Article

Assessment of Potential Clinical Role for Exome Sequencing in Schizophrenia

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background: There is increasing evidence that certain genetic variants increase the risk of schizophrenia and other neurodevelopmental disorders. Exome sequencing has been shown to have a high diagnostic yield for developmental disability and testing for copy number variants has been advocated for schizophrenia. The diagnostic yield for exome sequencing in schizophrenia is unknown. Method: A sample of 591 exome-sequenced schizophrenia cases and their parents were screened for disruptive and damaging variants in autosomal genes listed in the Genomics England panels for intellectual disability and other neurological disorders. Results: Previously reported disruptive de novo variants were noted in SETD1A, POGZ, SCN2A, and ZMYND11. Although the loss of function of ZMYND11 is a recognized cause of intellectual disability, it has not previously been noted as a risk factor for schizophrenia. A damaging de novo variant of uncertain significance was noted in NRXN1. A previously reported homozygous damaging variant in BLM is predicted to cause Bloom syndrome in 1 case and 1 case was homozygous for a damaging variant in MCPH1, a result of uncertain significance. There were more than 400 disruptive and damaging variants in the target genes in cases but similar numbers were seen among untransmitted parental alleles and none appeared to be clinically significant. Conclusions: The diagnostic yield from exome sequencing in schizophrenia is low. Disruptive and damaging variants seen in known neuropsychiatric genes should not be automatically assumed to have an etiological role if observed in a patient with schizophrenia.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The role of rare and ultra-rare single nucleotide variants (SNVs) and insertions or deletions (indels) in schizophrenia has also been extensively investigated, focusing mainly on the role of de novo rare loss-of-function (LoF) mutations [13,14]. Rare variants in a few genes (e.g., SETD1A and RBM12) have been associated with schizophrenia [15][16][17]. ...
... Large-scale WES studies have focused mainly on de novo variants [25,26] and did not systematically apply strict diagnostic criteria to variant categorization. In a previous WES of schizophrenia cases, which focused on genes associated with neurological disorders, the yield was approximately 1% [14]. However, a recent WGS study that captured different kinds of genetic variation reported a higher diagnostic rate (6%) [27]. ...
... This variability in yield may be explained by several factors. In contrast to previous WES/WGS studies [13,14,27], not all our cases had schizophrenia, and some were diagnosed with related conditions that involve psychosis (schizoaffective, delusional disorder, unspecified psychosis, and bipolar disorder with psychotic features). These disorders do not constitute distinct entities, and there is an overlap between them [66][67][68], as frequently encountered in clinical practice [69]. ...
Article
Full-text available
Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.
... These genes are mostly implicated in glutamatergic synapse formation and regulation, however several other rare variants have been reported (Singh et al., 2022;Liu et al., 2023). Although exome sequencing in SCZ patients, i.e. testing of rare variants in protein coding genes is not part of the clinical protocol as of now, it has been suggested that it might confer clinical insight for the etiology and treatment of individual patients (Balakrishna and Curtis, 2020). ...
... Recently, aberrant splicing of Zmynd11 has been demonstrated in the brain and spinal cord of mice overexpressing a mutant form of TDP-43, an important gene implicated in ALS and FTD (Narayanan et al., 2023). Genetic mutations in ZMYND11 have been shown in tumorigenesis (Wang et al., 2020), intellectual disability with or without epilepsy (Yates et al., 2020;Huynh et al., 2021;Oates et al., 2021), and in one patient, SCZ (Balakrishna and Curtis, 2020), although the biological mechanisms causing these phenotypes remain elusive. ...
... We previously identified a heterozygous inherited missense variant of the gene in a family with febrile seizures associated with afebrile seizures [3] and heterozygous de novo loss-of-function or missense variants in patients with intractable epilepsies associated with or without autism spectrum disorder (ASD) and/or intellectual disability (ID) [4,5]. Subsequently, multiple exome sequencing studies identified heterozygous de novo loss-of-function variants of the gene in patients with ASD [6][7][8], ID [9,10] or schizophrenia [11][12][13][14][15]. ...
... Although SCN2A has been well established as a gene responsible for schizophrenia [11][12][13][14][15] and PPI has been well recognized as an endophenotype of schizophrenia [54][55][56][57][58], we previously reported that systemic Scn2a +/mice did not show reduction in PPI [23]. Our present study now revealed the counteracting effects of Nav1.2 deficiencies in mPFC and VTA for PPI, and therefore suggests that Nav1.2 functional deficiencies in mPFC in schizophrenic patients with SCN2A loss-of-function mutations cause the decrease of PPI but it may be masked by the counteracting Nav1.2 deficiencies in additional nuclei including VTA in mouse. ...
Article
Full-text available
Numerous pathogenic variants of SCN2A gene, encoding voltage-gated sodium channel α2 subunit Nav1.2 protein, have been identified in a wide spectrum of neuropsychiatric disorders including schizophrenia. However, pathological mechanisms for the schizophrenia-relevant behavioral abnormalities caused by the variants remain poorly understood. Here in this study, we characterized mouse lines with selective Scn2a deletion at schizophrenia-related brain regions, medial prefrontal cortex (mPFC) or ventral tegmental area (VTA), obtained by injecting adeno-associated viruses (AAV) expressing Cre recombinase into homozygous Scn2a-floxed (Scn2afl/fl) mice, in which expression of the Scn2a was locally deleted in the presence of Cre recombinase. The mice lacking Scn2a in the mPFC exhibited a tendency for a reduction in prepulse inhibition (PPI) in acoustic startle response. Conversely, the mice lacking Scn2a in the VTA showed a significant increase in PPI. We also found that the mice lacking Scn2a in the mPFC displayed increased sociability, decreased locomotor activity, and increased anxiety-like behavior, while the mice lacking Scn2a in the VTA did not show any other abnormalities in these parameters except for vertical activity which is one of locomotor activities. These results suggest that Scn2a-deficiencies in mPFC and VTA are inversely relevant for the schizophrenic phenotypes in patients with SCN2A variants.
... Although individually rare, it is well-established that genetic etiologies collectively account for a significant proportion of childhood DBD (Table 1). A specific genetic cause can be determined in a quarter of individuals with ASD and half of those with ID using a combination of clinically available chromosomal microarray analysis and ES [6 , [9][10][11][12][13][14][15]. Many rare genetic causes of epilepsy involve biological pathways with particular relevance for pharmacological treatment [10]. ...
