ArticlePDF Available

Phenology of 'Méndez' avocado in Southern Jalisco, México

Authors:

Abstract

In the southern area of the state of Jalisco, Mexico, cultivation of 'Méndez' avocado (Persea americana Miller) is important due to its adaptation to the semi-warm climate of the region and because of its early maturation and harvest (summer), in relation to 'Hass' (fall), although the lack of knowledge of its phenology makes the effective management of 'Méndez' orchards difficult. The objective of this study was to document the phenology of 'Méndez' during two production cycles (2014-15 and 2015-16), in two commercial orchards with supplementary irrigation from October to June (annual rain of 728 mm), established in soils of volcanic origin and light texture in southern Jalisco. The maximum temperatures of the soil at 30 cm from the surface were in May (24.5 °C) and the minimum from January to March (15.9 to 14.5 °C). The vegetative flushes (VF) were found in summer (August-September) and winter (February), as well as flowering in summer (September) and winter (February). Flower development (vegetative bud to anthesis) in shoots from the summer and winter VFs lasted 187 and 222 d, respectively. The fruit drop (5 to 6 cm of diameter) was similar in the two flowering seasons (55.4 to 61.8 %). The fruit maturity (≥22.7 % d.m.) happened in July and in September-October for fruits from the summer and winter flowering periods, respectively. There were two flushes of root production and the greatest was in summer (June to August). The maximum and minimum average environmental temperatures of the warmest (April to June) and coldest (January to March) months were 31 and 9 °C, respectively. The results from this study are basic to compare the future changes in the phenology of 'Méndez' avocado.
991
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
PHENOLOGY OF ‘MÉNDEZ’ AVOCADO IN SOUTHERN JALISCO, MÉXICO
Samuel Salazar-García1, Martha E. Ibarra-Estrada2, José González-Valdivia2
1Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental
Santiago Ixcuintla. (salazar.avocado@gmail.com). 2Investigadores independientes.
RESUMEN
En el sur del estado de Jalisco, México, el cultivo del agua-
cate (Persea americana Miller) ‘Méndez’ es importante por
su adaptación al clima semicálido de la región y por su ma-
duración y cosecha anual precoz (verano), respecto a ‘Hass’
(otoño), pero el desconocimiento de su fenología diculta el
manejo efectivo de los huertos de ‘Méndez’. El objetivo de
esta investigación fue documentar la fenología de ‘Méndez’
durante dos ciclos de producción (2014-15 y 2015-16), en
dos huertos comerciales con riego suplementario de octubre a
junio (lluvia anual de 728 mm), establecidos en suelos de ori-
gen volcánico y textura ligera en el sur del estado de Jalisco.
Las temperaturas máximas del suelo a 30 cm de la supercie
fueron en mayo (24.5 °C) y las mínimas de enero a marzo
(15.9 a 14.5°C). Los ujos vegetativos (FV) se registraron en
verano (agosto-septiembre) e invierno (febrero) así como o-
raciones en verano (septiembre) e invierno (febrero). El desa-
rrollo oral (yema vegetativa a antesis) en brotes del FV de ve-
rano e invierno duró 187 y 222 d, respectivamente. La caída
de fruto (5 a 6 cm de diámetro) fue similar en las dos épocas
de oración (55.4 a 61.8 %). La madurez del fruto (³22.7 %
m.s.) ocurrió en julio y en septiembre-octubre para frutos de
las oraciones de verano e invierno, respectivamente. Hubo
dos ujos de producción de raíces y el mayor fue en verano
(junio a agosto). Las temperaturas ambientales máximas y
mínimas promedio de los meses más calientes (abril a junio) y
fríos (enero a marzo) fueron de 31 y 9 °C, respectivamente.).
Los resultados de este estudio son básicos para comparar los
cambios futuros en la fenología de ‘Méndez’.
Palabras clave: ujos vegetativos, desarrollo oral, frutos, raíces,
ecosiología.
* Autor responsable v Author for correspondence.
Recibido: abril, 2017. Aprobado: agosto, 2017.
Publicado como ARTÍCULO en Agrociencia 52: 991-1003. 2018.
ABSTRACT
In the southern area of the state of Jalisco, Mexico, cultivation
of ‘Méndez’ avocado (Persea americana Miller) is important
due to its adaptation to the semi-warm climate of the region
and because of its early maturation and harvest (summer),
in relation to ‘Hass’ (fall), although the lack of knowledge of
its phenology makes the eective management of ‘Méndez’
orchards dicult. e objective of this study was to
document the phenology of ‘Méndez’ during two production
cycles (2014-15 and 2015-16), in two commercial orchards
with supplementary irrigation from October to June (annual
rain of 728 mm), established in soils of volcanic origin and
light texture in southern Jalisco. e maximum temperatures
of the soil at 30 cm from the surface were in May (24.5 °C)
and the minimum from January to March (15.9 to 14.5 °C).
e vegetative ushes (VF) were found in summer (August-
September) and winter (February), as well as owering
in summer (September) and winter (February). Flower
development (vegetative bud to anthesis) in shoots from the
summer and winter VFs lasted 187 and 222 d, respectively.
e fruit drop (5 to 6 cm of diameter) was similar in the
two owering seasons (55.4 to 61.8 %). e fruit maturity
(³22.7 % d.m.) happened in July and in September-October
for fruits from the summer and winter owering periods,
respectively. ere were two ushes of root production and
the greatest was in summer (June to August). e maximum
and minimum average environmental temperatures of the
warmest (April to June) and coldest (January to March)
months were 31 and 9 °C, respectively. e results from
this study are basic to compare the future changes in the
phenology of ‘Méndez’ avocado.
Key words: vegetative ushes, ower development, roots,
ecophysiology.
AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018
VOLUMEN 52, NÚMERO 7
992
INTRODUCCIÓN
A
través del año los árboles frutales presentan
diversas fases del desarrollo o fenológicas, ta-
les como ujos de crecimiento vegetativo o de
raíces, y de desarrollo oral y del fruto (Wolstenholme
y Whiley, 1989). Los ritmos de crecimiento anual va-
rían con el tipo de clima y las condiciones de cultivo,
por lo cual se han elaborado diagramas fenológicos
para el aguacate (Persea americana Miller) ‘Hass’ con
diferente grado de complejidad en regiones produc-
toras como Australia (Whiley et al., 1988), Sudáfrica
(Whiley y Wolstenholme, 1990), Chile (Gardiaza-
bal-Irazábal y Rosenberg, 1991), EUA (Arpaia et al.,
1994-95), y Nueva Zelanda (orp et al., 1995). En
México, la fenología de ‘Hass’ está descrita para las
regiones productoras de Nayarit (Cossio-Vargas et
al., 2008) y Michoacán (Rocha-Arroyo et al., 2011a).
El aguacate ‘Méndez No. 1’ (Plant Patent 11,173
USA 2002), conocido en México como ‘Méndez’,
tiene importancia económica en el sur del estado de
Jalisco, donde hay más de 6000 ha plantadas. Su re-
levancia se debe a que una proporción importante
de su cosecha anual madura más temprano (verano)
que la de ‘Hass’ (otoño-invierno) y esa cosecha suele
alcanzar los precios más altos del año.
Por desconocimiento de los aspectos hortícolas de
‘Méndez’, el manejo de los huertos se hace similar a
‘Hass’. Pero, dada la importancia creciente de ‘Mén-
dez’ es necesario desarrollar tecnología de producción
apropiada para este cultivar de aguacate. Por lo tanto,
el objetivo de esta investigación fue documentar el
comportamiento fenológico del aguacate ‘Méndez’
en el sur del estado de Jalisco.
MATERIALES Y MÉTODOS
La investigación se realizó durante los ciclos de producción
2014-15 y 2015-16 en dos huertos comerciales de aguacate
‘Méndez’ de la empresa Agro González, S.P.R. de R.L., con fer-
tirriego, suelo Feozem háplico y clima Semicálido subhúmedo
[AC(w)] (García-Amaro, 1998) del sur del estado de Jalisco. El
huerto Colorín 1 está en Atequizayan, Municipio de Zapotlán el
Grande y el huerto Ocote Cuate 2 está en Zapotiltic, Municipio
de Zapotiltic. Para estos huertos, la altitud es 1556 m y 1428 m, el
distanciamiento entre árboles 7x3.5 m y 5x5 m y la edad al inicio
del estudio de 4 y 6 años, respectivamente.
INTRODUCTION
Throughout the year, fruit trees present diverse
development or phenological phases, such
as vegetative or root growth ushes, and
of ower and fruit development (Wolstenholme
and Whiley, 1989). e rhythms of annual growth
vary with the type of climate and the cultivation
conditions, so phenological diagrams were elaborated
for ‘Hass’ avocado (Persea americana Miller) with
dierent degree of complexity in production
regions like Australia (Whiley et al., 1988), South
Africa (Whiley and Wolstenholme, 1990), Chile
(Gardiazabal-Irazábal and Rosenberg, 1991), USA
(Arpaia et al., 1994-95), and New Zealand (orp et
al., 1995). In Mexico, ‘Hass’ phenology is described
for the production regions of Nayarit (Cossio-Vargas
et al., 2008) and Michoacán (Rocha-Arroyo et al.,
2011a). e avocado ‘Méndez No. 1’ (Plant Patent
11,173 USA 2002), known in Mexico as ‘Méndezis
economically important in the southern area of the state
of Jalisco, where there are more than 6000 ha planted.
