had a significantly
lower Akaike’s information criteria, compared to a linear mixed model containing these basic
economic indicators as interactive effects (S2 Code).
As in Italy, French historical data did not reveal the expected positive relationship between life
230
expectancy and supercentenarian status. There are 143 French supercentenarians whose region of
birth had a corresponding local and national estimate of life expectancy at birth. For these
individuals, cohort life expectancy for the region and year of birth was lower than, but not
significantly different from, the contemporary national average (p = 0.52; N = 143; Fig S3). That
is, supercentenarians were not, on average, born into regions with either significantly longer or
235
shorter than expected life expectancy across metropolitan France. It seems unusual that modern
economic conditions and poverty rates are predictive of reaching age 110, yet life expectancy at
birth is not (Fig S3).
While informative of general trends, these models mask large regional anomalies in the pattern
240
of remarkable age records. Several of these anomalies, particularly those regions with the very
highest number or density of extreme age records, require some comment.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
16
For example, Scotland and Northern Ireland have a combined modern population of seven
million people, yet produced only three known SSCs. In contrast, the 24-fold smaller population
245
of Tower Hamlets has produced fifteen SSCs: the most SSCs per capita in the UK (Table S1).
However, Tower Hamlets also has the highest poverty rate, highest child poverty rate, the
shortest disability-free life expectancy, the highest income inequality, [24], and the worst index
of multiple deprivation [25] of all 32 London boroughs. Of all 317 local authority districts in the
UK, Tower Hamlets has the single most income-deprived population of older people [25]. Of
250
these 317 local area districts, Tower Hamlets also has the smallest percentage of people aged 90
and over [25]. This is a notable discrepancy.
Adjacent to Tower Hamlets, the borough of Southwark & Lewisham ranks second for SSCs per
capita, and first for SSCs overall (N= 31) across the 175 NUTS-3 regions of the UK (Table S1).
255
Southwark & Lewisham is also the eighth most income-deprived district for older people in the
UK, and has the fifth-fewest 90+ year old people per capita [25]. Outside of London, Tyneside
and Greater Manchester are strongly represented. For example, Manchester produced 18 SSCs
overall (equal sixth) and ranks 14th for SSCs per capita (Table S1), yet is the third most income-
deprived district for older people in the UK, and has the highest crime index, third-worst
260
population health index, fourth-worst index of multiple deprivation, and sixth smallest
percentage of 90+ year old people of any region (Table S1). These rankings are not a recent shift:
Manchester is the second most-persistently deprived of the 317 local-authority districts in the
UK [25].
265
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
17
As in the UK, French regions illustrate a concordance between regions with the highest poverty
and the regions with the most remarkable age records. The mainland region of Creuse has the
highest per capita rank of supercentenarians under the IDL rankings (Table S2), potentially due
to the combined effects of having a 60% reduction in population size since 1901, the fourth-
highest old-age poverty rate, the 16th worst poverty rate overall, and the fourth-lowest GDP per
270
capita (Table S2).
Guadeloupe and Martinique rank equal second for total supercentenarians after Paris, and second
and third for supercentenarians per capita, with at least eight supercentenarians each (Table S2).
Martinique has the second-highest poverty rate, both overall (29%) and for people aged 75 and
275
over (31%), in all of the 101 NUTS-3 coded provinces. While not monitored by Eurostat, third-
ranked Guadeloupe has a 24% unemployment rate [26]. Of the Eurostat regions only Réunion
has higher poverty rates, with 39% of citizens falling below the poverty line. Again, these
rankings seem inconsistent with the general drivers of population health.
280
French supercentenarians are over-represented in the overseas departments, former colonial
holdings, and Corsica (which is included in metropolitan France; Table S2): regions that
historically constitute some of the most neglected, least well-documented, and shortest-lived
administrative regions of France. As a result, many of these regions are absent from the above
models due to absent or insufficient population data and reporting.
285
At the first reliable estimate of population size in 1950, overseas departments and colonial
holdings contained around 1.7% of French citizens. However, at least 11% (N=16) of the French
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
18
supercentenarians in the GRG database originate there: a 6.5-fold over-representation. This
number increases when integrating deidentified IDL data, which only includes regions monitored
290
by Eurostat (Réunion, Guadeloupe, and Martinique), to establish a minimum numbers of
supercentenarians born in each region. Under these estimates, the overseas and former colonial
regions of France contain a minimum of twenty-four (15.5%) of the total 155 supercentenarians
with known birth locations. Guadeloupe and Martinique each contain eight supercentenarians,
and French Algeria contains four, Saint Barthélemy, Réunion, French Guiana, and New
295
Caledonia at least one each.
If this minimum count across the IDL and GRG databases is used, the overseas and colonial
holdings of France contain eight times as many supercentenarians per capita (1.5 per 100,000),
and more supercentenarians overall (N=24), than the region of Île-de-France (0.16 per 100,000;
300
N=19). This is despite Île-de-France earning more than double the income per capita, being the
longest-lived region in mainland France, and containing seven times as many citizens c.1900
when these supercentenarians were born.
Similar anomalies occurred in Japan and Italy. Of 114 total regions, the Italian province of
305
Olbia-Tempio ranked as the best province for survival to ages 100,105 and 110, yet somehow
was also the seventh-worst ranked province for survival to age 55, and according to Eurostat had
the eighth-fewest residents surviving over the age of 90 (Table S3). The first and second ranked
Japanese prefectures for centenarians per capita, Shimane and Kochi, had the worst and second-
worst regional economic rankings, while extensive anomalies in third-ranked ‘blue zone’
310
Okinawa are detailed below (Table S4).
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
19
Overall patterns observed in the IDL and GRG database also provided indications of widespread
error. Contemporary US births have a near-uniform distribution of births with minimal deviation
from random sampling (Fig S4a), driven by the aseasonal and approximately equal distribution
315
of days of the month (e.g. the 1st or 2nd of each month) throughout the year. Even after the
widespread uptake of induced births and surgical births, which avoid weekends and public
holidays, birthdays generally varying by less than two per cent across different days of the
month. In contrast with this uniform distribution, supercentenarians in the GRG database are
142% more likely to be born on the first day of the month and 1.2-fold as likely to be born on a
320
day that is divisible by five (Fig S4b). The number of supercentenarians born on the first day of
the month is 150% higher than on the preceding calendar day (S1 Code). Given the near-
complete absence of caesarean sections in these population, this age-heaping pattern can be
explained if a large percentage of people are non-randomly choosing their birthday.
325
The first day of the month was not over-represented amongst the IDL data, and the 5-day
enrichment was less pronounced (Fig S4c). This was initially difficult to reconcile, given these
databases overlap considerably and ideally contain the same set of individuals. However, this
differential appears to be a result of dates of birth being removed for 48% (N=797) of the IDL
supercentenarians.
330
These patterns can be explained because most of the signal for age heaping in the GRG data
arises in Japanese and US birthdates (S2 Code): Japanese supercentenarians were 2.77 times
more likely and US supercentenarians were 1.57 times more likely to be born on the first day of
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
20
the month. The IDL does not document Japan and unusually, despite comprehensive US birth
335
dates being known and available, every US supercentenarian in the IDL database has had their
day and month of birth removed. No other country received a similar treatment. With these dates
excised from the database, evidence of heaping in the IDL data is reduced (Fig S4c; S1 Code).
340
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
21
Discussion
Basic economic and social indicators in the modern economy, such as GDP per capita and
poverty rates, provide adequate predictors of the distribution of extreme age records. Despite
constraints on model construction and accuracy, such as unavoidable differences in per capita
345
adjustments, these basic models approached reasonable accuracy. However, the direction of
these interactions is the opposite of rational expectations.
Diverse social and economic indicators normally linked to worse health outcomes, such as
income deprivation, poverty, and high unemployment, are all positively associated with a higher
350
probability of reaching an extreme age. These factors are linked to a lower probability of survival
and worse health outcomes at every age below 90, for every population included in this study.
However, these factors exhibit a consistent positive association with extreme longevity. In the
UK, which contains the only national data with sufficiently granular regional health measures,
355
even poor health itself is positively associated with attaining a remarkable lifespan (Fig 4c).
Viewed in isolation such a question may, perhaps, be explained away by reference to unknown
lifestyle factors. However, these findings should be considered in the context of other diverse
and incongruous patterns observed in extreme old age studies.
360
Indicators of error and fraud in national data
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
22
Data used in this study raise simple questions as to why basic socioeconomic indicators of poor
health, and positive correlates of crime and government neglect, are linked to higher per capita
365
numbers of remarkable longevity. For example, the UK has produced 1075 SSCs overall, and
Italy 3,638 SSCs overall, across an approximately equivalent timeframe [27]. However, Italy is a
historically smaller, poorer, less well-educated, and shorter-lived country. In 1900 the UK had
eight million more inhabitants than Italy, a 1.22-fold larger population [28]. Citizens of the UK
also enjoyed 2.5 times the GDP per capita, earned 3.5 times higher wages in real terms, had 1.25
370
times lower income inequality, received 2.2 times the average education (with just 5.3 years of
schooling), were four times less likely to be murdered, were 3.8cm taller, and lived 5.3 years
longer on average than people in Italy [28]. Given these indicators and the long history of birth
records in both countries, it is difficult to reconcile why the healthier, wealthier, better-educated,
taller, and longer-lived population of the UK produced roughly a quarter as many SSCs per
375
capita. One explanation is that remarkable age records result, not from better health or greater
longevity, but from the historical accumulation of illiteracy-driven errors and the modern
dynamics of poverty-driven fraud.
Relative to the global average, states containing remarkable age records generally constitute rich,
380
literate, long-lived and well-documented populations, usually with an extensive history of vital
statistics documentation. As a result, the existence of widespread errors and pension fraud is
often assumed to be unlikely or impossible in these countries. However, such national
advantages are no guarantee of data quality.
385
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
23
High-quality universal registration systems often contain undetected high-frequency errors.
Contrary to previous assertions that “Japan has…among the highest quality data for the oldest-
old” [29], a 2010 investigation of Japanese records revealed that 238,000 centenarians were
actually missing or dead[30]. The Japanese Ministry of Health and Welfare [31,32] now estimate
there were 43,882 Japanese centenarians alive in 2010: an 82% reduction, and a notable contrast
390
to the idea that “Japanese demographic data have always been considered extremely reliable
[33].
