ArticlePDF Available

Host plants and edaphic factors influence the distribution and diversity of ectomycorrhizal fungal fruiting bodies within rainforests from Tshopo, Democratic Republic of the Congo

Authors:

Abstract

Ectomycorrhizal fungi constitute an important component of forest ecosystems that enhances plant nutrition and resistance against stresses. Diversity of ectomycorrhizal (EcM) fungi is, however, affected by host plant diversity and soil heterogeneity. This study provides information about the influence of host plants and soil resources on the diversity of ectomycorrhizal fungal fruiting bodies from rainforests of the Democratic Republic of the Congo. Based on the presence of fungal fruiting bodies, significant differences in the number of ectomycorrhizal fungi species existed between forest stand types ( p < 0.001). The most ectomycorrhizal species‐rich forest was the Gilbertiodendron dewevrei ‐dominated forest (61 species). Of all 93 species of ectomycorrhizal fungi, 19 demonstrated a significant indicator value for particular forest stand types. Of all analysed edaphic factors, the percentage of silt particles was the most important parameter influencing EcM fungi host plant tree distribution. Both host trees and edaphic factors strongly affected the distribution and diversity of EcM fungi. EcM fungi may have developed differently their ability to successfully colonise root systems in relation to the availability of nutrients.
Afr J Ecol. 2019;1–13. wileyonlinelibrary.com/journal/aje  
|
 1
© 2019 John Wiley & Sons Ltd
Received:7December2017 
|
  Revised:15Octob er2018 
|
  Accepted:17Januar y2019
DOI:10.1111/aje.12595
ORIGINAL ARTICLE
Host plants and edaphic factors influence the distribution
and diversity of ectomycorrhizal fungal fruiting bodies within
rainforests from Tshopo, Democratic Republic of the Congo
Héritier Milenge Kamalebo1,2 | Hippolyte Nshimba Seya Wa Malale1|
Cephas Masumbuko Ndabaga3| Léon Nsharwasi Nabahungu4| Jérôme Degreef5,6|
André De KeseL5
1Facultédessciences,Universitéde
Kisangani,Kisangani,DRCongo
2CentredeRecherchesUniversitairesdu
Kivu(CERUKI)/ISP,Bukavu,DRCongo
3Facultédessciences,UniversitéOfficielle
deBukavu,Bukavu,DRCongo
4InternationalInstituteofTropical
Agriculture,IITA‐Kalambo,Bukavu,DR
Congo
5MeiseBot anicGarden,Meise,Belgique
6FédérationWallonie‐Bruxelles,Service
Généraldel’EnseignementSupérieuretde
laRechercheScientifique,Brussels,Belgium
Correspondence
HéritierMilengeKamalebo,Facultédes
sciences,UniversitédeKisangani,Kisangani,
DRCongo.
Email:kamaleboheritier@gmail.com
Funding information
CentreforInternationalForestryResearch;
BelgianFederalSciencePolicyOffice
Abstract
Ectomycorrhizalfungiconstituteanimportantcomponentofforestecosystemsthat
enhancesplantnutritionandresistanceagainststresses.Diversityofectomycorrhi‐
zal(EcM)fungiis,however,affectedbyhostplant diversity andsoilheterogeneity.
Thisstudyprovidesinformationabouttheinfluenceofhostplantsandsoilresources
on the diver sity of ectomycorrhiza l fungal fruiting bo dies from rainforest s of the
DemocraticRepublicoftheCongo.Basedonthepresenceoffungalfruitingbodies,
significantdifferences inthe number ofectomycorrhizal fungi species existed be‐
tweenforeststand types(p<0.001).Themost ectomycorrhizalspecies‐richforest
wastheGilbertiodendron dewevrei‐dominatedforest(61species).Ofall93speciesof
ectomycorrhizal fungi, 19demonstrated a significant indicator value forparticular
forest stand types. Ofallanalysededaphicfactors,the percentageofsilt particles
wasthemostimportantparameterinfluencingEcMfungihostplanttreedistribution.
Bothhosttreesandedaphicfactorsstronglyaffectedthedistributionanddiversity
ofEcMfungi.EcMfungimayhavedevelopeddifferentlytheirabilitytosuccessfully
coloniserootsystemsinrelationtotheavailabilityofnutrients.
Résumé
Danslesforêts,leschampignonsectomycorrhizienssontimpliquésdanslanutrition
etlaprotectiondesplanteshôtescontrelespathogènes.Leurdiversitéestinfluencée
par la composition floristique et les facteurs édaphiques. Cette étude traite de
l’influencedesplanteshôtes et desfacteursédaphiquessurladiversitédessporo‐
phoresdeschampignonsectomycorrhiziensdanslesforêtsdensesdelaRépublique
Démocratique du Congo.Sebasantsurla présence deleurs sporophores,onnote
l’existencedesdifférencessignificativesentrelenombred’espècesdechampignons
ectomycorrhiziens dans les différents types des forêts (P<0.001). La forêt à
Gilbertiodendrondewevreise révèlela plus richeen espèces (61espèces).Sur un
totalde93espècesdechampignonsectomycorrhiziens,19sontinféodéesauxtypes
particuliersdeforêts.Lateneurenparticuleslimoneusesestleparamètreédaphique
2 
|
   MILENGE KAM ALEBO Et A L.
1 | INTRODUCTION
Mycorrhizae constitute important symbiotic associations be
tween pa rticular gr oups of fungi and r oots of some pla nt species
(Leguminosae,Phyllanthaceae,Gnetaceae and Dipterocarpaceaefami
lies)intropicalAfrica(Bâ,Duponnois,Diabaté,&Dreyfus,2011;Eyi‐
Ndong,Degreef,&DeKesel,2011;Härkönen,Niemelä,Kotiranta,&
Pierce,2015;Piepenbring,2015;Yorou&Kesel2011).Themutualis
ticrelationbet weenplantsandfungiplaysakeyroleinthefunction
ingofnaturalecosystems,especiallyinnutrientcycling(Miyamoto,
Nakano,Hattori,&Nara,2006;Peay,Kennedy,&Bruns,1962;Smith
etal.,2013;Smith,Jakobsen,Grønlund,&Smith,2011;Tedersooet
al.,2014).Mycorrhizaeenhanceplantnutrition(especiallyphospho
rusandnitrogen),andincreaseaplants’productivityandresistance
against s tresses (Ker naghan, 20 05; Miyamoto, Naka no, Hattori, &
Nara,2014).Inreturn,themycorrhizalfungibenefitfromphotosyn‐
thetic ally derived ca rbohydrates ma de by the host plant ( Alisson,
Hanso n,&Tre seder,2007;Kernaghan,20 05;Miyamotoetal.,2014).
Plantsdevelopseveraltypesofmycorrhizaewithfungalspecies.
The most common and important are thear buscularmycorrhizae
(AM) and t he ectomycorrh izae (EcM) (Piepenb ring, 2015). The ar‐
buscularmycorrhizaepenetraterootcells (Blakcwell, 2011;Berruti
etal.,2011;Fortin,Plenchette,&Piché,2008),whileectomycorrhi‐
zaedevelopwidespreadmycelialnetworkssurroundingroottissues
insoil.IncontrasttoAM, EcM fungidevelop aboveground fruiting
bodies , called sporoc arps, and are ma inly hosted by wood y plant
species (Fortin etal., 2008; Kernaghan, 2005; Piepenbring, 2015).
TheEcMfungalcommunitiesconstituteanimportantcomponentof
many central African forests(Eyi‐Ndonget al.,2011)and play key
roles in biogeochemicalcycles,plant communitydynamicsandthe
maintenanceof soil structure.Furthermore, asEcMfungiincludea
widerangeofediblespecies,theyconstituteanimportantsourceof
foodandincomeforlocalpopulations(Berrutietal.,2011;DeKesel,
Kasongo, & Degreef, 2017; Härkönen et al., 2015; Piepenbring,
2015).
Localenvironmentalfactorsmay also affectEcMfungal diver
sity(Berrutietal.,2011;Brundrett,2009;Burke,Lopez‐Gutiérrez,
&Chan,1993;Fortinetal.,2008;Kernaghan,2005).Intropicalfor
ests,local‐scalebioticandabioticfactorsincludingsoilproperties
andsoiltypeplayimportantrolesininfluencingthedistributionof
bothplantandfungalcommunities.EcMfungalcommunitiesare
mainlyaffectedbythediversityofhosttreesandtheheterogene
ity ofsoil resources (Berrutietal.,2011;Brundrett, 2009; Burke,
Lopez‐Gutiérrez, & Chan, 2009). Moreover,species of EcM fungi
canc olonisediverseho stsandplantspe ciesc anh ostsever alfungal
species.
Several studies (Bâ, Duponnois, Moyersoen, Duponnois,
Moyersoen, & Diédhiou, 2011; Buyck, Buyck, Thoen, & Walting,
1996; Ducousso, Bâ, & Thoen, 2003; Eyi‐Ndong et al., 2011;
Härkönen et al., 2015) have reported that, in tropical Africa, EcM
fungi are mainly distributed throughout the Guineo‐Congolian
basin rainforests,in the ZambezianMiombowoodlandsofEastern
andSouthcentralAfrica,andintheSudaniansavannahwoodlands.
Furthermore, the semi‐deciduousrainforests of the Tshopoprov
ince,partof thecentralAfricanCongolesebasin, hostseveral spe
ciesofEcMtrees(Bartholomew,Meyer,&Laudelout,1999;White,
1983) and are main ly dominated by Gilbertiodendron dewevrei (De
Wild.)J.Léonard,Brachystegia laurentii (DeWild.)Louis,Julbernardia
seretii (DeWild.) Troupin,Uapaca guineensisMull. Arg. and U. heu
delotii Baillon (Lejol y, Ndjel e, & Geerinck , 2010; Vleminck x, 2014;
White, 1983). Several other ectomycorrhizal trees (Afzelia bipin
densisHarms,Anthonotha macrophyllaP.Beauv.,Berlinia grandiflora
(Vahl.)Hutch.&Dalz.,etc.)occurinvariousmixedforests(Lejolyet
al.,2010;White,1983).
