Article

Optical Analysis of Synovial Fluid of Patients with Knee Joint Osteoarthrosis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The results of the study of synovial fluid (SF) of patients with knee joint osteoarthritis (OA). The optical analysis of the SF samples, harvested during exploratory punctures of knee joints of patients suffering the osteoarthrosis in different stages using the standard method, was made. A certain component composition of surface of SF samples that differs for healthy people and the patients, having knee joint osteoarthrosis in different stages, is possible to identify as a result of analysis with the use of Raman spectroscopy method. The introduced optical coefficients help to estimate the spectral composition of surface of SF samples of the patients, suffering the early and late stages of ОА.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The resutls of detailed analysis of donor skin implants using Raman spectroscopy method are presented. Fourier-deconvolution method was used to separate overlapping spectrum lines and to improve its informativeness. Based on the processed spectra were introduced coefficients that represent changes in relative concentration of implant components, which determines the quality of implants. It was established that Raman spectroscopy method can be used in assessment of skin implants.
Article
Full-text available
Vibrational spectroscopic methods are minimally invasive, and are appropriate for use in clinical contexts. Methods were developed in this dissertation for evaluating joint damage and disease using Raman spectroscopy. Subtle changes in the molecular structure of joint tissue and synovial fluid precede morphological changes in the joint. The goal of this research is to develop Raman spectroscopic methods for the examination of joint tissue and biological fluids, for monitoring and detecting molecular alterations associated with osteoarthritis. We identified Raman spectroscopic markers of altered molecular structure in subchondral bone and relevant biological fluids. Using Raman spectroscopy the molecular structure of joint tissues was measured, and the results were compared to the results from micro computed tomographic and histopathologic analysis. Raman spectra of subchondral bone collected from Del1 (+/-) transgenic mice, a mouse model for early-onset osteoarthritis, indicated lower bone mineralization in transgenic mice (5.73 ?? 0.28 vs. 6.87 ?? 0.225 in wild-type mice, p=0.003). A fiber-optic Raman probe for arthroscopic measurements was developed to demonstrate the feasibility of measuring the molecular structure of joint tissue with clinically-relevant instrumentation. The carbonate-to-phosphate ratio, a Raman spectroscopic measurement of bone mineral composition, was measured from subchondral bone under an intact layer of cartilage. Our initial work on a human proximal radius specimen indicated that an arthroscope configuration is capable of providing similar carbonate-to-phosphate values as spectra collected on a Raman microscope (0.25 vs. 0.24). In addition to cartilage and subchondral bone, the chemical structure of synovial fluid molecules is a key factor in maintaining healthy joint function. Synovial fluid from normal and diseased joints was examined using a novel drop deposition/Raman spectroscopic method. Raman spectra of synovial fluid from patients with radiographic evidence of osteoarthritis showed evidence of altered protein structure, as shown by increased Raman band intensity ratios at 1080 cm-1/1002 cm-1 (0.054 ?? 0.07 vs. 0.038 ?? 0.003, p
Article
Full-text available
The paper presents data on osteoarthrosis treatment using hyaluronic acid (HA) preparations, on the functions of hyaluronan (HN) in synovial fluid (SF), synovial tissue, and articular cartilage, and on differences in the symptom-modifying effect of HN with varying molecular weight. HN with average molecular weight demonstrates its benefits. The analgesic effect of HA preparations is shown to be determined by not only the improvement of SF elastoviscous properties and by the protection of pain receptors in joint tissues, but by their anti-rheumatic properties.
Article
Full-text available
We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.
Article
Full-text available
Human synovial fluid droplets were investigated using drop deposition in combination with Raman spectroscopy. Following informed consent, synovial fluid was obtained from forty human patients with various severities of knee pain and/or osteoarthritis at the time of knee arthroscopy or total joint replacement. Synovial fluid was aspirated from the knee joint of each patient and stored at -80°C until examination by near-infrared Raman spectroscopy. Synovial fluid aspirates from the knee joint of each patient were deposited onto a clean fused silica microscope slide and the droplet dried under ambient laboratory conditions. Each droplet was illuminated by a line-focused or a ring-focused 785 nm laser. As the droplet dries, biofluid components segregated based on solubility differences and a deposit that is spatially heterogeneous was made. Spectra taken from the droplet edges and center were dominated by protein bands and showed the presence of at least two protein moieties in the droplet. Band area and band height ratios (1410 cm-1/1450 cm-1) showed the greatest change between specimens from patients with mild/early osteoarthritis compared to those with severe/late stage osteoarthritis. The greatest differences were found in the center of the droplet, which contains more soluble protein components than the edges.