... There are far fewer published surveys of diagnostic testing for conditions such as schizophrenia and bipolar disorder, where the research focus has historically been on identifying common variants through genome-wide association studies rather than on rare variants. Numerous CNVs have been reported in schizophrenia [13][14][15], including well-described conditions such as the 22q11.2 deletion syndrome [16]. ...
Article
Full-text available
Developmental brain disorders (DBD), including autism spectrum disorder, intellectual disability, and schizophrenia, are clinically defined and etiologically heterogeneous conditions with a wide range of outcomes. Rare pathogenic copy number and single nucleotide genomic variants are among the most common known etiologies, with diagnostic yields approaching for some DBD cohorts. Incorporating genetic testing into the care of adult patients with DBD, paired with targeted genetic counseling and family cascade testing, may increase self-advocacy and decrease stigma. In the long-term, breakthroughs in the understanding of DBD pathophysiology will hinge on the identification, engagement, and study of individuals with rare genetic DBD etiologies, consistent with successful precision medicine approaches to the treatment of cancer and cardiovascular disease.
... In contrast, the reported diagnostic yield for schizophrenia ranges from <1 % (Balakrishna and Curtis, 2020) to upwards of 15 % (Mojarad et al., 2021), with significant heterogeneity across study populations. The populations differ on psychosis age-of-onset, from childhood-onset (i.e., pre-pubescent) (Ambalavanan et al., 2019(Ambalavanan et al., , 2016, to early-onset (i.e., adolescent) (Brownstein et al., 2022;Gregoric Kumperscak et al., 2021), to adult-onset (Balakrishna and Curtis, 2020;Costain et al., 2013). Additionally, the degree of comorbidity with other NDDs varies considerably, which can strongly impact diagnostic yield (Lowther et al., 2017). ...
... The first part of the path to resolving this problem has been clarified by the results of studies to date. Aggregating the existing knowledge, we are able to identify diagnostic genomic variants (e.g., Pathogenic or Likely Pathogenic variants in the American College of Medical Genetics and Genomics [ACMG] guidelines [135]) in 1-6% of schizophrenia patients by comprehensively analyzing rare variants [136][137][138][139], and to extract a small proportion of the population with high genetic risk (e.g., OR > 5) utilizing the overall profiles of common variants (i.e., PRS [140,141]). On the other hand, to our knowledge, there are no genetic tests for schizophrenia approved by the government and covered by health insurance. ...
Article
Full-text available
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes ( SETD1A , CUL1 , XPO7 , GRIA3 , GRIN2A , and RB1CC1 ) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
... Recently, a large collaborative study has identified rare coding variants in 10 genes that confer substantial risk for schizophrenia (Singh et al., 2022). However, despite these discoveries, the diagnostic yield from exome sequencing in schizophrenia is low (Balakrishna and Curtis, 2020) and diseaserelated RV can only be detected in a small proportion of schizophrenic patients. In addition, mutations in non-coding regions can still have significant impacts on gene expression, variants in non-coding regulatory genome elements may be involved in schizophrenia and account for part of the missing heritability. ...
Article
Full-text available
Background Schizophrenia (SCZ) is a heterogeneous psychiatric disorder, with significant contribution from genetic factors particularly for chronic cases with negative symptoms and cognitive deficits. To date, Genome Wide Association Studies (GWAS) and exome sequencing have associated SCZ with a number of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs), but there is still missing heritability. Medium-sized structural variants (SVs) are difficult to detect using SNP arrays or second generation sequencing, and may account for part of the missing heritability of SCZ. Aims and objectives To identify SVs associated with severe chronic SCZ across the whole genome. Study design 10 multiplex families with probands suffering from chronic SCZ with negative symptoms and cognitive deficits were recruited, with all their affected members demonstrating uni-lineal inheritance. Control subjects comprised one affected member from the affected lineage, and unaffected members from each paternal and maternal lineage. Methods Third generation sequencing was applied to peripheral blood samples from 10 probands and 5 unaffected controls. Bioinformatic tools were used to identify SVs from the long sequencing reads, with confirmation of findings in probands by short-read Illumina sequencing, Sanger sequencing and visual manual validation with Integrated Genome Browser. Results In the 10 probands, we identified and validated 88 SVs (mostly in introns and medium-sized), within 79 genes, which were absent in the 5 unaffected control subjects. These 79 genes were enriched in 20 biological pathways which were related to brain development, neuronal migration, neurogenesis, neuronal/synaptic function, learning/memory, and hearing. These identified SVs also showed evidence for enrichment of genes that are highly expressed in the adolescent striatum. Conclusion A substantial part of the missing heritability in SCZ may be explained by medium-sized SVs detectable only by third generation sequencing. We have identified a number of such SVs potentially conferring risk for SCZ, which implicate multiple brain-related genes and pathways. In addition to previously-identified pathways involved in SCZ such as neurodevelopment and neuronal/synaptic functioning, we also found novel evidence for enrichment in hearing-related pathways and genes expressed in the adolescent striatum.
Article
Full-text available
Genetic testing to identify genetic syndromes and copy number variants (CNVs) via whole genome platforms such as chromosome microarray (CMA) or exome sequencing (ES) is routinely performed clinically, and is considered by a variety of organizations and societies to be a “first-tier” test for individuals with developmental delay (DD), intellectual disability (ID), or autism spectrum disorder (ASD). However, in the context of schizophrenia, though CNVs can have a large effect on risk, genetic testing is not typically a part of routine clinical care, and no clinical practice guidelines recommend testing. This raises the question of whether CNV testing should be similarly performed for individuals with schizophrenia. Here we consider this proposition in light of the history of genetic testing for ID/DD and ASD, and through the application of an ethical analysis designed to enable robust, accountable and justifiable decision-making. Using a systematic framework and application of relevant bioethical principles (beneficence, non-maleficence, autonomy, and justice), our examination highlights that while CNV testing for the indication of ID has considerable benefits, there is currently insufficient evidence to suggest that overall, the potential harms are outweighed by the potential benefits of CNV testing for the sole indications of schizophrenia or ASD. However, although the application of CNV tests for children with ASD or schizophrenia without ID/DD is, strictly speaking, off-label use, there may be clinical utility and benefits substantive enough to outweigh the harms. Research is needed to clarify the harms and benefits of testing in pediatric and adult contexts. Given that genetic counseling has demonstrated benefits for schizophrenia, and has the potential to mitigate many of the potential harms from genetic testing, any decisions to implement genetic testing for schizophrenia should involve high-quality evidence-based genetic counseling.