Similar instances have occurred elsewhere. In 1997 Italy discovered it was paying 30,000
pensions to dead people [30]. In the USA, a recent analysis cross-checking census and death
395
records found at least 17% of centenarians and 35% of 109+ year-olds were actually errors
[16,34]. In 2011, just one of several Greek social insurance institutes was caught paying the
pensions of 1,473 dead people who had ‘survived’ past the age of 90. A subsequent 2012
investigation by the Greek labor ministry was triggered by the “unusually high number of 9,000
Greek centenarians drawing old-age benefits” [35], a notable figure given the 2011 Greek
400
census found only 2,488 living centenarians [36]. Assuming the census contains no type I errors,
which is unlikely given the high rate of active pension fraud, at least 72% of Greek centenarians
had been collecting their pensions whilst dead.
Despite the Greek labor ministry paying a fraction of all Greek pensions, its investigation
405
revealed over 200,000 pensions were being paid to fraudulent claimants including ‘blind’ taxi
drivers and dead people [35]. An estimated two per cent of Greeks were engaged in benefits
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
24
fraud at the time of the ‘blue zone’ surveys, and thousands of these dead pensions were still
being paid in 2013.
410
These examples refute claims that the suggested existence of widespread pension fraud or errors
in databases of SSCs and supercentenarians isnot credible” [21]. Unlike academics seeking to
generate old-age databases, governments have both a direct financial incentive to detect pension
fraud, and the considerable resources required to do so: and yet, developed-world governments
routinely fail to detect thousands of cases of document-based pension fraud.
415
Indicators of error and fraud in blue zones
Results presented in this study may reflect a general neglect of error processes as a potential
generative factor in remarkable age records, and the omission of evidence from national
420
statistical bodies. This potential for disregarding important context and national statistical data
may be most evident when considering the case of ‘blue zones’: proposed regions of remarkable
longevity [37].
The ‘blue zone’ of Okinawa has the highest number of centenarians per 90-99-year-old of any
425
Japanese prefecture and remains world-famous for remarkable longevity[37]. However,
according to the statistics bureau of Japan, Okinawa also has the fewest senior citizens per
capita, the highest murder rate per capita, the worst over-65 dependency ratio, the second-lowest
median income, and the highest unemployment rate of some 47 Japanese prefectures [32].
Despite prior claims of dietary benefits based on vegetable and sweet potato consumption [37],
430
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
25
Okinawa has the single lowest per capita intake of sweet potato, at 64% of the Japanese average
intake. Okinawa also has the single lowest consumption per capita of fruit, vegetables, seafood,
taro, shellfish, root vegetables, pickled vegetables, and oily fish such as sardines and yellowtail
[32]. Okinawa has the second-highest per capita intake of beer, the fourth-highest alcohol
consumption, the most ‘flophouses’, the most ‘shotgun’ weddings, the highest per-capita intake
435
of Kentucky Fried Chicken [32], and according to USDA estimates Okinawans consume an
average 14 cans of spam per year each [38]. Okinawa has a 36% child poverty rate, 15% higher
any other prefecture [39]. Mortality rates in Okinawa ‘cross over’ after age 50, such that older
individuals and cohorts have age-specific mortality rates far below the national average [33]: a
pattern indicative of unreliable data and misreported ages [13]. Okinawa also has the second-
440
lowest minimum wage (by one yen), the lowest household savings, the highest percentage of
over-65s on income assistance, the highest poverty rate [39], and the worst average body mass
index of all 47 prefectures [32]. These rankings have not changed substantially since the blue
zone surveys and do not represent a recent sudden shift away from traditional lifestyles. Again, it
seems unusual that so few of these issues have been raised by an extensive body of
445
demographers, epidemiologists, and public health scientists familiar with the ‘blue zones’
concept.
There are other well-known drivers of error in the Japanese vital registration system. Birth and
marriage records in Japan are not generated by a central bureaucracy, but instead are hand-
450
recorded by family members as ‘Koseki’ documents, which are then filed in local town halls and
government offices. This combination of citizen self-reporting and government filing allows the
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
26
propagation of errors without requiring fraud. In Okinawa, this broad potential for error
generation has also been compounded by a different class of error processes.
455
The large-scale US bombing and invasion of Okinawa involved the destruction of entire cities
and towns, obliterating around 90% of the Koseki birth and death records [33] with almost
universal losses outside of Miyako and the Yaeyama archipelago [40]. Post-war Okinawans
subsequently requested replacement documents, using dates recalled from memory in different
calendars [40], from a US-led military government that largely spoke no Japanese. The number
460
of these replacement Koseki documents issued, a proxy measure of American bombing and
shelling intensity, predicts 79% of the variation in centenarian status in Okinawa [33].
Like the ‘blue zone’ islands of Sardinia and Ikaria, Okinawa represents deprived regions of rich,
high-welfare states. These regions may have higher social connections, and arguably may have
465
had higher vegetable intakes in the past, but they also rank amongst the least educated, poorest,
highest-crime and least healthy regions of their respective countries.
These patterns were reflected in this study’s findings on the ‘blue zone’ provinces of Sardinia,
which during the ‘blue zone’ surveys had the highest murder rate in Italy [41]. The primary ‘blue
470
zone’ province of Ogliastra has the single lowest survival rate to age 55 and the highest
unemployment rate of 116 regions in Italy (Table S3), while potential issues in the Greek data
may be clear from the previous discussion.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
27
The two remaining blue zones, Loma Linda and the Nicoya Peninsula, are considered
475
exceptional due to their high average longevity rather than the presence of extreme outliers for
longevity. As such, these claims are not relevant to assessments of supercentenarian status, yet
their analysis also raises serious questions and broader issues in extreme longevity research. For
example, Loma Linda is a Californian suburb containing just 23,000 people, designated as a
‘blue zone’ because of an estimated average lifespan of 86 years for females and 83 years for
480
males. This average lifespan is matched or exceeded by the 125 million citizens of Japan, the
seven million citizens of Hong Kong, and the seven and a half million citizens of Singapore [42].
When assessed independently by the Centers for Disease Control (CDC) the five small-area
survey tracts covering Loma Linda instead have an average life expectancy of 76 to 81 years
[43]: the 27th to 75th percentiles of US life expectancy (Fig S5). At best, the independent CDC
485
estimates rank Loma Linda as the 16,102nd most long-lived neighborhood in the USA (Fig S5;
S1 code).
Loma Linda is not a standard census tract but a custom-selected region within a larger
geographic area, the largest US county of San Bernadino, with an average lifespan of 78 years
490
[43,44]. The Nicoya peninsula in Costa Rica, where independent estimates are currently not
available, is also a non-standard region cut from several independent census units of moderate
life expectancy by proponents of the ‘blue zone’ concept. The first ‘blue zone’ was described by
drawing circles on a map with a blue pen [45] across two standard, independently surveyed
regions of Italy with the lowest and sixth-lowest probability of survival to age 55 [46]. As such,
495
it seems somewhat debatable that these regions should be regarded valid outliers for human
longevity.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
28
Indicators of error and fraud in health studies
500
Like anomalous population-scale patterns, indicators of poverty and fraud and contra-indications
of health are regularly ignored or downplayed in studies of extreme age. For example, smoking
rates of e.g. 17-50% and illiteracy rates of 50-80% are often observed in samples of the oldest-
old [7,8]. Surveying the ‘blue zone’ of Ikaria, Chrysohoou et al. observed that the oldest-old
have: a below-median wage in over 95-98% of cases, moderate to high alcohol consumption
505
(5.1-8.0 L/ year), a 10% illiteracy rate, an average 7.4 years of education, and a 99% rate of
smoking in men [4].
In the Tokyo study of exceptional longevity 15.4% of centenarians were current smokers [47].
However, according to the national statistics bureau of Japan, above the age of 80 only 3.9% of
510
Japanese women (78% of the Tokyo sample were women) and 19.3% of men are smokers [48].
Tokyo centenarians smoke at around twice the rate that could be expected in a younger 80+ year
old cohort with an identical sex ratio. Likewise, 80% of the ‘exceptional’ health-status
centenarians in Tokyo drank alcohol every day, followed by 49% of the ‘normal’ and less than
40% of the ‘frail or fragile’ centenarians, which resulted ina [significant] positive relationship
515
between drinking habits and functional status” [47]. In contrast, in the general population only
2.8% of women and 23% of men aged 80+ drink every day [48]. In men aged 60-69, the
heaviest-drinking cohort in Japan, daily drinking rates peak at 36.7%: less than half the rate of
the exceptionally healthy centenarians [48]. Tokyo centenarians drink at higher rates than any
other age group, and smoke at rates equal to a population 45 years younger [48].
520
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
29
In the USA only 8.4% of general population over the age of 65 smoke, and in Europe 4.1%
population over the age of 75 smoke: figures that continue to fall with age due to two-fold higher
mortality rates in smokers [49,50]. However, in the US and Europe individuals over the age of
100 smoke and drink at much higher rates [4]: in one US centenarian study [6] 60% of people
525
over age of 95 were former smokers, compared to just 25% of individuals over the age of 65 in
the broader USA.
Anomalies where harmful health behaviors become more prevalent with age is common in
centenarian studies. For example, comparisons of lifestyle factors in centenarians to earlier
530
surveys of the same cohort [6], revealed that centenarians have a similar or worse body mass
index, and worse rates of physical activity, smoking, and alcohol consumption, than younger
representatives of their birth cohort. Rajpathak et al. concluded that these similar or worse
lifestyle indicators meant centenarians were representative of the baseline population,
documented by the NHANES I survey, from which they were drawn [6]. However, this
535
comparison was made between a population who were on average 97.5 years old [6], and
individuals who were aged 35 years younger.
Longitudinal follow-up surveys of the NHANES I comparison cohort reveal a linear decrease in
the number of smokers and drinkers with age until age 85 that is typical of almost all
540
populations. This reduction is caused by increased all-cause mortality, at all ages below 95, in
individuals who smoke and drink [51,52]. After just 9.2 years, over 33% of people who were
current smokers in the NHANES I cohort had quit smoking, 8.9% remained current smokers, and
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
30
13% were either current or former smokers: the rest were deceased. Therefore, the observation of
60% smoking rates in centenarians [6], who are older representatives of the same cohort,
545
presents some difficulty.
The increasing frequency of past harmful behavior with age also occurs in longitudinal studies of
the oldest-old, suggesting these patterns do not result from ascertainment biases or population
differences. For example, in the Leisure World Cohort Study of over 11,000 retirees 78% of men
550
and 72% of women in the initial 71-year-old population were moderate to heavy drinkers [53].
