ArticlePDF Available

An annotated checklist of macrofungi in broadleaf Mediterranean forests (NW Italy)

Authors:

Abstract and Figures

Three different broadleaf Mediterranean forests, each characterized by the dominance of Castanea sativa, Quercus cerris, and Fagus sylvatica, respectively, were intensively surveyed over 3 consecutive years to record a list of macrofungi. A total of 5,065 sporomata and 300 species (seven Ascomycota and 293 Basidiomycota) belonging to 18 orders, 59 families, and 117 genera were recorded. The ecology, community composition, and geographic distribution of the identified species are discussed and new records for Italy are also provided.
Content may be subject to copyright.
1 of 18Published by Po lish Botanical Socie ty
Acta Mycologica
ORIGINAL RESEARCH PAPER
An annotated checklist of macrofungi in
broadleaf Mediterranean forests (NW Italy)
Elia Ambrosio1,2*, Grazia Cecchi1, Mirca Zotti1, Mauro Giorgio
Mariotti1, Simone Di Piazza1, Fabrizio Boccardo3
1 Department of Earth, the Environment and Life Science (DISTAV), University of Genoa, Corso
Europa 26, 16132 Genoa, Italy
2 Via Calamandrei 2, 53035 Monteriggioni Siena, Italy
3 Via Filippo Bettini 14/11, 16162 Genoa, Italy
* Corresponding author. Email: elia.ambrosio.10@gmail.com
Abstract
ree dierent broadleaf Mediterranean forests, each characterized by the dominance
of Castanea sativa, Quercus cerris, and Fagus sylvatica, respectively, were intensively
surveyed over 3 consecutive years to record a list of macrofungi. A total of 5,065
sporomata and 300 species (seven Ascomycota and 293 Basidiomycota) belonging
to 18 orders, 59 families, and 117 genera were recorded. e ecology, community
composition, and geographic distribution of the identied species are discussed and
new records for Italy are also provided.
Keywords
fungal biodiversity; checklist; rare species; chestnut wood; oak wood; beech forest
Introduction
Fungi are among the most important organisms on Earth, both in terms of a high
species richness and their functional roles in aquatic and terrestrial ecosystems. ey
play a crucial role in the nutrient cycles and establish important pathogenic and/or
mutualistic interactions with plants and animals. In the soil system, fungi aect forest
ecosystem functions by driving the carbon cycle, decomposing the organic matter,
mediating nutrient and water uptake, and maintaining soil structure and forest food
webs [1,2]. us far, our knowledge on fungal diversity is incomplete since only a
small fraction (~100,000 spp.) of the estimated (~5.1 million spp.) existing species on
Earth has been described [35]. is is due to the cryptic and ephemeral nature of the
reproductive structures of macrofungi (named sporomata/fruiting bodies [6]), as well
as the need of a wide taxonomical knowledge for species identication and a high eld
sampling eort [710].
e knowledge of the macrofungal component represents a useful tool for the estab-
lishment of priorities for sites of conservation and an indicator of forest perturbations
[11,12]. It has been widely demonstrated that environmental changes aect the species
richness and composition of the macrofungal communities [13,14].
In this study, we report the results achieved by mycological investigations carried
out over three consecutive years in three broadleaf Mediterranean forests dominated
by Castanea sativa Mill., Quercus cerris L., and Fagus sylvatica L., respectively and
located in Northwest Italy (Liguria). e knowledge of macrofungal diversity in Italy
is fragmented and several areas and habitats remain unexplored [1517]. Liguria, in
particular, is characterized by a peculiar geomorphology and climate that allow the
coexistence of a great richness and diversity of habitats. Forests cover a remarkable
percentage of the whole territory (ca. 62%), and broadleaf woods represent the prevalent
vegetation type (ca. 87%) [18].
DOI: 10.5586/am.1109
Publication history
Received: 2017-12-26
Accepted: 2018-06-26
Published: 2018-10-23
Handling editor
Andrzej Szczepkowski, Faculty
of Forestry, Warsaw University of
Life Sciences – SGGW, Poland
Authors’ contributions
EA conducted the eldwork,
did the species identication,
analyzed the data, and
wrote the manuscript; all the
coauthors contributed to the
eldwork; FB also contributed to
the species identication
Funding
EA was supported by a doctoral
fellowship (2012–2014)
from Ministry of Education,
Universities and Research – Italy.
Competing interests
No competing interests have
been declared.
Copyright notice
© The Author(s) 2018. This is an
Open Access article distributed
under the terms of the
Creative Commons Attribution
License, which permits
redistribution, commercial and
noncommercial, provided that
the article is properly cited.
Citation
Ambrosio E, Cecchi G, Zotti
M, Mariotti MG, Di Piazza S,
Boccardo F. An annotated
checklist of macrofungi in
broadleaf Mediterranean
forests (NW Italy). Acta Mycol.
2018;53(2):1109. https://doi.
org/10.5586/am.1109
Digital signature
This PDF has been certied using digital
signature with a trusted timestamp to
assure its origin and integrity. A verication
trust dialog appears on the PDF document
when it is opened in a compatible PDF
reader. Certicate properties provide
further details such as certication time
and a signing reason in case any alterations
made to the nal content. If the certicate
is missing or invalid it is recommended to
verify the article on the journal website.
Piotr Otręba
Digitally signed by Piotr Otręba
Date: 2018.10.23 16:46:53 +01'00'
2 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
e aim of this study was to increase
our knowledge of the macrofungal diversity
associated with broadleaf Mediterranean
forests. Specically, we intended to: (i) pro-
vide a detailed list of species, (ii) provide
information on ecology and taxonomy of
the recorded species, (iii) estimate the fre-
quency of geographic distribution on the
national territory, and (iv) detect uncom-
mon and rare species.
Material and methods
Study area
ree broadleaf forests were selected in Li-
guria (NW Italy) in the province of Savona
(municipality of Sassello) (Fig. 1). Site 1
is located in the loc. Badani (44°27'56" N,
8°28'44" E) and is characterized by a young chestnut coppice of approximately 8,800
m2. e altitude ranges from 420 to 450 m a.s.l. e tree layer is dominated by Castanea
sativa. A lower frequency of other woody species such as Sorbus torminalis (L.) Crantz
and Populus tremula L. occurs in this site. e percentage cover of the shrub layer is
very low (7%), whereas the herbaceous species are abundant (15%). e area is under
human intervention (i.e., by cutting and thinning) to remove the undergrowth vegeta-
tion and facilitate the collection of chestnuts. Site 2, in the loc. La Maddalena (44°30'14"
N, 8°29'17" E), is classied as high forest and covers a total area of about 7,500 m2 with
altitude of 340–380 m a.s.l. e whole area is dominated by Quercus cerris. Other woody
species, such as S. torminalis and P. tremula, occur with lower frequency in the site.
e percentage cover of the shrub layer is very low (5%), whereas the herbaceous layer
cover is very high (70%). e forest belongs to the Lathyro montani-Quercetum cerridis
(Barbero et Bono, 1971) Ubaldi 1988 association. Site 3, in the loc. Vereira (44°27'3"
N, 8°32'42" E), covers a total area of about 10,000 m2 and it is also classied as high
forest. e altitude is 1,000 m a.s.l. e area is dominated by Fagus sylvatica, followed
by S. torminalis and P. tremula at lower frequency. e percentage cover of the shrub
and herbaceous layer are very low (10% and 7%, respectively). e forest belongs to
the Trochiscantho-Fagetum Gentile 1974 association.
Geologically, Site 1 and 3 are characterized by soils developed mainly on calceschists,
whereas Site 2 lies in a complex area characterized by four dierent parent rocks:
serpentineschists, calceschists, chlorite-actinolite schists, and conglomerates. e
climate is ascribed to the temperate oceanic sub-Mediterranean type for all the three
sites [19] with the mean annual temperature of 12°C [from 0°C (min) in January to
25°C (max) in July)]. e mean annual rainfall is 912 mm [33 mm (min) in July, 122
mm (max) in October] [20].
Sampling and data collection
Mycological investigations, targeted to epigeous macrofungi, were carried out over 3
consecutive years (2012–2014). Sampling was performed three/four times per month
in fall (early September – late November) and in spring (April and June) in 20 circular
(4-m radius) plots (60 in total) selected in each study site along line-transects and fol-
lowing a standardized sampling method for macrofungi [21]. Each plot was 20 m away
from the next one. e total sample area was approximately 1,000 m2 for each site.
Species identication was performed by analyzing the macro- and microscopical
characteristics of the collected specimens and the relevant literature [2234]. e
systematic classication followed previous studies [6,35]. Nomenclature and author
abbreviations were used in accordance with [3638]. Some specimens were deposited
Fig. 1 Geographic location of the study sites.
3 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
in the personal collection of F. Boccardo at GDOR (Herbarium of the Museo Civico di
Storia Naturale Giacomo Doria, Mycology Section, Genoa, Italy).
e identied macrofungal species were split into functional groups as described
previously [39], based on their primary mode of nutrition: ectomycorrhizal (ECM),
soil (humus or litter) decay (SHL), parasitic (P), and wood decay (WD). Further, with
reference to national checklists [15,40], a value of geographic distribution was given for
each species. Accordingly, all species were split in four classes: widespread (w) – species
recorded on more than 65% of Italian territory; common (c) – species recorded on
40–65%; not common (nc) – species recorded on 20–40%; rare (r) – species recorded
on less than 20% of Italian territory. With the symbol of asterisk (*) we specied species
that are not listed in the available national checklists.