Article
The perception of extreme states prevailing in contemporary society and mental health systems does not give justice to the transformational aspect of the process of extreme states. It generally views mental distress from the confinements of the perspective of objectivist epistemology and medicalization, disregarding its potential valuable aspects. Consequently, extreme states are reduced to biological malfunction, which renders the process meaningless and can have negative social implications. It is proposed in the article for extreme states to instead be viewed as a call to become aware of the context that the human being finds unbearable. Following this, the emphasis is put on the view of extreme states as an invitation to hold space for exploration and the potential emergence of new ways of being. The aim is not to minimize the suffering that can accompany extreme states, but to bring the meaning-making aspect of extreme states to the forefront.
Article
Full-text available
A rare microcephalin 1 gene (MCPH1) variant rs61749465A>G (p.Asp61Gly) with prior evidence for association with schizophrenia (p = 3.78 × 10⁻⁷) was tested for association in 2,300 bipolar disorder (BPD) participants, 1,930 SCZ participants and 1,820 normal comparison subjects. We report evidence for association of rs61749465A>G with BPD (p = 0.0009). rs61749465 is located in the N‐terminal of the BRCT1 domain of MCPH1. Bioinformatic analysis predicted the Asp61Gly substitution to be damaging to MCPH1 function. A second MCPH1 BRCT1 domain variant (rs199422124C>G; p.Thr27Arg), reported to cause autosomal recessive microcephaly, was not detected in the participants tested here. We sought to characterize the functional effects of these variants on MCPH1 function. Cell count assays indicated that rs199422124 allele G had a greater impact on cell survival compared to the G allele of rs61749465. Gene expression analysis combined with gene network and pathway analysis indicated that rs61749465 allele G may impact protein translation and cell cycle control. The evidence for association between rs61749465A>G and psychosis in both BPD and SCZ warrants further replication. Likewise, the data from the functional analyses point to molecular mechanisms that may underlie the proposed MCPH1 mediated risk of psychosis and pathogenesis in autosomal recessive microcephaly require additional experimental validation.
Article
Full-text available
Microdeletions in the 1q44 region encompassing the HNRNPU gene have been associated with infantile spasms and hemiconvulsion-hemiplegia-epilepsy syndrome. Recent studies have revealed that heterozygous HNRNPU variants resulted in early onset epilepsy and severe intellectual disability. A de novo frameshift mutation in HNRNPU was identified in a 5-year-old boy with developmental delay associated with Rett-like features including stereotypic hand movements and respiratory abnormalities with episode of apnea and hyperpnea followed by falling. He also showed an episode of acute encephalopathy with biphasic seizures and late reduced diffusion followed by hemiplegia and intractable epilepsy. Unique and variable clinical features are related to loss-of-function or haploinsufficiency of HNRNPU.
Article
Full-text available
A previous study of exome-sequenced schizophrenia cases and controls reported an excess of singleton, gene-disruptive variants among cases, concentrated in particular gene sets. The dataset included a number of subjects with a substantial Finnish contribution to ancestry. We have reanalysed the same dataset after removal of these subjects and we have also included non-singleton variants of all types using a weighted burden test which assigns higher weights to variants predicted to have a greater effect on protein function. We investigated the same 31 gene sets as previously and also 1454 GO gene sets. The reduced dataset consisted of 4225 cases and 5834 controls. No individual variants or genes were significantly enriched in cases but 13 out of the 31 gene sets were significant after Bonferroni correction and the “FMRP targets” set produced a signed log p value (SLP) of 7.1. The gene within this set with the highest SLP, equal to 3.4, was FYN, which codes for a tyrosine kinase which phosphorylates glutamate metabotropic receptors and ionotropic NMDA receptors, thus modulating their trafficking, subcellular distribution and function. In the most recent GWAS of schizophrenia it was identified as a “prioritized candidate gene”. Two of the subunits of the NMDA receptor which are substrates of FYN are coded for by GRIN1 (SLP = 1.7) and GRIN2B (SLP = 2.1). Of note, for some sets there was a substantial enrichment of non-singleton variants. Of 1454 GO gene sets, three were significant after Bonferroni correction. Identifying specific genes and variants will depend on genotyping them in larger samples and/or demonstrating that they cosegregate with illness within pedigrees. Electronic supplementary material The online version of this article (10.1007/s10519-018-9893-3) contains supplementary material, which is available to authorized users.
Article
Full-text available
Purpose Given the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge. Methods We tested this hypothesis in the United Kingdom–wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes. Results We are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder–associated genes discovered since our original publication. Conclusion This study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent–offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.
Article
Full-text available
Abstract Background Schizophrenia is a severe psychiatric disorder associated with IQ deficits. Rare copy number variations (CNVs) have been established to play an important role in the etiology of schizophrenia. Several of the large rare CNVs associated with schizophrenia have been shown to negatively affect IQ in population-based controls where no major neuropsychiatric disorder is reported. The aim of this study was to examine the diagnostic yield of microarray testing and the functional impact of genome-wide rare CNVs in a community ascertained cohort of adults with schizophrenia and low (
Article
Full-text available
Risk of schizophrenia is conferred by alleles occurring across the full spectrum of frequencies from common SNPs of weak effect through to ultra rare alleles, some of which may be moderately to highly penetrant. Previous studies have suggested that some of the risk of schizophrenia is attributable to uncommon alleles represented on Illumina exome arrays. Here, we present the largest study of exomic variation in schizophrenia to date, using samples from the United Kingdom and Sweden (10,011 schizophrenia cases and 13,791 controls). Single variants, genes, and gene sets were analyzed for association with schizophrenia. No single variant or gene reached genome-wide significance. Among candidate gene sets, we found significant enrichment for rare alleles (minor allele frequency [MAF] < 0.001) in genes intolerant of loss-of-function (LoF) variation and in genes whose messenger RNAs bind to fragile X mental retardation protein (FMRP). We further delineate the genetic architecture of schizophrenia by excluding a role for uncommon exomic variants (0.01 ≤ MAF ≥ 0.001) that confer a relatively large effect (odds ratio [OR] > 4). We also show risk alleles within this frequency range exist, but confer smaller effects and should be identified by larger studies.