Individuals who drank daily throughout the 23-year follow-up period of this study had a
significantly lower mortality risk, even those drinking 2-4 times over the CDC clinical threshold
for ‘excessive’ drinking [54]. In contrast with normal clinical patterns, abstaining from alcohol
significantly increased mortality risk while drinking at the most dangerous levels, 28 or more
555
alcoholic beverages a week, was associated with an unexplained 9-16% reduction in the risk of
death [54].
It is unclear why clinically excessive drinkers or daily smokers should survive at equal or higher
rates, and increase in population frequency at extreme ages, unless these lifestyle factors are
560
positively correlated with committing fraud or having an incorrect age.
The frequency of birth and death certification, indicators that are linked to data quality but not
health outcomes, are suggestive of the latter. In the benchmark New England Centenarian Study,
only 30% of enrolled centenarians have an official birth document of any description [55]. This
565
rate of documentation is lower than the background population, with every state in New England
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
31
achieving state-wide birth certificate coverage by 1897 [22]. For the remaining 70% of
centenarians without birth documents, age validation was carried out using US census data, as a
best-case scenario, or documents including “military certificates, an old passport, school report
card, family bible, and baptismal or other church certificate” [56]. Twenty-two years after the
570
New England study used US census data for validation and study enrolment, and after the
publication of extensive research findings, at least 17% of centenarians in the US census data
were discovered to be errors [16,34].
Birth certificates are also rare in databases of remarkable age records. Just 19% of all
575
supercentenarians and 20% of the ‘exhaustively’ validated supercentenarians are listed as having
either an original or copied birth certificate by the IDL [57]. Overall only 6.6% of
supercentenarians have an original birth certificate, and 74% of cases have no reported birth
documents of any kind: not even parish register data is recorded. None of the 797 SSCs from the
USA is listed as having a birth certificate, and 41% of these cases have the possibility of a birth
580
certificate explicitly ruled out [57].
These high rates of missing data may be due in part to low reporting or incomplete monitoring in
some countries: death and birth certificates may exist, but have not been entered into the
database. However, a low rate of reporting does not explain the absence of birth certificates in
585
countries with near-complete reporting of evidence. The 241 French supercentenarians in the
IDL all have the field code for birth documents completed, but not one supercentenarian has a
birth certificate (S1 Code). Likewise, the IDL explicitly lists the evidence available in support
98% of remarkable-age claimants in the UK (S1 Code). Of the 1116 oldest people in the UK, all
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
32
but three were born after the introduction of compulsory, nation-wide birth certificates in 1864.
590
However, only eighteen (1.6%) have a birth certificate. Furthermore, these rates do not increase
markedly in the 1,587 ‘exhaustively’ validated UK, French and US-born SSCs: in total only 24
have a birth certificate listed in support of their case, and all of these documents are re-issued
copies.
595
While birth certificates were produced more than a century in the past, death certificates are
issued by modern bureaucracies: over 96% of listed SSCs died after the year 1990, during a
period of unprecedented death certificate coverage (S1 Code). However, like birth certificates,
death certificates are completely absent or severely under-represented relative to their respective
birth cohort amongst individuals in remarkable age databases. This inconsistency is difficult to
600
explain.
The first follow-up survey of the population-representative NHANES I cohort, representative of
the US population, found 3.8% of decedent men and 5.7% of decedent women did not have
death certificates and remained alive on paper while actually dead [51]. While around 95% of the
605
general US population are issued a death certificate, only seven of the 504 supercentenarians
dying in the USA is listed as having a death certificate by the IDL: an over 70-fold lower rate of
death certification. Despite a self-described exhaustive validation effort, just 1.4% of SSCs and
supercentenarians have a death certificate in the USA.
610
The USA is not an isolated case. Across the IDL database only 15% of supercentenarians and
8% of SSCs are listed as having death certificates (S1 Code). These rates are often lower in
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
33
countries with more-complete and longer-term death certification histories [58]. For example, of
the 9386 SSCs dying in France, just one has a death certificate [57]. Only 89 of the 1184 SSCs
dying in the UK have an original or copied death certificate listed [57]. Both of these countries
615
and have maintained over 90% death registration rates for several decades, and are now
approaching 100% death certification rates [58]. It is therefore striking that, despite death
certificates being issued to well over 90% of individuals, a substantial majority of validated
remarkable-age individuals in these countries do not seem to have a death certificate.
620
Indicators of error and fraud in individuals
The absence of basic birth and death certification and the high prevalence of counter-indicators
of health and longevity stand in contrast to the large number of listed cases of extreme longevity.
In theory each such case is individually assessed and validated, based on the compilation of
625
documents and the judgement of demographers. Assessing the role of opinion during case
validation, and corresponding potential for bias, is therefore of marked importance.
Individual case studies often highlight the role of personal judgement, and the potential for both
conscious and unconscious bias, during age validation. For example, Jiroemon Kimura, the
630
world’s oldest man, is widely considered to be a valid supercentenarian case. However, Kimura
has at least three wedding dates to the same wife [59], has three dates of graduation from the
same school [59], was conscripted to the same military three times in four years [59] despite the
mandatory conscription period being three years long [60], and has at least two birthdays [59].
635
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
34
For the first 20 years of his life all of Kimura’s birthdates and school records are actually
recorded for a different name, Kinjiro Miyake, whose connection to Kimura is attested to by a
hand-written note from a Korean mail and telephone company [59] rather than any official
document. The evidence for Kimura’s case validation was initially compiled and vetted by the
relatives who sought to promote his case [59]. Under interview, Kimura then explained one of
640
his extra birthdays in a way that wasnot feasible” [59], and Gondo et al. concluded the birth
date had been deliberately forged [59]. However, Gondo et al. resolved the case validation by
assuming any conflicting official records were mistakes and, from the diverse birth, wedding,
conscription, and graduation dates, selecting the dates they felt were accurate. Multiple names,
multiple weddings, and forged birthdates notwithstanding, the study concluded that “no critical
645
discordances were discovered” [59] and the case is considered valid [57,61].
The validity of the Kimura case has been accepted under the assumption that age discrepancies
can be discarded through the qualitative judgement of demographers. Reliance on such
qualitative judgements during case validation is considered acceptable conduct. In addition,
650
concerns surrounding the validity of ages are often met with the response that biographical
inconsistencies, detected during interview by a demographer, will result in cases being removed
from the record.
However, this sentiment can be difficult to reconcile with observed practice. Former smoker and
655
occasional drinker Adele Dunlap, who “ate anything she wanted” and “never went out jogging or
anything” [62] was validated by the GRG and IDL as the oldest woman in the USA, despite
Dunlap consistently maintaining under interview that she was a decade younger: ifasked how it
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
35
felt to be 113, Dunlap… looked her questioner in the eye and answered: ‘I’m 104’” [62]. Despite
consistently maintaining until her death that her age was incorrect, Dunlap remains validated as a
660
supercentenarian on the basis of documentary evidence. This documentary evidence has since
lowered her age by two years in just one [61] of the two [57] major supercentenarian databases.
A reliance on this type of opinion, where qualitative judgements are employed to shape public
perceptions of authenticity, seems to be widely considered satisfactory. This seems particularly
665
the case when explaining the otherwise anomalous health habits of supercentenarians. For
example, Maier et al. issued a contradictory statement that Jeanne Calment smoked both one and
two cigarettes a day for an entire century, followed by the justification that this counter-
indication of health could be explained because shepossibly did not inhale at all” [63]. It was
likewise observed that, from age 20 to age 117, the then-oldest man in the world Christian
670
Mortensen smoked “mainly a pipe and later on cigars, but almost never cigarettes… he had also
chewed tobacco…but never inhaled” [63]. Why two people would voluntarily choose to smoke
for an accumulated 190 years, yet never inhale, was never explained.
Such behavior is not atypical. At least three of the ten oldest women drank every day, two
675
smoked every day, and four are of unknown smoking status, while Jeanne Calment smoked
daily, drank daily, and ate around a kilogram of chocolate a week. Of the five oldest men ever
recorded, Kimura and Mortensen are detailed above, Emiliano Del Toro (3rd) smoked for 76
years, Mathew Beard (4th) was busted for drink-driving at age 90, and Walter Breuning (5th)
smoked cigars until he was 108. The oldest man in the UK stated his secret to health as
680
cigarettes, whiskey and wild, wild women” [64], while the former oldest man in the USA started
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
36
every day with coffee and whiskey, drank during the day, ate ice-cream every night, and smoked
from age 18 until his death. Like Calment and Mortensen, he also didn’t inhale some 12 to 18
cigars a day [65].
685
These instances of poor lifestyle choices constitute a substantial fraction of all supercentenarian
cases. As summarized by Coles, the typical supercentenarian lifestyle is characterized by “heavy
smoking, heavy drinking, or both, failure to exercise on a regular basis, and no conscious effort
to eat nutritiously” [66]. Instead of prompting skepticism, under the relatively safe assumption
that smoking, drinking, poverty, lack of exercise, poor nutrition, and illiteracy should not enrich
690
for remarkable longevity records, these anomalous contra-indications of survival are routinely
ignored or downplayed. For example, the study by Chrysohoou et al. concluded that “physical
activity, dietary habits, smoking cessation, and midday naps” predict extreme longevity in the
Ikaria ‘blue zone’ [4]: a conclusion that questionably re-shapes past smoking status as a positive
indicator of survival. Genetic factors that convey a collective immunity to cancer and the diverse
695
sequelae of smoking, drinking, and not exercising are also frequently raised as an explanation for
the lifestyles of the extremely old [6,12,67].
In contrast, it could be suggested that the abundance of poor lifestyle choices in the extreme old
reflect high rates of undetected error. If this were the case, a large body of previous research
700
linking higher old-age survival to, for example, higher drinking [47,54] and obesity rates [68,69]
could be re-interpreted as the result of a positive correlation between poor lifestyle factors and
‘junk’ vital statistics data.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
37
705
Type I error detection in extreme age databases
It seems incongruous that the discovery of thousands or hundreds of thousands of fake
centenarians by the respective Japanese, Greek and Italian governments and US researchers, has
not resulted in any corresponding reduction in the size of supercentenarian databases. Instead,
710
the number of validated supercentenarians increased smoothly across these fraud-discovery
events. Perhaps the more limited resources of individuals compiling old-age records, using
identical documents and similar techniques to government demographers, far exceeds the
capacity of developed-world governments to detect identity fraud. Alternatively, perhaps,
supercentenarian databases remain riddled with error.
715
Data cleaning and error correction using documentary validation, as described in the Kimura
case above, remains the main approach to combat age errors in remarkable longevity databases.
