ArticlePDF Available

Abstract and Figures

Of the diverse lineages of the Phylum Oomycota, saprotrophic oomycetes from the salt marsh and mangrove habitats are still understudied, despite their ecological importance. Salisapiliaceae, a monophyletic and monogeneric taxon of the marine and estuarine oomycetes, was introduced to accommodate species with a protruding hyaline apical plug, small hyphal diameter and lack of vesicle formation during zoospore release. At the time of description of Salisapilia, only few species of Halophytophthora, an ecologically similar, phylogenetically heterogeneous genus from which Salisapilia was segregated, were included. In this study, a revision of the genus Salisapilia is presented, and five new combinations (S. bahamensis, S. elongata, S. epistomia, S. masteri, and S. mycoparasitica) and one new species (S. coffeyi) are proposed. Further, the species description of S. nakagirii is emended for some exceptional morphological and developmental characteristics. A key to the genus Salisapilia is provided and its generic circumscription and character evolution in cultivable Peronosporales are discussed.
Content may be subject to copyright.
Fungal Systemacs and Evoluon is licensed under a Creave Commons Aribuon-NonCommercial-ShareAlike 4.0 Internaonal License
© 2019 Westerdijk Fungal Biodiversity Instute 171
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
Fungal Systemacs and Evoluon
doi.org/10.3114/fuse.2019.03.10
VOLUME 3
JUNE 2019
PAGES 171–184
INTRODUCTION
The Phylum Oomycota      
    Straminipila (Beakes & Thines
       


et
al. 

Phytophthora
et al. 1989).
       
        
Halophytophthora
Halophytophthora
    et al.    
 
     Halophytophthora s. str 
H. vesicula    H. avicenniaeH.
batemanensis H. polymorphica  et al.   
et al.
H. uvialis 
 
 Halophytophthora
   Phytopythium (Phytopythium kandeliae
basionym: H. kandeliaeSalispina (Salispina
lobata  Phytophthora spinosa  lobata 
Salispina spinosa basionym: Phytophthora spinosa  
spinosa) (Li et al.      
  Phytophthora  Salisapilia   
et al. et al. et
al. 2017).
  Salisapilia    Salisapilia
sapeloensis    Sparna alterniora 
       
Halophytophthora


 Salisapilia nakagirii    
  et al.      
        
  
    Salisapiliaceae 
et al
Halophytophthora 
        
   Halophytophthora    
    Salisapilia  


MATERIALS AND METHODS
Acquision of strains and sporulaon
Halophytophthora Salisapilia


Revising Salisapiliaceae

1
2

3

Abstract: Oomycota
Salisapiliaceae
             

SalisapiliaHalophytophthora
SalisapiliaSalisapilia 
S. bahamensisS. elongataS. epistomiaS. masteri S. mycoparasica)  
(S. coeyiS. nakagirii 
        Salisapilia       
Peronosporales
Key words:

Halophytophthora



Salisapilia
Effectively published online:
© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
172


  
      


  

          
   
      
      

        
        
    
et al. 2009).
DNA extracon, PCR, and phylogenec reconstrucon
         
  

et al.   

        
      et al.  
et al
et al
   
2     
Taq 




   
    

  


       
       
        
  
        
 
 Phytophthora
    
     

    et al.    

     et al.   
       
       

      et al.   
         

        
   et al.     
   

   
       
       

et al.  

      
et al. 2013).
Ancestral state reconstrucon for papilla and hyaline
apical plug
 

Halophytophthora     
Salisapilia 
 Peronosporaceae  Phytophthora Phytopythium 
Pythiumet al. 
et al
et alet al.
et al.
         
     
 




RESULTS
Phylogenec reconstrucons

Halophytophthora
bahamensis  
H. bahamensis
H. elongata  H.
epistomia     H. masteri   
  H. mycoparasica      
       Salisapiliaceae
        
S. nakagirii 
S. sapeloensis    S. tartarea

Morphology
Halophytophthora bahamensis    
H. elongata     H. epistomia 
   H. masteri      H.
mycoparasica   
           
S. sapeloensis 
S. tartarea 
S. nakagirii    


© 2019 Westerdijk Fungal Biodiversity Instute
Revisiting Salisapiliaceae
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
173
Table 1.Salisapilia 
Structure S. sapeloensis
et al.
2010)
S. coeyi (This

S. bahamensis


S. elongata
et al. 2003)
S. epistomia

et al.
1990a)
S. nakagirii
et all.

b)
S. masteri
et al.
1994)
S. mycoparasica


S. tartarea
et al.
1994)
 1–2 1–3 1–3 3–9 2–4 1–2 2–10 2–9 1–3(–9)
 


















 



   











hyphae


hyphae


hyphae


hyphae


hyphae


hyphae


hyphae


hyphae


hyphae

  







32–64


63.3)











6–18 

3.12)
3–7  

b
  


     b  
 

    b 
spines

      b  
 
hyaline
     b   
      b  
 





























b


 

© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
174
Table 1.
Structure S. sapeloensis
et al.
2010)
S. coeyi (This

S. bahamensis


S. elongata
et al. 2003)
S. epistomia

et al.
1990a)
S. nakagirii
et all.

b)
S. masteri
et al.
1994)
S.
mycoparasica


S. tartarea
et al.
1994)































b



















      
like b
  

     a   33–66
  a 
  a  

     a   
  a28–44 24–62
 2–9 a1–7 3–10
     a   

 2–9 
12–6 a
3–10 4–10
 

a




aet al. (1990).
bS. nakagirii
© 2019 Westerdijk Fungal Biodiversity Instute
Revisiting Salisapiliaceae
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl

         
Salisapilia 
         
      H. bahamensis 

       
       
     
 
   H. bahamensis    
       

 

        

  
       


  


 
Salisapilia.
Taxonomy
      
  
Salisapilia 
Halophytophthora 
  S. bahamensis S. elongata S. epistomiaS.
masteri  S. mycoparasica     S. coeyi)
Salisapilia


Salisapilia  et al Persoonia 25   emend.