Results
List of the species
Based on the macro- and microscopic examination, the species listed below were
identied. For each species the ecology, vegetation of the study site(s), distribution in
Italy, and the abundance (i.e., number of ascomata, stromata, or basidiomata) were
recorded.
Division Ascomycota
ORDER HELOTIALES, FAMILY HELOTIACEAE
1. Bisporella citrina (Batsch) Korf & S. E. Carp.; WD; beech forest; w; two ascomata.
ORDER HELOTIALES, FAMILY LEOTIACEAE
2. Leotia lubrica (Scop.) Pers.; ECM; chestnut wood; c; 10 ascomata.
ORDER PEZIZALES, FAMILY PEZIZACEAE
3. Peziza badia Pers.; ECM; chestnut wood; c; 10 ascomata.
4. Peziza phyllogena Cooke; ECM; oak wood; c; two ascomata.
ORDER PEZIZALES, FAMILY PYRONEMATACEAE
5. Tarzetta catinus (Holmsk.) Korf & J. K. Rogers; ECM; oak wood; c; one ascoma.
ORDER XYLARIALES, FAMILY DIATRYPACEAE
6. Diatrype bullata (Hom.) Fr.; WD; beech forest; c; numerous stromata.
ORDER XYLARIALES, FAMILY XYLARIACEAE
7. Xylaria hypoxylon (L.) Grev.; WD; beech forest; w; 52 stromata.
Division Basidiomycota
ORDER AGARICALES, FAMILY AGARICACEAE
8. Agrocybe praecox (Pers.) Fayod; SHL; oak wood; w; three basidiomata.
9. Lepiota clypeolaria (Bull.) P. Kumm.; SHL; oak wood; w; two basidiomata.
10. Lycoperdon perlatum Pers.; SHL; chestnut wood, oak wood, beech wood; w; 34
basidiomata.
11. Lycoperdon pratense Pers.; SHL; oak wood; w; six basidiomata.
12. Lycoperdon pyriforme Willd.; WD; chestnut; w; two basidiomata.
13. Macrolepiota excoriata (Schae.) Wasser; SHL; oak wood; c; two basidiomata.
14. Macrolepiota konradii (Huijsman ex P. D. Orton) M. M. Moser; SHL; chestnut
wood; c; three basidiomata.
15. Macrolepiota mastoidea (Fr.) Singer; SHL; oak wood; c; one basidioma.
16. Macrolepiota procera (Scop.) Singer; SHL; oak wood; w; six basidiomata.
ORDER AGARICALES, FAMILY AMANITACEAE
4 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
17. Amanita caesarea (Scop.) Pers.; ECM; oak wood; w; seven basidiomata.
18. Amanita citrina (Schae.) Pers.; ECM; chestnut wood, oak wood, beech forest;
w; 85 basidiomata.
19. Amanita dryophila Cons. & Contu; ECM; oak wood; r; two basidiomata.
20. Amanita excelsa f. spissa (Fr.) Neville & Poumarat; ECM; beech forest; c; four
basidiomata.
21. Amanita gemmata (Fr.) Bertill.; ECM; chestnut wood, beech forest; c; 32
basidiomata.
22. Amanita muscaria (L.) Lam.; ECM; chestnut wood, beech forest; c; 43 basidiomata.
23. Amanita pantherina (DC.) Krombh.; ECM; chestnut wood, oak wood, beech
forest; w; 32 basidiomata.
24. Amanita phalloides (Fr.) Link; ECM; oak wood, beech forest; w; 16 basidiomata.
25. Amanita rubescens Pers.; ECM; chestnut wood, oak wood, beech forest; w; 95
basidiomata.
26. Amanita spadicea Pers.; ECM; beech forest; r; one basidioma.
27. Amanita submembranacea (Bon) Gröger; ECM; beech forest; nc; one basidioma.
28. Amanita vaginata (Bull.) Lam.; ECM; chestnut wood, oak wood, beech forest;
c; 50 basidiomata.
ORDER AGARICALES, FAMILY CORTINARIACEAE
29. Cortinarius atrovirens Kalchbr.; ECM; oak wood; c; ve basidiomata.
30. Cortinarius bulliardii (Pers.) Fr.; ECM; oak wood; w; one basidioma.
31. Cortinarius caerulescens (Schae.) Fr.; ECM; chestnut wood, beech forest; w;
four basidiomata.
32. Cortinarius caesiopallescens Bidaud, Moënne-Locc. & Reumaux; ECM; oak wood;
*; seven basidiomata.
33. Cortinarius chromataphilus Rob. Henry; ECM; oak wood; r; 17 basidiomata.
34. Cortinarius citrinolilacinus (M. M. Moser) M. M. Moser; ECM; chestnut wood,
beech forest; c; 11 basidiomata.
35. Cortinarius claroavus Rob. Henry; ECM; oak wood; r; one basidioma.
36. Cortinarius dionysae Rob. Henry; ECM; chestnut wood; c; one basidioma.
37. Cortinarius diosmus Kühner; ECM; oak wood; c; 10 basidiomata.
38. Cortinarius helianthemorum Bidaud & Cheype; ECM; oak wood; *; 30 basidiomata.
39. Cortinarius infractus (Pers.) Fr.; ECM; oak wood; w; two basidiomata.
40. Cortinarius largus Fr.; ECM; beech forest; w; one basidioma.
41. Cortinarius melanotus Kalchbr.; ECM; chestnut wood, oak wood; c; seven
basidiomata.
42. Cortinarius olidoamethysteus Rob. Henry & Ramm; ECM; chestnut wood; *;
three basidiomata.
43. Cortinarius olidus J. E. Lange; ECM; oak wood; c; three basidiomata.
44. Cortinarius ophiopus Peck; ECM; beech forest; *; 10 basidiomata.
45. Cortinarius praestans (Cordier) Gillet; ECM; oak wood, beech forest; w; eight
basidiomata.
46. Cortinarius purpurascens Fr.; ECM; chestnut wood, beech forest; c; four basidiomata.
47. Cortinarius rigens (Pers.) Fr.; ECM; chestnut wood, oak wood; w; nine basidiomata.
48. Cortinarius rufo-olivaceus (Pers.) Fr.; ECM; chestnut wood; w; one basidioma.
49. Cortinarius scaurus (Fr.) Fr.; ECM; beech forest; r; three basidiomata.
50. Cortinarius torvus (Fr.) Fr.; ECM; beech forest; w; 10 basidiomata.
51. Cortinarius trivialis J. E. Lange; ECM; oak wood; w; 48 basidiomata.
52. Cortinarius turmalis Fr.; ECM; beech forest; w; 13 basidiomata.
53. Cortinarius variicolor (Pers.) Fr.; ECM; chestnut wood, beech forest; w; eight
basidiomata.
54. Cortinarius violaceus (L.) Gray; ECM; chestnut wood; w; one basidioma.
ORDER AGARICALES, FAMILY ENTOLOMATACEAE
55. Alboleptonia sericella (Fr.) Largent & R. G. Benedict; SHL; oak wood; *; 10
basidiomata.
56. Clitopilus cystidiatus Hauskn. & Noordel.; ECM; chestnut wood, oak wood, beech
forest; c; 47 basidiomata.
57. Clitopilus prunulus (Scop.) P. Kumm.; ECM; chestnut wood; w; 17 basidiomata.
5 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
58. Entoloma aprile (Britzelm.) Sacc.; ECM; oak wood; c; two basidiomata.
59. Entoloma bloxamii (Berk. & Broome) Sacc.; ECM; oak wood; w; ve basidiomata.
60. Entoloma cinchonense Murrill; SHL; oak wood; *; 10 basidiomata.
61. Entoloma clandestinum (Fr.) Noordel.; ECM; oak wood; r; 10 basidiomata.
62. Entoloma euchroum (Pers.) Donk; WD; chestnut wood; nc; 10 basidiomata.
63. Entoloma griseocyaneum (Fr.) P. Kumm.; SHL; oak wood; r; ve basidiomata.
64. Entoloma hirtipes (Schumach.) M. M. Moser; SHL; chestnut wood; c; six
basidiomata.
65. Entoloma lividoalbum (Kühner & Romagn.) Kubička; ECM; chestnut wood; w;
one basidioma.
66. Entoloma rhodopolium (Fr.) P. Kumm.; ECM; chestnut wood, oak wood; w; 89
basidiomata.
67. Entoloma sepium (Noulet & Dass.) Richon & Roze; ECM; oak wood; c; one
basidioma.
68. Entoloma sinuatum (Bull.) P. Kumm.; ECM; oak wood; c; 25 basidiomata.
69. Rhodocybe truncata (Schae.) Singer; ECM; beech forest; w; ve basidiomata.
ORDER AGARICALES, FAMILY HYDNANGIACEAE
70. Laccaria amethystina Cooke; ECM; chestnut wood, oak wood, beech forest; w;
119 basidiomata.
71. Laccaria bicolor (Maire) P. D. Orton; ECM; chestnut wood, beech forest; w; 42
basidiomata.
72. Laccaria laccata (Scop.) Cooke; ECM; chestnut wood, oak wood, beech forest;
w; 187 basidiomata.
ORDER AGARICALES, FAMILY HYGROPHORACEAE
73. Hygrophorus cossus (Sowerby) Fr.; ECM; chestnut wood, beech forest; w; 16
basidiomata.