Article
Full-text available
By performing a meta-analysis of rare coding variants in whole-exome sequences from 4,133 schizophrenia cases and 9,274 controls, de novo mutations in 1,077 family trios, and copy number variants from 6,882 cases and 11,255 controls, we show that individuals with schizophrenia carry a significant burden of rare, damaging variants in 3,488 genes previously identified as having a near-complete depletion of loss-of-function variants. In patients with schizophrenia who also have intellectual disability, this burden is concentrated in risk genes associated with neurodevelopmental disorders. After excluding known risk genes for neurodevelopmental disorders, a significant rare variant burden persists in other genes intolerant of loss-of-function variants; although this effect is notably stronger in patients with both schizophrenia and intellectual disability, it is also seen in patients with schizophrenia who do not have intellectual disability. Together, our results show that rare, damaging variants contribute to the risk of schizophrenia both with and without intellectual disability and support an overlap of genetic risk between schizophrenia and other neurodevelopmental disorders.
Article
Full-text available
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 × 10⁻¹⁵), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 × 10⁻⁶). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 × 10⁻¹¹) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 × 10⁻⁵). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination. © 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Article
Full-text available
Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.
Chapter
Full-text available
GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.
Article
Full-text available
The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.
Article
Full-text available
Genetic associations involving both rare and common alleles have been reported for schizophrenia but there have been no systematic scans for rare recessive genotypes using fully phased trio data. Here, we use exome sequencing in 604 schizophrenia proband-parent trios to investigate the role of recessive (homozygous or compound heterozygous) nonsynonymous genotypes in the disorder. The burden of recessive genotypes was not significantly increased in probands at either a genome-wide level or in any individual gene after adjustment for multiple testing. At a system level, probands had an excess of nonsynonymous compound heterozygous genotypes (minor allele frequency, MAF ⩽ 1%) in voltage-gated sodium channels (VGSCs; eight in probands and none in parents, P = 1.5 × 10(-)(4)). Previous findings of multiple de novo loss-of-function mutations in this gene family, particularly SCN2A, in autism and intellectual disability provide biological and genetic plausibility for this finding. Pointing further to the involvement of VGSCs in schizophrenia, we found that these genes were enriched for nonsynonymous mutations (MAF ⩽ 0.1%) in cases genotyped using an exome array, (5585 schizophrenia cases and 8103 controls), and that in the trios data, synaptic proteins interacting with VGSCs were also enriched for both compound heterozygosity (P = 0.018) and de novo mutations (P = 0.04). However, we were unable to replicate the specific association with compound heterozygosity at VGSCs in an independent sample of Taiwanese schizophrenia trios (N = 614). We conclude that recessive genotypes do not appear to make a substantial contribution to schizophrenia at a genome-wide level. Although multiple lines of evidence, including several from this study, suggest that rare mutations in VGSCs contribute to the disorder, in the absence of replication of the original findings regarding compound heterozygosity, this conclusion requires evaluation in a larger sample of trios.
Article
Full-text available
Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity.
Article
Full-text available
Illumina DNA sequencing is now the predominant source of raw genomic data, and data volumes are growing rapidly. Bioinformatic analysis pipelines are having trouble keeping pace. A common bottleneck in such pipelines is the requirement to read, write, sort and compress large BAM files multiple times. We present SAMBLASTER, a tool that reduces the number of times such costly operations are performed. SAMBLASTER is designed to mark duplicates in read-sorted SAM files as a piped post-pass on DNA aligner output before it is compressed to BAM. In addition, it can simultaneously output into separate files the discordant read-pairs and/or split-read mappings used for structural variant calling. As an alignment post-pass, its own runtime overhead is negligible, while dramatically reducing overall pipeline complexity and runtime. As a stand-alone duplicate marking tool, it performs significantly better than PICARD or SAMBAMBA in terms of both speed and memory usage, while achieving nearly identical results. SAMBLASTER is open source C++ code and freely available from https://github.com/GregoryFaust/samblaster CONTACT: imh4y@virginia.edu.
Article
Full-text available
Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible
Article
Full-text available
A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. To determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. We found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader-Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10(-4)). We strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.
Article
Full-text available
PolyPhen-2 (Polymorphism Phenotyping v2), available as software and via a Web server, predicts the possible impact of amino acid substitutions on the stability and function of human proteins using structural and comparative evolutionary considerations. It performs functional annotation of single-nucleotide polymorphisms (SNPs), maps coding SNPs to gene transcripts, extracts protein sequence annotations and structural attributes, and builds conservation profiles. It then estimates the probability of the missense mutation being damaging based on a combination of all these properties. PolyPhen-2 features include a high-quality multiple protein sequence alignment pipeline and a prediction method employing machine-learning classification. The software also integrates the UCSC Genome Browser's human genome annotations and MultiZ multiple alignments of vertebrate genomes with the human genome. PolyPhen-2 is capable of analyzing large volumes of data produced by next-generation sequencing projects, thanks to built-in support for high-performance computing environments like Grid Engine and Platform LSF. Curr. Protoc. Hum. Genet. 76:7.20.1-7.20.41. © 2013 by John Wiley & Sons, Inc.
Article
Full-text available
Previously described methods for the combined analysis of common and rare variants have disadvantages such as requiring an arbitrary classification of variants or permutation testing to assess statistical significance. Here we propose a novel method which implements a weighting scheme based on allele frequencies observed in both cases and controls. Because the test is unbiased, scores can be analyzed with a standard t-test. To test its validity we applied it to data for common, rare, and very rare variants simulated under the null hypothesis. To test its power we applied it to simulated data in which association was present, including data using the observed allele frequencies of common and rare variants in NOD2 previously reported in cases of Crohn's disease and controls. The method produced results that conformed well to those expected under the null hypothesis. It demonstrated more power to detect association when rare and common variants were analyzed jointly, the power further increasing when rare variants were assigned higher weights. 20,000 analyses of a gene containing 62 variants could be performed in 80 minutes on a laptop. This approach shows promise for the analysis of data currently emerging from genome wide sequencing studies.