However, data cleaning often produces the mistaken impression that the resulting ‘validated’
data are largely free from error. Data in this study exhibit patterns consistent with a high
720
frequency of type I errors: diverse positive correlates of crime, anomalous poor health indicators,
age heaping, and over 20-fold higher rates of missing documentation than the general population.
However, these populations were already subjected to extensive analysis and validation [27] and
are widely considered high-quality ‘clean’ data [21].
725
The logic supporting these assumptions of data-cleanliness is informative. For example, post-
validation errors in the Italian data were previously assumed to be minimal, on the basis of a
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
38
belief that the data were clean [27]. Subsequently, it was acknowledged that an unknown number
of errors in these data could not be detected using documentary evidence, asOccasionally…a
mistake will escape even a rigorous validation procedure” [21]. Finally, it was proposed that the
730
occurrence of such errors, which cannot be detected using documents, must be rare or
essentially impossible”, because of the high quality of documents used to compile such data
[21]. That is, type I errors are assumed to occur at low frequency on the basis of documentary
evidence: documentary evidence that cannot detect the frequency of type I errors.
735
The opinion that such errors are rare might have been countered by another opinion: that a
handwritten century-old database containing millions of entries, no independent biological
validation, and an unknown type I error rate, might easily generate the few hundred annual errors
required for a supercentenarian database [66]. Prior observations that the Italian state paid
pensions to 30,000 deceased people [30], or that 82% of Japanese and 72% of Greek
740
centenarians were illusory or dead [35,70], or suggest the viability of this explanation. However,
such criticism would ignore a more fundamental problem.
Physical possession of valid documents is not an age guarantee. Consider a room containing 100
real Italian supercentenarians, each holding complete and validated documents of their age. One
745
random supercentenarian is then exchanged for a younger sibling, who is handed their real and
validated birth documents. How could an independent observer discriminate this type I
substitution from the 99 other real cases, using only documents as evidence?
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
39
Such hypothetical errors cannot be excluded on the basis of document consistency: every
750
document in the room is both real and validated. In addition, a real younger sibling is also likely
to have sufficient biographic knowledge to pass an interview: this has occurred in several
(subsequently discovered) cases including, for several years, the world’s former oldest man. As
such, any similar substitution error has the potential to indefinitely escape detection.
755
This ‘Italian sibling’ thought experiment illustrates why type I age-coding errors cannot be ruled
out, or even necessarily measured, on the basis of documentary evidence. It also reveals how
debates on the frequency of these errors are not driven by direct empirical measurements, but by
inference and opinion.
760
This issue presents a substantial problem for remarkable-age databases, embodied in a
deliberately provocative, if seemingly absurd, hypothesis:
Every ‘supercentenarian’ is an accidental or intentional identity thief, who owns real and
validated 110+ year-old documents, and is passably good at deception.
765
This hypothesis cannot be invalidated by the further scrutiny of documents, or by models
calibrated using document-informed ages [71,72]. Rather, invalidating this hypothesis requires a
fundamental shift: it requires the measurement of biological ages from fundamental physical
properties, such as amino acid chirality [73] or isotopic decay [74].
770
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
40
Until such document-independent validation of remarkable ages occurs, the type I error rate of
remarkable human age samples will remain unknown, and the validity of ‘supercentenarian’ data
in question.
775
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
41
Methods
The number and birthplace of all validated supercentenarians (individuals attaining 110 years of
age) and semisupercentenarians (SSCs; individuals attaining 105 years of age) were downloaded
from the Gerontology Research Group or GRG supercentenarian table [61], updated 2017, and
780
the International Database on Longevity or IDL [57]. These data were aggregated by subnational
units for birth locations, which were provided for the IDL data, and obtained through
biographical research for the GRG data. Populations were excluded due to incomplete
subnational birthplace records (<25% complete) or countries with an insufficient number of
provinces to fit spatial regressions (<15 total provinces), leaving population data on SSCs and
785
supercentenarians in the USA, France, and the United Kingdom (Fig 1).
To quantify the distribution of remarkable-aged individuals in Italy, province-specific
quinquennial life tables were downloaded from the Italian Istituto Nazionale di Statistica
Elders.Stat database [46] to obtain age-specific survivorship data (Fig 1c,f; S1 Code). Using
790
cross-sectional data across Italian provinces, probabilities of survival (lx) to ages 90-115, and life
expectancy at age 100 were fit as dependent variables, and survival rates at age 55 and life
expectancy at age 55 as independent variables, using simple linear regression (S1 Code).
While older ages were not available, extensive Japanese centenarian data were downloaded from
795
the Japanese Ministry of Health, Labour, and Welfare [32] through the Statistics Japan portal
[31] for all 47 prefectures (Fig S1), alongside data on prefectural income per capita (in 2011
yen), employment rates, age structure, survivorship, and a financial strength index, for 2010: the
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
42
most complete recent year available for these data (S1 Code; Fig S1). These data were also
linked to the most recent available prefecture-specific poverty rates [39].
800
Supercentenarians recorded in the GRG database and born in the USA were matched to the 1900
census counts for state and territory populations [22], and linked to the National Center for
Health Statistics estimates for the timing of complete birth and death certificate coverage in each
US state and territory [75]. Both the number of supercentenarian births overall, and estimates of
805
supercentenarians per capita, approximated by dividing supercentenarian number by state
population size in the 1900 US census [22], were averaged across the USA and represented as
discontinuity time series relative to the onset of complete-area birth registration (S1 Code).
To capture the geographic distribution of French supercentenarians, all 175 supercentenarians in
810
the GRG database who were either born or deceased in France were linked to the smallest
discoverable region of birth using biographical searches [61]. In addition, de-identified records in
the IDL were already linked to birth locations encoded by the Nomenclature for Territorial Units
level 3 codes (NUTS-3), which divide France into 101 regions [57]. These modern regions were
linked manually to their corresponding Savoyard-era department to obtain historic region-
815
specific estimates of life expectancy at birth [76] for the birth year and location of all
supercentenarians in metropolitan France. For each supercentenarian, life expectancy at birth
was then measured relative to the contemporary average life expectancy of metropolitan France
(S1 Code).
820
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
43
The number of total supercentenarians and SSCs born into Eurostat NUTS-3 coded regions,
either documented for French and UK regions in the IDL or estimated for Italian regional cohorts
by ISTAT, were linked to modern socioeconomic indicators available at this administrative
level: total regional gross domestic product (GDP), GDP per capita, GDP per capita adjusted for
purchase power scores (PPS), murder and employment rates per capita, and the number of 90+
825
year-olds, using the Eurostat regional database (S1 Code).
In the UK, additional data were obtained for the Index of Multiple Deprivation or IMD: a
national metric used to indicate relative levels of deprivation, including income deprivation in
people aged 60+, by the UK Office of National Statistics [25]. The IMD data are measured in
830
317 local authority districts, each of which is a subset of a single Eurostat NUTS-3 encoded
region. To capture the relative degree of deprivation within the UK, the IMD and its component
scores were averaged within each of the 175 NUTS-3 regions (S1 Code).
Similar estimates of deprivation were obtained for French NUTS-3 regions, by downloading the
835
regional poverty rates [77] and poverty rates in the oldest available age group, ages 75 and over
from the French National Institute of Statistics and Economic Studies INSEE [77].
To overcome the three orders of magnitude differences in population size across subnational
geographic units, the number of centenarians, SSCs and supercentenarians were adjusted to per
840
capita rates. However, the ‘correct’ adjustment for per capita rates of remarkable longevity is
dependent on the a priori assumptions of their cause. For example, if the null hypothesis was that
all supercentenarians arereal’, adjustment for birth cohort size 110+ years previously would be
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
44
a more correct method for best predicting the population density of supercentenarians. However,
if the null hypothesis is that supercentenarians are more frequently modern-era pension frauds or
845
clerical mistakes, per capita correction for a birth cohort 110 years in the past is of uncertain
value for predicting modern events. In this latter case, the occurrence of supercentenarians would
be better and more accurately predicted by correcting for modern population sizes.
The former ‘historical per capita’ adjustment was used whenever possible. Per capita rates of
850
remarkable age attainment, calculated relative to the size of historical birth cohorts, were
downloaded from the respective government statistical bureaus of Japan and Italy [32,46]. Due
to the absence of birth certificates, USA supercentenarian data from the GRG [61] were
corrected to per capita rates based on population data in the 1900 US census [22]. However,
France and the UK were located into geographic units that have only existed since 2003. As a
855
result, there were no data on historical population sizes available for these geographic units. It
was therefore necessary to estimate per capita rates using modern population sizes surveyed at
the NUTS-3 geographic level within France and the UK.
To address this unavoidable difference in per capita rate calculations the number of the
860
centenarians, SSCs and supercentenarians were also corrected relative to the number of old-age
residents in each modern geographic unit of Japan, the UK, and France (Fig 3d-f; S1 Code). This
adjustment was less susceptible to large longitudinal shifts in population size, and better reflected
the density of older people in modern geographic units after survival and migration processes.
However, the insufficient granularity of birth cohorts within the UK, and the considerable
865
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
45
rearrangement of geographic units within France, remains an important constraint on the upper
accuracy of these models.
Collective socioeconomic indicators obtained for each country were used to develop linear
mixed models across all regions with a non-zero number cases, of centenarians in Japan, SSCs in
870
Italy and the UK, and supercentenarians in the UK and France (S1 Code), to predict the regional
per capita and per 90+ year old density of the oldest available populations in each country.
Linear mixed models were fit using either the population poverty rate (UK, France, and Japan) or
estimates of old-age poverty rates (percent in poverty over 75 in France, the IDOP index in the
UK) as the single predictor variable, and the number of centenarians, SSCs and
875
supercentenarians both per capita and per 90+ year old. These models were then extended by
fitting, as interactive effects, basic socioeconomic indicators used as global indicators of health
and deprivation available at a sufficient geographic level (S2 Code). Such models focused on
capturing basic indicators, representing crime rates, health, and income, available at the NUTS-3
regional level in the EU and the prefectural level in Japan.
880
Where available, French supercentenarians were linked to regional estimates of life expectancy
at birth, calculated quinquennially for each of the Savoyard-era departments of France into which
they were born [76]. These local rates were then corrected relative to the contemporary French
national average life expectancy at birth to yield the relative life expectancy at birth, in years
885
[76]. For example, Jeanne Calment was born in the Alpes-Maritime department in 1875, when
average life expectancy at birth was just 33.4 years and the contemporary national French
average life expectancy was 37.8 years: a relative life expectancy of -4.4 years. These rates were
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
46
then used to estimate whether regional life expectancy at birth of French cohorts containing
supercentenarians was significantly higher or lower than the French national average using a one
890
sample t-test.