74. Hygrophorus eburneus (Bull.) Fr.; ECM; oak wood; c; 12 basidiomata.
75. Hygrophorus persoonii Arnolds; ECM; oak wood; w; 20 basidiomata.
ORDER AGARICALES, FAMILY INOCYBACEAE
76. Crepidotus applanatus (Pers.) P. Kumm.; WD; oak wood; w; one basidioma.
77. Crepidotus cesatii (Rabenh.) Sacc.; WD; beech forest; w; four basidiomata.
78. Crepidotus mollis (Schae.) Staude; WD; oak wood; w; 85 basidiomata.
79. Inocybe calamistrata (Fr.) Gillet; ECM; chestnut wood; nc; six basidiomata.
80. Inocybe cincinnata (Fr.) Quél.; ECM; oak wood; nc; 25 basidiomata.
81. Inocybe geophylla (Bull.) P. Kumm.; ECM; chestnut wood; w; 10 basidiomata.
82. Inocybe glabripes Ricken; ECM; oak wood; r; six basidiomata.
83. Inocybe rimosa (Bull.) P. Kumm.; ECM; chestnut wood, oak wood; w; 14
basidiomata.
ORDER AGARICALES, FAMILY LYOPHYLLACEAE
84. Calocybe gambosa (Fr.) Donk; ECM; oak wood; w; 10 basidiomata.
85. Lyophyllum decastes (Fr.) Singer; SHL; chestnut wood; w; two basidiomata.
ORDER AGARICALES, FAMILY MARASMIACEAE
86. Marasmius bulliardii Quél.; SHL; chestnut wood, oak wood, beech forest; w; 50
basidiomata.
87. Marasmius collinus (Scop.) Singer; SHL; oak wood; w; 10 basidiomata.
88. Marasmius oreades (Bolton) Fr.; SHL; oak wood, beech forest; w; 26 basidiomata.
89. Marasmius rotula (Scop.) Fr.; SHL; beech forest; w; one basidioma.
90. Marasmius wynneae Berk. & Broome; SHL; beech forest; c; three basidiomata.
ORDER AGARICALES, FAMILY MYCENACEAE
91. Mycena alcalina (Fr.) P. Kumm.; SHL; chestnut wood; c; three basidiomata.
92. Mycena crocata (Schrad.) P. Kumm.; SHL; chestnut wood, beech forest; w; 63
basidiomata.
93. Mycena galericulata (Scop.) Gray; WD; chestnut wood; w; three basidiomata.
6 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
94. Mycena galopus (Pers.) P. Kumm.; SHL; chestnut wood, beech forest; w; 12
basidiomata.
95. Mycena haematopus (Pers.) P. Kumm.; WD; chestnut wood; w; 13 basidiomata.
96. Mycena inclinata (Fr.) Quél.; WD; chestnut wood, beech forest; w; 15 basidiomata.
97. Mycena leptocephala (Pers.) Gillet; SHL; chestnut wood, beech forest; w; ve
basidiomata.
98. Mycena pelianthina (Fr.) Quél.; SHL; beech forest; w; 93 basidiomata.
99. Mycena polygramma (Bull.) Gray; SHL; chestnut wood, beech forest; w; 18
basidiomata.
100. Mycena pura (Pers.) P. Kumm.; SHL; oak wood, beech forest; w; 29 basidiomata.
101. Mycena rosea Gramberg; SHL; chestnut wood, oak wood, beech forest; w; 28
basidiomata.
102. Mycena vitilis (Fr.) Quél.; SHL; chestnut wood, oak wood; w; 27 basidiomata.
103. Panellus stipticus (Bull.) P. Karst; WD; chestnut wood, beech forest; w; 29
basidiomata.
ORDER AGARICALES, FAMILY OMPHALOTACEAE
104. Gymnopus androsaceus (L.) Della Maggiora & Trassinelli; SHL; beech forest; w;
one basidioma.
105. Gymnopus brassicolens (Romagn.) Antonín & Noordel.; SHL; chestnut wood,
beech forest; w; 19 basidiomata.
106. Gymnopus dryophilus (Bull.) Murrill; SHL; chestnut wood, beech forest; w; 45
basidiomata.
107. Gymnopus fusipes (Bull.) Gray; SHL; oak wood; w; one basidioma.
108. Gymnopus hariolorum (Bull.) Antonín, Halling & Noordel.; SHL; beech wood;
w; one basidioma.
109. Mycetinis alliaceus (Jacq.) Earle; SHL; beech forest; w; 10 basidiomata.
110. Mycetinis scorodonius (Fr.) A. W. Wilson & Desjardin; SHL; beech forest; w; ve
basidiomata.
111. Omphalotus olearius (DC.) Singer; WD; chestnut wood; w; ve basidiomata.
112. Rhodocollybia butyracea (Bull.) Lennox; ECM; chestnut wood, oak wood, beech
forest; w; 58 basidiomata.
ORDER AGARICALES, FAMILY PHYSALACRIACEAE
113. Armillaria mellea (Vahl) P. Kumm.; P(SHL); chestnut wood, oak wood; w; 86
basidiomata.
114. Armillaria tabescens (Scop.) Emel; P(SHL); oak wood; w; 60 basidiomata.
115. Cylindrobasidium laeve (Pers.) Chamuris; WD; beech forest; c; two basidiomata.
116. Hymenopellis radicata (Relhan) R. H. Petersen; SHL(WD); chestnut wood, beech
forest; w; 30 basidiomata.
117. Xerula pudens (Pers.) Singer; SHL(WD); beech forest; w; one basidioma.
118. Psathyrella spadiceogrisea (Schae.) Maire; SHL; oak wood; w; three basidiomata.
ORDER AGARICALES, FAMILY PLEUROTACEAE
119. Pleurotus ostreatoroseus Singer; WD; chestnut wood; c; four basidiomata.
ORDER AGARICALES, FAMILY PLUTEACEAE
120. Pluteus cervinus (Schae.) P. Kumm.; WD; beech forest; c; one basidioma.
121. Pluteus romellii (Britzelm.) Sacc.; WD; oak wood; c; 12 basidiomata.
122. Pluteus salicinus (Pers.) P. Kumm.; WD; oak wood; c; one basidioma.
ORDER AGARICALES, FAMILY PSATHYRELLACEAE
123. Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. Johnson; SHL; beech forest;
w; 15 basidiomata.
124. Psathyrella candolleana (Fr.) Maire; SHL; chestnut wood, oak wood, beech forest;
w; 15 basidiomata.
ORDER AGARICALES, FAMILY SCHIZOPHYLLACEAE
125. Schizophyllum commune Fr.; WD; oak wood, beech forest; w; 12 basidiomata.
7 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
ORDER AGARICALES, FAMILY STROPHARIACEAE
126. Cyclocybe aegerita (V. Brig.) Vizzini; WD; oak wood; c; one basidioma.
127. Deconica crobula (Fr.) Romagn.; SHL; beech forest; w; one basidioma.
128. Galerina marginata (Batsch) Kühner; WD; beech forest; w; one basidioma.
129. Hebeloma cavipes Huijsman; ECM; oak wood; w; eight basidiomata.
130. Hebeloma crustuliniforme (Bull.) Quél.; ECM; chestnut wood, oak wood, beech
forest; w; 30 basidiomata.
131. Hebeloma eburneum Malençon; ECM; oak wood; c; 10 basidiomata.
132. Hebeloma fragilipes Romagn.; ECM; oak wood; c; ve basidiomata.
133. Hebeloma sinapizans (Paulet) Gillet; ECM; oak wood, beech forest; c; 12
basidiomata.
134. Hypholoma fasciculare (Huds.) P. Kumm.; WD; chestnut wood, oak wood, beech
forest; w; 88 basidiomata.
135. Hypholoma lateritium (Schae.) P. Kumm.; WD; chestnut wood, beech forest;
w; 237 basidiomata.
136. Leratiomyces squamosus (Pers.) Bridge & Spooner; SHL; beech forest; w; ve
basidiomata.
137. Stropharia aeruginosa (Curtis) Quél.; SHL; beech forest; w; three basidiomata.
ORDER AGARICALES, FAMILY TRICHOLOMATACEAE
138. Clitocybe gibba (Pers.) P. Kumm.; SHL; chestnut wood, oak wood, beech forest;
w; 10 basidiomata.
139. Clitocybe herbarum Romagn.; SHL; oak wood; *; 10 basidiomata.
140. Clitocybe nebularis (Batsch) P. Kumm.; SHL; chestnut wood, oak wood, beech
forest; w; 138 basidiomata.
141. Clitocybe odora (Bull.) P. Kumm.; SHL; chestnut wood, beech forest; w; four
basidiomata.
142. Clitocybe phaeophthalma (Pers.) Kuyper; SHL; chestnut wood; w; 20 basidiomata.
143. Cuphophyllus virgineus (Wulfen) Kovalenko; ECM; oak wood; w; nine basidiomata.
144. Hygrocybe conica (Schae.) P. Kumm.; SHL; oak wood; w; 10 basidiomata.
145. Lepista accida (Sowerby) Pat.; SHL; beech forest; w; one basidioma.
146. Lepista nuda (Bull.) Cooke; SHL; chestnut wood, oak wood; w; ve basidiomata.
147. Pogonoloma macrocephalum (Huijsman) Sánchez-García; SHL; oak wood; c;
one basidioma.