Article
Full-text available
Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.
Article
Full-text available
By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.
Article
Full-text available
A small number of rare, recurrent genomic copy number variants (CNVs) are known to substantially increase susceptibility to schizophrenia. As a consequence of the low fecundity in people with schizophrenia and other neurodevelopmental phenotypes to which these CNVs contribute, CNVs with large effects on risk are likely to be rapidly removed from the population by natural selection. Accordingly, such CNVs must frequently occur as recurrent de novo mutations. In a sample of 662 schizophrenia proband-parent trios, we found that rare de novo CNV mutations were significantly more frequent in cases (5.1% all cases, 5.5% family history negative) compared with 2.2% among 2623 controls, confirming the involvement of de novo CNVs in the pathogenesis of schizophrenia. Eight de novo CNVs occurred at four known schizophrenia loci (3q29, 15q11.2, 15q13.3 and 16p11.2). De novo CNVs of known pathogenic significance in other genomic disorders were also observed, including deletion at the TAR (thrombocytopenia absent radius) region on 1q21.1 and duplication at the WBS (Williams-Beuren syndrome) region at 7q11.23. Multiple de novos spanned genes encoding members of the DLG (discs large) family of membrane-associated guanylate kinases (MAGUKs) that are components of the postsynaptic density (PSD). Two de novos also affected EHMT1, a histone methyl transferase known to directly regulate DLG family members. Using a systems biology approach and merging novel CNV and proteomics data sets, systematic analysis of synaptic protein complexes showed that, compared with control CNVs, case de novos were significantly enriched for the PSD proteome (P=1.72 × 10⁻⁶. This was largely explained by enrichment for members of the N-methyl-D-aspartate receptor (NMDAR) (P=4.24 × 10⁻⁶) and neuronal activity-regulated cytoskeleton-associated protein (ARC) (P=3.78 × 10⁻⁸) postsynaptic signalling complexes. In an analysis of 18 492 subjects (7907 cases and 10 585 controls), case CNVs were enriched for members of the NMDAR complex (P=0.0015) but not ARC (P=0.14). Our data indicate that defects in NMDAR postsynaptic signalling and, possibly, ARC complexes, which are known to be important in synaptic plasticity and cognition, play a significant role in the pathogenesis of schizophrenia.
Article
Full-text available
The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5-20 min, depending on the input. SIFT is available as an online tool (http://sift.jcvi.org).
Article
Full-text available
Chromatin remodeling may play a role in the neurobiology of schizophrenia and the process, therefore, may be considered as a therapeutic target. The SMARCA2 gene encodes BRM in the SWI/SNF chromatin-remodeling complex, and associations of single nucleotide polymorphisms (SNPs) to schizophrenia were found in two linkage disequilibrium blocks in the SMARCA2 gene after screening of 11 883 SNPs (rs2296212; overall allelic P = 5.8 × 10−5) and subsequent screening of 22 genes involved in chromatin remodeling (rs3793490; overall allelic P = 2.0 × 10−6) in a Japanese population. A risk allele of a missense polymorphism (rs2296212) induced a lower nuclear localization efficiency of BRM, and risk alleles of intronic polymorphisms (rs3763627 and rs3793490) were associated with low SMARCA2 expression levels in the postmortem prefrontal cortex. A significant correlation in the fold changes of gene expression from schizophrenic prefrontal cortex (from the Stanley Medical Research Institute online genomics database) was seen with suppression of SMARCA2 in transfected human cells by specific siRNA, and of orthologous genes in the prefrontal cortex of Smarca2 knockout mice. Smarca2 knockout mice showed impaired social interaction and prepulse inhibition. Psychotogenic drugs lowered Smarca2 expression while antipsychotic drugs increased it in the mouse brain. These findings support the existence of a role for BRM in the pathophysiology of schizophrenia.
Article
Full-text available
With the exception of the X chromosome, genomic deletions appear to be more prevalent than duplications. Because of a lack of accurate diagnostic methods, submicroscopic duplications have been under-ascertained for a long period. The development of array CGH has enabled the detection of chromosomal microduplications with nearly the same sensitivity as deletions, leading to the discovery of previously unrecognized syndromes. Using a clinical targeted oligonucleotide array (CMA-V6.3 OLIGO), we identified an approximately 360-kb duplication in 9q22.32 in a 21-month-old boy with developmental delay, failure to thrive, and microcephaly. The same duplication was identified in the patient's mother who is also microcephalic and mildly delayed. We have sequenced the chromosomal breakpoints and determined the duplication as tandem in orientation and 363 599 bp in size. The duplicated segment harbors the entire PTCH1 gene. Deletions or loss-of-function mutations of PTCH1 result in basal cell nevus syndrome (Gorlin syndrome), whereas gain-of-function mutations were proposed to lead to holoprosencephaly 7. We propose that patients with microcephaly or holoprosencephaly of unknown origin should also be screened for PTCH1 duplication.
Article
Full-text available
Stress tolerance of the heart requires high-fidelity metabolic sensing by ATP-sensitive potassium (K(ATP)) channels that adjust membrane potential-dependent functions to match cellular energetic demand. Scanning of genomic DNA from individuals with heart failure and rhythm disturbances due to idiopathic dilated cardiomyopathy identified two mutations in ABCC9, which encodes the regulatory SUR2A subunit of the cardiac K(ATP) channel. These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A. Mutant SUR2A proteins showed aberrant redistribution of conformations in the intrinsic ATP hydrolytic cycle, translating into abnormal K(ATP) channel phenotypes with compromised metabolic signal decoding. Defective catalysis-mediated pore regulation is thus a mechanism for channel dysfunction and susceptibility to dilated cardiomyopathy.
Article
Schizophrenia and anorexia nervosa were recently added to the list of conditions for which whole genome sequencing might be indicated as part of the 100 000 Genomes Project, reflecting the remarkable recent progress in findings emerging from psychiatric genetics research. Genetic testing methods may offer increased opportunities for diagnosis and estimation of familial risk and could have implications for management and treatment options. They also present ethical and philosophical questions about the role of testing and storage of genetic information. Mental health professionals will need to have a good understanding of this area in order for patients to fully realise the benefits of these advances. Declaration of Interest K.S.B. is Editor of the British Journal of Psychiatry .