Its relevance is because an important proportion of
its annual harvest matures earlier (summer) than
‘Hass’ (fall-winter), and this harvest reaches the
highest prices of the year.
Due to lack of knowledge of the horticultural
aspects of ‘Méndez’, orchard management is done
similarly to ‘Hass’. However, given the growing
importance of ‘Méndez’ it is necessary to develop
appropriate production technology for this avocado
cultivar. erefore, the objective of this study was
to document the phenological behavior of ‘Méndez’
avocado in the southern region of the state of Jalisco.
MATERIALES Y MÉTODOS
e research was performed during the production cycles
2014-15 and 2015-16 in two commercial orchards of ‘Méndez’
avocado from the Agro González, S.P.R. de R.L. company,
with fertirrigation, haplic Feozem soil and Semi-warm sub-
humid climate [AC(w)] (García-Amaro, 1998) from the south
of the state of Jalisco. e Colorín 1 orchard is in Atequizayan,
municipality of Zapotlán el Grande, and the Ocote Cuate 2
orchard is in Zapotiltic, municipality of Zapotiltic. For these
orchards, the altitude is 1556 m and 1428 m, the distance
between trees 7x3.5 m and 5x5 m, and the age at the beginning
of the study 4 and 6 years, respectively.
993
SALAZAR-GARCÍA et al.
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
Características del suelo
En cada huerto se seleccionaron al azar cinco árboles y se
obtuvo una muestra de suelo integrada por cuatro submuestras
de la zona de goteo del árbol, a 0-30 cm de profundidad, que es
la zona con mayor cantidad de raíces jóvenes (Salazar-García y
Cortés-Flores, 1986). Los análisis se realizaron en un laboratorio
acreditado por eNorth American Prociency Testing (NAPT)
Program (programa deSoil Science Society of America). Las va-
riables fueron textura, pH (1:2 agua) (McLean, 1982), materia
orgánica (MO) por el método de Walkley y Black (Nelson y
Sommers, 1982), N-inorgánico (Dahnke, 1990), P-Bray (Bray
y Kurtz, 1945), K, Ca, Mg y Na con acetato de amonio (Doll y
Lucas, 1973), Fe, Zn, Cu, Mn por el método DTPA (Lindsay y
Norvell, 1978) y B se determinó por el método de agua caliente
y Azometina-H (Bingham, 1982). Las variables P y B se determi-
naron en un espectrofotómetro Genesys 20 (ermo Scientic,
Madison, USA); para los otros nutrientes se usó un espectrofotó-
metro de absorción atómica (ermo Series S, Shangai, China).
Variables fenológicas
En 10 árboles por huerto se marcaron 20 brotes por árbol,
al inicio de los ujos vegetativos de invierno y verano 2014 y
2015. De cada árbol y brote marcado se recolectó una yema api-
cal o brote oral a intervalos quincenales o semanales según se
aproximaba la antesis. Las yemas y brotes orales se jaron en
FAA (formaldehído:ácido acético:etanol, 5:5:90, v:v:v) y después
se introdujeron a una campana de vacío (Nalgene 8040317, Nal-
gen Company) a 30 KPa por 5 h. Luego se clasicaron con un
microscopio estereoscópico (Zeiss Stereomikroskop Mod. Stemi
2000-C, Carl Zeiss, Göttingen, Germany), con la escala visual
de Salazar-García et al. (1998) que comprende desde E-1 (yema
vegetativa) a E-11 (antesis).
En cada huerto se seleccionó otro grupo de 10 árboles, con
historial de producción anual de al menos 50 kg por árbol y fue-
ron usados en todas las evaluaciones, excepto las del desarrollo
oral. En febrero y agosto de 2014 y 2015 en cada árbol se eti-
quetaron 30 brotes al inicio de cada ujo vegetativo (invierno
y verano, respectivamente). El tipo de crecimiento producido
(brotes orales, vegetativos o inactivos) por los brotes marcados
se cuanticó al término de cada oración, en octubre y febrero
2014, así como en noviembre 2015 y marzo 2016.
Los muestreos de raíces se hicieron cada mes desde febrero
2014 a febrero 2016 alternando árboles nones y pares, así como
las orientaciones norte y sur de los árboles. Las raíces jóvenes, de
color café claro, en un volumen de suelo de 40x40x40 cm en la
zona de goteo del árbol, se extrajeron, lavaron y deshidrataron
en un horno con aire forzado (Binder Mod. ED 240, Binder
Characteristics of the soil
Five trees were selected randomly in each orchard, and a soil
sample was taken made up of four sub-samples from the drip zone
of the tree, at 0-30 cm of depth, which is the zone with highest
amounts of young roots (Salazar-García and Cortés-Flores,
1986). e analyses were performed in a laboratory accredited
by theNorth American Prociency Testing (NAPT) program (a
program by the Soil Science Society of America). e variables
were texture, pH (1:2 water) (McLean, 1982), organic matter
(OM) by the Walkley and Black method (Nelson and Sommers,
1982), inorganic-N (Dahnke, 1990), P-Bray (Bray and Kurtz,
1945), K, Ca, Mg and Na with ammonium acetate (Doll and
Lucas, 1973), Fe, Zn, Cu, Mn by DTPA method (Lindsay
and Norvell, 1978), and B was determined by the hot water
and Azomethine-H method (Bingham, 1982). e variables
P and B were determined in a Genesys 20 spectrophotometer
(ermo Scientic, Madison, USA); an atomic absorption
spectrophotometer (ermo Series S, Shangai, China) was used
for the other nutrients.
Phenological variables
Twenty shoots per tree were tagged in 10 trees per orchard,
at the beginning of the vegetative growth ushes of winter and
summer 2014 and 2015. From each tree and shoot marked, an
apical bud or ower shoot was collected at biweekly or weekly
intervals as anthesis was approached. e buds and ower shoots
were xed in FAA (formaldehyde:acetic acid:ethanol, 5:5:90,
v:v:v) and then they were introduced into a vacuum bell (Nalgene
8040317, Nalgen Company) at 30 KPa for 5 h. Later they were
classied with a stereoscopic microscope (Zeiss Stereomikroskop
Mod. Stemi 2000-C, Carl Zeiss, Göttingen, Germany), with the
visual scale suggested by Salazar-García et al. (1998) that covers
from S-1 (vegetative bud) to S-11 (anthesis).
In each orchard, another group of 10 trees was selected,
with a history of annual production of at least 50 kg per tree,
and they were used in all the assessments except those of ower
development. In February and August 2014 and 2015, 30 shoots
were labeled on each tree at the beginning of each vegetative ush
(winter and summer, respectively). e types of growth produced
(oral, vegetative or inactive shoots) by the tagged shoots were
quantied at the end of each owering period, in October and
February 2014, and in November 2015 and March 2016.
e root samples were taken each month from February
2014 to February 2016, alternating odd and even trees, as well
as north and south orientation of the trees. e young roots,
of light brown color, in a soil volume of 40x40x40 cm in the
drip zone of the tree, were extracted, washed and dehydrated in a
AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018
VOLUMEN 52, NÚMERO 7
994
Corp., Tutllingen, Alemania) a 70 °C por 72 h para obtener su
peso seco.
La caída de fruto se cuanticó cada año para frutos de las
oraciones de verano e invierno. En antesis se marcaron cinco
brotes orales en cada punto cardinal de la parte media de la
copa de cada 10 árboles seleccionado. Para frutos de la oración
de verano se contabilizó el número de frutos por brote oral dos
(noviembre) y seis (marzo) meses después de antesis. En frutos
de la oración de invierno esto se hizo dos (abril) y cinco (julio)
meses después de antesis.
En cada árbol marcado se etiquetaron cinco frutos de cada
oración cuando tenían 2 cm de longitud. Cada mes se midió
su longitud y diámetro con un vernier digital (Mitutoyo, Mod.
CD-6’’ CSX, Mitutoyo Corp., Kawasaki, Japón) desde octubre
(frutos de la oración de verano) y abril (frutos de la oración
de invierno).
Variables climáticas
Los datos de precipitación pluvial fueron obtenidos del Ser-
vicio Meteorológico Nacional (SMN, 2016). Las temperaturas
ambiental y del suelo (a 30 cm de profundidad) fueron regis-
tradas en cada huerto con termómetros automatizados (HOBO
H8, Onset Computer, Witzprod, Englewood Clis, NJ, USA)
operados a batería.
Análisis de la información
El diseño experimental fue de bloques al azar con un arreglo
factorial 2x2, huertos (Colorín 1 y Ocote Cuate 2), ujos ve-
getativos (verano e invierno), con 10 repeticiones (árboles) y la
unidad experimental fue 30 brotes por árbol. Los ANDEVA se
realizaron con medidas repetidas para cada huerto y ujo vegeta-
tivo. Previo a su análisis, los valores expresados como porcentaje
fueron transformados mediante el arcoseno 0.5x+ (Steel y
Torrie, 1984). Las medias se compararon con la prueba de Tukey
(p£0.05) y se usó el programa SAS V. 9.3 (2011).