Coloniesaerial hyphae
vegetave hyphae
hyphal swellingssporangia
       
proliferaondehiscence or
Phytophthora
Halophytophthora batemanensis NBRC 32616
Halophytophthora vesicula CBS 152.96
Halophytophthora avicenniae CBS 188.85
Halophytophthora vesicula CBS 393.81
Halophytophthora polymorphica NBRC 32619
Phytopythium
Salisapilia tartarea CBS 208.95
Salisapilia sapeloensis LT6440
Salisapilia nakagirii LT6456
Salisapilia bahamensis NBRC 32556
Salisapilia coffeyi NBRC 32557
Salisapila mycoparasitica NBRC 32967
Salisapilia mycoparasitica NBRC 32966
Salisapilia masteri NBRC 32604
Salisapilia elongata NBRC 100786
Salisapilia epistomia CBS 590.85
Salisapilia epistomia NBRC 32617
Globisporangium
Elongisporangium
Pythium
s.str.
Saprolegnia
100/100/1.0
100/100/1.0
100/100/1.0
100/99/1.0
100/100/1.0
100/88/0.99
100/100/1.0
100/99/1.0
100/99/1.0
100/100/1.0
100/100/1.0
100/100/1.0
100/100/1.0
100/-/1.0
100/56/1.0
100/100/1.0
100/100/1.0
100/99/1.0
54/93/1.0
99/86/0.99
100/99/1.0
66/99/-
95/98/0.99
100/97/0.99 96/97/1.0
0.020
Peronosporaceae
Salisapiliaceae
Pythiaceae
Fig. 1.
     


© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
176
discharge tube
zoospore release
  

gametangiaantheridial
aachment   oogonia 
oospores
Type species: Salisapilia sapeloenesis et al.
Synopsis of species included in Salisapilia
Salisapilia bahamensis       
comb. nov.
Basionym: Phytophthora bahamensis    Canad. J.
Bot. 53
Synonym: Halophytophthora bahamensis  
Mycotaxon 36: 381. 1990. MB126014.
Typus: Holotype     

 
Philippines.
Distribuon
Salisapilia coeyi     sp. nov. 

E F
A B
CD
Fig. 2. Salisapilia bahamensis A.B.C.D.
E, F.
AB
C D EH
G
F
Fig. 3. Salisapilia coeyi  A. B. C.  D.
E. F, G.H.

© 2019 Westerdijk Fungal Biodiversity Instute
Revisiting Salisapiliaceae
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
177
Etymology

Colony paern   
vegetave hyphae
   sporangiogenic hyphae 
sporangia

    
     
dehiscence tube
    dehiscence plug    
  basal plug    
proliferaon  zoospore release   
        vesicle
  chlamydospores   gametangia 

Typus: Bahamas     
  Rhizophora mangle   J.W. Fell & I.M. Master
(holotype

Salisapilia elongata    comb.
nov. 
Basionym: Halophytophthora elongata Mycotaxon
85: 417. 2003. MB372647.
Typus: Holotype      
 

Distribuon
Salisapilia epistomia comb.
nov.
Basionym: Phytophthora epistomium    Canad. J.
Bot. 53
Synonym: Halophytophthora epistomia     
Abstracts IMC-4
Typus: Holotype
  
       
Philippines.
Distribuon: USA.
Salisapilia masteri       
comb. nov.
Basionym: Halophytophthora masteri   
Mycoscience 35: 227. 1994. MB363473.
Typus: Holotype     
  

A
BCD
Fig. 4. Salisapilia elongata . A.B.C.
D.
© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
178
Distribuon: Bahamas.
Salisapilia mycoparasica 
comb. nov.
Basionym: Phytophthora mycoparasica Canad. J.
Bot. 53
Synonym: Halophytophthora mycoparasica 
Mycotaxon 36: 381. 1990. MB126017.
A B
CDEF
Fig. 5. Salisapilia epistomia A.B.C.D.
E–F. 
A
B C D
Fig. 6. Salisapilia masteri A.B.C, D.

© 2019 Westerdijk Fungal Biodiversity Instute
Revisiting Salisapiliaceae
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
179
Typus: Holotype lectotype
Canad. J. Bot. 53epitype


Other materials examined     
Tokyo Japan.
Distribuon
Notes
        
    Phytophthora mycoparasica 
   

      lectotype  
      epitype   
ex-epitype culture.
Salisapilia nakagirii  et al Persoonia 25  
emend.
Typus: Holotype     
  

Distribuon: USA.
AB
CDE F
Fig. 7. Salisapilia mycoparasica     A.    B.    C.   
D.E, F.
A B
C D
E
H
F
G
I
Fig. 8. Salisapilia nakagirii  A.B.C.  D. 
E.   F–I.        H.  I.

© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
180
Colony paern  
hyphae
  septae   sporangia  
    
  dehiscence tube    
       
hyaline apical plugsporangial wall
 basal plug     proliferaon
 zoospore release    
vesiclegametangiaantheridia
oogonia
oospores

Salisapilia sapeloenesis et alPersoonia 25: 113. 2010.

Typus: Holotype     
   ,   

Distribuon: USA.
Salisapilia tartarea      
comb. nov.
Basionym: Halophytophthora tartarea   
Mycoscience 35: 224. 1994. MB363474.
Synonym: Salisapilia tartarea
et alPersoonia 25

Typus: Holotype

Distribuon: USA.
NotePersoonia 25

DISCUSSION
        

Halophytophthora 
Phytopythium (Bala et al.Salisapilia 
et alSalispina (Li et al Calycofera et
al.Halophytophthora Salisapilia 

et al.

    Salisapiliaceae 
 

 et al      S. nakagirii
         
        
  et al.     
   S. nakagirii has an
   

     et al. (2014)
    S. nakagirii  
          
       
        
Salisapilia

 et al      
       
       
S. nakagirii
A B
CD
F
EG
Fig. 9. Salisapilia sapeloensisA.B.C.D.
E.F, G.
© 2019 Westerdijk Fungal Biodiversity Instute
Revisiting Salisapiliaceae
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
181
         
Peronosporales  
      
        
    et al   
 et al.et al 
      
      
      Phytophthora  
et al

et al.   et al   et al.
et al. 2011). Halophytophthora elongata  et al.  
H. masteri et al   
      
S. nakagirii
           
Salisapilia

       


et al. et al 

     S. nakagirii  

Salisapilia 


et al.  