Despite thewidespread distributionofthis rainforest type and
the roles played by EcM fungi in these forest s, no study on the
ayantplusd’influencesurladistributiondesarbreshôtesdeschampignons.Ledével
oppementdelaforêtàBrachystegialaurentiietlesespècesdeschampignonsecto‐
mycorrhiziensassociéesétaientprincipalementinfluencéparlateneurenphosphore,
alors que le développement des forêts dominées par Gilbertiodendron dewevrei,
Uapaca guineensiset Julbernardiaseretii étaitinfluencéparlateneurenparticules
sablonn euses. L’acidité aluminiqu e, la teneur en part icules limoneuses ain si que la
teneur en particules argileuses sont les paramètres ayant plus d’influence sur la
présence de s sporophores des ch ampignons ectomycorr hiziens associés à Uapac a
heudelotii.Leschampignonsectomycorrhiziensontprobablementdéveloppédesap
titudesparticulièreslesquellesleurontpermisdecoloniserlessystèmesracinaires,en
relationaveclesressourcesminéralesdisponibles.
KEYWORDS
Congobasin,Ectomycorrhizalfungi,indicatorspecies,rainforests,soiltexture
    
|
 3
MILENGE K AMALEBO Et AL.
rel ationbet weenEcMfu ngifunction,theirhostplantsandsoilp ro p
ertiesexist fromthe rainforestsofTshopo. Yet,the assessmentof
ecologicalpatternsofEcMfungi is vital in enhancing conservation
of both fung al communiti es and their hos t plants. T he analysis of
therelationbetweenEcMfungi,hostplanttreesandsoilisalsovital
intheprocess ofassistedcultivationofectomycorrhizalplantsand
EcMfungiinoculation.Thus,thisstudyaimstoanalysetheimpacts
ofsoil resourcesonthediversityanddistributionofEcMfungiand
theirhosttreeswithinrainfores tsoftheYokoandtheYangambibio
spherereservefromtheprovinceofTshopo.
2 | MATERIALS AND METHODS
2.1 | Study site
ThestudysitesarelocatedintheTshopoprovinceoftheDemocratic
Republic of Congo. The mycological data were collected within
rainfore sts of the biosph ere reserve of Yangamb i (0°51′01.62′′N;
24°31′43.53′′E)andwithinrainforestsofYokoreserve(0°17′34.9′′N;
25°18′27.4′′E) (Figure 1). The biosphere reser ve of Yangambi is
located i n Isangi territor y, more tha n 100km Wes t of Kisangani.
The Yokosite is located in theUbunduterritory 32kmsouth‐east
ofKisangani.Apartfrom thewidespreadmixed forests,the region
is mainly characterised by semi‐deciduous rainforests dominated
by G. dewevrei, Scorodophloeus zenkeri Harms, Prioria balsamifera
(Vermoesen)BretelerandJ. seretii(Lejolyetal.,2010;Vleminckxet
al.,2014;White,1983).
Aspartoftheequatorialregion,theTshopoprovinceischarac‐
terised by a rainyand hot climate,typical of the Af type according
toKöppen(1923).The climateis characterised bymonthlyaverage
temperaturebetween22.4and29.3°C,andannualaverageof25°C.
The annu al rainfall ra nges from 1,60 0 to 2,20 0mm with an aver‐
age of 1828mm (Mohym ont & Demarée, 20 08). Rainfall is irr eg‐
ularly di stributed ye arly with a lit tle precipi tation from D ecember
toFebruary, and along rainyseason interruptedby twosmall dry
seasons, from December to January and from June to August
(Mohymont&Demarée,2008).
2.2 | Sampling plots, fungal data
collection and analysis
2.2.1| EcM fungi collection and identification
Data have be en collected f rom March to May in 2015 an d 2016,
whichcorrespondtothemainmushroomfruitingseason.Thefungal
inventoryinvolvedsixforeststandtypes(mixedforestsandforests
FIGURE 1 Locationofthestudysite
4 
|
   MILENGE KAM ALEBO Et A L.
dominated,respectively,byG. dewevrei, B. laurentii, J. serretii, U. heu‐
delotii and U. guineensis).Themixedforestshostseveralectomycor‐
rhizal tr ees such as A. bipindensis, A. macrophylla, Paramacrolobium
coeruleum (Taub.) J. Léonard and Pericopsis elata (Harms) Van
Meeuwen(Table1).
Plots (100×100m each)dividedinto20×20mgrids werede‐
marcatedineachforesttype,exceptinU. heudelotiiforestinwhich
plots were less than 100×100m due to the limited distribution
(20×50m). In each plot, analysed data were exclusively based on
thepresence/absenceofthehar vestedabovegroundectomycorrhi‐
zal fungal fruiting bodies (Table2). In the field, somemacroscopic
features(habitus;stipe,capandhymenophorecharacteristics)were
assessed.
Sporeprintswerepreserved,andsporocarpsweredriedforfur
thermicroscopicanalysis.Avoucher collectionandcollectedspore
printsweredepositedattheHerbariumofMeiseBotanicGarden(BR)
inBelgium.Microscopicstudyconsistedinexaminingthepileipellis,
basidia, cystidia and spores (ornamentation and size). Taxonomic
referencestudiesfortropicalAfrica (Buyck,;DeKeselet al., 2017;
Eyi‐Ndong etal., 2011;Heim, 1955;Heinemann,1954;Heinemann
&Rammeloo, 1983,1987, 1989; Verbeken & Walleyn, 2010)have
been used forspecies identification. Names of fungal species and
author 's abbreviation s were annotated us ing the Index Fungor um
database (http://www.indexfungorum.org/Names/Names.asp,
Accessed 12 N ov 2017). All unident ified specie s but identifi ed to
the genuslevel werenumbered and indicated “sp.”Fungalspecies
richnesswas calculated as the number of fungal species collected
fromeachtypeofforest(Baptista,Martins,&Tavares,1953;Caiafa,
Gomez‐Hernandez,Williams‐Linera,&Ramírez‐Cruz,2006;Hueck,
1951).Thediversityofectomycorrhizalfungibasedonspeciesrich‐
nesswasdeterminedusingtheShannon(H)index(Fisher,Corbet,&
Williams,1943).
2.2.2 | Soil sampling and analysis
Composi te soil samples h ave been taken wit hin each plot at 0 to
30cmdepthusingabucketsoilauger.Soil sampleswerepackedin
plasticbagsforlaboratoryanalysis.Fromeachsoilsample,pH(H20,
1:2.5), min eral nutrie nt (nitrogen, pho sphorus, pot assium and ca r
bon)andexchangeablecations(H+,Al3+,Ca2+andMg2+)weremeas‐
ured. Extractablenitrogen(N)wasassessedbyKjeldahl procedure
while Olsenextract method was usedfor exchangeable potassium
(K) and ex tractable phosphorus (P). The total organic carbon (C)
wasmeasured calorimetrically(Anderson&Ingram,1993).Thesoil
particlesizeanalysiswasmeasuredhygrometrically(Motsara&Roy,
2015).TheKruskal–Wallistestwasusedtoassesst hedifferencebe
tweensoilparameters.
2.2.3 | Statistical analyses
Toexaminetherelativeinfluenceofsoiltypeandhostplantspecies
onectomycorrhizalfungalspecies assembly,weusedpermANOVA
analysis (10,000 permutations) (Anderson, 2001). The ordination
analysis withRsoftwareinvolvedthenon‐metricmultidimensional
scaling ( NMDS) (Clarke & Gorle y, 2013). The hier archical anal ysis
wasusedtoclusterplotsbasedontheirmycologicalsimilaritywhile
EcM fungal species accumulation curves were performed using
Excel sof tware. The Indicator spe cies analysis (Indval) per formed
withtheindicspeciespackageofRsoftwarewasusedtodetermine
indicatorspeciesforeachforeststandtype(DeCáceres,2002).For
each indicatorspecies, probability of both fidelityand occurrence
werecalculated.Thefidelityconcernstheexclusivemembershipof
fungalspeciestoaparticularforeststandtype,whiletheoccurrence
probabilityindicatesthefrequency or preference offungalspecies
toplotsofagiventypeofforest.
TABLE 1 ListanddistributionofEcMplanttrees(+:present,−:absent),),(P1=Brachystegia laurentii‐dominatedforest,
P2=Gilbertiodendron dewevrei‐dominatedforest,P3=Julbernardia serretiiforest,P4=Mixedforest,P5=Uapaca guineensis‐dominated
forestsandP6=U. heudelotii‐dominatedforest)
Family EcM Trees
Forest types
P1 P2 P3 P4 P5 P6
Fabaceae Afzelia bipindensisHarms − − +− −
Anthonotha macrophyllaP.Beauv − − +− −
Aphanocalyx cynometroidesOliver + − − −
Berlinia grandiflora(Vahl)Hutch.&Dalz. + − − −
Brachystegia laurentii(DeWild.)Louis +− − − − −
Gilbertiodendron dewevrei(DeWild.)J.Léonard + − − −
Julbernardia seretii(DeWild.)Troupin + ++
Paramacrolobium coeruleum(Taub.)J.Léonard ++− −
Paramacrolobiumsp. +− − − − −
Pericopsis elata(Harms)VanMeeuwen − − +− −
Phyllanthaceae Uapaca guineensisMull.Arg − − ++
Uapaca heudelotiiBaillon − − − − +
    
|
 5
MILENGE K AMALEBO Et AL.
TABLE 2 ListofrecordedEcMfungiandtheiroccurrencewithinforests(+:present;−:absent),(P1=Gilbertiodendron dewevrei‐dominated
forest,P2=Brachystegia laurentii‐dominatedforest,P3=Mixedforest,P4=Julbernardia serretiiforest,P5=Uapaca guineensis‐dominated
forestsandP6=U. heudelotii‐dominatedforest.)