RESULTADOS Y DISCUSIÓN
Fertilidad del suelo
Las características de fertilidad del suelo fueron
similares entre huertos. La MO, Ca y Mg fueron de
moderadamente bajos a bajos y en el huerto Colo-
rín 1 fueron notorios los niveles bajos de Mn, B y
Zn (Cuadro 1). El contenido bajo de MO además
de los niveles insucientes de Mn, B y Zn son carac-
terísticos de los suelos de origen volcánico (Salazar-
forced air oven (Binder Mod. ED 240, Binder Corp., Tutllingen,
Germany) at 70 °C for 72 h, to obtain their dry weight.
e fruit drop was quantied each year for fruits from the
summer and winter owering periods. In anthesis, ve oral
shoots were marked in each cardinal point from the medium part
of the canopy from every 10 trees selected. For fruit from the
summer owering, the number of fruit were counted per ower
shoot, two (November) and six (March) months after anthesis.
In fruit from the winter owering, this was done two (April) and
ve (July) months after anthesis.
Five fruit were labeled in each tree marked, from each
owering period, when they were 2 cm long. Each month the
length and diameter were measured with a digital Vernier scale
(Mitutoyo, Mod. CD-6’’ CSX, Mitutoyo Corp., Kawasaki,
Japan) from October (fruit from the summer owering) and
April (fruit from the winter owering).
Climate variables
e data of rainfall were obtained from the National
Meteorological Service (Servicio Meteorológico Nacional,
SMN, 2016). e environmental and soil (at 30 cm of depth)
temperatures were recorded in each orchard with battery-
operated automatized thermometers (HOBO H8, Onset
Computer, Witzprod, Englewood Clis, NJ, USA).
Experimental design an statistical analysis
e experimental design was random blocks with a 2x2
factorial arrangement: orchards (Colorín 1 and Ocote Cuate 2),
and vegetative ushes (summer and winter), with 10 replicates
(trees); and the experimental unit was 30 shoots per tree. e
ANOVA was performed with repeated measurements for
each orchard and vegetative ush. Prior to their analysis, the
values expressed as percentage were transformed by the arcsine
0.5x+ (Steel and Torrie, 1984). e means were compared
with the Tukey test (p£0.05) and the SAS V. 9.3 software was
used (2011).
RESULTS AND DISCUSSION
Soil fertility
e characteristics of soil fertility were similar
between orchards. e OM, Ca and Mg ranged
from moderately low to low and in the Colorín 1
orchard the low levels of Mn, B and Zn were evident
(Table 1). e low content of OM in addition to the
insucient levels of Mn, B and Zn are characteristic
995
SALAZAR-GARCÍA et al.
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
García et al., 2016), lo que sugiere la necesidad de
incorporar MO y los nutrientes en concentraciones
moderadamente bajas a bajas para mejorar la ferti-
lidad del suelo. En ambos huertos el pH fue neutro
(Cuadro 1). En otras regiones productoras de agua-
cate los suelos presentan pH similares o más ácidos
(Aguilera-Montañez y Salazar-García, 1991; Salazar-
García y Lazcano-Ferrat, 1999). Sin embargo, el
aguacate puede prosperar en pH de 4.8 o superiores
a 6.5 (Salazar-García, 2002).
Tipo de crecimiento
La producción de brotes orales tuvo un compor-
tamiento diferente entre huertos. En el Colorín 1 se
registró 33.1 % y en el Ocote Cuate 2, 19.1 % (Cua-
dros 2 y 3). El descenso en la temperatura ambiental
es el factor que promueve el desarrollo oral en agua-
cate (Salazar-García et al., 1999, 2006a, 2013). La
diferencia en la producción de brotes orales entre
los huertos se explica por las temperaturas más bajas
en el Colorín 1 (promedio anual 20.5 °C) respecto
al Ocote Cuate 2 (22.5 °C) (Figuras 1a y 1b) lo que
favoreció mayor exposición del huerto El Colorín
Cuadro 1. Características del suelo de los huertos a 0-30 cm de profundidad al inicio
del estudio (febrero 2014).
Table 1. Soil characteristics of the orchards at 0-30 cm of depth at the beginning of
the study (February 2014).
Características Huerto Colorín 1 Huerto Ocote Cuate 2
pH (1:2 H2O) 7.1 (Neutro) 6.6 (Neutro)
Materia orgánica (%) 0.82 (B) 1.7 (MoB)
Conductividad eléctrica (dS/m) 0.26 0.33
mg kg-1
N-NO35.6 (MB) 6.4 (MB)
P-Bray 22.8 (M) 66.4 (MA)
K 180 MoB) 491 (MoA)
Ca 1273 (MoB) 859 (MoB)
Mg 96.3 (B) 183 (MoB)
Na 74 (M) 49.1 (B)
Fe 17.6 (MoA) 79.4 (MoA)
Cu 2.3 (A) 4.0 (A)
Mn 1.6 (MB) 3.9 (B)
Zn 0.54 (B) 1.2 (MoA)
B 0.22 (MB) 0.32 (MB)
Interpretación de laboratorio: A: alto; MoA: moderadamente alto; MA: muy alto; M:
medio; B: bajo; MoB: moderadamente bajo; MB: muy bajo; N: normal v Laboratory in-
terpretation: A: high; MoA: moderately high; MA: very high; M: medium; B: low; MoB:
moderately low; MB: very low; N: normal.
of soils of volcanic origin (Salazar-García et al.,
2016), suggesting the need to incorporate OM and
nutrients in moderately low to low concentrations to
improve the soil fertility. e pH was neutral in both
orchards (Table 1). In other avocado production
regions, the soils present similar or more acidic
pH (Aguilera-Montañez and Salazar-García, 1991;
Salazar-García and Lazcano-Ferrat, 1999). However,
avocado can grow in pH of 4.8 or higher than 6.5
(Salazar-García, 2002).
Type of growth
e production of ower shoots had dierent
behavior between orchards. In Colorín 1, 33.1 %
was found and in Ocote Cuate 2, 19.1 % (Tables 2
and 3). e decrease in environmental temperature
is the factor that promotes oral development in
avocado (Salazar-García et al., 1999, 2006a, 2013).
e dierence in production of oral shoots between
orchards is explained by the lower temperatures in
Colorín 1 (annual average 20.5 °C) compared to
Ocote Cuate 2 (22.5 °C) (Figures 1a and 1b), which
favored a greater exposure of the El Colorín 1 orchard
AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018
VOLUMEN 52, NÚMERO 7
996
1 a temperaturas más frescas. El ujo vegetativo de
origen (invierno o verano) no afectó el tipo de cre-
cimiento producido (vegetativo, oral o inactivo)
(Cuadros 2 y 3).
Cuadro 2. Análisis de varianza e interacciones huerto x ujo del tipo de crecimiento producido por brotes de los ujos
vegetativos de invierno y verano del aguacate ‘Méndez’. Datos de dos años de los huertos Colorín 1 y Ocote
Cuate 2.
Table 2. Variance analysis and orchard interactions x ush of the type of growth produced by shoots from the winter
and summer vegetative ushes of ‘Méndez’ avocado. Data from two years from the orchards Colorín 1 and
Ocote Cuate 2.
Tipo de crecimiento Fuente de variaciónGL SC CM F P > F
Brotes vegetativos
Huerto 1 0.01413000 0.01413000 0.00 0.9525
Flujo 1 3.27166727 3.27166727 0.83 0.3658
Huerto*Flujo 1 0.42702000 0.42702000 0.11 0.7434
Brotes orales
Huerto 1 47.17805953 47.17805953 6.58 0.0119
Flujo 1 3.01030617 3.01030617 0.42 0.5185
Huerto*Flujo 1 14.57155268 14.57155268 2.03 0.1572
Inactivos
Huerto 1 76.71389754 76.71389754 14.12 0.0003
Flujo 1 3.53008144 3.53008144 0.65 0.4223
Huerto*Flujo 1 23.07924822 23.07924822 4.25 0.0421
Análisis de varianza realizado con datos transformados mediante el arcoseno 0.5x+ v Variance analysis performed with
transformed data through the arcsine 0.5x+.
Cuadro 3. Efecto del huerto y ujo vegetativo de origen sobre el tipo de crecimiento
producido en aguacate ‘Méndez’. Evaluaciones realizadas en: octubre 2014
y noviembre 2015 (brotes de invierno) y febrero 2015 y marzo 2016 (brotes
de verano).
Table 3. Eect of the orchard and vegetative ush of origin on the type of growth pro-
duced in ‘Méndez’ avocado. Assessments performed in: October 2014 and No-
vember 2015 (winter shoots) and February 2015 and March 2016 (summer
shoots).
Fuente de variación Tipo de crecimiento del total de brotes marcados (%)
NVegetativo Floral Inactivo
Huerto Colorín 1 774 53.8 33.1 a13.0 b
Huerto Ocote Cuate 2 775 53.8 19.3 b 26.7 a
Pr > F 0.9525 0.0119 0.0003
Brotes de invierno 917 52.2 26.3 21.1
Brotes de verano 634 55.8 26.3 17.8
Pr > F 0.3658 0.5185 0.4223
Número de brotes evaluados v Number of shoots evaluated.