Article
The sodium voltage-gated channel α subunit 2 (SCN2A) gene encodes a subunit of sodium voltage-gated channels expressed primarily in the central nervous system that are responsible for action potential initiation and propagation in excitable cells. SCN2A mutations underlie a spectrum of distinct phenotypes, including seizure disorders, neurodevelopmental disorders, and rarer instances of episodic ataxia and schizophrenia. We report on a 38-year-old patient with adult-onset psychotic symptoms on a background of infantile-onset seizures, autistic features and episodic ataxia. Whole-exome sequencing revealed a de-novo novel SCN2A mutation (c.4966T > C, p.Ser1656Pro). This and other SCN2A mutations associated with the schizophrenia phenotype overlap those seen in neurodevelopmental disorders, suggesting a common underlying mechanism. This is the first report of a patient with the entire known SCN2A phenotypic spectrum. We highlight the importance of recognizing the psychiatric phenotypes associated with SCN2A mutations and that the phenotypic spectrum is more fluid, and less categorical, than previously thought.
Article
Objectives: Neurofibromatosis type 1 (NF1) is a genetic disorder in which the most frequent complication in children is learning disabilities. Over the past decade, growing arguments support the idea that executive dysfunction is a core deficit in children with NF1. However, some data remain inconsistent. The aim of this study was to determine the magnitude of impairment for each executive function (EF) and clarify the impact of methodological choices and participant's characteristics on EFs. Methods: In this meta-analysis, 19 studies met the selection criteria and were included with data from a total of 805 children with NF1 and 667 controls. Based on the Diamond's model (2013), EF measures were coded separately according to the following EF components: working memory, inhibitory control, cognitive flexibility, planning/problem solving. The review protocol was registered with PROSPERO (International prospective register of systematic reviews; CRD42017068808). Results: A significant executive dysfunction in children with NF1 is demonstrated. Subgroup analysis showed that the impairment varied as a function of the specific component of executive functioning. The effect size for working memory and planning/problem solving was moderate whereas it was small for inhibitory control and cognitive flexibility. Executive dysfunction seems to be greater with increasing age whereas assessment tool type, intellectual performance, attention deficit hyperactivity disorder and control group composition did not seem to affect EF results. Conclusions: EF deficits are a core feature in children with NF1 and an early identification of executive dysfunctions is essential to limit their impact on the quality of life. (JINS, 2018, 24, 977-994).
Article
Previously described methods of analysis allow variants in a gene to be weighted more highly according to rarity and/or predicted function and then for the variant contributions to be summed into a gene-wise risk score, which can be compared between cases and controls using a t-test. However, this does not allow incorporating covariates into the analysis. Schizophrenia is an example of an illness where there is evidence that different kinds of genetic variation can contribute to risk, including common variants contributing to a polygenic risk score (PRS), very rare copy number variants (CNVs) and sequence variants. A logistic regression approach has been implemented to compare the gene-wise risk scores between cases and controls, while incorporating as covariates population principal components, the PRS and the presence of pathogenic CNVs and sequence variants. A likelihood ratio test is performed, comparing the likelihoods of logistic regression models with and without this score. The method was applied to an ethnically heterogeneous exome-sequenced sample of 6000 controls and 5000 schizophrenia cases. In the raw analysis, the test statistic is inflated but inclusion of principal components satisfactorily controls for this. In this dataset, the inclusion of the PRS and effect from CNVs and sequence variants had only small effects. The set of genes which are FMRP targets showed some evidence for enrichment of rare, functional variants among cases (p = 0.0005). This approach can be applied to any disease in which different kinds of genetic and non-genetic risk factors make contributions to risk.
Article
Acrodysostosis (MIM 101800) is a dominantly inherited condition associating (1) skeletal features (short stature, facial dysostosis, and brachydactyly with cone-shaped epiphyses), (2) resistance to hormones and (3) possible intellectual disability. Acroscyphodysplasia (MIM 250215) is characterized by growth retardation, brachydactyly, and knee epiphyses embedded in cup-shaped metaphyses. We and others have identified PDE4D or PRKAR1A variants in acrodysostosis; PDE4D variants have been reported in three cases of acroscyphodysplasia. Our study aimed at reviewing the clinical and molecular findings in a cohort of 27 acrodysostosis and 5 acroscyphodysplasia cases. Among the acrodysostosis cases, we identified 9 heterozygous de novo PRKAR1A variants and 11 heterozygous PDE4D variants. The 7 patients without variants presented with symptoms of acrodysostosis (brachydactyly and cone-shaped epiphyses), but none had the characteristic facial dysostosis. In the acroscyphodysplasia cases, we identified 2 PDE4D variants. For 2 of the 3 negative cases, medical records revealed early severe infection, which has been described in some reports of acroscyphodysplasia. Subdividing our series of acrodysostosis based on the disease-causing gene, we confirmed genotype–phenotype correlations. Hormone resistance was consistently observed in patients carrying PRKAR1A variants, whereas no hormone resistance was observed in 9 patients with PDE4D variants. All patients with PDE4D variants shared characteristic facial features (midface hypoplasia with nasal hypoplasia) and some degree of intellectual disability. Our findings of PDE4D variants in two cases of acroscyphodysplasia support that PDE4D may be responsible for this severe skeletal dysplasia. We eventually emphasize the importance of some specific assessments in the long-term follow up, including cardiovascular and thromboembolic risk factors.
Article
A number of important findings have recently emerged relevant to identifying genetic risk factors for schizophrenia. Findings using common variants point towards gene sets of interest and also demonstrate an overlap with other psychiatric and nonpsychiatric disorders. Imputation of variants of the gene for complement component 4 (C4) from GWAS data has shown that the predicted expression of the C4A product is associated with schizophrenia risk. Very rare variants disrupting SETD1A, RBM12 or NRXN1 have a large effect on risk. Other rare, damaging variants are enriched in genes that are loss of function intolerant and/or whose products localise to the synapse. These and particular copy number variants can result in increased risk of schizophrenia but also of other neurodevelopmental disorders. The findings for C4 and NRXN1 may be especially helpful for elucidating the biological mechanisms that can lead to disease.