Family Species
Forest stand types
P1 P2 P3 P4 P5 P6
Amanitaceae Amanita annulatovaginata Beeli + − −
Amanita calopus Rammeloo&Walleyn + − −
Amanita echinulata Beeli + − −
Amanita fibrilosa Beeli + − −
Amanita pudica (Beeli)Walleyn + − −
Amanita robusta Beeli +− −
Amanita sp + − −
Amanita sp1 + − −
Amanita sp2 + − −
Amanita sp3 + − −
Amanita sp4 + − −
Amanita sp5 + − −
Amanita sp6 + − −
Aphelaria sp1 +− −
Boletaceae Phylloporus ater (Beeli)Heinem +− −
Phylloporus sp +− −
Phylloporus testaceus Heinem&Gooss.‐Font + − −
Pulveroboletus annulatus Heinem + − −
Pulveroboletus rufobadius (Bres.)Singer + − −
Rubinoboletus luteopurpureus(Beeli) + − −
Strobilomyces echinatus Beeli + − −
Tylopilus balloui (Peck)Singer +− −
Tylopilus beeli Heinem.&Gooss.‐Font + − −
Tylopilus niger (Heinem.&Gooss.−Font.)Wolfe + − −
Tylopilus sp1 +− −
Tylopilus violaceus Heinem + − −
Tylopilus virens (W.F.Chiu)Hongo + − −
Tylopilus sp2 + − −
Cantharellaceae Cantharellus congolensis Beeli + − −
Cantharellus conspicuus Eyssart.,Buyck&Verbeken + − −
Cantharellus densifolius Heinem. + − −
Cantharellus incarnatus (Beeli)Heinem. +− −
Cantharellus isabellinus Heinem. + − −
Cantharellus longisporus Heinem. + − ‐
Cantharellus luteopunctatus (Beeli)Heinem. + − −
Cantharellus miniatescens Heinem. + + − −
Cantharellus pseudofriesii Heinem. +− −
Cantharellus ruber Heinem. +− −
Cantharellus rufopunctatus (Beeli)Heinem +− −
Cantharellus sp 1 +− −
Cantharellus sp2 − − +
Cantharellus sp3 + − −
Cantharellus sp4 + + +
Cantharellus sp5 + − ‐
Cantharellus sp6 + − −
(counnues)
6 
|
   MILENGE KAM ALEBO Et A L.
3 | RESULTS
Family Species
Forest stand types
P1 P2 P3 P4 P5 P6
Clavariaceae Scytinopogon angulisporus (Pat.)Corner + + + − −
Cortinariaceae Telam onia sp1 + − −
Telamonia sp2 + − −
Telamonia sp3 + − −
Telamonia sp4 + − −
Gomphaceae Gomphus brunneus (Heinem.)Corner + + + +
Inocybaceae Inocybe sp1 +− −
Paxillaceae Paxillus brunneotomentosus Heinem.&Rammeloo +− −
Russulaceae Lactarius acutus R. Heim + + − −
Lactarius saponaceus Verbeken + − −
Lactarius sp1 − − +
Lactarius sp2 + − −
Lactarius sp3 + − −
Lactarius sp4 − − +
Lactarius sp5 − − +
Lactarius sp6 − − +
Lactifluus annulatoangustifolius (Beeli)Buyck + − −
Lactifluus gymnocarpus(R.HeimexSinger)Verbeken + − − +
Lactifluus heimi(Verbeken)Verbeken − − +
Lactifluus pelliculatus(Beeli)Buyck + ‐ −
Russula annulata R. Heim +− −
Russula declinata Buyck + − −
Russula inflata Buyck + − −
Russula meleagris Buyck + + − −
Russula porphyrocephala Buyck +− −
Russula pruinata Buyck + − −
Russula pseudocarmesina Buyck + − −
Russula roseostriata Buyck +− −
Russula roseovelata Buyck +− −
Russula sese Beeli + + − −
Russula sesemoindu Beeli +− −
Russula sp1 + − −
Russula sp2 +− −
Russula sp3 +− −
Russula sp4 + − −
Russula sp5 + − −
Russula sp6 + − −
Russula sp7 + − − +
Russula sp8 + − − +
Russula sp9 − − +
Russula striatoviridis Buyck + − −
Russula testacea Buyck + − −
Russula viridrobusta Buyck +− −
Thelephoraceae Thelephora palmata (Scop.)Fr. +− −
Xerocomaceae Xerocomus sp1 + − −
Xerocomus sp2 + − −
Xerocomus sp3 + − −
Xerocomus spinulosus Heinem.&Gooss.‐Font + − −
TABLE 2 (Continued)
    
|
 7
MILENGE K AMALEBO Et AL.
3.1 | Diversity and distribution of ectomycorrhizal
(EcM) fungi within forest stand types
3.1.1| Species richness
Atotal of 93 taxaofEcM fungiwererecorded in six differentfor‐
eststands. Amongthem,54were determinedtospeciesleveland
39to thegenuslevel. Significantdifferenceswereobserved in the
numberofEcMfungibetweenforeststandtypes(Figure2)(p‐value
<0.001).TheShannondiversityindexrevealedthattheG. dewevrei
dominatedforestwasthemostspecies‐richforeststand(totalspe
cies number=61, Shannon index value=4.11). The second most
species‐richforeststandwastheB. laurentii‐dominatedforest(total
species number=24,Shannonindex value=3.17),followed by the
U. heudelotii‐dominated forest (total species number=7, Shannon
indexvalue=1.94)andthemixedforests(totalspeciesnumber=7,
Shannon index value=1.94). The lowest number of EcM fungal
species was reported in J. seretii‐dominated forest (total species
number=4, Shannon index value=1.38). TheRussulaceaewasthe
most representative family ofEcM fungi (35 species), followed by
Cantharellaceae(18species),Boletaceae(14spec ies)an dAmanitaceae
(13species).
Whereas the number of EcM fungi significantly differed be‐
tweenforesttypes,thespeciescumulativecurve(Figure3)revealed
differentpatternsofspeciesrichness withinplots.Thehighestcu‐
mulative sp ecies richness was demons trated in G. dewevrei‐domi
natedforests,followedbyB. laurentii‐dominatedforests.Plotsfrom
mixed forests, J. seretii forests andUapacaspp.‐dominatedforests
exhibitedlowvariationinthenumberofEcMfungi.
3.1.2 | Fungal species assemblages and
indicator species
The composition of vascular plants prominently influenced EcM
fungi species assemblages and composition. Clustering of plots
based on thecomposition inEcMfungi isstronglycorrelated with
forest s tand type s (Figure 4). Apar t from a few common sp ecies,
each fore st stand t ype is charac terised by its own Ec M diversity.
However,oneplotofJ. seretii‐dominatedforestwasclusteredwith
mixedforestsassomecommonspeciesofEcMfungioccurredinthe
twotypesofforeststands.
Ofall93recordedtaxa,19speciesofEcMfungidemonstrated
a significant indicator value for a particular forest stand type
(Table 3). The highest number of indicator species was demon
stratedfortheB. laurentii‐dominatedforests(7species),theU. heu
delotii‐domi nated forest (6 spe cies) and the fore st dominated by
G. dewevrei(5species)whereastheU. guineensis‐dominatedforest
and the B. laurentiiG. dewevrei combined forest both have only
oneindicator species.NospeciesofEcMfungiwasdemonstrated
asindicatorforJ. seretiiandothermixedforests.Basedontheiroc
currenceandfidelityprobability,allindicatorspeciesof B. lauren
tiiforest revealed strongpreference (100% occurrence) whereas
only4ofthem demonstrated 100%fidelity.Theall five indicator
speciesof G. dewevrei‐dominated forestwereexclusively faithful
(100%fidelity)anddemonstratedstrongpreference(100%occur
rence). In U. heudelotii forests, all indicator species were faithful
FIGURE 2 Distributionofthenumbers
ofEcMspecieswithinforeststandtypes
(MIX:Mixedforests;GIL,Gilbertiodendron
dewevrei‐dominatedforests;BRA:
Brachystegia laurentii‐dominatedforests;
JUL:Julbernardia seretii‐dominated
forests,Uapaca guineensis‐dominated
forests,Uapaca heudelotii‐dominated
forests)
FIGURE 3 EcMspeciescumulativecurveaccordingtoforest
standtypes(MIX:Mixedforests;GIL:Gilbertiodendron dewevrei
dominatedforests;BRA:Brachystegia laurenti‐dominatedforests;
JUL:ForestsdominatedbyJulbernardia seretii;UAPG:Uapaca
guineensis‐dominatedforests;UAPH:Uapaca heudelotii‐dominated
forests)
0
10
20
30
40
50
60
70
0123
EcM species numbe
r
Plots
MIX
GIL
BRA
JUL
UAPG
UAPH
8 
|
   MILENGE KAM ALEBO Et A L.
whereasonly fourofthemdemonstratedstrong preferencewith
100%occurrence.
Several ot her species of EcM fung i, even reported f aithful to
somespecificforeststands,weredescribedasrarespecies(p‐value
<0.05) occu rring rarely i n single plots. T his is the case of num er
ousspeciesofthegenusAmanita and Russulasporadicallyfoundin
G. dewevrei‐ and B. laurentii‐dominatedforests.
3.2 | Variability in soil types and properties within
forest stands
Most of edaphic factorsclearly differed betweenthe forest types
(Table4).Significantdifferencesexistedforextractablephosphorus
content(p‐value=0.005),sandparticlessize(p‐value=0.037),clay
particles (p‐value=0 .024), exchangeable C a (p‐value=0.015), soi l
C(p‐value =0.033)aswellasavailableN(p‐value =0.004).Inaddi‐
tion, theforests dominated byB. laurentii, G. dewevrei and J. seretii
arecharacterisedbyasandyloamsoilwhileU. guineensis and U. heu
delotii forests are respectively characterised by loamy sand and
clayeysoils.