Medias con distinta letra en una columna para cada huerto o tipo de brote son estadísticamen-
te diferentes (Tukey; p£0.05) v Means with dierent letter in a column for each orchard or
type of shoot are statistically dierent (Tukey; p£0.05).
to cooler temperatures. e vegetative ush of origin
(winter or summer) did not aect the type of growth
produced (vegetative, oral or inactive) (Tables 2 and
3).
997
SALAZAR-GARCÍA et al.
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
Crecimiento vegetativo
El registro fenológico comenzó con la brotación
(febrero 2014) de brotes del ujo vegetativo de in-
vierno. Del 100 % de brotes de invierno marcados,
25 % produjeron oración en el verano (septiembre
2014) y 6 % orecieron en el invierno siguiente (fe-
brero 2015). El 55 % de los brotes de invierno pro-
dujo brotes de verano en septiembre 2014 y de éstos,
27 % orecieron en invierno (febrero 2015). Los
brotes de invierno y verano produjeron una cantidad
importante de brotes vegetativos (entre 50 y 60 %)
(Figura 2). A diferencia de ‘Méndez’, en ‘Hass’ el u-
jo de invierno no produce oración en el verano; sin
embargo, puede ocurrir si las condiciones ambienta-
les son favorables (Rocha-Arroyo et al., 2011a).
En ‘Hass’ el ujo vegetativo de invierno (conoci-
do como ujo de primavera en otras regiones) es el
más importante para la oración de invierno-prima-
vera del siguiente año, y está documentado en Méxi-
co (Cossio-Vargas et al., 2008; Rocha-Arroyo et al.,
2011b) y otros países (Mena-Volker, 2004; Robinson
et al., 2002; Salazar-García y Lovatt, 1998; orp et
al., 1995; Whiley et al., 1990).
Desarrollo oral
La duración del desarrollo oral (de yema vegeta-
tiva a antesis) mostró ligera variación entre años. Para
el 2014 transcurrieron 218 y 180 d para los brotes de
invierno y verano, respectivamente. La oración,
o de verano, presentó antesis en septiembre y la
oración, o de invierno, en febrero (Figura 3). En el
2015, los brotes de invierno completaron el desarro-
llo oral en 225 d produciendo la 1ª oración entre
la última semana de septiembre y la primera de octu-
bre. En el caso de brotes de verano el desarrollo oral
requirió 193 d, con antesis en la primera semana de
marzo 2016 (2ª oración).
En los dos años de estudio, los brotes de verano
requirieron, en promedio, 35 d menos que los de in-
vierno para completar el desarrollo oral. Esta dife-
rencia fue menor que los 120 y 180 d mencionados
para ambos ujos de ‘Hass’ en Nayarit y Michoacán,
respectivamente (Cossio-Vargas et al., 2008; Rocha-
Arroyo et al., 2011a). El menor tiempo requerido
para que los brotes de verano de ‘Méndez’ comple-
taran su desarrollo oral pudo deberse a que cuan-
do emergieron (agosto-septiembre) la temperatura
Figura 1. Temperatura ambiental (A y C) y del suelo (B y D)
registradas en los huertos Colorín 1 y Ocote Cuate
2, así como precipitación pluvial (D). FVI: ujo
vegetativo de invierno; FVV: ujo vegetativo de ve-
rano.
Figure 1. Environmental (A and C) and soil (B and D) tem-
perature recorded in the Colorín 1 and Ocote Cu-
ate 2 orchards, as well as rainfall (D). FVI: winter
vegetative ush; FVV: summer vegetative ush.
35
30
25
20
15
10
5
0
Huerto Colorín 1
Temperatura (°C)
AAmbiente Máxima
Mínima
Mar
FVI
Jun
FVV
Sep Dic
35
30
25
20
15
10
5
0
Temperatura (°C)
CAmbiente
Mar
FVI
Jun
FVV
Sep Dic
28
26
24
20
18
14
12
0
Temperatura (°C)
BSuelo
Mar
FVI
Jun
FVV
Sep Dic
22
16
10
28
26
24
20
18
14
12
0
Temperatura (°C)
DSuelo
22
16
10
Huerto Ocote Cuate 2
70
60
50
40
30
20
10
0
Precipitación (mm)
Precipitación
0 3 6 912 15 18 21 24 27 30 33 36 39 42 45 48 54
51
Semanas
AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018
VOLUMEN 52, NÚMERO 7
998
ambiental ya había iniciado su descenso (21 °C, en
promedio), estimulando el desarrollo oral. El efecto
del descenso de la temperatura en brotes de ‘Hass’ en
desarrollo fue mencionado por Rocha-Arroyo et al.
(2010) y Salazar-García et al. (2013).
Caída de fruto
Los frutos caídos en la denominada “segunda caí-
da”, “caída siológica” o “caída de junio” (hemisferio
Figura 2. Origen y destino de los ujos de crecimiento vegetativo (F.V.) del aguacate ‘Méndez’.
Figure 2. Origin and destination of the vegetative growth ushes (V.F.) of the ‘Méndez’ avocado.
Figura 3. Principales etapas fenológicas del aguacate ‘Méndez’ en el sur del estado de Jalisco. 1ª oración: oración de verano; 2ª
oración; oración de invierno.
Figure 3. Main phenological stages of ‘Méndez’ avocado in the southern region of the state of Jalisco. 1st owering: summer
owering; 2nd owering: winter owering.
Floración invierno
6 %
F. V. Invierno
9 %
Inactivos
5 %
Floración invierno
27 %
F. V. Invierno
56 %
Inactivos
17 %
F. V. Invierno
100 %
Floración verano
25 %
F. V. Verano
55 %
Inactivos
20 %
Cosecha Cosecha
Lluvias
EFMAMJJASONDEFM
Cosecha
100
90
80
70
60
50
40
30
20
10
0EFMAMJJASONDEFMA M JJA S O N D EFMAM J J A
1a
oración
Fruto 2a
oración
Brotes de
verano
Caída fruto
2a oración
2a
oración
Fruto 1a
oración
Fruto 2a
oración
Brotes de
invierno
Brotes de
invierno
Brotes de
verano
Caída fruto
2a oración
Caída fruto
1a oración
Caída fruto
1a oración
1a
oración
2a
oración
Fruto 1a
oración
Cosecha Cosecha
Raíces
Cosecha
Año 1 Año 2 Año 3
Intensidad relativa (%)
Vegetative growth
e phenological record began with the budbreak
(February 2014) of shoots from the winter vegetative
ush. Out of 100 % of winter shoots marked, 25 %
owered in the summer (September 2014) and 6 %
owered the following winter (February 2015). Of
the winter shoots, 55 % produced summer shoots
in September 2014, and of these, 27 % owered in
winter (February 2015). e winter and summer
999
SALAZAR-GARCÍA et al.
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
norte) presentaron diámetros entre 5 y 6 cm. Para
frutos provenientes de la primera oración (verano)
la caída fue 61.8 % y ocurrió en marzo. La caída de
fruto de la segunda oración (invierno) fue en julio
(55.4 %). La magnitud de la caída siológica regis-
trada en nuestro estudio es similar a la descrita para
‘Hass’ en otras regiones productoras: 45 % en Na-
yarit, México (Cossio-Vargas et al., 2008) y 54 %
en Sudáfrica (Toerien, 1979). La edad de los frutos
caídos procedentes de las oraciones de verano e in-
vierno fue de 22 y 26 semanas después de antesis,
respectivamente. La caída de fruto de la segunda o-
ración fue poco antes del ujo vegetativo de verano y
para los de la primera oración fue después del ujo
vegetativo de invierno (Figura 3).
Cossio-Vargas et al. (2008) y Lovatt (1990) men-
cionan la coincidencia y Wolstenholme y Whiley
(1989) la no coincidencia entre la caída de fruto y
la presencia de crecimiento vegetativo, pero no hay
información concluyente sobre las causas que origi-
nan la segunda caída de fruto (Dixon et al., 2006).
Una hipótesis menciona el desbalance hormonal
como responsable de esta caída de fruto, y destaca
el ácido abscísico (ABA) como principal causante
(Adato y Gazit, 1977). Para disminuir la intensidad
de esta caída en aguacate ‘Hass’ se evaluaron asper-
siones foliares con 2,4-D o aminoethoxyvinylglycina
desde dos meses antes del inicio de la caída de fru-
to, y en el segundo año de estudio disminuyó 18 y
17.7 %, respectivamente; además aumentó 32 y 23.6
% la producción de fruto de calibres grandes (170
a ³266 g fruto-1), respectivamente, respecto al tes-
tigo (Salazar-García et al., 2006b). Garner y Lovatt
(2016) conrmaron que el ABA está involucrado en
la segunda caída de fruto en ‘Hass’ en California.
Crecimiento de fruto
Los frutos de ‘Méndez’ resultantes de las oracio-
nes de verano e invierno requirieron 10 y ocho meses,
respectivamente, para alcanzar la madurez siológica
(22.7 % m.s.) (Figura 3). Para frutos de la oración
de invierno hay resultados similares para ‘Hass’ (21.5 %
m.s.) en Nayarit y Michoacán (Cossio-Vargas et al.,
2008; Rocha-Arroyo et al., 2011a). Los frutos de la
oración de verano alcanzaron la madurez siológi-
ca en julio, con un diámetro promedio de 6.5 cm
y los de la oración de invierno entre septiembre y
octubre con un diámetro promedio de 6.4 cm. Los
shoots produced an important number of vegetative
shoots (between 50 and 60 %) (Figure 2). In contrast
with ‘Méndez’, in ‘Hass’ the winter ush does not
produce owering in the summer; however, it can
happen if the environmental conditions are favorable
(Rocha-Arroyo et al., 2011a).