148. Resupinatus trichotis (Pers.) Singer; WD; beech forest; w; four basidiomata.
149. Tricholoma acerbum (Bull.) Quél.; ECM; oak wood; w; ve basidiomata.
150. Tricholoma album (Schae.) P. Kumm.; ECM; oak wood; w; 26 basidiomata.
151. Tricholoma atrosquamosum Sacc.; ECM; chestnut wood, oak wood, beech forest;
w; 17 basidiomata.
152. Tricholoma bresadolanum Clémençon; ECM; oak wood; w; 45 basidiomata.
153. Tricholoma columbetta (Fr.) P. Kumm.; ECM; chestnut wood, oak wood, beech
forest; c; 11 basidiomata.
154. Tricholoma portentosum (Fr.) Quél.; ECM; chestnut wood, oak wood; w; three
basidiomata.
155. Tricholoma quercetorum Contu; ECM; oak wood; w; 30 basidiomata.
156. Tricholoma saponaceum (Fr.) P. Kumm.; ECM; chestnut wood, oak wood; w; 24
basidiomata.
157. Tricholoma saponaceum var. squamosum (Cooke); ECM; oak wood; w; 20
basidiomata.
158. Tricholoma scalpturatum (Fr.) Quél.; ECM; beech forest; w; six basidiomata.
159. Tricholoma sejunctum (Sowerby) Quél.; ECM; oak wood; w; 47 basidiomata.
160. Tricholoma sulphureum (Bull.) P. Kumm.; ECM; chestnut wood; w; two basidiomata.
161. Tricholoma ustale (Fr.) P. Kumm.; ECM; beech forest; w; four basidiomata.
162. Tricholoma ustaloides Romagn.; ECM; chestnut wood, oak wood, beech forest;
w; 72 basidiomata.
ORDER AGARICALES, FAMILY TUBARIACEAE
163. Tubaria furfuracea (Pers.) Gillet; SHL; chestnut wood, beech forest; w; 25
basidiomata.
8 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
ORDER ATHELIALES, FAMILY ATHELIACEAE
164. Athelia acrospora Jülich; WD; oak wood, beech forest; c; eight basidiomata.
165. Athelia decipiens (Höhn. & Litsch.) J. Erikss.; WD; beech forest; c; one basidioma.
166. Hypochniciellum ovoideum (Jülich) Hjortstam & Ryvarden; WD; beech forest;
c; three basidiomata.
167. Leptosporomyces raunkiaeri (M. P. Christ.) Jülich; WD; beech forest; c; two
basidiomata.
ORDER AURICULARIALES, FAMILY AURICULARIACEAE
168. Auricularia auricula-judae (Bull.) J. Schröt.; WD; oak wood; w; ve basidiomata.
ORDER AURICULARIALES, FAMILY EXIDIACEAE
169. Exidia glandulosa (Bull.) Fr.; WD; oak wood, beech forest; c; 34 basidiomata.
ORDER BOLETALES, FAMILY BOLETACEAE
170. Aureoboletus gentilis (Quél.) Pouzar; ECM; chestnut wood, oak wood; w; four
basidiomata.
171. Boletus aereus Bull.; ECM; oak wood; w; 47 basidiomata.
172. Boletus aestivalis (Paulet) Fr.; ECM; oak wood, beech forest; w; 11 basidiomata.
173. Boletus edulis Bull.; ECM; chestnut wood, beech forest; w; 97 basidiomata.
174. Boletus ferrugineus Schae.; ECM; beech forest; w; four basidiomata.
175. Boletus reticulatus (Hom.) Pers.; ECM; beech forest; w; two basidiomata.
176. Boletus subtomentosus L.; ECM; oak wood; w; one basidioma.
177. Caloboletus calopus (Pers.) Vizzini; ECM; chestnut wood; w; one basidioma.
178. Chalciporus piperatus (Bull.) Bataille; ECM; beech forest; w; one basidioma.
179. Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini; ECM; chestnut
wood; w; two basidiomata.
180. Hemileccinum impolitum (Fr.) Šutara; ECM; beech forest; w; four basidiomata.
181. Hortiboletus rubellus (Krombh.) Simonini, Vizzini & Gelardi; ECM; oak wood;
w; one basidioma.
182. Imleria badia (Fr.) Vizzini; ECM; beech forest; w; two basidiomata.
183. Imperator luteocupreus (Bertéa & Estadès) Assyov, Bellanger, Bertéa, Courtec.,
G. Koller, Loizides, G. Marques, J. A. Muñoz, N. Oppicelli, D. Puddu, F. Rich. &
P.-A. Moreau; ECM; chestnut wood; w; one basidioma.
184. Imperator rhodopurpureus (Smotl.) Assyov, Bellanger, Bertéa, Courtec., G. Koller,
Loizides, G. Marques, J. A. Muñoz, N. Oppicelli, D. Puddu, F. Rich. & P.-A.
Moreau; ECM; oak wood; w; 10 basidiomata.
185. Leccinum aurantiacum (Bull.) Gray; ECM; oak wood; w; six basidiomata.
186. Leccinum duriusculum (Schulzer ex Kalchbr.) Singer; ECM; oak wood; w; 13
basidiomata.
187. Neoboletus erythropus (Pers.) C. Hahn; ECM; chestnut wood, beech forest; w;
ve basidiomata.
188. Pulchroboletus roseoalbidus (Alessio & Littini) Gelardi, Vizzini & Simonini; ECM;
oak wood; w; 10 basidiomata.
189. Suillellus dupainii (Boud.) Blanco-Dios; ECM; oak wood; w; eight basidiomata.
190. Suillellus luridus (Schae.) Murrill; ECM; beech forest; w; three basidiomata.
191. Suillellus permagnicus (Pöder) Blanco-Dios; ECM; oak wood; w; ve basidiomata.
192. Suillellus queletii (Schulzer) Vizzini, Simonini & Gelardi; ECM; oak wood; w;
17 basidiomata.
193. Xerocomellus pruinatus (Fr. & Hök) Šutara; ECM; beech forest; w; two basidiomata.
ORDER BOLETALES, FAMILY CONIOPHORACEAE
194. Coniophora puteana (Schumach.) P. Karst.; WD; beech forest; c; one basidioma.
ORDER BOLETALES, FAMILY DIPLOCYSTACEAE
195. Astraeus hygrometricus (Pers.) Morgan; ECM; beech forest; c; three basidiomata.
ORDER BOLETALES, FAMILY GOMPHIDIACEAE
196. Chroogomphus rutilus (Schae.) O. K. Mill.; ECM; chestnut wood, oak wood; c;
two basidiomata.
9 of 18© The Author(s) 2018 Published by Po lish Botanical Socie ty Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
ORDER BOLETALES, FAMILY HYGROPHOROPSIDACEAE
197. Hygrophoropsis aurantiaca (Wulfen) Maire; WD; oak wood; c; 18 basidiomata.
ORDER BOLETALES, FAMILY PAXILLACEAE
198. Paxillus involutus (Batsch) Fr.; ECM; chestnut wood, oak wood; c; two basidiomata.
ORDER BOLETALES, FAMILY SCLERODERMATACEAE
199. Scleroderma citrinum Pers.; ECM; chestnut wood; w; one basidioma.
200. Scleroderma verrucosum (Bull.) Pers.; ECM; chestnut wood; w; four basidiomata.
ORDER BOLETALES, FAMILY SUILLACEAE
201. Suillus granulatus (L.) Roussel; ECM; oak wood; w; two basidiomata.
ORDER CANTHARELLALES, FAMILY BOTRYOBASIDIACEAE
202. Botryobasidium laeve (J. Erikss.) Parmasto; WD; chestnut wood, beech forest;
c; four basidiomata.
ORDER CANTHARELLALES, FAMILY CANTHARELLACEAE
203. Cantharellus cibarius Fr.; ECM; beech forest; w; 10 basidiomata.
204. Cantharellus subpruinosus Eyssart. & Buyck; ECM; chestnut wood, oak wood;
w; 98 basidiomata.
205. Craterellus cornucopioides (L.) Pers.; ECM; chestnut wood; w; 201 basidiomata.
206. Craterellus lutescens (Fr.) Fr.; ECM; chestnut wood; w; 13 basidiomata.
ORDER CANTHARELLALES, FAMILY CERATOBASIDIACEAE
207. Scotomyces subviolaceus (Peck) Jülich; WD; beech forest; c; one basidioma.
ORDER CANTHARELLALES, FAMILY CLAVULINACEAE
208. Clavulina cinerea (Bull.) J. Schröt.; ECM; chestnut wood, beech forest; c; nine
basidiomata.
209. Clavulina coralloides (L.) J. Schröt.; ECM; chestnut wood; c; ve basidiomata.
210. Clavulina cristata (Holmsk.) J. Schröt.; ECM; chestnut wood; c; ve basidiomata.
ORDER CANTHARELLALES, FAMILY HYDNACEAE
211. Hydnum repandum L.; ECM; chestnut wood, oak wood, beech forest; w; 46
basidiomata.
212. Hydnum rufescens Pers.; ECM; chestnut wood, oak wood, beech forest; w; 65
basidiomata.
213. Sistotrema porulosum Hallenb.; WD; oak wood; c; 30 basidiomata.
ORDER CANTHARELLALES, FAMILY TULASNELLACEAE
214. Tulasnella violacea (Johan-Olsen) Juel; WD; chestnut wood, beech forest; nc;
17 basidiomata.