Althou gh soil proper ties clear ly differ be tween fores t stands,
the PERMA NOVA analy sis revealed that the s ilt particle size r e
mains the m ost import ant soil paramete r that has prominent i n
fluence o n the diversity of b oth EcM fungi and hos t plant trees
(Table 5). However, the non‐metric multidimensional scaling
(NMDS) ordination (Figure 5) demonstrated that G. dewevrei‐ and
U. heudelotii‐dominated forests are mostly promoted by particle
sizeof clay andsilt, andthe content in organic C,N and extract
able K. Fur thermor e, the hydrogen acid ity, the exchangeab le Ca,
theavailableMg,thepHandthe percentage ofsand particlesare
themostimportantedaphicparametersthatpromoteB. laurentii‐,
J. seretii‐ and U. guineensis‐dominatedforests.Correlationbetween
theedaphicfactorsandforeststandtypes,demonstratedthatthe
soilpropertiesthat are mainly ordinatedwith a giventypeoffor
esthadprominentinfluenceonthediversityofbothEcMfungiand
hostplanttrees(Figure5).
Thefirstaxisordinatedforeststandsbasedmainlyonsoiltype.
All ty pes of forest (B. laurentii‐dominated forest, G. dewevrei‐dom
inated forest and J. seretii forest) developed on sandy soil were
grouped together while only U. heudelotiionclayeysoilissepa
rated.Thesecondaxisordinatedforeststandsbasedmainlyonsoil
acidit y.Fore sts growin g on soil charac terised by hydro gen acidity
wereordinatedtogether,whereasforestsofsoilcharacterisedbyAl
acidityformed separate ordination. However,thediversityofeach
foreststandandassociatedEcMfungalcommunityweredifferently
influencedbysoil properties. The NMDSanalysisshowed thatthe
sustainabilityofB. laurentii‐dominatedforestanditsassociatedEcM
fungi was mainly promoted by the content in extractable P.Fungi
andhost plants fromG. dewevrei,U. guineensis and J. seretiiforests
were influenced primarily by hydrogen acidity, exchangeable Ca,
availableMg,pHandthepercentageofsandparticles.Furthermore,
Alacidity,totalN, C,Kand contentofsiltand claywerethe most
FIGURE 4 Hierarchicalclustering
ofplotsreferringtothemycological
similarity
    
|
 9
MILENGE K AMALEBO Et AL.
important edaphic parameters influencing the presence of EcM
fungiassociatedwithU. heudelotii.
4 | DISCUSSION
4.1 | EcM fungi diversity and distribution within
forest stands
The compo sition and dist ribution of EcM fung al fruiting bo dies var
ied significantly with host tree distribution. In all forest types, the
families Russulaceae and Cantharellaceae dominate, as previously re
portedbyEyi‐Ndong etal.(2011)fortheCentralAfricanrainforests,
Buyck,Gomez‐Hernandez, Williams‐Linera,andRamírez‐Cruz (2017)
and Bâ, D uponnois, Moye rsoen, and D iédhiou (2010) for t he savan
nah woodlands of Western Africa and Buyck(1997),Härkönenet al.
(2015)andDeKeselet al.(2017)fortheMiombowoodlands.Species
ofCantharellaceae and Russulaceae should have developedcapacities
toadapttothelocal edaphicconditionsenablingthemtosuccessfully
coloniseplantrootsthroughouttheseforesttypes(Berrutietal.,2011;
Brundrett,2009;Burkeetal.,2009).Inaddition,theforestsdominated
by G. dewevrei and B. laurentiiwerethemostEcMspeciesrichforest
stands,aspreviouslyrecordedbyEyi‐Ndongetal.(2011)fromlowland
rainforestinGabon. Thiscanbeexplainedbythefact thatB. laurentii
and G. dewevrei fo reststandsar et hemostwid elydist ributedEcMtrees
in the Cong o basin (White, 1983). G. dewevrei and B. laurentii should
havedevelopedcapacities tohostseveralEcMfungi inlocal edaphic
conditions.Aspreviouslyreportedfromdiversetropicalforests(Bâet
al.,2010; Burkeetal.,2009;Eyi‐Ndong etal.,2011;Khasa,Furlan, &
Lumande,199 0;Yorou&Kesel,2011),EcMhosttreesinTsho pobelong
exclusivelytothefamiliesFabaceae and Phyllanthaceae.
Referrin g to the results of i ndicator spe cies analysis, n umer
ous species ofEcM fungi have demonstrated strong preference,
evenfidelity,tospecifichabitats. Thisisthe caseofCantharellus
ruber, C. rufopunctatus, Russula roseostriata, Thelephora palmata,
TABLE 3 ValuesoftheindicatorEcM
speciesanalysisforthestudiedforest
stands
Indicator EcM
species
Probability Indicator value (Indval)
Fidelity Occurrence Indval p‐value
Brachystegia laurentii‐dominatedforest
1Cantharellus ruber 1.0000 1.000 1.000 **
2Cantharellus
rufopunctatus
1.0000 1.000 1.000 **
3Russula roseostriata 1.0000 1.000 1.000 **
4Thelephora palmata 1.0000 1.000 1.000 **
5Russula meleagris 0.8333 1.000 0.913 **
6Russula sese 0.8333 1.000 0.913 **
7Cantharellus
miniatescens
0.750 0 1.000 0.866 *
Uapaca heudelotii‐dominatedforest
1Lactifluus heimi 1.00 1.00 1.000 **
2Lactarius sp.4 1.00 1.00 1.000 **
3Lactarius sp.5 1.00 1.00 1.000 **
4Lactarius sp.6 1.00 1.00 1.000 **
5Russula sp.7 0.75 1.00 0.866 *
6Russula sp.8 0.75 1.00 0.866 *
Gilbertiodendron dewevrei‐dominatedforest
1Cantharellus
congolensis
1.000 1.000 1.000 **
2Lactarius sp.2 1.000 1.000 1.000 **
3Rubinoboletus
luteopurpureus
1.000 1.000 1.000 **
4Strobilomyces
echinatus
1.000 1.000 1.000 **
5Tylopilus beeli 1.000 1.000 1.000 **
Uapaca guineensis‐dominatedforest
1Cantharellussp.2 1.0000 1.0000 1.000 **
Brachystegia laurentii+Gilbertiodendron dewevrei‐dominatedforests
1Lactarius acutus 1.0000 0.6667 0.816 *
*p‐value<0.05:Significantdifference.**p‐value<0.01:Highlysignificantdifference.
10 
|
   MILENGE KAM ALEBO Et A L.
TABLE 4 Meanvaluesofedaphicparameters±Standarddeviation(SD)
Edaphic factors
BRA GIL JUL UAPG UAPH Kruskal–Wallis
Mean ±SD Mean ±SD Mean ±SD Mean ±SD Mean ±SD p‐value
Al3+(cmol/kg) 1,07±0,12 0,96±0,26 0,63±0,12 1,00±0,08 12,62±3,12 * 
H+(cmol/kg) 0,51±0,08 0,57±0,10 0,67±0,08 0,52±0,18 0,46±0,03 NS
pH 4,33±0,13 4,13±0,15 4,31±0,09 4,40±0,09 4,36±0,21 NS
N(µg/g) 0,08±0,03 0,08±0,01 0,04±0,02 0,06±0,04 0,22±0,02 **
C(µg/g) 0,71±0,12 0,81±0,19 0,47±0,10 0,52±0,20 1,32±0,32 *
Ca(cmol/kg) 1,41±0,36 2,32±0,65 3,11±0,44 2,39±0,18 1,58±0,40 *
Mg(cmol/kg) 0,67±0,14 0,59±0,21 0,69±0,09 0,58±0,11 0,59±0,02 NS
Clay(%) 18,21±2,31 15,88±1,67 15,54±1,15 13,54±1,16 43,87±9,91 *
Sand(%) 79,07±2,31 80,73±2,66 81,07±1,15 83,07±1,15 45,42±12,74 *
Silt(%) 2,72±0,00 3,39±1,63 3,39±1,15 3,39±1,15 10,72±2,84 NS
K(µg/g) 0,13±0,06 0,10±0,00 0,10±0,0 0 0,07±0,06 0,15±0,07 NS
P(µg/g) 30,37±7,05 9,10±0,57 16,98±1,33 9,60±0,05 8,03±0,47 **
Soil type Sandy loam Sandy loam Sandy loam Loamy sand Clay
OM 1,2 1,4 0,8 0,9 2,3
C/Nratio 910 12 9 6
Note.ThetwolastcolumnsindicateP‐valueandthesignificanceleveloftheKruskal–Wallistest.
BRA:Brachystegia laurentii‐dominatedforest;GIL:Gilbertiodendron dewevrei‐dominatedforest,JUL:Julbernardia serretiiforest;OM:OrganicMatter;UAPG:Uapaca guineensis‐dominatedfor
ests;UAPH:U. heudelotii‐dominatedforest;NS:Notsignificant.
*p‐value<0.05:significantdifference.**p‐value<0.01:Highlysignificantdifference.
    
|
 11
MILENGE K AMALEBO Et AL.
R. meleagris, R. sese and C. miniatescensexclusivelyfoundinB. lau
rentii‐dominated forests. Likewise, C. congolensis, Rubinoboletus
luteopurpureus, Strobilomyces echinatus and Tylopilus beeli were in
dicator sp ecies for G. dewevrei‐dominated forest while Lactifluus
heimi characterised the U. heudelotii forests. Furthermore,
Lactarius acutuscharacterisedboththeG. dewevrei‐ and B. lauren
tii‐dominatedforests.