S. nakagirii, 
Salisapilia.
 Salisapiliaceae    
        Peronosporaceae 
Pythiaceaeet al et al. (2010)
  H. bahamensis H. epistomia H. exoprolera,
H. operculata Salisapilia
     
et al
        Halophytophthora
operculata       Calycofera
et. al 
Phytopythiumet alH. epistomia


H. epistomia   Salisapilia.

one.
AB
CDE
32
F
Fig. 10. Salisapilia tartarea A. B. C.D.
E, F.
Key to the species of Salisapilia
 ................................................................................................................. S. nakagirii
 ........................................................................................................................................ 2
 ............................................................................................................................. 3
 ..................................................................................................................... 4
© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
182

 ........................................................................................................... S. masteri

 ................................................................................................................................................... S. elongata
 .......................................................................................................................................................................
 ................................................................................................................................................................ 6

 ............................................................................................................................................. S. bahamensis

 ..................................................................................................................... S. coeyi
 ......................................................... S. mycoparasica
 ...................................................................... 7
 ........................................................................................................................................................... S. tartarea
 ............................................................................................................................................................................. 8

 ................................................................................................................. S. sapeloensis

 .......................................................................................................... S. epistomia
Salisapilia
Phytopythium
Halophytophthora
Phytophthora
Pythium s.lat.
CBS 382.34 Pythium oligandrum
CBS 377.34 Pythium acanthicum
CBS 158.73 Pythium monospermum
CBS 118.80 Pythium aphanidermatum
CBS 574.85 Pythium insidiosum
CBS 222.94 Pythium capillosum
CBS 188.68 Pythium dissotocum
CBS 772.81 Pythium apleuroticum
CBS 215.80 Pythium aquatile
CBS 295.37 Pythium vanterpoolii
CBS 699.83 Pythium volutum
CBS 237.62 Pythium graminicola
CBS 168.68 Pythium inflatum
CBS 316.33 Pythium torulosum
CBS 842.68 Pythium catenulatum
CBS 406.72 Elongisporangium dimorphum
CBS 157.69 Elongisporangium undulatum
CBS 285.31 Elongisporangium anandrum
CBS 393.54 Elongisporangium helicandrum
CBS 845.68 Elongisporangium prolatum
CBS 698.83 Globisporangium paddicum
CBS 574.80 Globisporangium macrosporum
CBS 275.67 Globisporangium spinosum
CBS 250.28 Globisporangium irregulare
CBS 453.67 Globisporangium sylvaticum
CBS 450.67 Globisporangium heterothallicum
CBS 122650 Globisporangium ultimum
CBS 398.51 Globisporangium ultimum
CBS 811.70 Globisporangium polymastum
CBS 674.85 Globisporangium perplexum
CBS 281.64 Globisporangium echinulatum
CBS 470.50 Globisporangium multisporum
CBS 776.81 Globisporangium pleroticum
CBS 540.67 Saprolegnia parasitica s.lat.
CBS 127041 Saprolegnia parasitica.
NBRC 32617 Salisapilia epistomia
CBS 590.85 Salisapilia epistomia
NBRC 32604 Salisapilia masteri
NBRC 100786 Salisapilia elongata
NBRC 32967 Salisapilia mycoparasitica
NBRC 32966 Salisapilia mycoparasitica
NBRC 32557 Salisapilia coffeyi
NBRC 32556 Salisapilia bahamensis
NBRC LT6456 Salisapilia nakagirii
CBS 127946 Salisapilia sapeloensis
CBS 208.95 Salisapilia tartarea
CBS 119.80 Phytopythium vexans
CBS 286.31 Phytopythium helicoides
CCIBt 3981 Phytopythium palingenes
CBS 111349 Phytopythium montanum
CBS 768.73 Phytopythium ostracodes
CBS 112351 Phytopythium megacarpum
CBS 113.91 Phytopythium kandeliae
AJM 26 Phytopythium kandeliae
CBS 393.81 Halophytophthora vesicula
BRC 32619 Halophytophthora polymorphica
CBS 188.85 Halophytophthora avicenniae
BRC 32616 Halophytophthora batemanensis
CBS 152.96 Halophytophthora ‘vesicula’
IMI 288805 Phytophthora insolita
P15005 Phytophthora polonica
CBS 406.48 Phytophthora quininea
CBS 291.29 Phytophthora boehmeriae
PD 00105 Phytophthora kernoviae
PD 00133 Phytophthora ilicis
CBS 101553 Phytophthora ramorum
CBS 144.22 Phytophthora cinnamomi
P6317 Phytophthora colocasiae
CBS 554.88 Phytophthora mexicana
CBS 128.23 Phytophthora capsici
PD 00177 Phytophthora idaei
PD 00134 Phytophthora clandestina
PD 00173 Phytophthora iranica
PD 00067 Phytophthora phaseoli
PD 00078 Phytophthora ipomoeae
CBS 366.51 Phytophthora infestans
© 2019 Westerdijk Fungal Biodiversity Instute
Revisiting Salisapiliaceae
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
183
ACKNOWLEDGEMENTS

        

        
        



        

REFERENCES
         
Canadian Journal of Botany 47
   Molekularbiologische Populaonsstudien an
 , dem Falschen Mehltau der Sonnenblume.

  et al. (2010). Phytopythium
       gen. nov 
Phytopythium sindhum     sp. nov.
Persoonia 24: 136–137.
 HyphochytriomycotaOomycota. In:
Handbook of the Prosts

       Phytophthora elongata
(Peronosporaceae
Mycosphere 8
et al. (2017b). Calycofera
Phytopythium, Peronosporaceae.
Mycological Progress 16
 et al 
Phytophthora      
Fungal Genecs and Biology 45: 266–277.
et al
 Phytophthora    Fungal Genecs and
Biology 30: 17–32.
      et al. (2009). Fungal
Biodiversity. CBS Laboratory Manual 1: 1–269. 

et al. (1987). Pythium insidiosum
       Journal of Clinical
Microbiology 25: 344–349.
       et al.   Phytopythium:
Persoonia 34
      Diseases Worldwide.

 Phytophthora
PythiumRhizophora
mangleCanadian Journal of Botany 53: 2908–2922.
Phytophthora
Mycotaxon 19
   
Phytophthora. Experimental Mycology 3: 321–339.
Halophytophthora elongata
Mycotaxon 85: 417–422.
Halophytophthora epistomium
Mycologia 82
Halophytophthora
Pythiaceae. Mycotaxon 36: 377–382.
et al. (2010). Salisapiliaceae

Persoonia 25: 109–116.
et al. (2017). Nothophytophthora
Phytophthora
Persoonia 39: 143–174.
et al.  

Nucleic Acid Research 30
et al. 
  Phytophthora     
Fungal Genecs and Biology 41: 766–782.
et al.Phytophthora
anno 2012. Phytopathology 102: 348–364.
 
Fungal Diversity 49: 93–100.
et al.
      Fungal
Diversity 78: 1–237.
   Mesquite: a modular system for
evoluonary analysis
       et al.    
 Peronosporales (Oomycetes, Straminipila  
Fungal Ecology 19: 77–88.
      et al.  
  Pythiales  Peronosporales (Oomycetes,
Straminipila  Freshwater
fungi and fungal-like organisms      


Ganoderma
Mycologia 87: 223–238.
Halophytophthora
H. tartarea H. masteri 
Mycoscience 35: 223–232.
      et al.    
       Recent Advances in
Microbial Ecology       et al 

   Pythium montanum
         Mycological
Progress 2: 73–80.
          