In ‘Hass’ the winter vegetative ush (known as
spring ush in other regions) is the most important
for the winter-spring owering of the following year,
and it is documented in Mexico (Cossio-Vargas et
al., 2008; Rocha-Arroyo et al., 2011b) and other
countries (Mena-Volker, 2004; Robinson et al.,
2002; Salazar-García and Lovatt, 1998; orp et al.,
1995; Whiley et al., 1990).
Flower development
e duration of ower development (from
vegetative shoot to anthesis) showed slight variation
between years. For 2014, 218 and 180 d went by for
the winter and summer shoots, respectively. e 1st or
summer owering presented anthesis in September,
and the 2nd or winter owering, in February (Figure
3). In 2015, the winter shoots completed ower
development in 225 d, producing the 1st owering
between the rst week of September and the rst of
October. In the case of summer shoots, the ower
development required 193 d, with anthesis on the
rst week of March 2016 (2nd owering).
In the two years of study, the summer shoots
required, in average, 35 d less than the winter ones
to complete the ower development. is dierence
was lower than the 120 and 180 d mentioned for
both ushes of ‘Hass’ in Nayarit and Michoacán,
respectively (Cossio-Vargas et al., 2008; Rocha-
Arroyo et al., 2011a). e lesser time required for the
summer ‘Méndez’ shoots to complete their ower
development could be because when they emerged
(August-September) the environmental temperature
had already begun its descent (21 °C in average),
stimulating oral development. e eect of the
temperature decrease in developing ‘Hass’ shoots
was mentioned by Rocha-Arroyo et al. (2010) and
Salazar-García et al. (2013).
Fruit drop
e fruit dropped in the so-called “second drop”,
“physiological drop” or “June drop” (northern
AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018
VOLUMEN 52, NÚMERO 7
1000
frutos derivados de la oración de verano requirieran
dos meses más para alcanzar la madurez siológica,
lo cual se puede atribuir a que cuando éstos iniciaron
su crecimiento (septiembre-octubre) las temperaturas
del aire (21.8 °C) y suelo (20.8 °C) habían iniciado
su descenso, lo cual disminuye el ritmo del metabo-
lismo del árbol.
Producción de raíces
La producción de raíces no cesó durante el año y
hubo dos periodos de mayor intensidad (Figura 3).
El ujo más importante fue en los meses lluviosos
del verano (junio-agosto), previo al ujo vegetativo
de verano. El segundo ujo de crecimiento de raíces
tuvo menor intensidad, fue de febrero a marzo y co-
incidió con la oración de invierno y su correspon-
diente ujo vegetativo. La mayor producción de raí-
ces en el verano coincidió con lo descrito para ‘Hass’
cultivado sin riego en Nayarit (Cossio-Vargas et al.,
2008) y con riego o sin él para el mismo cultivar en
Michoacán (Bárcenas-Ortega et al., 2007). En Israel,
Kalmar y Lahav (1976) encontraron en ‘Ettinger’ y
‘Fuerte’ una asociación positiva entre la cantidad de
agua aplicada y la producción de raíces, pero en Mi-
choacán (Bárcenas-Ortega et al. (2007) documenta-
ron lo contrario en ‘Hass’.
Según Bernstein et al. (2004) en aguacate el creci-
miento de las raíces puede ser más restringido por la
salinidad que por la presencia de brotes vegetativos.
En nuestro estudio, en ambos huertos la CE del suelo
varió de 0.26 a 0.33 dS m-1 por lo que no fue un fac-
tor limitante para el desarrollo de raíces y no afectó
la caída de fruto. Además, la menor producción de
raíces ocurrió cuando el fruto estaba en su máximo
crecimiento (Figura 3).
Precipitación pluvial y temperaturas
del aire y suelo
En ambos huertos la lluvia anual fue 728 mm,
concentrada entre junio y septiembre (Figura 1). En
el huerto Colorín 1 las temperaturas ambientales
máximas y mínimas promedio de los meses más ca-
lientes (abril y mayo) y fríos (enero y febrero), fueron
32, 31 y 6.4 y 6.0 °C, respectivamente (Figura 1A).
En el huerto Ocote Cuate 2 las temperaturas de los
meses más calientes (mayo y junio) y frío (marzo)
fueron 30.8 y 30.6 y 15.0, respectivamente (Figura
1C).
hemisphere) presented diameters between 5 and 6 cm.
For fruits from the rst owering period (summer),
the drop was 61.8 % and it happened in March.
e fruit drop from the second owering period
(winter) was in July (55.4 %). e magnitude of the
physiological drop recorded in our study is similar
to the one described for ‘Hass’ in other production
regions: 45 % in Nayarit, Mexico (Cossio-Vargas et
al., 2008) and 54 % in South Africa (Toerien, 1979).
e age of the dropped fruit from the summer and
winter owering periods was 22 and 26 weeks after
anthesis, respectively. e fruit drop from the second
owering was shortly before the summer vegetative
ush and for those from the rst owering, it was
after the winter vegetative ush (Figure 3).
Cossio-Vargas et al. (2008) and Lovatt (1990)
mention the coincidence, and Wolstenholme and
Whiley (1989) the lack of coincidence between the
fruit drop and the presence of vegetative growth,
but there is no conclusive information about the
causes that originate the second fruit drop (Dixon
et al., 2006). A hypothesis mentions the hormonal
imbalance as responsible for this fruit drop, and
highlights abscisic acid (ABA) as primary cause (Adato
and Gazit, 1977). In order to decrease the intensity
of this drop in ‘Hass’ avocado, leaf spraying with
2,4-D or aminoethoxyvinylglycine were evaluated
because two months before the beginning of the fruit
fall, and in the second year of study, it decreased 18
and 17.7 %, respectively; in addition, it increased the
production of fruit of large calibers (170 to ³266 g
fruit-1) in 32 and 23.6 %, respectively, compared to
the control (Salazar-García et al., 2006b). Garner
and Lovatt (2016) conrmed that ABA is involved in
the second fruit drop in ‘Hass’ avocado in California.
Fruit growth
e ‘Méndez’ fruit that result from the summer
and winter owering periods required 10 and eight
months, respectively, to reach physiological maturity
(22.7 % d.m.) (Figure 3). For fruit from the winter
owering, there are similar results for ‘Hass(21.5 %
d.m.) in Nayarit and Michoacán (Cossio-Vargas et
al., 2008; Rocha-Arroyo et al., 2011a). e fruit from
the summer owering reached physiological maturity
in July, with an average diameter of 6.5 cm; and those
from the winter owering between September and
October, with an average diameter of 6.4 cm. e
1001
SALAZAR-GARCÍA et al.
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
La temperatura del suelo más alta (23.8 °C) fue en
mayo y la más baja (14.5 °C) en marzo en el Colorín
1 (Figura 1B). Para el Ocote Cuate 2 la temperatura
del suelo máxima fue en mayo (25.2 °C) y las míni-
mas en enero (15.9 °C) y febrero (16.0 °C) (Figura
1D). En ambos huertos, las temperaturas máximas
del suelo se mantuvieron entre 21 a 27 °C, mencio-
nadas por Yusof et al. (1969) como adecuadas para el
crecimiento de las raíces de aguacate. De igual ma-
nera, la temperatura mínima fue superior a 13 °C,
señalada por Whiley et al. (1990) como el límite in-
ferior a partir del cual el crecimiento de las raíces de
aguacate se detiene.
CONCLUSIONES
El aguacate ‘Méndez’ presentó dos ujos de cre-
cimiento vegetativo: verano e invierno. Los brotes de
verano produjeron la oración de invierno y los de
invierno la de verano. El desarrollo oral se completó
en 186 y 221 d para brotes de verano e invierno, res-
pectivamente. La máxima producción de raíces fue
en la época de lluvias y la menor durante el máximo
crecimiento del fruto. La caída de fruto fue ligera-
mente superior para la 1ª oración (verano). Los fru-
tos de la oración de verano requirieron dos meses
más que los de invierno para lograr su madurez sio-
lógica. La presencia permanente de brotes vegetativos
desocupados (sin fruto) junto con el descenso de la
temperatura en la primavera es clave para la oración
de verano cuyo fruto es de alto valor comercial.
AGRADECIMIENTOS
Los autores reconocen el nanciamiento parcial del INIFAP
y Agro González, SPR de RL en Ciudad Guzmán, Jalisco, así
como del CONACYT para la estancia posdoctoral de Martha
Elva Ibarra-Estrada en el posgrado de Ciencias Biológicas Agro-
pecuarias-Unidad Académica de Agricultura de la Universidad
Autónoma de Nayarit.
LITERATURA CITADA
Adato, I., and S. Gazit. 1977. Role of ethylene in avocado
fruit development and ripening: I. Fruit drop. J. Exp. Bot.
28:636-643.
Aguilera-Montañez, J. L., y S. Salazar-García. 1991. e avoca-
do industry in Michoacán México. South African Avocado
Growers’ Assn. Yrbk. 14: 94-97.