Article
Full-text available
The discovery of the Raman effect in 1928 not only aided fundamental understanding about the quantum nature of light and matter but also opened up a completely novel area of optics and spectroscopic research that is accelerating at a greater rate during the last decade than at any time since its inception. This introductory overview focuses on some of the most recent developments within this exciting field and how this has enabled and enhanced disease diagnosis and biomedical applications. We highlight a small number of stimulating high-impact studies in imaging, endoscopy, stem cell research, and other recent developments such as spatially offset Raman scattering amongst others. We hope this stimulates further interest in this already exciting field, by 'illuminating' some of the current research being undertaken by the latest in a very long line of dedicated experimentalists interested in the properties and potential beneficial applications of light.
Article
Full-text available
For many years, viscosity has been the primary method used by researchers in rheumatology to assess the physiochemical properties of synovial fluid in both normal and osteoarthritic patients. However, progress has been limited by the lack of methods that provide multiple layers of information, use small sample volumes, and are rapid. Raman spectroscopy was used to assess the biochemical composition of synovial fluid collected from 40 patients with clinical evidence of knee osteoarthritis (OA) at the time of elective surgical treatment. Severity of knee osteoarthritis was assessed by a radiologist using Kellgren/Lawrence (K/L) scores from knee joint x rays, while light microscopy and Raman spectroscopy were used to examine synovial fluid (SF) aspirates (2 to 10 microL), deposited on fused silica slides. We show that Raman bands used to describe protein secondary structure and content can be used to detect changes in synovial fluid from osteoarthritic patients. Several Raman band intensity ratios increased significantly in spectra collected from synovial fluid in patients with radiological evidence of moderate-to-severe osteoarthritis damage. These ratios can be used to provide a "yes/no" damage assessment. These studies provide evidence that Raman spectroscopy would be a suitable candidate in the evaluation of joint damage in knee osteoarthritis patients.
Article
We report the results of experimental studies on cardiac implants using a Raman spectroscopy method (RS). Raman spectra characteristics of leaves and walls of cardiac implants were obtained; the implants were manufactured by protocols of detergent-enzymatic technique (DET) and biological, detergent-free (BIO) decellularization, using detergents (group DET) or a detergent-free, nonproteolytic, actin-disassembling regimen (BIO). There were input optical coefficients that allowed us to carry out evaluation of the protocols of DET and BIO decellularization on the basis of the concentrations of glycosaminoglycans, proteins, amides, and DNA. It was shown that during DET and BIO decellularization, composition aberrations of proteins and lipids do not occur and the integrity of the collagenous structures is preserved. It was found that during the DET decellularization, preservation of glycosaminoglycans is better than during BIO decellularization.
Article
We report the results of experimental Raman spectroscopy of donor bone samples (rat, rabbit and human) with varying degrees of mineralisation. Raman spectra are obtained for the Raman bands of 950 – 962 cm-1 (PO4)3-, 1065 – 1070 cm-1 (CO3)2- and 1665 cm-1 (amide I). In demineralised bone, a sharp (98%) decrease in the intensities of 950 – 962 and 1065 – 1070 cm-1 bands is observed, which is accompanied by the emergence of the 1079 – 1090 cm-1 band corresponding to the hydrated amorphous state CO3-3.
The changes in synovial fluid composition of patients with neglected and recent meniscus injuries
  • E L Matveyeva
  • T Y Karaseva
  • E A Karasev
Clinical importance of studying albumin spectrum of synovial fluid
  • E L Matveyeva
  • O L Karmatskih
  • I A Talashova
  • V D Makushin
  • O K Chegurov
  • Y P Soldatov
Cartilage protectors
  • V E Novikov
  • V.E. Novikov
The Methods of Clinical Laboratory Research: Textbook
  • V S Kamishnikova
  • V S Kamishnikov
  • Ed
  • V.S. Kamishnikova
Remotely moved sensors on the basis of the giant Raman scattering effect for invitro research
  • I Y Stetsyura