Fungal Ecology 6
       Pythium
  Transacons of the Brish Mycological Society 89:

Fig. 11.ElongisporangiumGlobisporangium HalophytophthoraPhytophthora
PhytopythiumPythium Salisapilia 
 

© 2019 Westerdijk Fungal Biodiversity Instute
Bennett & Thines
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
184
         Pythium megacarpum sp.
FEMS
Microbiology Leers 186: 229–233.
Pythium prolatum
FEMS Microbiology
Leers 173
     Phytophthora operculata    
Mycotaxon 15: 99–102.
         

Molecular Biology and Evoluon 26
          
PLoS ONE 5: e9490.
      et al.  
   Peronosporales  
Mycologia
84: 834–849.
        et al.   
 
Systemac Biology 61
et al.
 
Phytophthora. IMA Fungus 2: 163–171.
et al.
  Phytophthora. CMI Mycological Papers 162:
1–28.
      et al.   
  Molecular Biology and
Evoluon 30
        
European Journal of Plant Pathology
138: 431–447.
          
PythiumMycoscience 51
 

Cladiscs 27: 171–180.
Pythium.
Studies in Mycology 21: 1–244.
PhytophthoraCMI
Mycological Papers 92: 1–22.
     Halophytophthora uvias   
FEMS Microbiology Leers 352: 230–237.

Phytophthora. IMA Fungus 8
Supplementary Material: hp://fuse-journal.org/
Table S1.
Fig. S1.        
        
        




Fig. S2.        
        
        