Arpaia, M. L., G. W. Witney, P. W. Robinson, and M. V. Mic-
kelbart. 1994-95. ‘Hass’ avocado phenology in California:
preliminary results. Subtrop. Fruit News 3: 1-2.
fruits derived from the summer owering required
two more months to reach physiological maturity,
which can be attributed to the fact that when they
began their growth (September-October), the air
(21.8 °C) and soil (20.8 °C) temperatures had begun
their descent, which decreased the rhythm of tree
metabolism.
Root production
Root production did not stop during the year and
there were two periods of higher intensity (Figure 3).
e most important ush was in the rainy months
of the summer (June-August), prior to the summer
vegetative ush. e second ush of root growth was
less intense, from February to March, and coincided
with the winter owering and its corresponding
vegetative ush. e highest production of roots in the
summer coincided with what is described for ‘Hass’
cultivated without irrigation in Nayarit (Cossio-
Vargas et al., 2008), and with and without irrigation
for the same cultivar in Michoacán (Bárcenas-Ortega
et al., 2007). In Israel, Kalmar and Lahav (1976)
found in ‘Ettinger’ and ‘Fuerte’ a positive association
between the amount of water applied and the root
production, but in Michoacán, Bárcenas-Ortega et
al. (2007) documented the opposite in ‘Hass’.
According to Bernstein et al. (2004), in avocado,
root growth can be more restricted by the salinity
than by the presence of vegetative shoots. In our
study, in both orchards the CE of the soil varied
from 0.26 to 0.33 dS m-1, which is why it was not
a limiting factor for the development of roots and
did not aect the fruit drop. In addition, the lowest
production of roots happened when the fruit was at
its maximum growth (Figure 3).
Rainfall and air and soil temperatures
In both orchards, the annual rainfall was 728
mm, concentrated between June and September
(Figure 1). In the Colorín 1 orchard, the maximum
and minimum average temperatures of the warmest
(April and May) and coldest (January and February)
months were 32, 31 and 6.4 and 6.0 °C, respectively
(Figure 1A). In the Ocote Cuate 2 orchard the
temperatures of the warmest (May and June) and
coldest (March) months were 30.8 and 30.6 and
15.0, respectively (Figure 1C).
AGROCIENCIA, 1 de octubre - 15 de noviembre, 2018
VOLUMEN 52, NÚMERO 7
1002
Bárcenas-Ortega, A.E., J. Pantoja-Ambríz, S. Aguirre-Paleo, A. T.
Chávez-Bárcenas, S. Salazar-García, y J. L. González-Durán.
2007. Inuencia del riego sobre la dinámica de crecimiento
de raíces en árboles de aguacate ‘Hass’. Proc. Interamer. Soc.
Trop. Hort. 51: 23-29.
Bernstein, N., A. Meiri, and M. Zilberstaine. 2004. Root growth
of avocado is more sensitive to salinity than shoot growth. J.
Amer. Soc. Hort. Sci. 129(2):188–192.
Bingham, F. T. 1982. Boron. In: Page, A. L., R. H. Miller, and
D. R. Keeney (eds). Methods of Soil Analysis, part 2. Second
edition. Amer. Soc. Agron. and Soil Sci. Soc. Amer. Madi-
son, WI, USA. pp: 431-446.
Bray, R. H., and L. T. Kurtz. 1945. Determination of total, or-
ganic and available phosphorus in soil. Soil Sci. 59: 39-45.
Cossio-Vargas, L. E., S. Salazar-García, I. J. L. González-Durán,
y R. Medina-Torres. 2008. Fenología del aguacate ‘Hass’ en
el clima Semicálido de Nayarit. Rev. Chapingo Ser. Hort.
14(3): 319-324.
Dahnke, W. C. 1990. Testing soils for available nitrogen. In:
Westerman, R. L. (ed.). Soil Testing and Plant Analysis.
Amer. Soc. Agron. and Soil Sci. Soc. Amer. Madison, WI,
USA. pp: 120-140.
Dixon, J., C. B. Lamond, D. B. Smith, and T.A. Elmlsy. 2006.
Patterns of fruit growth and fruit drop of ‘Hass’ avocado
trees in the Western Bay of Plenty, New Zealand. New Zea-
land Avocado Growers’ Assn. Ann. Res. Report 6:47-54.
Doll, E. C., and R. E. Lucas. 1973. Testing soil for potassium,
calcium and magnesium. In: Walsh, L. M., and J. D. Beaton
(eds). Soil testing and Plant Analysis. Soil Sci. Soc. Amer.
Madison, WI, USA. pp: 133-152.
García-Amaro, E. 1998. Comisión Nacional para el estudio de la
Biodiversidad (CONABIO). ‘Cartas de clima de la Repúbli-
ca Mexicana’ (Modicaciones al sistema de clasicación de
Köppen). Escala 1:1000 000 México. Shapele.
http://www.igeograf.unam.mx/sigg/utilidades/docs/pdfs/publi-
caciones/geo_siglo21/serie_lib/modic_al_sis.pdf (Consul-
ta: enero 2016).
Gardiazabal-Irazábal, F., y G. Rosenberg. 1991. Cultivo del Pal-
to. Quillota, Universidad Católica de Valparaíso, Facultad de
Agronomía. 201 p.
Garner, L. C., and C. J. Lovatt. 2016. Physiological factors aec-
ting ower and fruit abscission of ‘Hass’ avocado. Scientia
Hort. 199: 32-40.
Kalmar, D., and E. Lahav. 1976. Water requirements of avocado
in the Western Galilee. a) e eect of dierent irrigation
treatments on water consumptions, salt content in the soil
and root distribution. Alon Hanotea. 30:629-643.
Lindsay, W. L., and W. A. Norvell. 1978. Development of a
DTPA soil test for zinc, iron, manganese, and copper. Soil
Sci. Soc. Amer. J. 42: 421-428.
Lovatt, C. J. 1990. Factors aecting fruit set/early fruit drop in
avocado. California Avocado Soc. Yrbk 74: 193-199.
McLean, E. O. 1982. Soil pH and lime requirement. In: Page,
A. L., R. H. Miller, and D. R. Keeney (eds.). Methods of Soil
Analysis, Part 2. Second edition. Amer. Soc. Agron. and Soil
Sci. Soc. Amer. Madison, WI, USA. pp: 199-223.
Mena-Volker, F. 2004. Fenología del palto, su uso como base
del manejo productivo. 2º Seminario Internacional de Pal-
tos. 29 Sep.-1 Oct. Quillota, Chile. Sociedad Gardiazábal
y Magdahl Ltda. http://www.avocadosource.com. (Consulta
Abril 2013).
e highest soil temperature (23.8 °C) was in
May and the lowest (14.5 °C) in March in Colorín
1 (Figure 1B). For Ocote Cuate 2 the maximum
soil temperature was in May (25.2 °C) and the
minimum in January (15.9 °C) and February (16.0
°C) (Figure 1D). In both orchards, the maximum
soil temperatures remained between 21 and 27 °C,
mentioned by Yusof et al. (1969) as adequate for the
growth of avocado roots. Likewise, the minimum
temperature was higher than 13 °C, pointed out by
Whiley et al. (1990) as the lower limit from which
avocado root growth stops.
CONCLUSIONS
e ‘Méndez’ avocado presented two vegetative
growth ushes: winter and summer. e summer
shoots produced winter owering, and the winter
shoots summer owering. Floral development was
completed in 186 and 221 d for summer and winter
shoots, respectively. e maximum root production
was in rainy season and the lowest during the
maximum growth of the fruit. e fruit drop was
slightly higher for the 1st owering (summer). Fruits
from the summer owering period required two
more months than those from winter to achieve
physiological maturity. e permanent presence of
unoccupied vegetative shoots (without fruit) together
with the decrease in temperature during spring are
key for the summer owering whose fruit is of high
commercial value.
End of the English version
pppvPPP
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic
carbon and organic matter. In: Page, A. L., R. H. Miller,
and D. R. Keeney (eds). Methods of Soil Analysis, Part 2.
Second edition. Amer. Soc. Agron. and Soil Sci. Soc. Amer.
Madison, WI, USA. pp: 539-594.
Robinson, P. W., M. V. Mickelbart, X. Liu, C. Adams, G. Wit-
ney, and M. L. Arpaia. 2002. Development of a phenological
model of avocado tree growth in California. In: Drew, R.
(ed.). Proc. Intl. Symp. Trop. and Subtropical Fruits. Acta
Hort. 575: 859-864.
Rocha-Arroyo, J. L., S. Salazar-García, A. E. Bárcenas-Ortega,
I. J. L. González-Durán, y L. E. Cossio-Vargas. 2011a. Fe-
nología del aguacate ‘Hass’ en Michoacán. Rev. Mex. Cienc.
Agríc. 2: 303-316.
1003
SALAZAR-GARCÍA et al.
FENOLOGÍA DEL AGUACATE ‘MÉNDEZ’ EN EL SUR DE JALISCO, MÉXICO
Rocha-Arroyo, J. L., S. Salazar-García, A. E. Bárcenas-Ortega,
I. J. L. González-Durán, y R. Medina-Torres. 2011b. Cre-
cimientos vegetativo y reproductivo del aguacate ‘Hass’ en
diversos climas de Michoacán, México. In: Proc. VII World
Avocado Congr. Sept. 5-9, 2011. Cairns, Australia. pp: 463-
445.