AsreportedbyYorouandDeKesel(2011),thegreatest danger
facing EcM fungirelatetothethreat;facing theirhabitatandtheir
hostplanttrees.Furthermore,therarityexpressedinthenumberof
fungal locationsand their habitat areasare themain criteria to be
used for EcM fungi‐basedIUCN status classification. Thereby,due
totherapidlossofbiodiversityinnaturalecosystems,theestablish
mentofIUCNstatusofvariousrareandendangeredspeciesofEcM
fungifromrainforestsofTshopoisofgreatimportance.
4.2 | Edaphic factors promoting both EcM fungi and
host trees sustainability
Theanalysisofedaphic factorsindicatedmanydifferencesexisting
betweensoil characteristics of the investigated forests.Three dif‐
ferentsoiltypeswerecharacterisedbasedonthesoilparticlessize.
TheG. dewevrei,B. laurentii and J. seretiiforests occurred on sandy
loamsoil,whileU. guineensis and U. heudelotiideveloponloamysand
andclayey soil.Furthermore, thesoil nutrient contentand proper‐
tiesvarysignificantlyamongforests.And,ofthese,availablePwas
alsonegativelycorrelatedtoAlcontent.Moreover,theforestsde
velopedonasandysoil(characterisedbyhighlevelofhydrogenacid‐
ityandhighPcontent)(G. dewevrei and B. laurentiiforests)hosteda
higher number of EcM fungi thanthe U. heudelotiiforest found on
clayeysoil(wheretheacidityisbasedonAlcontent).
The s e f i n d i n g sarein l i n ewithsev e r a l otherstudie s ( B u r keeta l . ,
1993;Hazelton & Murphy,20 07;Neffar,Beddiar,&Chenghouni,
2008) thatreported thathighconcentrationsofexchangeableAl
reducetheavailabilityofPinsoilandshouldnegativelyaffectthe
developmentofEcMfungi(Burkeetal.,2009;Neffaretal.,2008).
Furthermore,thehighcontentofavailablePin B. laurentiiforests
mightexplainthattreerootsarestronglyinvolvedintheminerali
sa tionofPalo ngw itht heNcoll ectedfro mthe atmo sphe re(B errut i
etal.,2011;Brundrett,2009;Burkeetal.,2009).Nevertheless,it
shouldbenotedthat,althoughthesurveyoffruitingbodiesgives
informationabouttheEcMfungalcompositionanddiversity,such
studiesdonotnecessarilyreflec tt heoverallEcMfungicomm unit y
composition.SomeofEcMfungidonotorrarelyproducefruiting
bodiesduetoincompatiblecombinationsthatdonotenabletheir
mycelialnetworktoproducefruitingstructure(Berrutietal.,2011;
Brundrett,2009;Kernaghan,2005).Furthermore,thenaturalpro
ductionofabovegroundfruitingbodiesrequiresmuchmorebio
logical energy by hostplantsand depends onavailablenutrients
andfungalbiologicalcapacities (Berrutietal.,2011;Neffaretal.,
2008).
Incomparisonwiththenon‐mycorrhizalmountainforestsfrom
theAlbertineriftcharacterisedbyvolcanicsoilrichinmineralnu
trient(Bernaert,2014;Pécrotetal.,1962),rainforestsinYangambi
and Yoko develope d mainly on poor san dy soil (Alongo, V isser,
Kombele, Colinet, & Bogaer t, 2013; Bartholomew et al., 1999;
Gilson, Wambeke, & Gutzwiller, 1956). Previous studies(Berruti
et al., 2011; Brun drett, 20 09; Neff ar et al., 200 8) revealed th at
mycorrhizae occur mainly in poor soils, such as soils from EcM‐
dominated forest s of Yangambi and Yoko (Alongo et al., 2013;
Bartholomew etal.,1999;Gilson etal., 1956).EcMfungi,there
fore, enh ance the biologic al fixation of at mospheric nit rogen in
soil andcontrolthe mineralisation ofother nutrients along with
theavailablenitrogen.
TABLE 5 Resultsofthecorrelationbetweenedaphicfactors
withthePERMANOVAanalysis
NMDS1 NMDS2 r2p‐value
Al 0.960 97 0.27665 0.7859 NS
H−0.79070 0.612 21 0.2814 NS
pH −0.06851 0.99765 0.5112 NS
N0.99233 0.12361 0.7778 NS
C0.87 762 0.47935 0.8560 NS
Ca −0.28578 0.95830 0.3388 NS
Mg −0.99890 0.04687 0.4112 NS
Clay 0.99231 0.12382 0 .714 6 NS
Sand −0.98303 −0.18345 0 .74 4 6 NS
Silt 0.92701 0.37503 0.8495 *
K0.59450 0.80 410 0.3661 NS
P−0 .74 898 −0.66259 0.6262 NS
Note.NS:Notsignificant.
*p‐value<0.05:Significantdifference. FIGURE 5 Thenon‐metricmultidimensionalscaling(NMDS)
ordinationshowingtherelativeinfluenceofedaphicfactorsonEcM
fungihostplanttreesmaintenance
–0.4 –0.2 0.00.2 0.
40
.6
–0.4 –0.2 0.00.2 0.4
NMDS1
NMDS2
BRA
GIL
JUL
UAPG
UAPH
Al
H
pH
N
C
Ca
Mg Clay
Sand
Silt
K
P
12 
|
   MILENGE KAM ALEBO Et A L.
5 | CONCLUSION
Thisstudy givesbasicinformationonthediversityanddistribution
patternof EcM fungalfruitingbodies withinthebiospherereserve
ofYangambiandtheforestreserveofYoko.Atotalof93ectomyc‐
orrhizalfungaltaxawererecorded,amongwhich19speciesshowed
preferenceforparticularforeststands.Regardingtheimpactofsoil,
itwasshownthatedaphicfactorsdifferentlyaffectthedistribution
anddiversityofEcMfungi.TheB. laurentiiplanttreeanditsassoci
atedEcMfungiweremainlypromotedbythecontentinextractable
phosphoruswhileG. dewevrei,U. guineensis and J. seretii forests are
mainlysustainedbysandparticlesize.Aluminiumacidityandthesilt
andclayparticleswerethemostimportantedaphicparametersin
fluencingthepresenceofEcMfungalfruitingbodiesassociatedwith
U. heudelotii.
Since these rainforest stands are characterised by poor soil
referring to mineral nutrients availability (Alongo et al., 2013;
Bartholomewetal.,1999;Bernaert,2014),EcMfungiplayimport
antrolesinnutrientcyclingandmineralisationbyhostplants.EcM
fungi enh ance biologica l fixation of atmos pheric nitroge n in soil,
whichisinvolvedin severalorganiccombinationsand contributes
tomakenitrogenavailableforassimilationbyplants(Berrutietal.,
2011;Neffaret al., 2008). However,both hosttreesand edaphic
factor s strongly af fect the dis tribution an d sustainabil ity of EcM
fungal di versity. EcM fungi may h ave developed dif ferently the ir
abilitytosuccessfullycoloniserootsystemsinrelationtotheavail
abilityofnutrients.Forestsmightbecharacterisedbypatchynutri
entdistributioninsoilthat inreturnaffectsEcMdistribution. Yet,
furtherstudiesanalysingthedistributionpat te rnofroot‐associated
fungi at finespatialscale arerequiredin ordertogetmuch infor
mationabouttheoverallEcMfungaldiversityandtherelationwith
theirhostplants.
ACKNOWLEDGEMENTS
WethanktheEuropeanUnion,theCentreforInternationalForestry
Re s e a rch(C I FOR)a n d t heUni v e r sityof K i s anganif o rtheP h . D.fina n
cialsupportgrantedtothefirst authorthroughtheproject“Forêts
etChangementsClimatiquesauCongo.”Thetaxonomicanalysisfor
speciesidentificationhasbeencarriedoutatMeiseBotanicGarden
in Belgium and was supported by three grants from the Belgian
GlobalTaxonomyInitiativeoftheCEBioSprogram.Thefieldworkof
A.DeKeselinYangambiwasfinancedbyBELSPO(BelgianFederal
Science PolicyOffice)through the COBIMFOproject(Congobasin
integratedmonitoringforforestcarbonmitigationandbiodiversity).
The first author is also grateful tothe IDEA WILD foundation for
theresearchequipmentgrantedtohim.Inaddition,wethankPapa
ELAS I, Mr. RISASI Ratos , Jules BOMBILE , Antoine MOTOSIA an d
MichelMBASIforguidingsamplingexpeditions.
CONFLICT OF INTEREST
Theauthorsdeclarethattheyhavenocompetinginterests.
ORCID
Héritier Milenge Kamalebo https://orcid.
org/0000‐0002‐9232‐9801
REFERENCES
Alisson,S.D.,Hanson,C.A.,&Treseder,K.K.(2007).Nitrogenfertiliza
tionreducesdiversityandalterscommunitystructureofactivefungi
in boreal ecosystems. Soil Biology & Biochemistry, 39, 1878–1887.
https://doi.org/10.1016/j.soilbio.2007.02.001
Alongo, S ., Visser, M., Kombele , F., Colinet , G., & Bogaert , J. (2013).
Propriétésetdiagnosticde l’état agropédologiquedusoldelasérie
Yakondeaprèsfragmentationde la forêtà Yangambi,R. D. Congo.
Annales Des Instituts Supérieurs D’études Agronomiques,5,36–51.
Anderson, J.M.(2001).A new methodfornon‐parametricmultivariate
analysisofvariance.Austral Ecology,26,32–46.
Anderson, J. M., & Ingram, J. S. I.(1993).Tropical soil biology and fertility. A
handbook of methods(p.203).Wal li ngf or d,Oxon,UK :C ABInter nationa l.
Bâ, A ., Duponnoi s, R., Diaba té, M., & Drey fus, B. (2011). Les ch ampi‐
gnonsectomycorhiziensdesarbresforestiersenAfriquedel’Ouest.
IRD Éditions,252,pp.