To explore the potential for age manufacture amongst remarkable age records, birthdate data
were aggregated within the GRG and IDL databases. Enrichment for specific birth days is
usually indicative of nonrandom age selection due to fraud, error, and clerical uncertainty. This
895
check, however, is limited in that it cannot detect diverse sources of error, such as identity fraud
or failed death registrations, which retain a representative distribution of birth days.
As population representative birthdates were unavailable within the target populations, the
distribution of births was tabulated by days of the month to remove the often poorly-categorized
900
or undocumented effects of birth seasonality. This distribution was compared to both modern
birthdate distributions from seventy million births in the US, which suffer from increased
distortion due to elective induced births and caesarean sections on certain dates, and to the
distribution of birthdays under a uniform distribution of births.
905
To facilitate reproduction of these findings, all shareable data and code are available in a single
structured file, with instructions and links for the non-shareable data, in S1 Data.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
47
References
1. Buettner D, Skemp S. Blue Zones: Lessons From the World’s Longest Lived. American
910
Journal of Lifestyle Medicine. 2016. doi:10.1177/1559827616637066
2. Robine J-M, Gampe J, Vaupel J. IDL, the International Database on Longevity.
Gerontology. 2005; 1–30.
3. Gerontology Research Group [Internet]. 2016 [cited 21 Oct 2016]. Available:
http://www.grg.org/SC/SCindex.html
915
4. Chrysohoou C, Panagiotakos DB, Siasos G, Zisimos K, Skoumas J, Pitsavos C, et al.
Sociodemographic and lifestyle statistics of oldest old people (>80 years) living in ikaria
island: The ikaria study. Cardiol Res Pract. 2011; doi:10.4061/2011/679187
5. Poulain M, Pes GM, Grasland C, Carru C, Ferrucci L, Baggio G, et al. Identification of a
geographic area characterized by extreme longevity in the Sardinia island: The AKEA
920
study. Exp Gerontol. 2004; doi:10.1016/j.exger.2004.06.016
6. Rajpathak SN, Liu Y, Ben-David O, Reddy S, Atzmon G, Crandall J, et al. Lifestyle
factors of people with exceptional longevity. Journal of the American Geriatrics Society.
2011. doi:10.1111/j.1532-5415.2011.03498.x
7. Afonso RM, Ribeiro O, Vaz Patto M, Loureiro M, Loureiro MJ, Castelo-Branco M, et al.
925
Reaching 100 in the Countryside: Health Profile and Living Circumstances of Portuguese
Centenarians from the Beira Interior Region. Curr Gerontol Geriatr Res. 2018;2018.
doi:10.1155/2018/8450468
8. Kwon IS, Kim C-H, Ko HS, Cho S Il, Choi YH, Park SC. Risk factors of cardiovascular
disease in Korean exceptional longevity. J Korean Geriatr Soc. 2005;9: 251–265.
930
9. Franceschi C, Bonafè M. Centenarians as a model for healthy aging. Biochem Soc Trans.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
48
2004; doi:10.1042/bst0310457
10. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, et al. Distinct DNA
methylomes of newborns and centenarians. Proc Natl Acad Sci. 2012;
doi:10.1073/pnas.1120658109
935
11. Mondello C, Petropoulou C, Monti D, Gonos ES, Franceschi C, Nuzzo F. Telomere length
in fibroblasts and blood cells from healthy centenarians. Exp Cell Res. 1999;248: 234–
242. doi:10.1006/excr.1999.4398
12. Sebastiani P, Solovieff N, Puca A, Hartley SW, Melista E, Andersen S, et al. Genetic
Signatures of Exceptional Longevity in Humans. Science (80- ). 2010;
940
doi:10.1126/science.1190532
13. Coale AJ, Kisker EE. Mortality crossovers: Reality or bad data? Popul Stud (NY). 1986;
doi:10.1080/0032472031000142316
14. Fries JF. Aging, natural death, and the compression of morbidity. Bulletin of the World
Health Organization. 2002. pp. 245–250. doi:10.1056/NEJM198007173030304
945
15. Vaupel JW, Manton KG, Stallard E. The Impact of Heterogeneity in Individual Frailty on
the Dynamics of Mortality. Demography. 1979;16: 439. doi:10.2307/2061224
16. Gavrilov LA, Gavrilova NS. Late-life mortality is underestimated because of data errors.
PLoS Biol. 2019;17: e3000148. doi:https://doi.org/10.1371/journal.pbio.3000148
17. Preston SH, Elo IT, Stewart Q. Effects of age misreporting on mortality estimates at older
950
ages. Popul Stud (NY). 1999; doi:10.1080/00324720308075
18. Gavrilova NS, Gavrilov LA. Mortality Trajectories at Extreme Old Ages: A Comparative
Study of Different Data Sources on U.S. Old-Age Mortality. Living to 100 Monogr.
2014;2014. doi:10.1126/scisignal.2001449.Engineering
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
49
19. Newman SJ. Errors as a primary cause of late-life mortality deceleration and plateaus.
955
PLoS Biol. 2018;16: e2006776. doi:https://doi.org/10.1371/journal.pbio.2006776
20. Newman SJ. Plane inclinations: A critique of hypothesis and model choice in Barbi et al.
PLoS Biol. 2018;16: e3000048. doi:https://doi.org/10.1371/journal.pbio.3000048
21. Wachter KW. Hypothetical errors and plateaus: A response to Newman. PLoS Biol.
2018;16: e3000076. doi:https://doi.org/10.1371/journal.pbio.3000076
960
22. Farnsworth Riche M, Benton B, Schnelder PJ, Norton AJ. Population of the States and
Counties of the United States: 1790 to 1990 [Internet]. Washington D.C.; 1996. Available:
https://www.census.gov/population/www/censusdata/PopulationofStatesandCountiesofthe
UnitedStates1790-1990.pdf
23. Gibson C, Jung K. Historical Census Statistics On Population Totals By Race, 1790 to
965
1990, and By Hispanic Origin, 1970 to 1990, For Large Cities And Other Urban Places In
The United States. Washington D.C.; 2005.
24. Aldridge H, Theo BB, Tinson A, MacInnes T. London’s Poverty Profile 2015. Tackling
Poverty Inequal. 2015;
25. Ministry of Housing Communities & Local Government. English indices of deprivation
970
2019: research report [Internet]. 2019. Available:
https://www.gov.uk/government/publications/english-indices-of-deprivation-2019-
research-report
26. Pan American Health Organization. Country Report: French Guiana, Guadeloupe, and
Martinique. In: Health in the Americas [Internet]. 2017 [cited 3 Feb 2020]. Available:
975
https://www.paho.org/salud-en-las-americas-2017/?page_id=121
27. Barbi E, Lagona F, Marsili M, Vaupel JW, Wachter KW. The plateau of human mortality:
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
50
Demography of longevity pioneers. Science (80- ). 2018;360: 1459–1461.
28. Timmer M, Baten J, Rijpma A, Smith C, van Zanden JL, Mira d’Ercole M. How Was
Life?: Global Well-being since 1820. Paris: OECD publishing; 2014.
980
29. Willcox DC, Willcox BJ, He Q, Wang NC, Suzuki M. They really are that old: A
validation study of centenarian prevalence in Okinawa. Journals Gerontol - Ser A Biol Sci
Med Sci. 2008; doi:10.1093/gerona/63.4.338
30. Reuters. Italy’s Dead Pensioners. New York Times. 1997: A00009.
31. Statistics Japan. e-Stat: Portal Site of Official Statistics of Japan [Internet]. 2020 [cited 30
985
Jan 2020]. Available: https://www.e-stat.go.jp/en
32. Director-General for Statistics and Information Policy, Ministry of Health L and W
(organisation). Vital Statistics [Internet]. 2019 [cited 7 Feb 2019]. Available:
https://www.mhlw.go.jp/english/database/db-hw/index.html
33. Poulain M. Exceptional longevity in Okinawa: A plea for in-depth validation. Demogr
990
Res. 2011; doi:10.4054/DemRes.2011.25.7
34. Gavrilova NS, Gavrilov LA. Mortality Analysis of 1898–1902 Birth Cohort. Mortality
Analysis of 1898–1902 Birth Cohort. Shaumburg, IL: Society of Actuaries.; 2018.
35. Koutantou A, Papachristou H. Greece pulls the plug on pensions for the dead. Reuters.
2012. Available: https://www.reuters.com/article/uk-greece-benefits/greece-pulls-the-
995
plug-on-pensions-for-the-dead-idUKBRE83O14220120425
36. Teixeira L, Araújo L, Jopp D, Ribeiro O. Centenarians in Europe. Maturitas. 2017;
doi:10.1016/j.maturitas.2017.08.005
37. Buettner D. The Blue Zones: lessons for living longer from those who’ve lived the
longest. Washington, D.C.; 2010.
1000
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
51
38. Motomura C. Global Agricultural Information Network Regional Report - Okinawa. 2014.
39. Tomuro K. Trends Observed in Poverty Rates, Working Poor Rates, Child Poverty Rates
and Take-Up Rates of Public Assistance Across 47 Prefectures in Japan [Internet].
Yamagata University Faculty of Humanities Research Annual Report. Yamagata; 2016.
Available:
1005
https://yamagata.repo.nii.ac.jp/?action=repository_uri&item_id=4067&file_id=17&file_n
o=1
40. Go M. Special feature: Thinking about modern society from Okinawa. Geppō shihōshoshi.
2004;June. Available: https://web.archive.org/web/20070825091736/http://www.shiho-
shoshi.or.jp/web/publish/geppou/200406/2004_06_021.html
1010
41. Cracolici MF, Uberti TE. Geographical distribution of crime in Italian provinces: A spatial
econometric analysis. Jahrb fur Reg. 2009; doi:10.1007/s10037-008-0031-1
42. CIA. CIA World Factbook. World Factb 2013. 2017;
43. Arias E, Escobedo LA, Kennedy J, Fu C, Cisewski JA. U.S. small-area life expectancy
estimates project: methodology and results summary [Internet]. (U.S.) NC for HS, editor.