Rocha-Arroyo, J. L., S. Salazar-García, y A. E. Bárcenas-Ortega.
2010. Determinación irreversible a la oración del aguacate
‘Hass’ en Michoacán. Rev. Mex. Cienc. Agríc. 1: 469-478.
Salazar García, S. and J. I. Cortés Flores, 1986. Root distribution
of mature avocado trees growing in soils of dierent texture.
Calif. Avocado Soc. Yrbk. 70: 165-174.
Salazar-García, S. 2002. Nutrición del Aguacate, Principios y
Aplicaciones. Instituto Nacional de Investigaciones Foresta-
les, Agrícolas y Pecuarias e Instituto de la Potasa y el Fósforo.
Querétaro, México. 165 p.
Salazar-García, S., and C. J. Lovatt. 1998. GA3 application al-
ters owering phenology of the ‘Hass’ avocado. J. Amer. Soc.
Hort. Sci. 123: 791-797.
Salazar-García, S., and I. Lazcano-Ferrat. 1999. Diagnóstico nu-
trimental del aguacate ‘Hass’ bajo condiciones de temporal.
Rev. Chapingo Ser. Hort. 5: 173-184.
Salazar-García, S., E. M. Lord, and C.J. Lovatt. 1998. Inores-
cence and ower development of the ‘Hass’ avocado (Persea
americana Mill.) during “on” and “o” crop years. J. Amer.
Soc. Hort. Sci. 123: 537-544.
Salazar-García, S., E.M. Lord, and C.J. Lovatt. 1999. Inores-
cence development of the ‘Hass’ avocado: commitment to
owering. J. Amer. Soc. Hort. Sci. 124: 478-482.
Salazar-García, S., L. C. Garner, and C.J. Lovatt. 2013. Repro-
ductive biology. In: Schaer, B., B. N. Wolstenholme, and
A.W. Whiley (eds). e Avocado, Botany, Production and
Uses. 2nd Edition CABI, Oxfordshire, UK. pp: 118-167.
Salazar-García, S., L. E. Cossio-Vargas, C. J. Lovatt, I. J. L.
González-Durán, and M. H. Pérez Barraza. 2006a. Crop
load aects vegetative growth ushes and shoot age inuen-
ces irreversible commitment to owering of ‘Hass’ avocado.
HortScience 41: 1541-1546.
Salazar-García, S., L. E. Cossio-Vargas, I. J. L. González Durán.,
and C. J. Lovatt. 2006b. Eect of foliar-applied plant bio-
regulators on “June fruit drop”, yield and fruit size of ‘Hass’
avocado. Acta Hort. 727: 197-202.
Salazar-García, S., M. E. Ibarra-Estrada, y R. Medina-Torres.
2016. Tejidos alternativos al foliar para evaluar la respuesta a
la fertilización con Zn o B en aguacate ‘Hass’. Rev. Fitotec.
Mex. 39: 247-252.
SMN. Sistema Meteorológico Nacional. 2016.
http://smn.cna.gob.mx/tools/RESOURCES/Normales8110/
NORMAL14030.TXT/ (Consulta: agosto 2016).
Statistical Analysis System (SAS Institute). (2011). User’s Guide:
Mathematical Programming. Version 9.3. Cary, N.C. USA.
Steel, R. G. D., and J. H. Torrie. 1984. Principles and Procedures
of Statistics: A Biometrical Aproach. 2th. Ed. McGraw Hill
Publishers. pp: 234-235.
orp, T. G., P. Anderson, and M. Camilleri. 1995. Avocado
tree growth cycles - a quantitative model. In: III Proc. World
Avocado Congr. Oct. 22-27, 1995. Tel Aviv, Israel. pp: 76-
79.
Toerien, J. C. 1979. Seasonal incidence of ring-neck on avocados
and possible causes. South African Avocado Growers’ Assn.
3:49-51.
Whiley, A. W., and B. N. Wolstenholme. 1990. Carbohydra-
te management in avocado trees for increased production.
South African Avocado Growers’ Assn. Yrbk. 13: 25-27.
Whiley, A. W., B. N. Wolstenholme, J. B. Saranah, and P. A.
Anderson. 1990. Eect of root temperature on growth of
two avocado rootstocks cultivars. Acta Hort. 275: 153-160.
Whiley, A. W., J. B. Saranah, B. W. Cull, and K. G. Pegg. 1988.
Manage avocado tree growth cycles for productivity gains.
Qld. Agric. J. 114: 29-36.
Wolstenholme, B. N., and A. W. Whiley. 1989. Carbohydrate
and phenological cycling as management tools for avocado
orchards. South African Avocado Growers Assn. Yrbk. 12:
33-37.
Yusof, I. M., D. W. Buchanan, and J. F. Gerber. 1969. e res-
ponse of avocado and mango to soil temperature. J. Amer.
Soc. Hort. Sci. 94: 619-621.
... On each tree, branches of approximately 1.5 m in length were selected and marked from the middle part of the tree canopy with orientation to the eastern and western quadrants. On these selected branches, epicormic shoots and respective lateral shoots were selected and marked (SALAZAR-GARCÍA et al., 2018). ...
... Air temperature data during this research do not seem to restrict tree growth in either of the two areas under study. Research carried out in Brazil determined that constant night temperatures below 10ºC can alter avocado flowering development (SOARES et al., 2002) and in California (USA), evaluations carried out on 'Hass' avocado cultivar showed that maximum air temperatures below 15 ºC reduce bee movement in the orchard (GARNER; LOVATT, 2016); however, in this area, inflorescence development is correlated with night temperature ≤15 ºC (SALAZAR-GARCÍA et al., 2018). In the case of Aranzazu and Villamaría, night temperatures were rarely above 15ºC or below 10ºC, which indicates that floral development should not be affected; however, differences between one location and the other can accelerate or reduce the time of the different phenological phases, specifically the flowering time and the flower-to-fruit period. ...
... These results might describe the productive potential of each location and support studies on lateral bud sprouting (sylleptic or proleptic) on the main axes as an important agricultural tool, since the manipulation of the proportion of sylleptic and proleptic shoots can lead to increased productivity (GARNER; LOVATT, 2016). Likewise, increase in axillary branching could also increase photosynthetic capacity in the "on year" and thus stimulate fruit production in the "off year" (REYES-ALEMÁN et al.,SALAZAR-GARCÍA et al., 2018), which indicate that the timing of floral development varies according to the environmental conditions of a specific site. Decreases in temperature play an important role in the transition from the vegetative to the reproductive state(ROCHA-ARROYO et al., 2010), in addition, the floral development duration increases when temperature is lower(PATTEMORE et al., 2018).Photo:Arias-García et al., 2021. ...
Article
Full-text available
The objective of this study was to document and analyze the effect of climate on the phenological development of ‘Hass’ avocado in two contrasting zones of the Andean tropics of Caldas, located at altitudes of 1,950m and 2,400m a.s.l., respectively. A completely randomized experimental design was carried out using a five to seven year-old ‘Hass’ tree as experimental unit and 15 replicates on each area. Observations were conducted on lateral sylleptic shoots and their corresponding apical buds located on the eastern and western sides of each tree. The destination of the apical bud of lateral shoots was quantified, floral phenology was documented, heat units were calculated from reproductive bud stage 1 to anthesis and to harvest and root growth was followed for each study area. Air temperature, soil temperature, precipitation and photosynthetically active radiation (PAR) values were recorded over time. Differences were found in the number of apical buds of lateral shoots with reproductive and vegetative destination, flowering phenology, heat units, root growth, PAR and precipitation. Differences were found among variables evaluated at the two contrasting altitudes. There is a clear need for further ecophysiological studies on this fruit tree in tropical areas in particular.
... En los últimos años, el aguacate 'Méndez No. 1' (Plant Patent 11,173 USA 2002), referido aquí como 'Méndez' ha adquirido importancia en el sur del estado de Jalisco en donde existen más de 11 000 ha. La importancia económica de 'Méndez' se debe a que una proporción importante de su cosecha anual madura más temprano (verano) que la de 'Hass' (otoño-invierno). El fruto cosechado en verano usualmente alcanza el precio más alto del año (Salazar et al., 2015). ...
... The economic importance of 'Méndez' is due to the fact that a significant proportion of its annual crop matures earlier (summer) than 'Hass' (autumn-winter). The fruit harvested in summer usually reaches the highest price of the year (Salazar et al., 2015). ...
Article
Full-text available
Durante el proceso del desarrollo que conduce a la floración un ápice vegetativo sufre la transición hacia reproductivo. En cierto punto, el proceso ya no es reversible y no puede ser modificado con tratamientos que inhiben la floración. A este proceso se le conoce como determinación irreversible a la floración (DIF). El objetivo de esta investigación fue determinar la fecha, estado de desarrollo de las yemas y la temperatura asociada cuando ocurre la DIF en los flujos vegetativos de invierno y verano del aguacate ‘Méndez’ en el sur de Jalisco, México. Se seleccionaron dos huertos y en cada uno de ellos se eligieron 10 árboles a los cuales se les etiquetaron 30 brotes de cada flujo vegetativo ocurrido en 2014 y 2015. Los tratamientos consistieron en anillado de la corteza y defoliación de brotes que se realizaron a intervalos mensuales en un brote de cada flujo vegetativo por árbol. En brotes de invierno y verano, la DIF ocurrió cuando el tratamiento fue aplicado el 26 de junio y el 26 de noviembre, respectivamente. Las yemas presentaron un estado anatómico similar al encontrado previamente para aguacate ‘Hass’ en otras regiones productoras. La DIF para brotes de invierno y verano fue asociada a temperaturas ≤20 y ≤18 °C, respectivamente, y pudo ser modelada matemáticamente. A partir del día cero (inicio de brotación vegetativa), los brotes de invierno y verano necesitaron 1480 y 1239.5 horas frío acumulados, respectivamente.