Bâ, A. M., Duponnois, R., Moyersoen, B., & Diédhiou, A . G. (2011).
EctomycorrhizalsymbiosisoftropicalAfricantrees.Mycorrhiza,22,
1–29.https://doi.org/10.1007/s00572‐011‐0415‐x
Baptista, P.,Martins,A., & Tavares, R.M.(2010).Diversity and fruiting
patternofmacrofungiassociatedwithchestnut(Castaneasativa)in
theTrás‐os‐Montes region(Northeast Portugal).Fungal Ecology, 3,
9–19.https://doi.org/10.1016/j.funeco.2009.06.002
Bart holomew, W. V., Meyer, J., & Laude lout, H. (1953). Miner al nutri‐
ent immob ilization und er forest and g rass fallow in t he Yangambi
(BelgianCongo)region.I.N.E.A.C.,57,27pp.
Bernaert,F.R.(1999).DemocraticRepublicoftheCongo:Developmentof
asoilandterrainmap/database.Technicalreport,InstituteforLandand
WaterManagement,CatholicUniversityofLeuven(Belgium),202pp.
Berruti, A., Borriello, R., Orgazzi, A., Barbera, A. C., Lumini, E., &
Bianciot to, V. (2014). Arbuscul ar mycorrhiza l fungi and th eir value
forecosystemmanagement.Biodiversity ‐ the Dynamic Balance of the
Planet,159–191.
Black well, M. (2011). The Fu ngi: 1,2,3 …5.1 Million sp ecies ? American
Journal of Botany,98,426–438.
Brund rett, M. (20 09). Mycorrhiz as in natural eco systems. Advances in
Ecological Research,21,171–313.
Burke, D. J., Lopez‐Gutiérrez, S. K. A., & Chan, C. R. (2009).
Vegetationandsoilenvironmentinfluencethespatialdistribu
tion of root‐associatedfungi in a mature Beech‐Maple forest.
Applied and Environmental Microbiology,7639–7648.https://doi.
org/10.1128/AEM.01648‐09
Buyck, B. (1993). Flore illustrée des champignons d’Afrique centrale,
Fascicule15:RUSSULAI(Russulaceae).Meise,337–407.
Buyck, B . (1994a). Flo re illustrée d es champigno ns d’Afrique cent rale,
Fascicule16:RUSSULAII(Russulaceae).Meise,411–542.
Buyck,B.(1994b).Ubwoba:Leschampignonscomestiblesdel’Ouestdu
Burundi.AGCD,publicationagricoleN°34,123.
Buyck, B. (1997). Flore illustrée des champignons d’Afrique centrale,
Fascicule17:RUSSULAIII(Russulaceae).Meise,545–598.
Buyck, B., Thoen,D.,& Walting,R.(1996).Ectomycorrhizal fungiof the
Guinea‐CongoRegion.ProceedingsoftheRoyalSocietyofEdinburg,
104B,313‐333
Caiafa, M. V., Gomez‐Hernandez, M., Williams‐Linera, G., & Ramírez‐
Cruz, V. (2017). Func tional dive rsity of macr omycete communi ties
along an environmental gradient in aMexican seasonally drytrop‐
ical forest. Fungal Ecology, 28, 66–75. https://doi.org/10.1016/j.
funeco.2017.04.005
    
|
 13
MILENGE K AMALEBO Et AL.
Clarke,K.R .,&Gorley,R.N.(2006).PRIMER v6: User Manual/Tutorial(p.
192).Plymouth,UK:PRIMER‐E.
De Cáceres, M. (2013). How to use the indicspecies package (ver. 1.7.1).
Solsona,Spain:RProject,CentreTecnologicForestaldeCatalunya,29.
DeKesel, A ., Codjia, J. T.C., & Yorou, N. S.(2002).Guide deschampi‐
gnonscomestiblesdu nin.Jardin botanique.National De Belgique
& CECODI,273.
DeKesel,A.,Kasongo,B.,&Degreef,J.(2017).Champignonscomestibles
duhaut‐Katanga(RDCongo).AbcTaxa17,290pp.
Ducouss o, M., Bâ, A . M., & Thoen, D. (2 003). Les ch ampignons ec to‐
mycorhizi ens des forêt s naturelles e t des plantat ions d’Afrique de
l’Ouest:Unesourcedechampignonscomestibles.Bois Et Forêts Des
Tropiques,275,51–63.
Eyi‐Ndong,H.,Degreef,J.,& DeKesel,A.(2011).Champignonscomes‐
tiblesdesforêtsdensesd’Afriquecentrale.Taxonomieetidentifica
tion.AbcTaxa10,254.
Fisher,R.A.,Corbet,A.S.,&Williams,C.B.(1943).Therelationbetween
the numb er of specie s and the numb er of individ uals in a rand om
sample ofan animal population. The Journal of Animal Ecology, 12,
42–58.https://doi.org/10.2307/1411
Fortin,J.A.,Plenchette,C.,&Piché,Y.(2008).Les mycorhizes; la nouvelle
révolution verte(p.138).Québec,Canada:Éditionsmultimondes.
Gilson,P.,Wambeke,A.V.,&Gutzwiller,R.(1956).Cartedessolsetde
la vegetat ion du Congo Belg e et du Ruanda‐Ur undi. 6. Yangambi ,
planchette2:YangambiAetB.I.N.E.A.C,35.
Härkönen, M.,Niemelä, T., Kotiranta, H., & Pierce, G. (2015).Zambian
Mushrooms and Mycology. Helsinki, Finland: Finnish Museum of
NaturalHistory(Botany).[Norrliniano.29.],207.
Hazelton,P.,&Murphy,B.(2007).Interpreting soil test results. What do all
the numbers mean?Sydney,Australia:CSIROPublishing,152.
Heim, R. (1955). Flore iconographique des champignons du Congo,
Fascicule4:Lactarius.Bruxelles,83–97.
Heinem ann, P.(1954). Flore iconographique des champignons du Congo,
Fascicule 3: BOLETINEAE.Bruxelles:Meise,50–80.
Heinemann,P.,&Rammeloo,J.(1983).Floreillustréedeschampignons
d’Afriquecentrale,Fascicule10:Gyrodontaceae(Boletineae).Meise,
17 3–19 8 .
Heinemann,P.,&Rammeloo,J.(1987).Floreillustréedeschampignons
d’Afriquecentrale,Fascicule13:PHYLLOPORUS(Boletineae).Meise,
27 7–3 0 9.
Heinemann,P.,&Rammeloo,J.(1989).Floreillustrée deschampignons
d’Afrique centrale, Fascicule 14: TUBOSAETA (Xerocomaceae,
Boletineae).Meise,313–335.
Hueck, H. J. (1951). Myco‐sociological methods of investigation.
Netherlands Mycological Society, Communication,30,84–101.
Kernaghan, G. (2005). Mycorrhizal diversity: Cause and effect?
Pedobiologia,49,511–520.
Khasa, P.,Furlan, V.,& Lumande,K. (1990).Symbioses racinaires chez
quelques essences forestières importantes au Zaïre. Contribution
n°382, station de recherches, agriculture Canada. Sainte‐Foy,
Québec,Canada,7pp.
Lejoly,J.,Ndjele,M.‐B.,&Geerinck,D.(2010).Catalogue‐floredesplan‐
tesvasculairesdesdistrictsdeKisanganietdelaTshopo(RDCongo).
Taxonomania,4èmeédition,313pp.
Miyamot o, Y.,Na kano, T., Hattor i, M., & Nara , K. (2014). The mid ‐do‐
maineffectin ectomycorrhizalfungi:Range overlapalonganeleva‐
tiongradientonMountFuji,Japan.The ISME Journal,8,1739–1746.
https://doi.org/10.1038/ismej.2014.34
Mohymont, B., & Demarée, G. R. (2006). Courbes intensité‐durée
fréquence des precipitationsàYangambi,Congo, aumoyen de dif‐
férents modèles de types Montana. Hydrological Sciences–journal–
des Sciences Hydrologiques,51(2),239–253.
Motsara,M.R.,&Roy,R.N.(2008).Guide to laboratory establishment for
plant nutrient analysis(p.205).Rome:FAOfer tilizerandplantnutri‐
tionbulletein.
Neffar,S., Beddiar, A., & Chenghouni, H. (2015). Effects of soil chem‐
ical properties and seasonality on mycorrhizal status of Prickly
Pear (Opuntia ficus‐indica) Planted arid steppe Rangelands. Sains
Malaysiana,44(5),671–680.
Peay, K. G., Ke nnedy, P.G ., & Bruns, T. D. (200 8). Fungal commun ity
ecology: A hybrid beast with amolecularmaster.BioScience, 58(9),
799–810.https://doi.org/10.1641/B580907
Pécrot,A.,Gastuche,M.C.,Delvigne,J.,Vielvoye,L.,&Fripiat,J.J.(1962).
L’altération des rochesetlaformationdessolsauKivu(République
duCongo).SériescientifiqueN°97,I.N.E.A.C.,90pp.
Piepenbring,M.(2015).Introduction to mycology in the tropics(p.366).St
Paul,MN:APSpress.
Smith,M.E.,Henkel,T.W.,Uehling,J.K.,Fremier,A.K.,Clarke,H.D.,&
Vilgalys,R.(2013).Theectomycorrhizalfungalcommunityinaneo
tropicalforestsdominatedbytheendemicdipterocarpParakaimaea
dipterocarpacea. PLoS ONE, 8(1), e55160. https://doi.org/10.1371/
journal.pone.0055160
Smith, S.E., Jakobsen, I.,Grønlund, M., & Smith, F.A. (2011).Roles of
arbuscular mycorrhizas in plant phosphorusnutrition: Interactions
betweenpathwaysofPhosphorusuptakeinArbuscularMycorrhizal
rootshaveimportantimplicationsforunderstandingandmanipulat
ingplantphosphorusacquisition.Plant Physiology,156, 1050–1057.
https://doi.or g/10.110 4/pp.111.174581
Tedersoo,L.,Bahram,M.,Põlme,S.,Kõljalg,U.,Yorou,N.S.,Wijesundera,
R., … Ab arenkov, K. (2014). Glo bal diversi ty and geog raphy of soil
fungi. Science, 346, 1256688–1256688. https://doi.org/10.1126/
science.1256688
Verbeken,A.,&Walleyn,R.(2010).Fungus flora of tropical Africa, Volume
2. Monograph of Lactarius in tropical Africa.Meise,Belgium:National
botanicgarden,161.