1015
Hyattsville, MD; 2018. Available: https://stacks.cdc.gov/view/cdc/58853
44. Chetty R, Stepner M, Abraham S, Lin S, Scuderi B, Turner N, et al. The Association
Between Income and Life Expectancy in the United States, 2001–2014. Jama. 2016;315:
1750–1766. doi:10.1001/jama.2016.4226
45. Poulain M, Herm A, Pes G. The blue zones: Areas of exceptional longevity around the
1020
world. Vienna Yearb Popul Res. 2013; doi:10.1553/populationyearbook2013s87
46. Elders.Stat database: Istituto Nazionale di Statistica. In: Istituto Nazionale di Statistica
[Internet]. 2019 [cited 7 Feb 2019]. Available: http://dati-anziani.istat.it/
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
52
47. Gondo Y, Hirose N, Arai Y, Inagaki H, Masui Y, Yamamura K, et al. Functional status of
centenarians in Tokyo, Japan: Developing better phenotypes of exceptional longevity.
1025
Journals Gerontol - Ser A Biol Sci Med Sci. 2006; doi:10.1093/gerona/61.3.305
48. Nakamura T, Tano J, Arai N, Jimbou K. Summary Report of Comprehensive Survey of
Living Conditions 2016 [Internet]. 2017. Available:
https://www.mhlw.go.jp/english/database/db-hss/dl/report_gaikyo_2016.pdf
49. Gellert C, Schöttker B, Brenner H. Smoking and All-Cause Mortality in Older People.
1030
Arch Intern Med. 2012; doi:10.1001/archinternmed.2012.1397
50. Taylor DH, Hasselblad V, Henley SJ, Thun MJ, Sloan FA. Benefits of smoking cessation
for longevity. Am J Public Health. 2002; doi:10.2105/AJPH.92.6.990
51. Madans JH, Kleinman JC, Cox CS, Barbano HE, Feldman JJ, Cohen B, et al. 10 Years
after NHANES I: Report of initial followup, 1982-1984. Public Health Rep. 1986;
1035
52. Serdula MK, Koong SL, Williamson DF, Anda RF, Madans JH, Kleinman JC, et al.
Alcohol intake and subsequent mortality: Findings from the NHANES I follow-up study. J
Stud Alcohol. 1995; doi:10.15288/jsa.1995.56.233
53. Paganini-Hill A, Ross RK, Henderson BE. Prevalence of chronic disease and health
practices in a retirement community. J Chronic Dis. 1986; doi:10.1016/0021-
1040
9681(86)90153-0
54. Paganini-Hill A, Kawas CH, Corrada MM. Type of alcohol consumed, changes in intake
over time and mortality: The Leisure World Cohort Study. Age Ageing. 2007;
doi:10.1093/ageing/afl184
55. Sebastiani P, Perls TT. The genetics of extreme longevity: Lessons from the new england
1045
centenarian study. Front Genet. 2012; doi:10.3389/fgene.2012.00277
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
53
56. Perls TT, K B, Freemen M, Alpert L, Silver M /H. Age Validation in the New England
Centenarian Study. Validation of Exceptional Longevity. Odense; 1999.
57. Vaupel J, Vallin J, Meslé F, Robine J-M, Jdanov DA, Grigoriev O. The International
Database on Longevity [Internet]. 2020 [cited 13 Feb 2020]. Available:
1050
https://www.supercentenarians.org/Home/Expand_IDL
58. United Nations. Coverage of Birth and Death Registration. In: United Nations
Demographic Yearbook 2015: Quality of vital statistics obtained from civil registration
[Internet]. 2017 [cited 25 Oct 2017]. Available:
https://unstats.un.org/unsd/demographic/CRVS/CR_coverage.htm
1055
59. Gondo Y, Hirose N, Yasumoto S, Arai Y, Saito Y. Age verification of the longest lived
man in the world. Exp Gerontol. 2017; doi:10.1016/j.exger.2017.08.030
60. Takata Y, Ogawa G. Conscription system in Japan. New York, NY: Oxford University
Press; 1921.
61. Gerontology Research Group. In: Table A: Verified Supercentenarians [Internet]. 2019
1060
[cited 2 Jun 2019]. Available: http://www.grg.org/SC/SCListsTables.html
62. Levin J. Oldest American is 113-year-old Jersey girl. In: USA Today [Internet]. 2016
[cited 11 Feb 2020]. Available: https://www.usatoday.com/story/news/nation-
now/2016/07/21/oldest-american-year-old-jersey-girl/87373424/
63. Maier H, Gampe J, Jeune B RJ and VJ. Supercentenarians. Demogr Res Monogr. 2010;7.
1065
64. Smith D. RAF flypast for Europe’s oldest man. In: The Guardian [Internet]. 2008 [cited
11 Feb 2020]. Available:
https://www.theguardian.com/uk/2008/jun/01/military.firstworldwar
65. Christie J. The oldest living US veteran, age 108, credits drinking whiskey and smoking a
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
54
dozen cigars every day for his long life. In: Daily Mail [Internet]. 2014 [cited 11 Feb
1070
2020]. Available: https://www.dailymail.co.uk/news/article-2830888/The-oldest-living-
veteran-smokes-drinks-whiskey-day-drives-does-yard-work-s-108-YEARS-OLD.html
66. Coles LS. Aging: The Reality: Demography of Human Supercentenarians. Journals
Gerontol Ser A Biol Sci Med Sci. 2004;59: B579–B586. doi:10.1093/gerona/59.6.b579
67. Levine ME, Crimmins EM. A Genetic Network Associated with Stress Resistance,
1075
Longevity, and Cancer in Humans. Journals Gerontol - Ser A Biol Sci Med Sci. 2016;
doi:10.1093/gerona/glv141
68. Lv Y Bin, Liu S, Min Z-X, Gao X, Kraus VB, Mao C, et al. Associations of body mass
index and waist circumference with 3-year all-cause mortality among the oldest old:
evidence from a Chinese community-based prospective cohort study. J Am Med Dir
1080
Assoc. 2018;19: 672–678. doi:10.1016/j.jamda.2018.03.015
69. Oreopoulos A, Kalantar-Zadeh K, Sharma AM, Fonarow GC. The Obesity Paradox in the
Elderly: Potential Mechanisms and Clinical Implications. Clin Geriatr Med. 2009;25:
643–659. doi:10.1016/j.cger.2009.07.005
70. Japanese Ministry of Justice. About family register office work to affect location unknown
1085
elderly people [Internet]. 2010 [cited 18 Jun 2019]. Available:
http://www.moj.go.jp/MINJI/minji04_00008.html.
71. Fleischer JG, Schulte R, Tsai HH, Tyagi S, Ibarra A, Shokhirev MN, et al. Predicting age
from the transcriptome of human dermal fibroblasts. Genome Biol. 2018;
doi:10.1186/s13059-018-1599-6
1090
72. Malli RC, Aygun M, Ekenel HK. Apparent Age Estimation Using Ensemble of Deep
Learning Models. IEEE Computer Society Conference on Computer Vision and Pattern
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
55
Recognition Workshops. 2016. doi:10.1109/CVPRW.2016.94
73. Ohtani S, Yamamoto T. Age estimation by amino acid racemization in human teeth. J
Forensic Sci. 2010; doi:10.1111/j.1556-4029.2010.01472.x
1095
74. Nielsen J, Hedeholm RB, Heinemeier J, Bushnell PG, Christiansen JS, Olsen J, et al. Eye
lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus
microcephalus). Science (80- ). 2016;353: 702–704. doi:10.1126/science.aaf1703
75. Hetzel AM. History and Organization of the Vital Statistics System. US Vital Statistics
System: Major Activities and Developments, 1950-95. Centers for Disease Control and
1100
Prevention; National Center for Health Statistics; 1997. p. 75. Available:
https://www.cdc.gov/nchs/data/misc/usvss.pdf
76. Bonneuil N. Table de mortalité France et par département et tables de migration nette par
département, 1806-1906. Transformation of the French demographic landscape 1806 -
1906. Oxford: Clarendon Press; 1997.
1105
77. Institut national de la statistique et des études économiques. Statistiques locales: Revenus-
Pouvoir d’achat - comsommation Pauvreté [Internet]. 2016.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
56
Acknowledgements
1110
The author would like to acknowledge Zoe Campbell and Prof Heather Booth for providing
much-needed feedback and editing advice, Chris Mulligan for providing inspiration to use US
birth data, Sally Morell and Dr Jim Docherty for interesting leads, and a large section of the
scientific community for providing commentary and support.
1115
Author Contributions
SJN conceived, designed, analyzed and wrote the study
1120
Competing Interests
The author declares no competing interests.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
57
Figure S1. Poverty and the distribution of Japanese Centenarians. The 47 prefectures of Japan
1125
putatively contain over 48,000 centenarians, with generally higher concentration of centenarians per
capita (a) and per 90-99 year-old person (b) in prefectures with high poverty rates (c) and lower-ranked
prefectural incomes (d).
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
58
Figure S2. Italian provinces by GDP per capita and rates of extreme longevity. According to figures
1130
from the Italian national statistics office and regional GDP data from the OECD, purchase-power parity
adjusted GDP is negatively correlated with the frequency of (a) centenarians, (b) SSCs and (c)
supercentenarians per capita across Italy: a pattern repeated in employment rates (d-f). Furthermore, the
total number of 90+ year old people, shown here in log scale, is also negatively associated with the per
capita number of centenarians (g), SSCs (h) and supercentenarians (i) across Italy. Linear mixed model
1135
regressions shown in green, Sardinian provinces shown in blue.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
59
Figure S3. Historical life expectancy in the home region of birth for French
supercentenarians. Supercentenarians are born in regions with an 84-day shorter life
expectancy at birth, a non-significant reduction relative to the national average (one sample t-test
1140
NS; p = 0.52; N=143). Comparisons for supercentenarians born in overseas provinces and
imperial holdings are unavailable, data show metropolitan France only.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
60
1145
Figure S4. Age heaping of supercentenarian births. The distribution of modern birthdates (a), shown
here by 70 million US birthdates observed from 1969-1988, display limited variation across days of the
month. However, supercentenarian birth dates in the GRG (N = 1739) are 142% more likely to be born on
the first day of the month and 118% more likely to be born on days that are multiples of five (orange
points) compared with randomly distributed births (b). Age heaping on the first day of the month or in
1150
multiples of five is not as clear in the IDL data (c), possibly as a result of the removal of US birth days
and months, or differences in cultural patterns (the 25th is heavily under-represented) and data quality.
Points are labeled by the percentage of births over- or under-represented, relative to random sampling.
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
61
1155
Figure S5. Distribution of life expectancy estimates in US small-area census tracts,
including the Loma Linda ‘blue zone’. When calculated independently by the Centers for
Disease Control, the suburbs of Loma Linda range from the 27th to 75th percentiles of life
expectancy at birth in the USA (green lines), relative to all other census tracts (orange). The
1160
absolute upper estimate, the female-only life expectancy calculated by ‘blue zone’ proponents
(blue line), falls in the 98th percentile of life expectancy: high, but still behind 1401 longer-lived
US census tracts and the nations of Japan, Singapore, Monaco, Spain, and South Korea.