Table S1. GenBank numbers of sequences used in this study.
Species
Strain information
Other strain no.
LSU
Halophytophthora
H. bahamensis
NBRC 32557
IFO 32557 ATCC28297
P3931*
MF979503
H. bahamensis T
NBRC 32556
IFO 32556
ATCC 28296
CBS 586.85
IMI 330182
P3930*
MF979504
H. batemanensis T
NBRC 32616
CBS 679.84
NBRC 32616
MG 25-3
MG 33-5
DAR 41559
IMI 327602
ATCC 56965
DQ361227
H. elongata T
NBRC 100786
BCRC 33983
MF979505
H. epistomia
CBS 590.85
NBRC 32617
HQ665279
H. epi stomia T
NBRC 32617
IFO 32617
ATCC 28293
IMI 330183
CBS 590.85
MF979506
H. masteri T
NBRC 32604
IFO 32604
ATCC 96906
CBS 207.95
MF979507
H. mycoparasitica
NBRC 32967
IFO 32967
MF979508
H. mycoparasitica
NBRC 32966
IFO 32966
MF979509
H. polymorphica T
CBS 680.84
DAR 41562 IFO 32619
ATCC 56966
NBRC 32619
HQ665288
H. vesicula T
NBRC 32216
IFO 32216
CBS 393.81
KT455418
H. vesicula
CBS 152.96
HQ232463
Phytopythium
P. helicoides
CBS 286.31
HQ665186
P. kandeliae
AJM26
KJ399965
P. kandeliae
CBS 113.91
HQ665079
P. megacarpum
CBS 112351
HQ665067
P. montanum
CBS 111349
HQ665064
P. ostracodes
CBS 768.73
HQ665295
P. palingenes
CCIBt 3981
KR092143
P. ve xans
CBS 119.80
HQ665090
Salisapilia
S. nakagirii T
LT6456
CBS 127947
NBRC 108757
HQ232458
S. sapeloensis T
LT6440
CBS 127946
NBRC 108756
HQ232457
S. tartarea T
CBS 208.95
IFO 32606
NBRC 32606
ATCC 96905
HQ232464
Saprolegnia
S. parasitica
CBS 540.67
HQ665256
S. parasitica
CBS 127041
HQ395663
Phytophthora
P. boehmeriae
CBS 291.29
PD 00181
P6950
HQ665190
P. capsici
CBS 128.23
HQ665120
P. cinna momi
CBS 144.22
HQ665126
P. cland estina
CBS 349.86
P3942
PD_00134
P. colo casiae
P6317
PD_00139
P. idaei
CBS 971.95
P6767
IMI 313728
PD_00177
P. ilicis
P3939
PD_00133
P. infestans
CBS 366.51
HQ665217
P. insolita
IMI 288805
PD 00175
P6195
EU080180
P. ipomoeae
P10225
PD_00078
P. iranica
CBS 374.72
P3882
PD_00173
P. kernoviae
P10958
PD_00105
P. Mexicana
CBS 554.88
P0646
PD_00061
P. phaseoli
P10145
PD_00067
P. polonica
P15005
PD_01107
P. quininea
CBS 406.48
P3247
PD_00126
P. ramorum
CBS 101553
PD 00065
P10103
HQ665053
Pythium
P. acanthicum
CBS 377.34
HQ665222
P. aphanidermatum
CBS 118.80
HQ665084
P. apleroticum
CBS 772.81
HQ665296
P. aquatile
CBS 215.80
HQ665153
P. capillosum
CBS 222.94
HQ665164
P. catenulatum
CBS 842.68
HQ665302
P. dissotocum
CBS 166.68
HQ665139
P. graminicola
CBS 327.62
HQ665211
P. inflatum
CBS 168.68
HQ665140
P. insidiosum
CBS 574.85
HQ665273
P. monospermum
CBS 158.73
HQ665137
P. oligandrum
CBS 382.34
HQ665223
P. torulosum
CBS 316.33
HQ665206
P. vanterpoolii
CBS 295.37
HQ665193
P. volutum
CBS 699.83
HQ665291
Globisporangium
G. echinulatum
CBS 281.64
HQ665183
G. heterothallicum
CBS 450.67
AY598654
G. irregulare
CBS 250.28
HQ665172
G. macrosporum
CBS 574.80
HQ665272
G. multisporum
CBS 470.50
HQ665239
G. paddicum
CBS 698.83
HQ665290
G. perplexum
CBS 674.85
HQ665283
G. pleroticum
CBS 776.81
HQ665298
G. polymastum
CBS 811.70
HQ665301
G. spinosum
CBS 275.67
HQ665181
G. sylvaticum
CBS 453.67
HQ665236
G. ultimum
CBS 122650
HQ665103
G. ultimum
CBS 398.51
HQ665227
Elongisporangium
E. anandrum
CBS 285.31
HQ665185
E. dimorphum
CBS 406.72
HQ665229
E. helicandrum
CBS 393.54
HQ665225
E. prolatum
CBS 845.68
HQ665303
E. undulatum
CBS 157.69
HQ665134
Strain information and abbreviation
T ex-Type specimen
ATCC American Type Culture Collection, USA
BCR C Bioresource Collection and Research Center, Taiwan
CBS Westerdijk Fungal Biodiversity (formerly Centraalbureau voor Schimmelcultures), The Netherlands
NBRC NITE Biological Resource Centre, Japan
IMI CABI Bioscience, part of the United Kingdom National Culture Collection
IFO Institute for Fermentation Osaka, Japan
PD sequence strains obtained from the Phytophthora database (http://www.phytophthoradb.org/)
*information obtained from the Phytophthora WOC Database, World Phytophthora Genetic Resource Collection
(http://phytophthora.ucr.edu/)
Phytophthora
Halophytophthora avicenniae CBS 188.85
Halophytophthora avicenniae NBRC 32614
Halophytophthora fluviatilis 57A9
Halophytophthora vesicula CBS 152.96
Halophytophthora batemanensis NBRC 32616
Halophytophthora polymorphica NBRC 32619
Halophytophthora vesicula CBS 393.81
Phytopythium
Globisporangium
Elongisporangium
Pythium
Salisapilia sapeloensis LT6440
Salisapilia tartarea CBS 208.95
Salisapilia bahamensis NBRC 32556
Salisapilia nakagirii LT6456
Salisapilia coffeyi NBRC 32557
Salisapilia elongata NBRC 100786
Salisapilia masteri NBRC 32604
Salisapilia epistomium CBS 590.85
Salisapilia epistomium NBRC 32617
Salisapilia mycoparasitica NBRC 32966
Salisapilia mycoparasitica NBRC 32967
Saprolegnia parasitica CBS 540.67
Saprolegnia parasitica CBS 127041
100/100/1.0
100/100/1.0
100/99/1.0
100/-/1.0
100/-/1.0
98/-/-
95/-/1.0
100/100/1.0
100/100/1.0
100/99/1.0
99/-/1.0
100/100/1.0
100/100/1.0
100/100/1.0
100/100/1.0
100/98/1.0
85/-/-
67/51/-
100/100/1.0
53/-/-
77/-/-
70/-/-
60/-/-
99/92/1.0
95/64/1.0 100/100/1.0
0.050
Fig. S1
Phytophthora
Halophytophthora polymorphica NBRC 32619
Halophytophthora vesicula CBS 393.81
Halophytophthora avicenniae CBS 188.85
Halophytophthora batemanensis NBRC 32616
Halophytophthora vesicula CBS 152.96
Phytopythium
Elongisporangium
Globisporangium
Globisporangium
Pythium
Salisapilia coffeyi NBRC 32557
Salisapilia sp. NBRC 32607
Salisapilia bahamensis NBRC 32556
Salisapilia sapeloensis CBS 127946
Salisapilia tartarea CBS 208.95
Salisapilia nakagirii LT6456
Salisapilia mycoparasitica NBRC 32967
Salisapilia mycoparasitica NBRC 32966
Salisapilia masteri NBRC 32604
Salisapilia elongata NBRC 100786
Salisapilia epistomia NBRC 32617
Salisapilia epistomia CBS 590.85
Sapromyces elongatus CBS 213.82
Salispina intermedia CCIBt 4155
Salispina spinosa CBS 591.85
Saprolegnia parasitica CBS 540.67
Saprolegnia parasitica CBS 127041
99/99/1.0
100/99/0.98
99/69/1.0
100/100/1.0
92/98/1.0
100/100/1.0
68/-/-
66/-/-
88/-/-
99/97/1.0
99/99/1.0
89/86/0.97
100/100/1.0
100/100/1.0
87/98/1.0
100/100/1.0
100/100/1.0
99/95/1.0
100/98/1.0
86/-/1.0
99/-/0.99
100/100/1.0
100/100/1.0
55/-/-
87/-/0.99
97/94/0.98
100/100/1.0
53/76/1.0
99/97/1.0
99/99/1.0
100/96/1.0
0.0100
Fig. S2
... They are thought to have evolved from marine environments and adapted to a wide range of niches and lifestyles [4]. Oomycetes were proposed to encompass three crown orders (Saprolegniales, Albuginales, and Peronosporales [5]), as well as several orders that are still poorly documented, despite potential ecological impact [4,[6][7][8]. Saprolegniales mainly consist of animal parasites, but also few plant pathogens and free-living saprophytes [4]. Albuginales group the obligate, biotrophic parasites of plants that exclusively survive on living tissues. ...
... This large order includes several thousands of both formal and provisional species. Among them are some of the most devastating plant pathogens worldwide, including the genera Phytophthora, Pythium and the intermediate Phytopythium genus [9,10], as well as downy mildews, whose taxonomy was recently revised [6,11], and newly discovered organisms that are not known to be pathogenic, such as Halophytophthora [12], Nothophytophthora [13], and Calycofera [7], as well as Salisipiliaceae [8]. Pathogenic species have highly contrasting lifestyles, ranging from a biotrophic, obligate parasitism to necrotrophy, while most Phytophthora spp. ...
Article
Full-text available
Oomycetes, of the genus Phytophthora, comprise of some of the most devastating plant pathogens. Parasitism of Phytophthora results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that Phytophthora spp. display an unusual repertoire of glycolytic enzymes, made of multigene families and enzyme replacements. To investigate the impact of these gene duplications on the biology of Phytophthora and, eventually, identify novel functions associated to gene expansion, we focused our study on the first glycolytic step on P. nicotianae, a broad host range pathogen. We reveal that this step is committed by a set of three glucokinase types that differ by their structure, enzymatic properties, and evolutionary histories. In addition, they are expressed differentially during the P. nicotianae life cycle, including plant infection. Last, we show that there is a strong association between the expression of a glucokinase member in planta and extent of plant infection. Together, these results suggest that metabolic adaptation is a component of the processes underlying evolution of parasitism in Phytophthora, which may possibly involve the neofunctionalization of metabolic enzymes.