Vleminckx,J.,Drouet,T.,Amani, J., Lisingo, J., Lejoly,J.,&Hardy, O. J.
(2014).Impact of fine scale edaphic heterogeneity ontree species
assemblyinacentralAfricanrainforest.Journal of Vegetation Science,
12.
White, F.(1983). The vegetation of Africa (p. 356). Switzerland: Natural
ResourcesResearch,Unesco.
Yorou, N. S., & D e Kesel, A. (2011). Larger Fungi: In Nature conserva‐
tion in West Africa: Red list for Benin (pp. 4 6–60). Ibadan, Ni geria:
InternationalInstituteofTropicalAgriculture.
How to cite this article:MilengeKamaleboH,SeyaWa
MalaleHN,MasumbukoNdabagaC,NabahunguLN,Degreef
J,DeKeselA.Hostplantsandedaphicfactorsinfluencethe
distributionanddiversityofectomycorrhizalfungalfruiting
bodieswithinrainforestsfromTshopo,DemocraticRepublic
oftheCongo.Afr J Ecol. 2019;00:1–13. ht t ps : //doi.
org /10.1111/aje.12595
... The website gives access to descriptions, keys and illustrations of about 1500 fungal taxa from tropical Africa. During the last three decades, most of the publications relating to the larger fungi of DRC focused mainly on taxonomy and diversity of macrofungi (BALEZI & DECOCK, 2009;DE KESEL et al. 2016MILENGE et al., 2018b;MILENGE et al., 2019), as well as the edible species and their nutritional value (MALAISSE 1985(MALAISSE , 1997DEGREEF et al. 1997;DE KESEL & MALAISSE, 2010). More recently, identification of edible taxa and factors affecting natural production of larger fungi were studied in both dense rainforest and miombo woodland plots (MILENGE et al., 2018a;MILENGE & DE KESEL, 2020;DE KESEL et al., 2017;DEGREEF et al., 2020). ...
... Numerous habitats are hardly or not at all screened for fungi. Only very few "complete" inventories of fungi exist in some specific sites (DE KESEL et al., 2018;MILENGE et al., 2019). Due to this severe taxonomical impediment, adequate mycological information is also lacking for several ecoregions. ...
... Let there be no doubt that organizing mycological field trips is still a major challenge in most tropical African countries (DE KESEL 2001;PIEPENBRING et al. 2018). During the rainy season, access to sampling sites or areas of mycological interest often becomes problematic as dirt roads become unusable (MILENGE et al. 2019). Local guides are essential as the Congo River and its tributaries often create swamps by flooding large parts of the forest (BEERNAERT 1999, AMANI et al. 2013). ...
Article
Full-text available
The evolution of mycology in the Democratic Republic of the Congo (DRC) is mostly linked to its colonial history with Belgium. An up-to-date overview of the challenges faced by mycologists and opportunities for mycological research in this country is still lacking. With an emphasis on studies of larger fungi, this paper presents the progress made in this country from the colonial era to the present day. This historical survey shows that most of the specimens studied were actually gathered by explorers and mycologists collaborating with or working at Meise Botanic Garden (formerly Jardin botanique de l'Etat, then National Botanic Garden of Belgium) when studies and inventories made by local mycologists are still few. The complexity of organizing collecting field trips, the scarcity of trained local supervisors, the lack of adequate materials for laboratory work, and the gigantic cost for installing and sustaining a molecular lab, explain the low influx of young mycologists from the DRC. Yet their strength lies in their ability to perform the essential work of morphological analysis (macroscopy, microscopy) of herbarium specimens, combined with access to major fungal hotspots and the convenience to arrange logistics. Implementation of IPBES goals/objectives and collaboration with molecular labs, in need of quality specimens from tropical Africa, are major opportunities for Congolese mycologists to find international partners, funding and opportunities of international publications.
... In contrast to AM, the symbiotic compatibility and stress tolerance of EM are speciesspecific to some extent, and therefore, knowing EM fungal community dynamics can lead to understanding the processes of forest ecosystems and help to facilitate the tools of bioindicators in different environmental stress conditions, including heavy metal toxicity due to contamination of soil [51]. Furthermore, the changes in EM fungal dynamics can therefore be correlated with altered tree responses to stress conditions, including heavy metal toxicity [52]. ...
... When focused on ecology and taxonomy of EM mushroom species that are considered as indicator species of metal pollution, Lactarius deliciosus [121,122], Cyanoboletus pulverulentus [123,124], Cantharellus cibarius [125], Lactarius quietus [126,127], Macrolepiota procera [51], Amanita muscaria [128,129], Pisolithus arhizus [130,131], Termitomyces spp. [132,133], Gomphidius glutinosus [134], Craterellus tubaeformis [135,136], Laccaria amethystina [137], Imleria badia [81,138], Leccinellum griseum [139], Russula delica [140,141], Baorangia bicolour [142] are well-known and well-studied species for indication of environmental heavy metals. ...
Article
Full-text available
Environmental changes and heavy metal pollution are some of the consequences of anthropogenic activities. Many ecosystems, including edaphic ecosystems, suffer from the effects of pollution. The accurate assessment of soil heavy metal contamination leads to better approaches for remediating soils. The exploration of different ways, including biological methods, to conduct environmental monitoring is still ongoing. Here, we focus on reviewing the potential of ectomycorrhizal fungi as a natural indicator of soil heavy metal pollution. Mycorrhizal fungi fulfill basic criteria required as natural bio-indicators for heavy metal contamination. These fungi use different mechanisms such as avoidance and tolerance to survive in metalliferous soils. Thus, we promote ectomycorrhizal fungi as natural indicators. This review also synthesizes existing research on ectomycorrhizal mushrooms as natural bio-indicators for heavy metal pollution and the elaboration of mechanisms, by which ectomycorrhizal fungi meet the criteria required for a successful bio-indicator.
... Amanita fritillaria can be distinguished from A. echinulata by its larger basidiomata and larger, more ellipsoid basidiospores (7.0-9.0 × 5.5-7.0 vs. 5.5-7 × 4.5-6 μm). Amanita echinulata is listed by Kamalebo et al. (2019) as an edible mushroom of relatively little cultural importance to villagers near the Yangambi Man-and-Biosphere Reserve, DRC. Beeli, Bull Soc Roy Bot Belg 63:104. ...
... The latter data set agrees closely with the estimates from Gilbert's drawings and falls within the range measured from our Cameroon collections. We also examined the basidiospores of a collection (De Kesel 5236) identified as A. robusta in Kamalebo et al. (2019) and recorded dimensions of [25/ 1/1] 7.5-9 × 5.5-7 μm, Qr = 1.23-1.45, Qm = 1.34. ...
Article
Full-text available
Four epitypes and three new species of Amanita (Amanitaceae, Agaricales, Agaricomycetes, Basidiomycota) are described from Guineo-Congolian rainforests of Cameroon. Amanita echinulata, A. fulvopulverulenta, A. robusta, and A. bingensis are epitypified based on collections that are the first since the species were described nearly a century ago. Morphological features of the epitypes are described and enumerated. Amanita minima, Amanita luteolamellata, and A. goossensfontanae are described as new and added to the known macromycota of tropical Africa. Habit, habitat, and known distribution are provided for each species. Sequence data for the internal transcribed spacer (ITS) locus are provided for types and other collections of all taxa, and a molecular phylogenetic analysis across the genus Amanita corroborates morphology-based infrageneric placement for each.
... Troupin, Uapaca guineensis Müll. Arg, and U. heudelotii Baillon [18,19]. This study aims to assess the distribution and diversity of edible fungi within various types of rainforests found in the Man-and-Biosphere reserve of Yangambi and the Yoko reserve. ...
... In contrast, EcM fungi occur abundantly in remote and pristine (or nearly pristine) forests with older growth of Gilbertiodendron dewevrei, Brachystegia laurentii, or Uapaca spp. [19]. With the exception of Cantharellus rufopunctatus, producing fruit bodies at least from April to December [9], most of the edible EcM taxa can only be found during a short period of time. ...
Article
Full-text available
Background: Ectomycorrhizal (EcM) fungi constitute a source of income as well as proper food with considerable nutritional value. Although edible EcM fungi are highly diverse and expected to host considerable nutritional attributes, only few studies focus on their use and promotion in the province of Tshopo (DR Congo). This study provides original ethnomycological and diversity data on edible ectomycorrhizal rainforest fungi from the Man-and-Biosphere reserve of Yangambi and the reserve of Yoko. Methods: The list of edible fungi follows the current taxonomy. Taxa were collected in plots situated in different types of rainforests. Each taxon is supported by herbarium reference specimens. Ethnomycological data on locally consumed EcM fungi were collected from randomly selected people living near the Man-and-Biosphere reserve of Yangambi and the Yoko reserve. People were interviewed using a semi-structured questionnaire. The interview campaign involved 160 informants, all randomly selected from 6 different ethnic communities. Results: The results reveal that rainforests from the Yangambi Biosphere reserve and Yoko forest reserve provide a relatively high number of edible fungi, more than local people actually use. Mixed forest stands hold the highest diversity in saprotrophic edible fungi (p value < 0.001) while no significant difference (p value > 0.05) was observed in the number of saprotrophic and EcM fungi within monodominant forests. In spite of being accessible, this renewable natural resource is underexploited. Although a wide array of EcM fungi is available in primary forests dominated by ectomycorrhizal trees, local people's major interest goes to the saprotrophic fungi from areas with degraded mixed forests. Conclusion: The lack of local interest for EcM fungi is probably related to the considerable distance people have to cover to collect them. As a result, the edible EcM fungi from the Tshopo area represent a potentially interesting but underutilized resource.