215. Tulasnella violea (Quél.) Bourdot & Galzin; WD; chestnut wood; nc; one basidioma.
ORDER CORTICIALES, FAMILY CORTICIACEAE
216. Corticium conne Bourdot & Galzin; WD; chestnut wood, beech forest; w; ve
basidiomata.
217. Vuilleminia comedens (Nees) Maire; WD; chestnut wood, oak wood, beech forest;
w; 34 basidiomata.
ORDER DACRYMYCETALES, FAMILY DACRYMYCETACEAE
218. Calocera cornea (Batsch) Fr.; WD; beech forest; c; eight basidiomata.
219. Calocera viscosa (Pers.) Fr.; WD; oak wood, beech forest; c; two basidiomata.
ORDER GOMPHALES, FAMILY GOMPHACEAE
220. Clavariadelphus avoimmaturus R. H. Petersen; ECM; oak wood; c; 30 basidiomata.
221. Clavariadelphus pistillaris (L.) Donk; ECM; oak wood; w; 51 basidiomata.
222. Ramaria aurea (Schae.) Quél.; ECM; chestnut wood; w; seven basidiomata.
223. Ramaria avescens (Schae.) R. H. Petersen; ECM; oak wood; w; 10 basidiomata.
10 of 18© The Author(s) 2018 Published by Polis h Botanical Societ y Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
224. Ramaria flavobrunnescens (G. F. Atk.) Corner; ECM; beech forest; w; five
basidiomata.
225. Ramaria formosa (Pers.) Quél.; ECM; chestnut wood; w; three basidiomata.
226. Ramaria pallida (Schae.) Ricken; ECM; chestnut wood; w; 10 basidiomata.
ORDER HYMENOCHAETALES, FAMILY TUBULICRINACEAE
227. Hyphodontia radula (Fr.) Langer & Vesterh.; WD; chestnut wood; c; one basidioma.
ORDER PHALLALES, FAMILY PHALLACEAE
228. Clathrus ruber P. Micheli ex Pers.; SHL; beech forest; w; one basidioma.
ORDER POLYPORALES, FAMILY FOMITOPSIDACEAE
229. Daedalea quercina (L.) Pers.; WD; beech forest; w; two basidiomata.
230. Postia caesia (Schrad.) P. Karst.; WD; chestnut wood, beech forest; w; 11
basidiomata.
231. Postia caesioava (Pat.) V. Papp; WD; oak wood; w; 15 basidiomata.
ORDER POLYPORALES, FAMILY MERULIACEAE
232. Ceriporiopsis gilvescens (Bres.) Domanski; WD; chestnut wood; c; one basidioma.
233. Ceriporiopsis mucida (Pers.) Gilb. & Ryvarden; WD; chestnut wood, beech forest;
c; three basidiomata.
234. Ceriporiopsis resinascens (Romell) Domański; WD; chestnut wood; c; one
basidioma.
235. Mutatoderma mutatum (Peck) C. E. Gómez; WD; beech forest; c; two basidiomata.
ORDER POLYPORALES, FAMILY PHANEROCHAETACEAE
236. Byssomerulius corium (Pers.) Parmasto; WD; beech forest; c; two basidiomata.
237. Irpex lacteus (Fr.) Fr.; WD; chestnut wood, beech forest; c; two basidiomata.
238. Phanerochaete laevis (Fr.) J. Erikss. & Ryvarden; WD; beech forest; c; three
basidiomata.
239. Phanerochaete velutina (DC.) P. Karst.; WD; chestnut wood, beech forest; c; ve
basidiomata.
240. Phlebia bispora (Stalpers) Nakasone; WD; oak wood; c; ve basidiomata.
241. Phlebiopsis ravenelii (Cooke) Hjortstam; WD; chestnut wood, beech forest; c;
four basidiomata.
242. Steccherinum bourdotii Saliba & A. David; WD; oak wood; c; three basidiomata,
243. Steccherinum ochraceum (Pers. ex J. F. Gmel.) Gray; WD; chestnut wood, oak
wood; c; 11 basidiomata.
ORDER POLYPORALES, FAMILY POLYPORACEAE
244. Cerioporus mollis (Sommerf.) Zmitr. & Kovalenko; WD; chestnut wood, beech
forest; c; ve basidiomata.
245. Polyporus varius (Pers.) Fr.; WD; beech forest; c; seven basidiomata.
246. Trametes hirsuta (Wulfen) Lloyd; WD; chestnut wood; w; one basidioma.
247. Trametes versicolor (L.) Lloyd; WD; chestnut wood, beech forest; w; two
basidiomata.
ORDER RUSSULALES, FAMILY ALBATRELLACEAE
248. Scutiger pes-caprae (Pers.) Bondartsev & Singer; ECM; beech forest; c; three
basidiomata.
ORDER RUSSULALES, FAMILY AURISCALPIACEAE
249. Lentinellus micheneri (Berk. & M. A. Curtis) Pegler; WD; beech forest; c; 10
basidiomata.
ORDER RUSSULALES, FAMILY PENIOPHORACEAE
250. Peniophora cinerea (Pers.) Cooke; WD; beech forest; c; one basidioma.
251. Peniophora incarnata (Pers.) P. Karst.; WD; beech forest; c; one basidioma.
252. Peniophora lycii (Pers.) Höhn. & Litsch.; WD; beech forest; c; one basidioma.
253. Peniophorella pubera (Fr.) P. Karst.; WD; beech forest; c; one basidioma.
11 of 18© The Author(s) 2018 Published by Polish Bota nical Society Act a Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
ORDER RUSSULALES, FAMILY RUSSULACEAE
254. Lactarius acerrimus Britzelm.; ECM; beech forest; w; ve basidiomata.
255. Lactarius atlanticus Bon; ECM; beech forest; w; three basidiomata.
256. Lactarius blennius (Fr.) Fr.; ECM; beech forest; w; 14 basidiomata.
257. Lactarius chrysorrheus Fr.; ECM; chestnut wood, oak wood, beech forest; w; 39
basidiomata.
258. Lactarius controversus Pers.; ECM; oak wood; w; 55 basidiomata.
259. Lactarius decipiens Quél.; ECM; beech forest; w; seven basidiomata.
260. Lactarius fraxineus Romagn.; ECM; oak wood; r; two basidiomata.
261. Lactarius luridus (Pers.) Gray; ECM; oak wood; nc; 10 basidiomata.
262. Lactarius piperatus (L.) Pers.; ECM; oak wood; c; 17 basidiomata.
263. Lactarius quietus (Fr.) Fr.; ECM; chestnut wood, beech forest; w; nine basidiomata.
264. Lactarius seriuus (DC.) Fr.; ECM; chestnut wood; w; six basidiomata.
265. Lactarius uvidus (Fr.) Fr.; ECM; oak wood; c; 12 basidiomata.
266. Lactarius vellereus (Fr.) Fr.; ECM; oak wood, beech forest; w; 26 basidiomata.
267. Lactarius volemus (Fr.) Fr.; ECM; chestnut wood, oak wood, beech forest; w; 15
basidiomata.
268. Lactarius zonarius (Bull.) Fr.; ECM; oak wood; w; 19 basidiomata.
269. Russula acrifolia Romagn.; ECM; chestnut wood, oak wood; w; four basidiomata.
270. Russula anatina Romagn.; ECM; oak wood; w; 10 basidiomata.
271. Russula atropurpurea (Krombh.) Britzelm.; ECM; chestnut wood; c; one basidioma.
272. Russula aurea Pers.; ECM; oak wood; w; three basidiomata.
273. Russula aurora Krombh.; ECM; beech forest; c; 11 basidiomata.
274. Russula chloroides (Krombh.) Bres.; ECM; beech forest; w; one basidioma.
275. Russula cuprea J. E. Lange; ECM; oak wood; c; one basidioma.
276. Russula cyanoxantha (Schae.) Fr.; ECM; chestnut wood, oak wood, beech forest;
w; 92 basidiomata.
277. Russula emetica (Schae.) Pers.; ECM; oak wood; c; three basidiomata.
278. Russula foetens Pers.; ECM; chestnut wood, oak wood, beech forest; w; 12
basidiomata.
279. Russula fragilis Fr.; ECM; chestnut wood, oak wood; w; four basidiomata.
280. Russula heterophylla (Fr.) Fr.; ECM; oak wood, beech forest; w; 10 basidiomata.
281. Russula laeta Jul. Schä.; ECM; oak wood; r; two basidiomata.
282. Russula lilacea Quél.; ECM; beech forest; nc; ve basidiomata.
283. Russula lutensis Romagn.; ECM; oak wood; r; three basidiomata.
284. Russula luteotacta Rea; ECM; oak wood; c; seven basidiomata.
285. Russula maculata Quél.; ECM; beech forest; c; one basidioma.
286. Russula nigricans Fr.; ECM; chestnut wood, beech forest; w; 19 basidiomata.
287. Russula nobilis Velen.; ECM; beech forest; w; 15 basidiomata.
288. Russula odorata Romagn.; ECM; oak wood; c; 25 basidiomata.
289. Russula parazurea Jul. Schä.; ECM; beech forest; w; one basidioma.
290. Russula risigallina (Batsch) Sacc.; ECM; chestnut wood; w; three basidiomata.
291. Russula romellii Maire; ECM; oak wood; w; ve basidiomata.
292. Russula rubroalba (Singer) Romagn.; ECM; oak wood; w; two basidiomata.
293. Russula vesca Fr.; ECM; chestnut wood, oak wood; w; eight basidiomata.
294. Russula zvarae Velen.; ECM; oak wood; w; ve basidiomata.
ORDER RUSSULALES, FAMILY STEREACEAE
295. Stereum hirsutum (Willd.) Pers.; WD; chestnut wood, oak wood, beech forest;
w; 90 basidiomata.