... Oomycetes are eukaryotic, fungus-like, heterotrophic microorganisms that are ubiquitous in marine, brackish, freshwater, as well as terrestrial habitats, and comprise both saprotrophs and pathogens of various hosts (Sparrow 1960, Howard & Johnson 1969, Choi et al. 2008, Thines 2014, Bennett et al. 2018, Bennett & Thines 2019, Hassett et al. 2021. Destructive oomycete pathogens are responsible for several devastating diseases (Erwin & Ribeiro 1996, Bruno et al. 2011, the most notorious being Phytophthora infestans, which causes potato late blight and led to the historical Great Famine in Ireland (Yuen 2021). ...
Article
Full-text available
Oomycetes are a group of fungus-like organisms, which phylogenetically comprise early diverging lineages that are mostly holocarpic, and two crown classes, the Peronosporomycetes and Saprolegniomycetes, including many well-investigated pathogens of plants and animals. However, there is a poorly studied group, the Rhipidiales, which placement amongst the crown oomycetes is ambiguous. It accommodates several taxa with a sophisticated vegetative and reproductive cycle, as well as structural organisation, that is arguably the most complex in the oomycete lineage. Despite the remarkable morphological complexity and their notable perseverance in the face of faster-growing saprotrophic oomycetes and fungi, the knowledge on Rhipidiales is limited to date, as the most complex members are not easily cultured, even by targeted approaches. This also leads to inadequate sequence data for the order, which was sourced from only the two least complex out of seven introduced genera, i.e. Sapromyces and Salispina. In the present study, ex-situ baiting was done using various fruit substrates, and naturally-shed twigs or fruits acquired from water bodies were examined. As a result of these efforts, the species Rhipidium interruptum was obtained and gross cultivation was accomplished using poplar (Populus nigra) twigs as substrate, which allowed further documentation of both asexual and sexual reproduction. This enabled phylogenetic and detailed morphological study, as well as an epitypification of the species. Phylogenetic analyses based on cox2 and nrLSU sequences revealed Rhipidium as the sister genus of Sapromyces. The morphological studies done support a conspecificity of R. interruptum and R. continuum, which might in turn be conspecific with R. americanum. Though several further studies will be required to fit the scattered missing pieces of knowledge on Rhipidiales together revealing a more complete picture of oomycete evolution, we hope that the current study can serve as a cornerstone for future investigations in the group.
... Since phylogenetic studies demonstrated that the genus was polyphyletic, numerous species were transferred to other genera, i.e., Calycofera, Phytopythium, Salisapilia, Salispina, leaving H. vesicula (the type species), H. avicennae, H. batemanensis, H. fluviatilis, H. insularis, H. polymorphica, H. souzae and eight newly described species from Portugal (H. brevisporangia, H. celeris, H. frigida, H. lateralis, H. lusitanica, H. macrosporangia, H. sinuata, H. thermoambigua) in the genus Halophytophthora sensu stricto [12][13][14][15][16][17][18]. ...
Article
Full-text available
In this study, mycelia of eight recently described species of Halophytophthora and H. avicennae collected in Southern Portugal were analysed for lipids and fatty acids (FA) content to evaluate their possible use as alternative sources of FAs and understand how each species FAs profile relates to their phylogenetic position. All species had a low lipid percentage (0.06% in H. avicennae to 0.28% in H. frigida). Subclade 6b species contained more lipids. All species produced monounsaturated (MUFA), polyunsaturated (PUFA) and saturated (SFA) FAs, the latter being most abundant in all species. H. avicennae had the highest FA variety and was the only producer of γ-linolenic acid, while H. brevisporangia produced the lowest number of FAs. The best producer of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was H. thermoambigua with 3.89% and 9.09% of total FAs, respectively. In all species, palmitic acid (SFA) was most abundant and among the MUFAs produced oleic acid had the highest relative percentage. Principal component analysis (PCA) showed partial segregation of species by phylogenetic clade and subclade based on their FA profile. H. avicennae (Clade 4) differed from all other Clade 6 species due to the production of γ-linolenic and lauric acids. Our results disclosed interesting FA profiles in the tested species, adequate for energy (biodiesel), pharmaceutical and food industries (bioactive FAs). Despite the low amounts of lipids produced, this can be boosted by manipulating culture growth conditions. The observed interspecific variations in FA production provide preliminary insights into an evolutionary background of its production.
Article
During an oomycete survey in December 2015, 10 previously unknown Halophytophthora taxa were isolated from marine and brackish water of tidal ponds and channels in saltmarshes, lagoon ecosystems and river estuaries at seven sites along the Algarve coast in the South of Portugal. Phylogenetic analyses of LSU and ITS datasets, comprising all described Halophytophthora species, the 10 new Halophytophthora taxa and all relevant and distinctive sequences available from GenBank, provided an updated phylogeny of the genus Halophytophthora s.str. showing for the first time a structure of 10 clades designated as Clades 1–10. Nine of the 10 new Halophytophthora taxa resided in Clade 6 together with H. polymorphica and H. vesicula. Based on differences in morphology and temperature-growth relations and a multigene (LSU, ITS, Btub, hsp90, rpl10, tigA, cox1, nadh1, rps10) phylo-geny, eight new Halophytophthora taxa from Portugal are described here as H. brevisporangia, H. cele­ris, H. frigida, H. lateralis, H. lusitanica, H. macrosporangia, H. sinuata and H. thermoambigua. Three species, H. frigida, H. macrosporangia and H. sinuata, have a homothallic breeding system while the remaining five species are sterile. Pathogenicity and litter decomposition tests are underway to clarify their pathological and ecological role in the marine and brackish-water ecosystems. More oomycete surveys in yet undersurveyed regions of the world and population genetic or phylogenomic analyses of global populations are needed to clarify the origin of the new Halophytophthora species. Citation: Maia C, Horta Jung M, Carella G, et al. 2022. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia 48: 54 – 90. https://doi.org/10.3767/persoonia.2022.48.02..
Article
Full-text available
Downy mildews are the most species-rich group of oomycetes, with more than 700 known species. The relationships within the main downy mildew lineages (i.e. the downy mildews with pyriform haustoria, the downy mildews with coloured conidia, and the brassicolous downy mildews) are increasingly well resolved, and 20 well-characterised monophyletic genera have been described. However, their relationships to each other, the various lineages of graminicolous downy mildews, and to the species subsumed in Phytophthora are still unresolved. Recent phylogenomic studies have suggested a polyphyly of the downy mildews, but with a limited taxon sampling within Phytophthora . As taxon sampling is crucial for inferring relationships between large groups, we have conducted a multigene analysis with a set of 72 Phytophthora species and included all known downy mildew lineages. In addition, we performed approximately unbiased (AU) testing as an additional approach to evaluate major nodes. Our analyses resolve the downy mildews as a monophyletic assemblage in all phylogenetic algorithms used. We thus conclude that the evolution of the obligate biotrophy characteristic of downy mildews was a singular event and that all downy mildew pathogens can be traced to a single ancestor.