Article
Mexico is the main producer and exporter of avocado (Persea americana Mill) worldwide. However, despite the importance and high production, in Latin America the phenology of the crop has not yet been analyzed based on the extended BBCH scale (BBCH abbreviation derived from the following German institutions Biologische Bundesanstalt, Bundessortenamt and Chemische Industrie) and its relationship with anthracnose, which is the most important fungal disease in avocado production that can economically limit production and reduce fruit quality. The objective of this work was to apply the extended BBCH scale to describe the phenological stages of avocado in the state of Morelos and relate the incidence of anthracnose in each of the phenological stages. Phenology studies periodic biological events in relation to seasonal variations of climatic conditions, so it was demonstrated in the development of this research that under the climatic conditions of Morelos state, specifically in the study areas, avocado presented two stages of vegetative growth in summer and winter colloquially called as normal flowering (Mesostage 1) and local flowering (Mesostage 2), and 7 of the 10 main stages of growth were observed, starting with the development of the buds and ending in the development of the fruit. Likewise, there are variables that directly influence the development of the crop and the appearance of anthracnose symptoms in the field. Relative humidity has a positive correlation with the incidence of the disease under field conditions, while average temperature has a negative correlation with the incidence of anthracnose symptoms under field conditions. It was also determined that the incidence of anthracnose during the study period was highest in June, July and August, with lower levels in December to April. With this information it is possible to homogenize the different phenological stages of avocado and establish strategies that positively influence the integrated management of avocado cultivation in all producing areas of the country.
Article
Full-text available
This study was conducted at several periods of time from 2000 to 2005 in two commercial 'Hass' avocado orchards in the municipalities of Tepic and Xalisco, Nayarit, México. The objective was to determine the growth cycles of 'Hass' avocado trees under rainfed conditions. 'Hass' showed two flushes of vegetative growth: winter (greatest intensity) and summer (lowest intensity). The complete floral development process, from closed pointed bud to anthesis, required 11.5 and 7.5 months for winter and summer shoots, respectively. Greatest production of roots occurred in August. "June fruit drop" maximum intensity (45%) was observed during the first summer rains (June). Fruit growth (length), from set (March) to harvest (November), took eight months. Average annual maximum air temperatures fluctuated between 26.8 and 33.4 °C and minimum temperatures were 9.3 to 20.4 °C. Average monthly maximum soil temperatures varied from 20.1 to 24.5 °C throughout the year and the minimum ranged from 18.5 to 23.4 °C. Soil moisture level was ≥85% from the rainy season (June to October) to December; afterwards it decreased, reaching 65% in May.
Article
Full-text available
Symptoms of zinc (Zn) or boron (B) deficiencies in fruit and leaves are common in the Hass avocado (Persea americana Mill.) producing region AT the State of Nayarit, México. Monitoring foliar concentrations of these micronutrients in response to fertilization does not always provide an accurate diagnosis. This research evaluated the effect of soil fertilization with Zn or B on the concentration of these nutrients in the tissue of different plant structures of Hass avocado. The study was conducted in a commercial Hass avocado orchard grown without irrigation under the sub-humid semi-warm climate of Tepic, Nayarit. Treatments were applied to the soil during the 2001 to 2005 rainy seasons (July and September) and consisted of (g per tree per year): (T-1) two applications of 750 g ZnSO4 (35.5 % Zn); (T-2) two applications of 29.5 g Boronat® (32 % B); and (T-3) control without Zn or B applications. Sampled tissues were floral buds at "cauliflower" stage, complete inflorescences at anthesis, flowers at anthesis, rachis of inflorescences at anthesis, fruit peduncle + pedicel at physiological maturity, fruit pulp, and 6-month old leaves from the winter vegetative flush. Tissues that showed the best response to fertilization with Zn were the rachis of inflorescences at anthesis and the fruit pulp at physiological maturity. For B, the best tissues were complete inflorescences at anthesis and the peduncle + pedicel of fruit at physiological maturity.
Article
Full-text available
'Hass' avocado (Persea americana Mill.) is characterized by distinct periods of excessive flower and fruit drop. Determining the cause(s) of these abscission events is critical for the development of strategies to increase fruit set and yield. Therefore, the objectives of this research were to determine pollination and fertilization rates of abscising flowers and to quantify the viability of developing ovules (seeds) and hormone concentrations of abscising versus persisting fruit through early and June drop of 'Hass' avocado. Experiments were conducted during sequential off- and on-crop years. Pollination, pollen germination, pollen tube growth and ovule viability of abscising flowers were determined by microscopic analysis. During early and June drop, cellular deterioration of developing ovules of abscising and persisting fruit was visualized with Evan's blue stain. Abscisic acid (ABA), indole-3-acetic acid (IAA), and isopentenyladenine (IPA) concentrations were determined by radio-immuno assay (RIA) during the on-crop year only. On average. ≥. 70% of abscising 'Hass' flowers were pollinated but due to the failure of the pollen grains to germinate and produce pollen tubes, fertilization never occurred and the ovule deteriorated. Fruit abscission during early and June drop was also due primarily to a lack of fertilization. Fruit abscission was associated initially with deterioration of the nucellus within the developing ovule in early drop, and subsequently with deterioration of the integument (seed coat) in June drop; both occurred more frequently in abscising than persisting fruit. Abscising fruit had greater ABA concentrations during early drop, June drop and fall fruit drop compared to persisting fruit; IAA and IPA were greater in abscising fruit during June drop, but not early drop or fall fruit drop. Only 25% of the total number of fruit that abscised per crop year were fertilized. Taken together, these results provide strong evidence that the majority of flowers and fruit of 'Hass' avocado abscise due to a lack of pollen germination and subsequent fertilization. In addition, the results suggest that ABA accumulation is related to ovule (seed) abortion and reduced fruit growth in abscising fruit.
Article
Full-text available
Mature 'Hass' avocado (Persea americana Mill.) trees on four rootstocks (Thomas, Topa Topa, Duke 7, or D9) were monitored from 1992 to 1996 to determine the relative timing of shoot and root growth, bloom, and carbohydrate levels, as well as the relationships between these variables and yield in southern California. Trees exhibited typical alternate bearing patterns with heavy and light crop loads ("on" and "off" years, respectively) alternating from year to year. Shoot growth occurred during two distinct flushes each year, one in spring and one in late summer. Although yield varied among rootstocks, neither the rate of shoot growth during flushes nor the total cumulative shoot growth over a season differed among rootstocks. However, cumulative shoot growth was 35 times higher in 1993, when yield was almost nil, as compared to other years. The spring growth flush accounted for the majority of total shoot growth in most years; however, the summer growth flush accounted for more of the total shoot growth during 1993. Root growth did not exhibit dormant periods as shoot growth did, but in general, root growth was greatest when shoots were not actively growing. Crop load did not appear to affect root growth patterns or intensity. Bloom occurred each year from mid-March to mid-May. Bloom did not differ among rootstocks; however, bloom in "on" years occurred earlier and for a longer period than the bloom in "off" years. Shoot starch concentrations exhibited greater fluctuations during the year than trunk starch concentrations and were highest immediately before the onset of the spring shoot flush. This information gives us insight into the relative timing of and relationships between growth events of avocado in southern California and will help growers determine the optimal timing of cultural practices.
Article
Full-text available
In most crop species, growth of the shoot is more sensitive to salt stress than root growth. Avocado [Persea americana Mill.] is very sensitive to NaCl stress. Even low concentrations of salt (15 mM) inhibit tree growth and decrease productivity. Observations in experimental orchards have suggested that root growth in avocado might be more restricted by salinity than shoot growth. In the present study, we evaluated quantitatively the inhibitory effects of salt stress on growth of the avocado root in comparison to the shoot. Seedling plants of the West-Indian rootstock 'Degania 117' were grown in complete nutrient solution containing 1, 5, 15, or 25 mM NaCl. The threshold NaCl concentration causing root and shoot growth reduction occurred between 5 and 15 mM. At all concentrations, root growth was much more sensitive to salinity than shoot growth. A concentration of 15 mM NaCl, which did not affect the rate of leaf emergence on the plant and decreased leaf biomass production only 10%, induced a 43% reduction in the rate of root elongation and decreased root volumetric growth rate by 33%. Under 25 mM NaCl, leaf biomass production, leaf initiation rate and leaf elongation rate were reduced 19.5%, 12%, and 5%, respectively, while root volumetric growth and root elongation rate were reduced 65% and 75%, respectively. This strong root growth inhibition is expected to influence the whole plant and therefore root growth under salinity should be considered as an important criterion for rootstocks' tolerance to NaCl.