1165
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
62
Table S1. Top 20 UK regions for the density of 105+ year old people, or SSCs, per capita.
National Ranking, 1 = Worst, 131 = Best
Total
SSCs
SSCs
per
capita
(rank)
Income
Deprivation
Affecting
Older People
90+ year-
olds per
capita
(1=fewest)
Index of
Multiple
Deprivation
Crime
rate
Health
index
15
1
1
1
26
23
52
31
2
8
5
41
26
59
5
3
62
85
46
14
32
15
4
5
3
49
18
56
11
5
55
18
90
119
110
15
6
16
10
67
37
112
6
7
72
128
58
92
61
11
8
120
121
94
130
82
10
9
42
42
34
3
30
8
10
44
65
33
10
48
9
11
48
64
40
75
33
9
12
90
126
64
129
51
6
13
49
21
51
53
38
18
14
3
6
4
1
3
16
15
4
4
28
8
65
11
16
7
17
17
25
27
27
17
29
62
25
39
16
15
18
6
16
2
12
2
23
19
101
120
86
91
97
16
20
69
123
57
49
64
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
63
Table S2. Top 20 French regions for supercentenarians per capita (metropolitan and ranked
overseas territories only).
National Ranking, 1 = Worst, 101 = Best
Region
Super-
centenarians
(IDL)
Super-
cent. per
capita
(rank)
Poverty
rate ages
75+ (%)
Poverty rate
ages 75+
Poverty rate
GDP per
capita,
PPS adjusted
Creuse
3
1
17.0
4
16
4
Martinique
8
2
31.1
2
2
46
Guadeloupe
8
3
-
-
-
19
Cantal
2
4
13.9
10
60
21
Haute-Loire
3
5
11.1
26
77
10
Lozère
1
6
14.5
7
52
27
Lot
2
7
12.2
17
46
36
Indre
2
8
10.5
32
43
22
Yonne
3
9
7.0
75
44
39
Aude
3
10
14.4
8
5
11
Tarn
3
11
11.1
25
33
13
Paris
17
12
9.6
39
27
100
Jura
2
13
8.5
56
84
34
Maine-et-Loire
6
14
6.8
83
85
59
Aveyron
2
15
12.6
16
57
42
Hautes-Alpes
1
16
9.9
38
53
48
Orne
2
17
8.3
61
26
25
Ariège
1
18
12.8
15
14
6
Corse-du-Sud
1
19
15.9
5
19
75
Alpes-de-Haute-
Provence
16
20
10.8
69
123
40
1170
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
64
Table S3. Top 20 Italian provinces and regions for supercentenarians per capita.
National Ranking, 1 = Worst 116 = Best
Province
Region
Super-
centenarians
per 100k (l110)
Rank
l110
Survival
to age 55
Unemployment
GDP per
capita,
PPS
adjusted
90+ year-
olds per
capita
(1=fewest)
Olbia-Tempio
Sardinia
27
1
7
14
41
8
Medio
Campidano
Sardinia*
23
2
2
2
1
33
Carbonia-
Iglesias
Sardinia
15
3
3
4
13
43
Isernia
Molise
13
4
4
3
34
102
Matera
Basilicata
6
5
61
15
17
23
Prato
Tuscany
6
6
114
40
80
59
L'Aquila
Abruzzo
5
7
65
39
49
82
Rieti
Lazio
5
8
8
7
31
80
Belluno
Veneto
4
9
45
29
96
91
Campobasso
Molise
4
10
38
22
35
76
Catanzaro
Calabria
4
11
59
52
26
31
Gorizia
Friuli-
Venezia
Giulia
4
12
34
10
64
107
Ogliastra
Sardinia*
4
13
1
1
23
66
Pistoia
Tuscany
4
14
87
37
59
84
Metropolitan
City of Rome
Lazio
4
15
81
111
104
24
Vibo Valentia
Calabria
4
16
12
6
4
38
Brescia
Lombardy
3
17
90
106
94
25
Chieti
Abruzzo
3
18
64
64
53
71
Cremona
Lombardy
3
19
67
56
75
60
Fermo
Marche
3
20
35
-
-
-
* 'Blue zone’ region
1175
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
65
Table S4. Top 20 Japanese prefectures for centenarians per capita in 2015.
National Ranking, 1 = Worst, 47 = Best
Prefecture
Centenarians
(total)
Rank
Centenarians
per capita
Poverty rate
(%)
Poverty rate
Financial
strength
Income per
capita 2011
Shimane
515
1
16.7
30
1
13
Kochi
486
2
23.7
4
2
6
Okinawa*
872
3
34.8
1
5
1
Kagoshima
985
4
24.3
2
6
5
Tottori
334
5
18.9
21
3
2
Yamaguchi
806
6
16.9
27
23
36
Kumamoto
972
7
21.5
10
16
11
Saga
441
8
15.6
35
13
10
Toyama
554
9
11.2
47
25
44
Okayama
980
10
20.6
15
29
17
Ehime
720
11
20.2
17
20
12
Miyazaki
566
12
23.0
6
9
3
Nagasaki
700
13
22.2
8
7
7
Hiroshima
1395
14
16.9
26
35
35
Kagawa
482
15
17.2
24
27
28
Tokushima
377
16
21.8
9
8
33
Niigata
1105
17
16.0
33
19
21
Nagano
1000
18
15.5
36
26
25
Yamanashi
392
19
19.1
20
18
34
Oita
536
20
21.3
13
15
19
* 'Blue zone’ region
1180
.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which was notthis version posted May 3, 2020. . https://doi.org/10.1101/704080doi: bioRxiv preprint
... In the 1825 study, only a quarter of the population died each year on the plateau while in the 2020 study half died each year. Does this mean that supercentenarians are frailer now than they would have been 200 years ago, or does it mean that the plateau observed by Gompertz (and others) was an artefact of inaccuracy of the data at the highest ages as suggested in some studies [11,12]? Can we be sure that the mortality statistics observed today is correct and this trend of shifting plateau to the right and increasing the mortality force on the plateau will not continue? ...
... However, mortality statistics might be plagued by false data, so that conclusions could be misleading [30,11,12]. These are fundamental issues in the field of gerontology with implications for the nature of the aging process and potential applications to elderly care and life extension. ...
... Local news reports show that in adulthood, some of their families led troubled lives. Crime rates were increasing, and record keeping was poor, a common feature for areas with misrepresentation of longevity [11]. Informal adoptions within families were historically common and can often only be uncovered by DNA testing. ...
Preprint
Full-text available
Background: The ages of the oldest humans are important data for scientific studies in gerontology, medicine and demographics. Scientists often reference specific cases such as Jeanne Calment, or resources such as the International Database on Longevity. However, numerous inherent dangers and pitfalls have dogged the history of human longevity record keeping. Many people who were believed to be the oldest person in their day turned out to be younger than claimed. This could affect scientific conclusions based on their assumed longevity. In this work we review longevity validations at the top of the official lists of the world’s oldest ever men and women. We aim to outline a stronger “cast-iron” standard for the purposes of future scientific studies of extreme longevity.Results: To inform the higher standard, we have examined individual cases of validation, including those that have been withdrawn or disputed. We highlight their weaknesses and show how deeper investigation could help validate similar claims in the future. We also consider the use of DNA testing to verify the identity of supercentenarians. A self-use questionnaire is offered to validators to help further improve consistency and completeness of their reporting.In a few cases, such as the lives of Sarah Knauss, Christian Mortensen and Israel Kristal we have found new evidence that improves confidence in their validation, but for others our search casts serious doubt on authenticity, or leaves questions over whether the standard of validation is good enough. Having previously disputed the longevity of Jeanne Calment, we now add Nabi Tajima from Japan and Johnson Parks from the U.S. to those who should be invalidated, and we question whether birth records for Japanese supercentenarians can be considered reliable. We also challenge the validation of several U.S cases which were based on unreliable census data in the SSA Kestenbaum study.Conclusions: Correct assessment of the chronological age is a necessary step for biologists studying the determinants of exceptional longevity. We hope that our findings could be used to improve the quality of age validations. They may also influence demographers' conclusions about the future of life expectancy
... In the 1825 study, only a quarter of the population died each year on the plateau while in the 2020 study half died each year. Does that mean that supercentenarians are frailer now than they would have been 200 years ago, or does it mean that the plateau observed by Gompertz (and others) was an artefact of inaccuracy of the data at the highest ages as suggested in [11,12]? Can we be sure that the mortality statistics at highest ages observed today is correct and this trend of shifting plateau to the right and increasing the mortality force on the plateau would not continue? ...
... Others have suggested that the annual survival rate continues to diminish towards zero, imposing a soft limit on the natural human lifespan at around 115 years [18]. However, mortality statistics might be plagued by false data, so that conclusions could be misleading [30,11,12]. These are fundamental issues in the field of gerontology with implications for the nature of the aging process and potential applications to elderly care and life extension. ...
... Local news reports show that in adulthood, some of their families led troubled lives. Crime rates were increasing and record keeping was poor, a common feature for areas with misrepresentation of longevity [11]. While trying to find more information on Sarah Clark, we became aware of reports on supercentenarian internet forums of a claim that there is a church record of her religious confirmation in 1895, but with no age or birth date recorded. ...
Preprint
Full-text available
Scientists who specialise in the study of supercentenarian lifespans warn us of the inherent dangers and pitfalls that have dogged the history of human longevity record keeping. Many people who were believed to be the oldest person in their day turned out to be younger than claimed. In recent decades validators have sought to apply more robust and objective standards for scientific age checking, but have they succeeded? It’s an important question. The demographics of extreme ages have had surprisingly far-reaching applications beyond promoting the wellbeing of the aged. Influence has ranged from setting the price of our pension annuities to guiding governments on retirement age and other planning policies. In this work we review longevity validations at the top of the official lists of the world’s oldest ever men and women. In a few cases, such as the lives of Sarah Knauss, Christian Mortensen and Israel Kristal we have found new evidence that improves confidence in their validation, but for others our search casts serious doubt on authenticity, or leaves questions over whether the standard of validation is good enough. Taken as a whole our findings could affect conclusions reached by demographers about the future of life expectancy.