Article
Full-text available
Lagena has so far only been known from the scarcely reported but widespread species Lagena radicicola, which is a parasite of root epidermal cells. While it was mostly reported from a wide range of cereals and other grasses, it has been shown to affect some dicot species under, e.g. tobacco and sugar beet. Due to the wide host spectrum under laboratory conditions, there were no attempts to subdivide the genus into several species, even though some morphological differentiation was reported and the species had been found in several continents. During a survey of diatoms, we came across some parasitoids that would have previously been assumed to be members of the genus Lagenidium. The species exhibited rather narrow host specificity in nature. One species was brought into dual culture with host diatoms of the genus Ulnaria, but could not be transferred to other host genera. Surprisingly, phylogenetic analyses revealed that Lagena radicicola was in a sister clade to that formed by the diatom parasitoids, suggesting a versatile pathogenicity of the genus. Interestingly, several phylogenetic lineages only known from environmental sequencing were clustered with the species found in this study, hinting an undiscovered diversity in the genus Lagena.
Article
Full-text available
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Article
Full-text available
Marine oomycetous species produce, among other fatty acids, omega-6 arachidonic acid (ARA) and omega-3 eicosapentaenoic acid (EPA), with implications for the industrial potential of this group of organisms and the need to find an isolate with high production. This study screened 14 isolates of marine oomycetous species: Halophytophthora avicenniae , H. batemanensis , H. exoprolifera , H. polymorphica and Salispina spinosa cultured from fallen mangrove leaves in Taiwan for 24 saturated and unsaturated fatty acids in their mycelia. This paper is the first to report C18:1n-7 vaccenic acid, C20:1 eicosenoic acid, C24:1 nervonic acid, C20:2n-6 eicosadienoic acid, C22:4n-6 adrenic acid, C20:4n-3 eicosatetraenoic acid and C22:5n-3 docosapentaenoic acid in mycelia of Halophytophthora and Salispina species, and the fatty acid profiles of H. batemanensis and H. exoprolifera . Five fatty acids were dominant in the mycelia of the isolates, i.e. C16:0 palmitic acid, C18:1n-9 oleic acid, C18:2n-6 linoleic acid, C20:4n-6 arachidonic acid and C20:5n-3 eicosapentaenoic acid. For the essential fatty acids, S. spinosa produced the highest level of arachidonic acid (27–31% of total fatty acid (TFA), 141–188 mg l ⁻¹ yield) while H. avicenniae IMB212 produced the highest percentage of EPA (15% of TFA) while H. polymorphica IMB227 produced the highest yield (96 mg l ⁻¹ ). Different species and isolates of the same species produced different fatty acid profiles, and further research effort may yield a high production isolate of industrial significance and also important fatty acids from the marine environment.
Article
Full-text available
Marine oomycetes are highly diverse, globally distributed, and play key roles in marine food webs as decomposers, food source, and parasites. Despite their potential importance in global ocean ecosystems, marine oomycetes are comparatively little studied. Here, we tested if the primer pair cox2F_Hud and cox2-RC4, which is already well-established for phylogenetic investigations of terrestrial oomycetes, can also be used for high-throughput community barcoding. Community barcoding of a plankton sample from Brudenell River (Prince Edward Island, Canada), revealed six distinct oomycete OTU clusters. Two of these clusters corresponded to members of the Peronosporaceae —one could be assigned to Peronospora verna , an obligate biotrophic pathogen of the terrestrial plant Veronica serpyllifolia and related species, the other was closely related to Globisporangium rostratum . While the detection of the former in the sample is likely due to long-distance dispersal from the island, the latter might be a bona fide marine species, as several cultivable species of the Peronosporaceae are known to withstand high salt concentrations. Two OTU lineages could be assigned to the Saprolegniaceae . While these might represent marine species of the otherwise terrestrial genus, it is also conceivable that they were introduced on detritus from the island. Two additional OTU clusters were grouped with the early-diverging oomycete lineages but could not be assigned to a specific family. This reflects the current underrepresentation of cox 2 sequence data which will hopefully improve with the increasing interest in marine oomycetes.
Article
Full-text available
Phylogeny of the genus Pythium is analyzed based on sequences of the large subunit ribosomal DNA D1/D2 region and cytochrome oxidase II gene region of Pythium isolates and comprehensive species of related taxa belonging to the Oomycetes. The phylogenetic trees show that the genus Pythium is a highly divergent group and divided into five well- or moderately supported monophyletic clades. Each clade is characterized by sporangial morphology such as globose, ovoid, elongated, or filamentous shapes. Based on phylogeny and morphology, the genus Pythium (s. str.) is emended, and four new genera, Ovatisporangium, Globisporangium, Elongisporangium, and Pilasporangium, are described and segregated from Pythium s. lato.
Article
Full-text available
A comprehensive phylogeny representing 142 described and 43 provisionally named Phytophthora species is reported here for this rapidly expanding genus. This phylogeny features signature sequences of 114 ex-types and numerous authentic isolates that were designated as representative isolates by the originators of the respective species. Multiple new subclades were assigned in clades 2, 6, 7, and 9. A single species P. lilii was placed basal to clades 1 to 5, and 7. Phytophthora stricta was placed basal to other clade 8 species, P. asparagi to clade 6 and P. intercalaris to clade 10. On the basis of this phylogeny and ancestral state reconstructions, new hypotheses were proposed for the evolutionary history of sporangial papillation of Phytophthora species. Non-papillate ancestral Phytophthora species were inferred to evolve through separate evolutionary paths to either papillate or semi-papillate species.
Article
Full-text available
During various surveys of Phytophthora diversity in Europe, Chile and Vietnam slow growing oomycete isolates were obtained from rhizosphere soil samples and small streams in natural and planted forest stands. Phylogenetic analyses of sequences from the nuclear ITS, LSU, β-tubulin and HSP90 loci and the mitochondrial cox1 and NADH1 genes revealed they belong to six new species of a new genus, officially described here as Nothophytophthora gen. nov., which clustered as sister group to Phytophthora. Nothophytophthora species share numerous morphological characters with Phytophthora: persistent (all Nothophytophthora spp.) and caducous (N. caduca, N. chlamydospora, N. valdiviana, N. vietnamensis) sporangia with variable shapes, internal differentiation of zoospores and internal, nested and extended (N. caduca, N. chlamydospora) and external (all Nothophytophthora spp.) sporangial proliferation; smooth-walled oogonia with amphigynous (N. amphigynosa) and paragynous (N. amphigynosa, N. intricata, N. vietnamensis) attachment of the antheridia; chlamydospores (N. chlamydospora) and hyphal swellings. Main differing features of the new genus are the presence of a conspicuous, opaque plug inside the sporangiophore close to the base of most mature sporangia in all known Nothophytophthora species and intraspecific co-occurrence of caducity and non-papillate sporangia with internal nested and extended proliferation in several Nothophytophthora species. Comparisons of morphological structures of both genera allow hypotheses about the morphology and ecology of their common ancestor which are discussed. Production of caducous sporangia by N. caduca, N. chlamydospora and N. valdiviana from Valdivian rainforests and N. vietnamensis from a mountain forest in Vietnam suggests a partially aerial lifestyle as adaptation to these humid habitats. Presence of tree dieback in all forests from which Nothophytophthora spp. were recovered and partial sporangial caducity of several Nothophytophthora species indicate a pathogenic rather than a saprophytic lifestyle. Isolation tests from symptomatic plant tissues in these forests and pathogenicity tests are urgently required to clarify the lifestyle of the six Nothophytophthora species.