296. Stereum ochraceoavum (Schwein.) Sacc.; WD; chestnut wood, oak wood, beech
forest; w; 52 basidiomata.
ORDER THELEPHORALES, FAMILY THELEPHORACEAE
297. elephora terrestris Ehrh.; ECM; chestnut wood; c; ve basidiomata.
ORDER TRECHISPORALES, FAMILY HYDNODONTACEAE
298. Trechispora nivea (Pers.) K. H. Larss.; WD; oak wood; c; three basidiomata.
ORDER TREMELLALES, FAMILY TREMELLACEAE
12 of 18© The Author(s) 2018 Published by Polish Bo tanical Society Ac ta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
299. Tremella foliacea Pers.; P; beech forest; w; four basidiomata.
300. Tremella mesenterica Retz.; P; oak wood, beech forest; w; four basidiomata.
Composition of communities
Based on the collected species, the macrofungal communities in the three study sites
were found to be composed of a total of 300 species (seven Ascomycota and 293 Basid-
iomycota) and 5,065 sporomata. Specically, 124, 150, and 148 species and 1,364, 2,061,
and 1,640 sporomata were collected and identied in each site. Among Ascomycota, the
collected species belong to Pezizales (with three species), followed by Helotiales (two
sp.), and Xylariales (two sp.) (Fig. 2). Six dierent families (viz. Helotiaceae, Leotiaceae,
Pezizaceae, Pyronemataceae, Diatrypaceae, and Xylariaceae; Fig. 3) and six genera (viz.
Bisporella, Diatrype, Leotia, Peziza, Tarzetta, and Xylaria) were identied (Fig. 4).
Within Basidiomycota, we identied 15 dierent orders of which Agaricales was
the most represented in number of species, followed by Russulales, Boletales, and
Polyporales (Fig. 2).
We also recorded 53 families and 111 genera. e most frequent families (in number
of species) were Russulaceae, Tricholomataceae, Boletaceae, Mycenaceae, and Cortina-
riaceae (Fig. 3). At the genus level, Russula, Lactarius, Cortinarius, Tricholoma, Mycena,
and Amanita were the most represented (Fig. 4). With respect to sporomata collected,
the most abundant species were Hypholoma lateritium (with 237 sporomata), Craterel-
lus cornucopioides (201), Laccaria laccata (187), Clitocybe nebularis (138), Laccaria
bicolor (119), Boletus edulis (97), Cantharellus subpruinosus (98), Amanita rubescens
(95), Mycena pelianthina (93), Russula cyanoxantha (92), Entoloma rhodopolium (89),
Hypholoma fasciculare (88), Amanita dryophila (85), and Crepidotus mollis (85).
Species repartition into functional groups showed that the ectomycorrhizal fungi
(ECM) had the highest number of species (173), followed by the wood decaying
species (WD) (69 sp.) and the soil decaying fungi (SHL) (54 sp.). Only four parasites
species were recorded (viz. Armillaria mellea, A. tabescens, Tremella foliacea, and T.
mesenterica). Overall, despite the dierences in the vegetation type, the three sites also
showed a similar community composition and trophic ratio.
According to the available data on the geographic distribution of macrofungal species
in Italy [1517,40], we found a signicant number of widespread (190) and common
(83) species. However, it is worth noting that among the collected species, a relevant
number are uncommon (10) or rare (10) species and seven species (viz. Alboleptonia
0
10
20
30
40
50
60
70
80
90
100
Helotiales
Pezizales
Xylariales
Agaricales
Atheliales
Auriculariales
Boletales
Cantharellales
Corticiales
Dacrymycetales
Gomphales
Hymenochaetales
Phallales
Polyporales
Russulales
Thelephorales
Trechisporales
Tremellales
Ascomycota
Basidiomycota
Site 1
Site 2
Site 3
Fig. 2 Species repartition into orders for each study site.
13 of 18© The Author(s) 2018 Published by Polish B otanical Society Ac ta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
sericella, Clitocybe herbarum, Cortinarius caesiopallescens, C. helianthemorum, C.
olidoamethysteus, C. ophiopus, Entoloma cinchonense; see Fig. 6) were found for the
rst time.
Discussion
e results obtained in this study contribute to improve the knowledge on macrofun-
gal diversity in broadleaf Mediterranean forests. e relevant number of species and
abundance of sporomata recorded indicate that these types of forests are favorable
habitats for a wide range of macrofungi. In accordance with previous studies [41,42],
we can conrm the high macrofungal species richness of Liguria in the Italian territory
[15,17,40].
0 5 10 15 20 25 30
Xylariaceae
Pezizaceae
Leotiaceae
Helotiaceae
Diatrypaceae
Tulasnellaceae
Tubariaceae
Tricholomataceae
Tremellaceae
Strophariaceae
Stereaceae
Sclerodermataceae
Schizophyllaceae
Russulaceae
Psathyrellaceae
Polyporaceae
Pluteaceae
Physalacriaceae
Phanerochaetaceae
Peniophoraceae
Paxillaceae
Omphalotaceae
Mycenaceae
Meruliaceae
Marasmiaceae
Lyophyllaceae
Inocybaceae
Hygrophoraceae
Hydnangiaceae
Hydnaceae
Gomphidiaceae
Gomphaceae
Fomitopsidaceae
Entolomataceae
Dacrymycetaceae
Cortinariaceae
Corticiaceae
Clavulinaceae
Cantharellaceae
Botryobasidiaceae
Boletaceae
Atheliaceae
Amanitaceae
Agaricaceae
Ascomycota
Basidiomycota
Site 3
Site 2
Site 1
Fig. 3 Species repartition into families for each study site. Families of Basidiomycota with only one species were excluded
from the graph.
14 of 18© The Author(s) 2018 Published by Polish B otanical Societ y Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
0 5 10 15 20 25
Xylaria
Tarzetta
Peziza
Leotia
Diatrype
Bisporella
Vuilleminia
Tulasnella
Tremella
Trametes
Steccherinum
Rhodocollybia
Psathyrella
Phanerochaete
Peniophora
Lepista
Crepidotus
Calocera
Athelia
Armillaria
Suillellus
Postia
Pleurotus
Macrolepiota
Clitopilus
Clavulina
Ceriporiopsis
Cantharellus
Ramaria
Hypholoma
Hygrophorus
Stereum
Inocybe
Hydnum
Laccaria
Gymnopus
Marasmius
Hebeloma
Boletus
Clitocybe
Exidia
Entoloma
Lactarius
Tricholoma
Mycena
Amanita
Lycoperdon
Cortinarius
Russula
Ascomycota
Basidiomycota
Site 3
Site 2
Site 1
Fig. 4 Species repartition into genera for each study site. Genera of Basidiomycota with only one and two species were
excluded from the graph.
60
80
100
120
Site 1
Site 2
Site 3
0
20
40
ECM
P
SHL
WD
Fig. 5 Repartition into trophic group.
15 of 18© The Author(s) 2018 Publi shed by Polish Botanical S ociety A cta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
e presence of new records and rare species add to the data on their geographic
distribution. Specically, to the best of our knowledge, the aforementioned (see “Results
section) seven species have not been listed in the available checklists of the Italian
macrofungi [15,17,40,41,43]. Worldwide check-listing studies stated that Alboleptonia
sericella has been recorded in South America (e.g., in Brazil [44] and Guyana [45]), in
the USA (in California [46]), and in Europe (e.g., in Germany [47] and Poland [48]).
Information available on the geographical distribution of Clitocybe herbarum found
in Cyprus island (Mediterranean basin) is limited [49]. Cortinarius caesiopallescens
was collected in Europe (in France) and previous studies highlight the rarity of this
species [2226,50]. Similarly, C. helianthemorum, C. olidoamethysteus, and C. ophiopus
were collected from France [5052]. Finally, the geographical distribution of Entoloma
Fig. 6 Images of some recorded macrofungi by F. Boccardo. (A) Deconica crobula; (B) Entoloma cinchonense; (C) Clitocybe
herbarum; (D) Cortinarius ophiopus; (E) Cortinarius olidoamethysteus; (F) Cortinarius helianthemorum.
16 of 18© The Author(s) 2018 Pub lished by Polish Botanica l Society Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
cinchonense has been reported from Korea [53]. e few studies available conrmed
the rare distribution and number of collections of these seven species, as well as the
lack of published data/records from Italy.
Further investigations are needed to dene an accurate Italian checklist and to
enrich our knowledge on macrofungal biodiversity in the Mediterranean forests.
Acknowledgments
is study was carried out in the framework of a PhD project in Applied Botany to the Agriculture
and the Environment Doctoral School, University of Genoa, Italy. Two anonymous reviewers
are also acknowledged for useful comments and observations.