... Others have suggested that the annual survival rate continues to diminish towards zero, imposing a soft limit on the natural human lifespan at around 115 years [10]. However, mortality statistics might be plagued by false data, so that conclusions could be misleading [2,11,12]. These are fundamental issues in the field of gerontology with implications for the nature of the aging process and potential applications to elderly care and life extension. ...
... Local news reports show that in adulthood, some of their families led troubled lives. Crime rates were increasing and record keeping was poor, a common feature for areas with misrepresentation of longevity [11]. Notable cases are Emma J Deremer (b. ...
Preprint
Full-text available
The verification of human longevity is a hazardous process with many errors, false claims and myths among the true records. In the light of past withdrawn and disputed cases we conduct a sceptical reappraisal of validations from the top of the lists of world's oldest people. Longevity data is used increasingly by scientists with applications in research programs trying to understand and combat the processes of aging. Our goal is to evaluate the robustness and accuracy of the information being referenced. We identify weaknesses with the standards and practices in use but we also find significant new evidence for some important cases including Sarah Knauss. We propose ambitious new standards so that the process of validation can continue to improve with the benefits of new technology, including DNA testing.
Article
Full-text available
Athleticism and the mortality rates begin a lifelong trajectory of decline during early adulthood. Because of the substantial follow-up time required, however, observing any longitudinal link between early-life physical declines and late-life mortality and aging remains largely inaccessible. Here, we use longitudinal data on elite athletes to reveal how early-life athletic performance predicts late-life mortality and aging in healthy male populations. Using data on over 10,000 baseball and basketball players, we calculate age at peak athleticism and rates of decline in athletic performance to predict late-life mortality patterns. Predictive capacity of these variables persists for decades after retirement, displays large effect sizes, and is independent of birth month, cohort, body mass index, and height. Furthermore, a nonparametric cohort-matching approach suggests that these mortality rate differences are associated with differential aging rates, not just extrinsic mortality. These results highlight the capacity of athletic data to predict late-life mortality, even across periods of substantial social and medical change.
Preprint
Full-text available
Background: This research evaluates the association between increased animal product consumption and population-level dementia incidence. Design/methodology/approach: Publicly available data from 54 countries across a 10-year span was used to conduct a multivariate panel data regression to determine significant relationships between dietary changes and rates of dementia. Fixed effects analysis controls for the effect of omitted time-invariant differences between countries. Findings: Excess calorie consumption is associated with a significant increase in dementia whereas fish consumption appears protective. On a population-level basis, increases in milk and egg consumption were associated with an increase in dementia rates. Meat, as a broadly defined category, was found to have no significant effect. Practical Implications: This study supports the well-documented benefits of calorie control and fish consumption to protect against dementia, but indicates that egg and milk consumption is associated with increased population-level dementia incidence. Originality/value: This research expands current literature by using an updated data set, evaluating considerably more countries, and utilizing a regression model that controls for the effects of time-invariant sources of heterogeneity in the data. Keywords: Nutrition Recommendations, Ecological Studies, Mediterranean Diet, Dementia, Blue Zone Diet, Western Diet, Alzheimer's Paper type: Research paper
Article
Full-text available
Knowledge of true mortality trajectory at extreme old ages is important for biologists who test their theories of aging with demographic data. Studies using both simulation and direct age validation found that longevity records for ages 105 years and older are often incorrect and may lead to spurious mortality deceleration and mortality plateau. After age 105 years, longevity claims should be considered as extraordinary claims that require extraordinary evidence. Traditional methods of data cleaning and data quality control are just not sufficient. New, more strict methodologies of data quality control need to be developed and tested. Before this happens, all mortality estimates for ages above 105 years should be treated as unreliable.
Article
Full-text available
Newman questions recent claims about a plateau in mortality rates for Italians beyond age 105 on the basis of a hypothetical model. His model implies implausibly high error rates for extreme ages. For individuals over 110, for whom birth certificates have been collected, the form in which Italian births were registered precludes the kinds of clerical errors in year of birth that Newman assumes.
Article
Full-text available
Author summary In diverse species, mortality rates increase with age at a relatively fixed rate within populations. However, recent discoveries have suggested this relationship breaks down in advanced old age, with mortality rate increases slowing and even reaching a plateau. This late-life mortality deceleration has initiated sustained debate on the cause of late-life deceleration and plateaus. Proposed explanations include evolutionary patterns, the exhaustion of selective pressure, population heterogeneity, and even the cessation of the ageing process. Here, I demonstrate that apparent late-life mortality decelerations and plateaus can be generated by low-frequency errors. I then reveal how indicators of demographic data quality predict the magnitude of late-life mortality deceleration and the existence of late-life plateaus in human populations. These findings suggest that human late-life mortality plateaus are largely, if not entirely, artefacts of error processes. As a result, late-life mortality plateaus and decelerations may be explained by error patterns in humans and many other species without invoking complex biological, heterogeneity, or evolutionary models. This finding has immediate consequences for demographic modelling, evolutionary biology, and the projected upper limits of human and nonhuman life.
Article
Full-text available
This study highlights how the mortality plateau in Barbi and colleagues can be generated by low-frequency, randomly distributed age-misreporting errors. Furthermore, sensitivity of the late-life mortality plateau in Barbi and colleagues to the particular age range selected for regression is illustrated. Collectively, the simulation of age-misreporting errors in late-life human mortality data and a less-specific model choice than that of Barbi and colleagues highlight a clear alternative hypothesis to explanations based on evolution, the cessation of ageing, and population heterogeneity.
Article
Full-text available
Biomarkers of aging can be used to assess the health of individuals and to study aging and age-related diseases. We generate a large dataset of genome-wide RNA-seq profiles of human dermal fibroblasts from 133 people aged 1 to 94 years old to test whether signatures of aging are encoded within the transcriptome. We develop an ensemble machine learning method that predicts age to a median error of 4 years, outperforming previous methods used to predict age. The ensemble was further validated by testing it on ten progeria patients, and our method is the only one that predicts accelerated aging in these patients. Electronic supplementary material The online version of this article (10.1186/s13059-018-1599-6) contains supplementary material, which is available to authorized users.
Article
Full-text available
Objective: Current international and national guidelines for body mass index (BMI) and waist circumference (WC) have been recommended to all adults. However, whether recommendations applied to the oldest old (aged 80+) is poorly known. The study objective was to investigate the relation of BMI and WC with 3-year all-cause mortality among the oldest old. Design, setting, and participants: A total of 4361 Chinese oldest old (mean age 91.8) participated in this community-based prospective cohort study. Measurements: BMI and WC were measured at baseline in 2011 and were used as continuous variables and as categorized variables by recommendations or by tertiles. Adjusted, sex-stratified Cox models with penalized splines and Cox models were constructed to explore the association. Results: Greater BMI and WC were linearly associated with lower mortality risk in both genders. The mortality risk was the lowest in overweight or obese participants (BMI ≥ 24.0) and was lower in participants with abdominal obesity. Compared to the upper tertile, those in the middle and lower tertile of BMI had a higher risk of mortality for men [hazard ratio (HR): 1.23 (1.02-1.48) and 1.53 (1.28-1.82)] and for women [HR: 1.21 (1.03-1.41) and 1.35 (1.15-1.58)]; it was also found in participants in the middle and lower tertile of WC for men [HR: 1.21 (1.01-1.46) and 1.41 (1.18-1.69)] and for women [HR: 1.35 (1.15-1.58) and 1.55 (1.32-1.81)] (all the P values for trend <.001). These findings were robust in further sensitivity analyses or when using propensity score matching, in subgroup analyses, or in octogenarians, nonagenarians, and centenarians. Conclusions: In Chinese oldest old, both higher BMI and higher WC predict better survival in both genders. The finding suggests optimal BMI and WC may be sensitive to age, thus, the current recommendations for the oldest old may need to be revisited.
Article
Full-text available
In this paper, we address the problem of apparent age estimation. Different from estimating the real age of individuals, in which each face image has a single age label, in this problem, face images have multiple age labels, corresponding to the ages perceived by the annotators, when they look at these images. This provides an intriguing computer vision problem, since in generic image or object classification tasks, it is typical to have a single ground truth label per class. To account for multiple labels per image, instead of using average age of the annotated face image as the class label, we have grouped the face images that are within a specified age range. Using these age groups and their age-shifted groupings, we have trained an ensemble of deep learning models. Before feeding an input face image to a deep learning model, five facial landmark points are detected and used for 2-D alignment. We have employed and fine tuned convolutional neural networks (CNNs) that are based on VGG-16 [24] architecture and pretrained on the IMDB-WIKI dataset [22]. The outputs of these deep learning models are then combined to produce the final estimation. Proposed method achieves 0.3668 error in the final ChaLearn LAP 2016 challenge test set [5].
Article
Mortality rates level off at extreme age The demography of human longevity is a contentious topic. On the basis of high-quality data from Italians aged 105 and older, Barbi et al. show that mortality is constant at extreme ages but at levels that decline somewhat across cohorts. Human death rates increase exponentially up to about age 80, then decelerate, and plateau after age 105. Science , this issue p. 1459
Article
Objectives The group of individuals aged 80 and over is growing faster than other segments of the population, and within this group the number of centenarians has risen exponentially worldwide. This paper reports the numbers of centenarians (total, and ratio relative to total population) in 32 European countries and their key characteristics: gender distribution, level of education, and type of residence. Study design Population based study. Measures We used national census data collected in 2011 for individuals aged 100 and over living in Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the UK. Data on gender, residence and education were used. Results The total number of centenarians was 89156, corresponding to 17.3 centenarians per 100000 inhabitants of the total population and 98.0 centenarians per 100000 individuals aged 65 and older. Centenarian ratios were highest in France, Italy and Greece, and lowest in Bulgaria, Romania, and Croatia. The percentage of men was 16.5% on average, and ranged from around 13% (Germany, Latvia, Belgium) to 37% (Hungary). Across Europe, 62.7% of the centenarians lived in private households, with a range from 10.9% (Iceland) to 90.0% (Romania). Education levels varied across countries, with an average of 13.6% having no formal education, ranging from 0.0% (the UK, Finland, Iceland) to 61.6% (Portugal). Conclusions Centenarian numbers have increased substantially since last available data. The findings will inform specific health promotion policies, the strengthening of current services and the development of innovative care systems.
Chapter
This chapter provides an introduction to, and summary of, the contents of this book. It outlines the aim of the project and provides an overview of the indicators covered, comparing them with those used in the OECD Better Life Initiative. The chapter also presents the criteria used throughout the report to assess the quality of the indicators used, and discusses practical issues concerning country and period coverage and calculation of regional trends. Finally, the chapter summarises the content of each chapter and their main highlights.