Article
Full-text available
The genus Phytophthora, a group of hemibiotrophic oomycetes, is composed of almost 150 species, most of which are pathogens of terrestrial and freshwater plant species. Of the known taxa of Phytophthora, three species (P. estuarina, P. gemini, and P. rhizophorae) were only recorded in the estuarine or marine environment, while others were recently discovered to be present in these environments as saprotrophs, suggesting that more Phytophthora species might be present in marine or estuarine habitats. Thus, mangrove habitats of the Philippines were surveyed for additional Phytophthora species apart from the previously-reported species, Phytophthora insolita. As a result, Phytophthora elongata, which was reported as a pathogen of Eucalyptus marginata from Western Australia, was isolated from mangrove leaf litter in the coastal area of Cavite, Philippines, as the first Clade 2 species found in saline habitats. This suggests that among Phytophthora species there is the potential to rather easily evolve measures to deal with osmotic pressure, which supports the potential importance of mangroves as a cryptic habitat of Phytophthora.
Article
Full-text available
Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota.
Article
Over 250 species have been described in Ganoderma. Species identification and species circumscription are often unclear and taxonomic segregation of the genus remains controversial. In this study we sequenced the 5′ half of the 25S ribosomal RNA gene and the internal transcribed spacers to determine appropriate regions to i) discriminate between Ganoderma species and ii) infer taxonomic segregation of Ganoderma s. lato (Ganodermataceae) on a phylogenetic basis. We studied 19 Ganoderma isolates representing 14 species classified in 5 subgenera and sections, one isolate of the related genus Amauroderma, and one isolate of Fomitopsis which served as the out- group in parsimony analysis. Results showed that a transition bias was present in our data, and that rates of nucleotide divergence in the different ribosomal regions varied between lineages. Independent and combined analyses of different data sets were performed and results were discussed. Nucleotide sequences of the internal transcribed spacers, but not those of the coding regions, distinguished between most Ganoderma species, and indicated that isolates of the G. tsugae group were misnamed. Phylogenetic analysis of the combined data sets of the divergent domain D2 of the 25S ribosomal RNA gene and of the internal transcribed spacers indicated that subgenus Elfvingia was monophyletic, whereas sections Characoderma and Phaeonema were not. Combined data from these regions is useful for infrageneric segregation of Ganoderma on a phylogenetic basis. Phylogenetic analysis from data of the D2 region alone strongly supported Amauroderma as a sister taxon of Ganoderma. This suggested that the D2 region should be suitable for systematics at higher taxonomic ranks in the Ganodermataceae. The low sequence variation observed in the 25S ribosomal gene within Ganoderma species suggested that the genus is young.
Article
The genus Halophytophthora is a predominantly marine or estuarine genus of the oomycete family Peronosporaceae. This genus has been revealed as a highly polyphyletic assemblage of largely unrelated species. A new genus of the Peronosporaceae, Calycofera, is introduced in this manuscript to accommodate Halophytophthora operculata. Calycofera is distinct compared to Phytopythium s. str. and to Halophytophthora s. str. on the basis of sporangium morphology, sporangiogenous hyphae, and the development and release of zoospores. Phylogenetic analyses using ITS, cox2 and cox1 sequences strongly supported the establishment of this taxon. In addition, a second species of the genus was found, which is genetically more divergent from C. operculata than most sister species in the sister genus Phytopythium, and is described as C. cryptica based on diagnostic nucleotides.
Chapter
The anteriorally uniflagellate Hyphochytriomycota and biflagellate Oomycota are in the Kingdom Straminipila (commonly referred to as stramenopiles) which are part of the SAR superkingdom. Both appear to be basal to the large assemblage of golden-brown algae, the Ochrophyta. Both feature osmotrophic nutrition and have traditionally been considered as zoosporic “fungi,” but are unrelated to organisms in the monophyletic kingdom Mycota. The Hyphochytriomycota is a small group encompassing around half a dozen genera, which have simple nonmycelial, holocarpic thalli, traditionally encompassing three families: the endobiotic Anisolpidiaceae, the polycentric Hyphochytriaceae, and the monocentric Rhizidiomycetaceae. Recently the former have been shown to be placed among the early diverging Oomycota, leaving just the latter two families in the monophyletic Hyphochytriomycota clade. Hyphochytriomycota are widespread in occurrence, and most are saprotrophs or parasites, infecting the resting spores of Oomycota and Glomeromycota. In contrast, the Oomycota are a large and diverse assemblage, consisting of two major (class level) clades, the Saprolegniomycetes and Peronosporomycetes, and several early diverging classes most of which are simple holocarpic organisms that lack mycelial organisation. Many of these early-diverging clades are as yet poorly resolved because of sparse taxon sampling. The early-diverging orders include the Eurychasmales and Olpidiopsidales, both of which are marine seaweed parasites, the nematode infecting Haptoglossales and crustacean infecting Haliphthorales. The Saprolegniomycetes mostly have fungal-like mycelial thalli and include the orders Atkinsiellales s.lat., Leptomitales, and Saprolegniales, which are mostly saprophytes or parasites of invertebrates and, occasionally, vertebrates such as fish and amphibians. A few species in the Saprolegniales are root infecting parasites of plants. The Peronosporomycetes are the second major fungal-like class, and include the largely saprotrophic Rhipidiales, the facultively parasitic Pythiales s.lat., which can infect both animals and plants and the predominantly plant pathogenic Albuginales and Peronosporales sensu lato. Indeed, the Oomycota are significant parasites of both animals and plants, impacting both natural ecosystems and causing significant economic losses in both aquacultural and agricultural systems. The molecular systematics of the Oomycota is still in a state of flux, and in this account a relatively conservative approach has been taken. It is apparent that most of the early-diverging genera are almost exclusively marine and that the Peronosporales represents the main terrestrial and plant pathogenic lineage. Most early-diverging genera lack the oogamous sexual reproduction that characterizes this group and suggests that the oogenesis evolved around the time of emmergence from the sea to the land and freshwater ecosystems. It is also clear that obligate biotrophy in the white blister rusts (Albuginales) and downy mildews (Peronosporales s.str.) has evolved independently.