References
1. Mueller GG, Schmit JP. Fungal biodiversity: what do we know? What can we predict?
Biodivers Conserv. 2007;16:1–5. https://doi.org/10.1007/s10531-006-9117-7
2. Heilmann-Clausen J, Barron ES, Boddy L, Dahlberg A, Grith GW, Nordén J, et
al. A fungal perspective on conservation biology. Conserv Biol. 2014;29(1):61–68.
https://doi.org/10.1111/cobi.12388
3. Hawksworth DL. e magnitude of fungal diversity: the 1.5 million species estimate
revised. Mycol Res. 2001;105:1422–1432. https://doi.org/10.1017/S0953756201004725
4. Blackwell M. e fungi: 1, 2, 3, … 5.1 million species? Am J Bot. 2011;98:426–438.
https://doi.org/10.3732/ajb.1000298
5. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al.
Global diversity and geography of soil fungi. Science. 2014;342(6213):1256688.
https://doi.org/10.1126/science.1256688
6. Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi. 10th ed.
Wallingford: CAB International; 2008.
7. Arnolds E. Ecology and coenology of macrofungi in grasslands and moist heathlands in
Drenthe, the Netherlands. Part 1. Introduction and synecology. Vaduz: J. Cramer in der
A. R. Grantner Verlag Kommanditgesellscha; 1981. (Bibliotheca Mycologica; vol 83).
8. Arnolds E. Ecology and coenology of macrofungi in grasslands and moist heathlands in
Drenthe, e Netherlands. Part 2. Autoecology. Part 3. Taxonomy. Vaduz: J. Cramer in
der A. R. Grantner Verlag Kommanditgesellscha; 1982. (Bibliotheca Mycologica; vol
90).
9. Villeneuve N, Grandtner MM, Fortin JA. Frequency and diversity of ectomycorrhizal
and saprophytic macrofungi in the Laurentide Mountains of Quebec. Can J Bot.
1989;67:2616–2629. https://doi.org/10.1139/b89-338
10. Ambrosio E, Mariotti MG, Zotti M, Cecchi G, Di Piazza S, Feest A. Measuring
macrofungal biodiversity quality using two dierent survey approaches:
a case study in broadleaf Mediterranean forests. Ecol Indic. 2018;85:1210–1230.
https://doi.org/10.1016/j.ecolind.2017.11.054
11. Egli S. Mycorrhizal mushroom diversity and productivity – an indicator of forest health?
Ann For Sci. 2011;68:81–88. https://doi.org/10.1007/s13595-010-0009-3
12. Stursova M, Snajdr J, Cajthaml T, Barta J, Santruckova H, Baldrian P. When the forest
dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J.
2014;8:1920–1931. https://doi.org/10.1038/ismej.2014.37
13. Bünteng U, Kauserud H, Egli S. Linking climate variability to mushroom productivity
and phenology. Front Ecol Environ. 2012;10(1):14–19. https://doi.org/10.1890/110064
14. Boddy L, Bunteng U, Egli S, Gange AC, Heegaard E, Kirk PM, et al.
Climate variation eects on fungal fruiting. Fungal Ecol. 2014;10:20–33.
https://doi.org/10.1016/j.funeco.2013.10.006
15. Onofri S, Bernicchia A, Filipello V, Padovan F, Perini C, Ripa C, et al. Checklist of Italian
fungi. Sassari: Carlo Delno Editore; 2005.
16. Zotti M, Orsino F. e check-list of Ligurian macrofungi. Flora Mediterranea.
2001;11:115–294.
17 of 18© The Author(s) 2018 Publis hed by Polish Botanical S ociety Ac ta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
17. Venturella G, Altobelli E, Bernicchia A, Di Piazza S, Donnini D, Gargano ML, et al.
Fungal biodiversity and in situ conservation in Italy. Plant Biosyst. 2011;145(4):950–957.
https://doi.org/10.1080/11263504.2011.633115
18. Mariotti MG. Atlante degli habitat. Natura 2000 in Liguria
[Internet]. 2009 [cited 2018 Oct 22]. Available from:
http://www.ambienteinliguria.it/lirgw/eco3/ep/home.do?displayPage=/ep/
contentServiziView.do&pageTypeId=36525&channelId=-50243&contentId=331183&
contentType=DTS_PUBBLICAZIONI&programId.
19. Rivas-Martinez S. Bioclimatic and biogeographic maps of Europe [Internet]. 2008 [cited
2018 Oct 22]. Available from: http://www.globalbioclimatics.org/form/maps.htm
20. climate-data.org [Internet] 2018 [cited 2018 Jun 16]. Available from:
https://it.climate-data.org/
21. Feest A. Establishing baseline indices for the quality of the biodiversity of restored
habitats using a standardized sampling process. Restor Ecol. 2006;14(1):112–122.
https://doi.org/10.1111/j.1526-100X.2006.00112.x
22. Bidaud A, Moënne-Loccoz P, Reumaux P, Henry R. Atlas des Cortinaires (pars I–IX).
Marlioz: Editions Fédération mycologique Dauphiné-Savoie; 1991–1999.
23. Bidaud A, Carteret X, Eyssartier G, Moënne-Loccoz P, Reumaux P. Atlas des Cortinaires
(pars X–XIV). Marlioz: Editions Fédération mycologique Dauphiné-Savoie; 2000–2004.
24. Bidaud A, Moënne-Loccoz P, Carteret X, Reumaux P, Eyssartier G. Atlas des Cortinaires
(pars XV–XVII). Marlioz: Editions Fédération mycologique Dauphiné-Savoie; 2005–
2008.
25. Bidaud A, Moënne-Loccoz P, Reumaux P, Carteret X. Atlas des Cortinaires (pars XVIII–
XIX). Marlioz: Editions Fédération mycologique Dauphiné-Savoie; 2009–2010.
26. Bidaud A, Carteret X, Reumaux P, Moënne-Loccoz P. Atlas des Cortinaires (pars XX).
Marlioz: Editions Fédération mycologique Dauphiné-Savoie; 2012.
27. Sarnari M. Monograa illustrata del genere Russula in Europa. Tomo primo. Trento: A.
M. B. Fondazione Centro Studi Micologici; 1998.
28. Sarnari M. Monograa illustrata del genere Russula in Europa. Tomo secondo. Trento: A.
M. B. Fondazione Centro Studi Micologici; 2005.
29. Basso MT. Lactarius Pers. Alassio: Libreria Mycoora; 1999. (Fungi Europaei; vol 7).
30. Robich G. Mycena d’Europa. Trento: Associazione Micologica Bresadola; 2003.
31. Neville P, Poumarat S. Amanitae. Amanita, Limacella and To r r e n d i a . Alassio: Edizione
Candusso; 2004. (Fungi Europaei; vol 9).
32. Muñoz AJ. Boletus s. l. Alassio: Edizione Candusso; 2005. (Fungi Europaei; vol 2).
33. Antonín V, Noordeloos ME. A monograph of marasmioid and collybioid fungi in
Europe. Eching: IHW-Verlag; 2010.
34. Bernicchia AR, Gorjon SP. Corticiaceae s. l. Alassio: Edizioni Candusso; 2010. (Fungi
Europaei; vol 12).
35. Hibbett DS, Binder M, Bischo JF, Blackwell M, Cannon PF, Eriksson OE, et al.
A higher-level phylogenetic classication of the Fungi. Mycol Res. 2007;111:509–547.
https://doi.org/10.1016/j.mycres.2007.03.004
36. Index Fungorum. Authors of fungal names [Internet]. 2018 [cited 2018 Jun 16]. Available
from: http://www.indexfungorum.org/authorsoungalnames.htm
37. CBS-KNAW Collections [Internet]. 2018 [cited 2018 Jun 16]. Available from:
http://www.westerdijkinstitute.nl/Collections/DefaultInfo.aspx?Page=Home
38. MycoBank [Internet]. 2018 [cited 2018 Jun 16]. Available from:
http://www.mycobank.org/
39. Tedersoo L, May TW, Smith M. Ectomycorrhizal lifestyle in fungi: global diversity,
distribution and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–263.
https://doi.org/10.1007/s00572-009-0274-x
40. Boccardo F, Traverso M, Vizzini A, Zotti M. Guida ai funghi d’Italia. Bologna: Zanichelli
Editore; 2008.
41. Zotti M, Vizzini A, Traverso M, Boccardo F, Pavarino M, Mariotti M. e macrofungal
checklist of Liguria (Italy): current survey status. Mycotaxon. 2008;105:167–170.
42. Ambrosio E, Zotti M. Mycobiota of three Boletus edulis (and allied species) productive
sites. Sydowia. 2015;67:197–216.
18 of 18© The Author(s) 2018 Pub lished by Polish Botanic al Society Acta Mycol 53(2):1109
Ambrosio et al . / Macrofungi in Medite rranean forests
43. Saitta A, Bernicchia A, Gorjón SP, Altobelli E, Granito VM, Losi C, et al.
Biodiversity of wood-decay fungi in Italy. Plant Biosyst. 2011;145(4):958–968.
https://doi.org/10.1080/11263504.2011.633114
44. Coimbra VRM. Checklist of Central and South American Agaricales
(Basidiomycota) I: Entolomataceae. Mycosphere. 2014;5(3):475–487.
https://doi.org/10.5943/mycosphere/5/3/10
45. Henkel TW, Aime MC, Largent DL, Baroni TJ. e Entolomataceae of the Pakaraima
Mountains of Guyana 5: new species of Alboleptonia. Mycotaxon. 2010;114:115–126.
https://doi.org/10.5248/114.115
46. Largent DL, Bergemann SE. Pouzarella alissae, a new species from
northwestern California, United States. Mycotaxon. 2015;130:1153–1164.
https://doi.org/10.5248/130.1153
47. Karich A, Kellner H, Schmidt M, Ullrich R. Ein bemerkenswertes Mykotop im Zittauer
Gebirge mit Microglossum rufescens als Erstnachweis für Deutschland. Boletus.