Article
By performing a meta-analysis of rare coding variants in whole-exome sequences from 4,133 schizophrenia cases and 9,274 controls, de novo mutations in 1,077 family trios, and copy number variants from 6,882 cases and 11,255 controls, we show that individuals with schizophrenia carry a significant burden of rare, damaging variants in 3,488 genes previously identified as having a near-complete depletion of loss-of-function variants. In patients with schizophrenia who also have intellectual disability, this burden is concentrated in risk genes associated with neurodevelopmental disorders. After excluding known risk genes for neurodevelopmental disorders, a significant rare variant burden persists in other genes intolerant of loss-of-function variants; although this effect is notably stronger in patients with both schizophrenia and intellectual disability, it is also seen in patients with schizophrenia who do not have intellectual disability. Together, our results show that rare, damaging variants contribute to the risk of schizophrenia both with and without intellectual disability and support an overlap of genetic risk between schizophrenia and other neurodevelopmental disorders.
Article
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a freely available, public archive of human genetic variants and interpretations of their significance to disease, maintained at the National Institutes of Health. Interpretations of the clinical significance of variants are submitted by clinical testing laboratories, research laboratories, expert panels and other groups. ClinVar aggregates data by variant-disease pairs, and by variant (or set of variants). Data aggregated by variant are accessible on the website, in an improved set of variant call format files and as a new comprehensive XML report. ClinVar recently started accepting submissions that are focused primarily on providing phenotypic information for individuals who have had genetic testing. Submissions may come from clinical providers providing their own interpretation of the variant ('provider interpretation') or from groups such as patient registries that primarily provide phenotypic information from patients ('phenotyping only'). ClinVar continues to make improvements to its search and retrieval functions. Several new fields are now indexed for more precise searching, and filters allow the user to narrow down a large set of search results.
Article
Type 2 acrodysostosis (ACRDYS2), a rare developmental skeletal dysplasia characterized by short stature, severe brachydactyly and facial dysostosis, is caused by mutations in the phosphodiesterase (PDE) 4D (PDE4D) gene. Several arguments suggest that the mutations should result in inappropriately increased PDE4D activity, however, no direct evidence supporting this hypothesis has been presented, and the functional consequences of the mutations remain unclear. We evaluated the impact of four different PDE4D mutations causing ACRDYS2 located in different functional domains on the activity of PDE4D3 expressed in Chinese hamster ovary cells. Three independent approaches were used: the direct measurement of PDE activity in cell lysates, the evaluation of intracellular cAMP levels using an EPAC-based (exchange factor directly activated by cAMP) bioluminescence resonance energy transfer sensor , and the assessment of PDE4D3 activation based on electrophoretic mobility. Our findings indicate that PDE4D3s carrying the ACRDYS2 mutations are more easily activated by protein kinase A-induced phosphorylation than WT PDE4D3. This occurs over a wide range of intracellular cAMP concentrations, including basal conditions, and result in increased hydrolytic activity. Our results provide new information concerning the mechanism whereby the mutations identified in the ACRDYS2 dysregulate PDE4D activity, and give insights into rare diseases involving the cAMP signaling pathway. These findings may offer new perspectives into the selection of specific PDE inhibitors and possible therapeutic intervention for these patients.
Article
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 x 10(-15)), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 x 10(-6)). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 x 10(-11)) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 x 10(-5)). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
Article
Thus far, a handful of highly penetrant mutations conferring risk of psychosis have been discovered. Here we used whole-genome sequencing and long-range phasing to investigate an Icelandic kindred containing ten individuals with psychosis (schizophrenia, schizoaffective disorder or psychotic bipolar disorder). We found that all affected individuals carry RBM12 (RNA-binding-motif protein 12) c.2377G>T (P = 2.2 × 10(-4)), a nonsense mutation that results in the production of a truncated protein lacking a predicted RNA-recognition motif. We replicated the association in a Finnish family in which a second RBM12 truncating mutation (c.2532delT) segregates with psychosis (P = 0.020). c.2377G>T is not fully penetrant for psychosis; however, we found that carriers unaffected by psychosis resemble patients with schizophrenia in their non-psychotic psychiatric disorder and neuropsychological test profile (P = 0.0043) as well as in their life outcomes (including an increased chance of receiving disability benefits, P = 0.011). As RBM12 has not previously been linked to psychosis, this work provides new insight into psychiatric disease.
Article
A literature review was conducted, using the computerized “Online Mendelian Inheritance in Man” (OMIM) and PubMed, to identify inborn errors of metabolism (IEM) in which psychosis may be a predominant feature or the initial presenting symptom. Different combinations of the following keywords were searched using OMIM: “psychosis”, “schizophrenia”, or “hallucinations” and “metabolic”, “inborn error of metabolism”, “inborn errors of metabolism”, “biochemical genetics”, or “metabolic genetics”. The OMIM search generated 126 OMIM entries, 40 of which were well known IEM. After removing IEM lacking evidence in PubMed for an association with psychosis, 29 OMIM entries were identified. Several of these IEM are treatable. They involve different small organelles (lysosomes, peroxisomes, mitochondria), iron or copper accumulation, as well as defects in other met-abolic pathways (e.g., defects leading to hyperammonemia or homocystinemia). A clinical checklist summarizing the key features of these conditions and a guide to clinical approach are provided. The genes corresponding to each of these con-ditions were identified. Whole exome data from 2545 adult cases with schizophrenia and 2545 unrelated controls, accessed via the Database of Genotypes and Phenotypes (dbGaP), were analyzed for rare functional variants in these genes. The odds ratio of having a rare functional variant in cases versus controls was calculated for each gene. Eight genes are significantly associated with schizophrenia (p < 0.05, OR >1) using an unselected group of adult patients with schizophrenia. Increased awareness of clinical clues for these IEM will optimize referrals and timely metabolic interventions.