... In exchange, these fungi receive simple sugars in the form of carbon from their host plants (Laliberte et al., 2015). Additionally, ectomycorrhizal fungi are recognized as important bioindicators for assessing forest health and ecological stability (Milenge et al., 2019). Despite having an abundance of tropical rainforests, there is limited comprehensive knowledge about the diversity of ectomycorrhizal fungi in Indonesia. ...
Article
Full-text available
The exploration of ectomycorrhizal fungi diversity around the campus could provide insights into the presence and distribution of these symbiotic fungi in the area. This study aimed to observe, identify, and provide information regarding ectomycorrhizal fungi diversity in the IPB University Campus Forest. The sampling sites represent various tree species including forests, parks, and green spaces. The exploration was done using opportunistic sampling method. The obtained basidiomata were examined for macromorphological and micromorphological examination to identify the ectomycorrhizal fungi. The identification results based on the morphological characteristics confirmed our specimens as Inocybe cf. squarrosolutea (Corner & E. Horak) Garrido and Suillus bovinus (L.) Roussel. The Inocybe was characterized by having small to medium-sized, pileus squamules, dry surface, light brown to yellowish cap, lamellae crowded, cylindrical or attenuated stipe towards the apex, clavate basidia, and hemispheric knobs basidiospores. The Suillus was distinguished by having a cap that is convex in shape with a slightly brownish yellow color and the surface texture of the cap is smooth, lamella in the form of pores that are quite large and angular, brownish yellow in color, yellow tubular stipe, clavate basidia, and oval spores. These two macrofungi are new records in the sampling area and I. cf. squarrosolutea could be the new information for Indonesia. Our finding provides valuable information for ecological studies and contributes to the additional data on Indonesian ectomycorrhizal fungi diversity.
... Although the complexity of the soil fungal co-occurrence network in SF was lower than that of other habitats, it cannot be denied that they have a special resistance stability to environmental disturbances. Additionally, soil might provide a heterogeneous environment for fungal communities through nutrient cycling by plant roots (Lareen et al., 2016;Islam et al., 2020;Bastida et al., 2021;Navarrete et al., 2023); thus, the microbial community environment might vary depending on the plant species (Milenge Kamalebo et al., 2019;Kajihara et al., 2022). We observed significant differences in soil chemistry across habitats. ...
Article
Full-text available
Soil fungi in forest ecosystems have great potential to enhance host plant growth and systemic ecological functions and services. Reforestation at Saihanba Mechanized Forest Farm, the world's largest artificial plantation, has been integral to global forest ecosystem preservation since the 1950s. To better assess the ecological effects of soil microbiology after afforestation, fungal diversity and community structure (using Illumina sequencing) from forests dominated by Larix gmelinii var. principis-rupprechtii, Pinus sylvestris var. mongolica and Picea asperata, and from grassland were surveyed. In total, 4,540 operational taxonomic units (OTUs) were identified, with Mortierella and Solicoccozyma being the dominant genera of grassland soil and Inocybe, Cortinarius, Piloderma, Tomentella, Sebacina, Hygrophorus and Saitozyma dominating the plantation soil. Principle coordinate analysis (PCoA) and co-occurrence networks revealed differences in fungal structure after afforestation. Significantly, more symbiotroph guilds were dominated by ectomycorrhizal fungi in plantations under the prediction of FUNGuild. The community composition and diversity of soil fungi were significantly influenced by pH via redundancy analysis (RDA) and the Mantel test (p
... To date, most studies on mushroom productivity of EcM fungi have focussed on the whole EcM community and not at the group or species level (Houdanon et al., 2020;Matsuoka et al., 2016;Milenge Kamalebo et al., 2019;Vogt et al., 1981;Wästerlund & Ingelög, 1980). Although the importance of using molecular approaches for studying the global diversity of EcM fungi is getting more attention now (Lindahl et al., 2013), the studies based on fungi fruiting bodies, including boletes, remain a useful way for studying their spatio-temporal variation, both on a large and fine scale (Büntgen et al., 2012(Büntgen et al., , 2013(Büntgen et al., , 2015Samson & Fortin, 1986;Wollan et al., 2008). ...
Article
Full-text available
Studies examining the role of abiotic variables on fructification sequences of ectomy-corrhizal symbionts (boletes), the extent and direction of these effects are quite rare in Africa. In the current study, we assessed the effects of microclimate on the distribution and productivity of boletes in Benin. Nine permanent plots of 2500 m 2 each split into 25 subplots of 100 m 2 were installed in three different vegetation types. The first vegetation type is dominated by Isoberlinia doka, the second by Isoberlinia tomentosa and the third by Uapaca togoensis. Abiotic variables, including soil temperature, air temperature, air relative humidity and soil moisture, were recorded every 30 min from June to October. Each plot was surveyed twice a week during the mushroom season over 3 years (2015, 2016 and 2017) to record the abundance and the fresh biomass. The effects of microclimate on boletes productivity were evaluated using generalised linear mixed models in R. Boletes give the largest natural production in July and the lowest in October. Only soil moisture has a significant negative influence on the abundance (p > 0.05). The fruiting periods of boletes are known according to the variability of the microclimatic parameters and the vegetation. K E Y W O R D S Benin, Boletes, fresh biomass, microclimate, vegetation Résumé Les études examinant le rôle des variables abiotiques sur les séquences de
Article
Environmental bioindicators are species or communities of animals, plants, bacteria, fungi, algae, lichens, and planktons whose existence, quantity, and nature can be used to make inferences on the quality of the environment. Bioindicators can be used to detect environmental contaminants by on-site visual inspections or through laboratory analysis. Fungi are one of the most important groups of environmental bioindicators due to their ubiquitous distribution, diverse ecological roles, remarkable biological diversity, and high sensitivity to environmental changes. This review provide a comprehensive reappraisal of using various groups of fungi, fungal communities, symbiotic associations with fungal component, biomarkers of fungi as "mycoindicators" to assess the quality of air, water and soil. Fungi are exploited by researchers as double-edged tools for both biomonitoring and mycoremediation simultaneously. The applications of bioindicators have advanced through the integration of genetic engineering, high-throughput DNA sequencing, and gene editing techniques. Therefore mycoindicators are significant as an emerging tool for more accurate and affordable early detection of environmental contaminants toward the mitigation efforts of pollution in both natural and man-made environment.
Book
Full-text available
Guide to the wild edible mushrooms from Benin (West-Africa). The wild edible mushrooms from Benin occur in many ecosystems and they play an important role in degrading organic material and recycling nutrients. The majority of edible species in Benin are associated with trees or termites and are highly appreciated by local people as food. Many ecosystems suffer from the influence of human activities and sustaining the environment means that we must be able to recognize the place of the fungi, their identity and function within the natural world. This guide introduces the reader to the mycological world and focuses on the larger fungi commonly used for food in Benin. The first part deals with all aspects concerning morphology, ecology and distribution of fungi in general, as well as aspects on poisoning, cultivation, recording local knowledge, ethnomycology and methods for assessing natural productions and valuation of wild edible fungi. The second part presents over 70 color pictures and drawings, accompanied by morphological descriptions, local names and detailed information on distributions and edibility of more than fifty wild species from Benin. A glossary and an extensive bibliography is given. Everyone interested in collecting or studying West-African fungi will find this book a useful reference. Those dealing with the sustainable use and management of natural resources in tropical Africa, will find a multitude of techniques and tools for a better management and conservation of natural ecosystems in a participative way, i.e. with the participation and for the benefit of local people.
Article
Full-text available
Macromycetes are important for ecosystem functioning due to their role in the nutrient cycling, and their function as pathogens and mutualists. Diversity metrics based on functional traits are robust predictors of ecosystem functionality since they incorporate an evolutionary and ecologic background. We examined diversity patterns of macrofungi using functional trait-based metrics of diversity along an altitudinal gradient in a seasonally dry tropical forest in southern Mexico. Our findings show that: (1) functional diversity varies with elevation, relating more to climatic variables than to vegetation structure; (2) functional diversity indexes exhibited contrasting patterns, so measures reflecting heterogeneity on trait abundance and niche complementarity tend to increase with elevation, whereas the measure of trait evenness decreases; and (3) functional diversity patterns depend on the type of functional trait considered and how they respond to environmental conditions. Our results indicate that functional diversity analyses help understanding of how macrofungal communities respond to environmental variation.
Book
Interpreting Soil Test Results is a practical reference for those who need to interpret results from laboratory analysis of soil. It has a comprehensive listing of the soil properties relevant to most environmental and natural land resource issues and investigations. The precursor to this book, What Do All the Numbers Mean?, known as The Numbers Book, was widely used and accepted for interpreting soil test results. This new edition has been completely updated and many sections have been expanded, particularly those on acid sulfate soils and soil salinity. It is a handy and straightforward guide to interpretation of the numbers associated with a wide range of soil tests.
Book
Avant-propos de la deuxième édition Avant-propos de la première édition 1. La vie en symbiose 2. Les symbioses végétales et leurs structures 3. Origine des symbioses végétales et leurs rôles dans l’évolution de la vie terrestre 4. Physiologie des mycorhizes 5. Les mycorhizes dans les écosystèmes 6. Biologie des champignons forestiers comestibles 7. La récolte des champignons forestiers comestibles 8. Production des inoculums mycorhiziens arbusculaires 9. Les mycorhizes en horticulture 10. Les mycorhizes en agriculture 11. Production des inoculums ectomycorhiziens 12. Les mycorhizes en foresterie 13. Les mycorhizes et l’environnement