Article
By analyzing the exomes of 12,332 unrelated Swedish individuals, including 4,877 individuals affected with schizophrenia, in ways informed by exome sequences from 45,376 other individuals, we identified 244,246 coding-sequence and splice-site ultra-rare variants (URVs) that were unique to individual Swedes. We found that gene-disruptive and putatively protein-damaging URVs (but not synonymous URVs) were more abundant among individuals with schizophrenia than among controls (P = 1.3 × 10⁻¹⁰). This elevation of protein-compromising URVs was several times larger than an analogously elevated rate for de novo mutations, suggesting that most rare-variant effects on schizophrenia risk are inherited. Among individuals with schizophrenia, the elevated frequency of protein-compromising URVs was concentrated in brain-expressed genes, particularly in neuronally expressed genes; most of this elevation arose from large sets of genes whose RNAs have been found to interact with synaptically localized proteins. Our results suggest that synaptic dysfunction may mediate a large fraction of strong, individually rare genetic influences on schizophrenia risk. © 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Article
Adrenal hypoplasia is a rare, life-threatening congenital disorder. Here we define a new form of syndromic adrenal hypoplasia, which we propose to term MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy) syndrome. By exome sequencing and follow-up studies, we identified 11 patients with adrenal hypoplasia and common extra-adrenal features harboring mutations in SAMD9. Expression of the wild-type SAMD9 protein, a facilitator of endosome fusion, caused mild growth restriction in cultured cells, whereas expression of mutants caused profound growth inhibition. Patient-derived fibroblasts had restricted growth, decreased plasma membrane EGFR expression, increased size of early endosomes, and intracellular accumulation of giant vesicles carrying a late endosome marker. Of interest, two patients developed myelodysplasitc syndrome (MDS) that was accompanied by loss of the chromosome 7 carrying the SAMD9 mutation. Considering the potent growth-restricting activity of the SAMD9 mutants, the loss of chromosome 7 presumably occurred as an adaptation to the growth-restricting condition.
Article
By analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls and 1,077 trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (P = 3.3 × 10(-9)). We found only two heterozygous LoF variants in 45,376 exomes from individuals without a neuropsychiatric diagnosis, indicating that SETD1A is substantially depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying SETD1A LoF variants also had learning difficulties. We further identified four SETD1A LoF carriers among 4,281 children with severe developmental disorders and two more carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations indicate that LoF variants in SETD1A cause a range of neurodevelopmental disorders, including schizophrenia. Combining these data with previous common variant evidence, we suggest that epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, is an important mechanism in the pathogenesis of schizophrenia.
Article
For biological and statistical reasons it makes sense to combine information from variants at the level of the gene. One may wish to give more weight to variants which are rare and those that are more likely to affect function. A combined weighting scheme, implemented in the SCOREASSOC program, was applied to whole exome sequence data for 1392 subjects with schizophrenia and 982 with obesity from the UK10K project. Results conformed fairly well with null hypothesis expectations and no individual gene was strongly implicated. However, a number of the higher ranked genes appear plausible candidates as being involved in one or other phenotype and may warrant further investigation. These include MC4R, NLGN2, CRP, DONSON, GTF3A, IL36B, ADCYAP1R1, ARSA, DLG1, SIK2, SLAIN1, UBE2Q2, ZNF507, CRHR1, MUSK, NSF, SNORD115, GDF3 and HIBADH. Some individual variants in these genes have different frequencies between cohorts and could be genotyped in additional subjects. For other genes, there is a general excess of variants at many different sites so attempts at replication would be more difficult. Overall, the weighted burden test provides a convenient method for using sequence data to highlight genes of interest.
Article
Loss-of-function (LOF) (i.e., nonsense, splice site, and frameshift) variants that lead to disruption of gene function are likely to contribute to the etiology of neuropsychiatric disorders. Here, we perform a systematic investigation of the role of both de novo and inherited LOF variants in schizophrenia using exome sequencing data from 231 case and 34 control trios. We identify two de novo LOF variants in the SETD1A gene, which encodes a subunit of histone methyltransferase, a finding unlikely to have occurred by chance, and provide evidence for a more general role of chromatin regulators in schizophrenia risk. Transmission pattern analyses reveal that LOF variants are more likely to be transmitted to affected individuals than controls. This is especially true for private LOF variants in genes intolerant to functional genetic variation. These findings highlight the contribution of LOF mutations to the genetic architecture of schizophrenia and provide important insights into disease pathogenesis.
Article
Schizophrenia has a strong genetic basis, and genome-wide association studies (GWAS) have shown that effect sizes for individual genetic variants which increase disease risk are small, making detection and validation of true disease-associated risk variants extremely challenging. Specifically, we first identify genes with exons showing differential expression between cases and controls, indicating a splicing mechanism that may contribute to variation in disease risk and focus on those showing consistent differential expression between blood and brain tissue. We then perform a genome-wide screen for SNPs associated with both normalised exon intensity of these genes (so called splicing QTLs) as well as association with schizophrenia. We identified a number of significantly associated loci with a biologically plausible role in schizophrenia, including MCPH1, DLG3, ZC3H13, and BICD2, and additional loci that influence splicing of these genes, including YWHAH. Our approach of integrating genome-wide exon intensity with genome-wide polymorphism data has identified a number of plausible SZ associated loci.
Article
We performed analysis of KCNT1 in two unrelated patients with malignant migrating partial seizures in infancy. Both patients had had intractable focal seizures since two months of age. Their seizures were characterized by a shift of epileptic focus during a single seizure and were resistant to most antiepileptic drugs but responded to vagus nerve stimulation in one and clorazepate in the other. Bidirectional sequencing for KCNT1 were analyzed by standard Sanger sequencing method. A de novo c.862G>A (p.Gly288Ser) missense mutation was identified at the pore region of KCNT1 channel in both patients, whereas all KCNT1 mutations in the previous reports were identified mostly in the intracellular C-terminal region. Computational analysis suggested possible changes in the molecular structure and the ion channel property induced by the Gly288Ser mutation. Because the G-to-A transition was located at CG dinucleotide sequences as same as previously reported KCNT1 mutations, the recurrent occurrence of de novo KCNT1 mutations indicated the hot spots of these locations.
Article
Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous.
The genecards suite: from gene data mining to disease genome sequence analyses
  • Stelzer
Chromosomal microarray analysis -a routine clinical genetic test for patients with schizophrenia
  • K Baker
  • G Costain
  • Wla Fung
  • A S Bassett
Baker K, Costain G, Fung WLA, Bassett AS. Chromosomal microarray analysis -a routine clinical genetic test for patients with schizophrenia. Lancet Psychiatry. 2014;1:329-31.