2015;36(2):151–163.
48. Noordeloos ME. Strophariaceae s. l. Alassio: Edizioni Candusso; 2011. (Fungi Europaei;
vol 13).
49. Loizides M. Macromycetes within Cistaceae-dominated ecosystems in Cyprus.
Mycotaxon. 2016;131:1–33.
50. Carteret X. Cortinaires de France. Fungi non Delineati 62. Alassio: Edizione Candusso;
2002.
51. Cheype JL. Contribution à la connaissance des champignons de la haute vallée de
l’Arve. 7e note: espèces intéressantes des glariers et terrains vagues de lArve. Bulletin
Mycologique et Botanique Dauphiné-Savoie. 2014;214:11–27.
52. Henry R, Ramm R. Cortinaires nouveaux ou critiques de la section des Phlegmacia.
Bulletin Trimestriel de la Fédération Mycologique Dauphiné-Savoie. 1989;29(115):7–12.
53. Cho DH. Notes on the Korean higher fungi (XVII). Plant Resources. 2002;5(1):51–58.
... Within the vastity of the fungal kingdom, a convenient opportunity to study and give a glimpse into their geographic distribution and their organization within hosting habitats comes from territorial census and checklist production of macrofungi [3][4][5]. Nowadays, fungal checklists are used to assess biological diversity in a specific geographic area [6,7], to assess the ecological relationship between fungi and plant communities [8][9][10]; additionally, checklists are helpful means to categorize fungal taxa as bioindicator species, providing helpful information in light of macroecological effects due to territorial management policies [11]. For this reason, macromycetes census, despite representing one of the oldest methods in mycology, remains an actual and representative practice to assess the presence of a reproducing population of fungi in a specified environment [1,5,12]. ...
Article
Full-text available
The checklist serves as an informative method for evaluating the diversity, geography, and ecology of established and reproducing macrofungi. Additionally, considering macrofungi as bioindicator species, their census should be incorporated into efforts to monitor the state of health of ecosystems and directly applied to conservation policies. Between 2019 and 2023, a census of macrofungal species was conducted in Taburno-Camposauro Regional Park (Campania, Italy) across nine distinct habitats. A total of 453 fungal taxa were identified, including several new records for the Campania region. The fungal diversity exhibited significant variations based on the dominant plant species in each habitat. Fagacean tree species and Carpinus spp. shared similar fungal communities. Equally, coniferous tree species displayed a comparable fungal composition. In Abies alba and mixed broad-leaved forests, low levels of ectomycorrhizal taxa were observed alongside a concurrent increase in saprotrophs, indicating a disturbed habitat and a reduction in the Gadgil effect. Notably, lower fungal diversity was documented in the grassland habitat, suggesting the potential implications of wildlife imbalance and excessive grazing. The provided checklist constitutes a valuable resource for local management authorities, providing insights to formulate specific management policies.
... The DNA-based phylogenetic analysis conducted by He and Yang (2021) provided support for the taxonomic placement of these species within the family Hygrophoraceae Lotsy, forming a lineage that clustered with the genera Cuphophyllus Members of Spodocybe are primarily characterized by their small clitocyboid to omphalinoid basidiomes, grey to grey-brown pileus and stipes, white to whitish lamellae, smooth inamyloid basidiospores, absence of pleurocystidia and cheilocystidia, presence of clamp connections, and occurrence on humus or litter of broadleaves and needles (He & Yang 2021). The genus has been recorded in temperate and subtropical regions of the Northern Hemisphere (Bigelow 1982;Wei & Yao 2015;Ambrosio et al. 2018;Laessøe & Petersen 2019;He & Yang 2021;Vizzini et al. 2021). ...
Article
Full-text available
Spodocybe is a recently established genus with many potential species yet to be discovered. The present study reports a new species of Spodocybe collected from subtropical China, whose delimitation is supported by both morphological and phylogenetic evidence. The species is characterized by its small umbilicate pileus with a greyish brown, finely felty surface, white decurrent lamellae, finely fibrillose stipe concolorous with the pileal surface, and elongate to cylindrical basidiospores measuring 6.0-9.0 × 3.0-4.5 μm. In addition, a worldwide key to the known Spodocybe species is provided.
Article
Full-text available
An updated account of Fagales-inhabiting Italian Ascomycota and mycogeography, with additions to Pezizomycotina. Abstract Studies of plant-associated Ascomycota are topical, as they have varied life modes depending on their hosts in different ecosystems. In Italy, Fagales are economically and ecologically important plants, especially in the Alps and Apennine mountain ranges. Fagales species host numerous ascomycetous species, comprising endophytes, saprobes, or pathogens. We retrieved data from 308 publications from 1873 to 2021 and listed 776 Ascomycota on Fagales in Italy. Among these, 696 were identified at the species level and 80 at the genus level. Documented taxa belong to Pezizomycotina (746), Saccharomycotina (2), Taphrinomycotina (5), and Ascomycota genera incertae sedis (23). Sordariomycetes are dominant (34%), followed by Dothideomycetes (24%), Lecanoromycetes (16%), and Leotiomycetes (11%). Distribution maps were provided for the occurrence of Fagales trees and Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, and Sordariomycetes taxa. Lichenized taxa were excluded from the mapping. We provided additions to Valsariaceae (Valsaria rudis) in Dothideomycetes, Coryneaceae (Coryneum modonium), Melanconiellaceae (Melanconiella flavovirens and M. meridionalis), and Woswasiaceae (Woswasia atropurpurea) in Sordariomycetes. These taxa represent a novel host record, a provincial record, and four regional records in Italy. Species boundaries were defined using polyphasic approaches. In addition, taxonomic notes were provided for each reported class, including incertae sedis genera. The study provides information on the taxonomy, hosts, and distribution of Ascomycota in Italy to encourage further research related to important plant species. Keywords – checklist – host-fungal distribution – morphology – phylogeny – taxonomy
Article
Gymnopus fusipes (syn. Collybia fusipes; syn. Agaricus fusipes) is an agaricomycete fungus known to cause root rot on a number of economically important tree species, including oak, where it has been linked to the development of chronic oak decline. Due to lack of correlation between above‐ground decline symptoms and G. fusipes infection, its presence can often go undiagnosed until mortality. Although G. fusipes was first described over 200 years ago, there is still a paucity of information on the biology and ecology of this species, which represents a barrier to understanding its impacts on tree health. The aim of this review was to synthesize existing knowledge on the biology, ecology, host range and host interactions of G. fusipes. Using a systematic search, five online databases were used to obtain published literature resulting from the search terms ‘Gymnopus fusipes’, ‘Collybia fusipes’ and ‘Agaricus fusipes’. After a strict filtering process, the papers were examined for data pertaining to the biochemistry, distribution, ecology, genomic information, host range, infection biology, morphology and phylogeny of the species. The results reveal that there is a large amount of ambiguous and sometimes spurious citation of G. fusipes in the literature. However, it can be confirmed that G. fusipes is a facultative saproparasite, found in several countries, mainly in Europe, and is associated with several socioeconomically important host species, including oak, chestnut, and fir. Gymnopus fusipes has repeatedly been investigated with regard to oak decline in Europe, where it is believed to play a crucial role in the early stage of decline development. Key knowledge gaps highlighted in this review include a lack of information on the basic biology of the species, including its life cycle, which is crucial to fully understanding G. fusipes infection and epidemiology. Further work is needed to assess G. fusipes distribution, phylogeny and host range through molecular identification. There is also a need to characterize the pathogen–host interaction at a molecular level, with identification of active genes and therefore the mechanisms of infection. A combination of culture‐based and molecular techniques should be utilized in order to close these key knowledge gaps.
Article
Full-text available
An inventory of macromycetes associated with Cistaceae plants, including Cistus, Helianthemum, Tuberaria and Fumana species in Cyprus is presented, following a ten-year survey between 2007 and 2016. One-hundred-and-twenty-seven taxa are identified, sixty-five of which are reported for the first time from Cyprus. Of these, some recently described or rarely reported species are noteworthy, such as Agaricus iesu-et-marthae, Astraeus telleriae, Fomitiporia rosmarini, Gymnopus bisporus, Lepiota farinolens, Lepiota locquinii, Ombrophila rivulorum, Peziza muscicola, Pholiota gallica, Tremella dactylobasidia and Xeromphalina cornui. The taxonomical problems associated with a number of insufficiently clarified taxa, such as Clitocybe font-queri, Cortinarius caligatus, Leccinellum corsicum, Lyophyllum fumosum, Peziza moseri, Peziza subviolacea, Plectania zugazae and Terfezia aphroditis are discussed, and the role of Cistus communities in Mediterranean ecosystems is evaluated, particularly in view of accelerated climate changes. Selected imagery and notes about the fruiting season, host-plant, altitude and estimated abundance are provided.
Article
Full-text available
Pouzarella alissae sp. nov. is known only from north coastal California. It is characterized by the evanescent silvery-white layer of fibrils and squamules initially covering the pileus and stipe surface, the dark greyish brown to dark brown innately fibrillose pileus and stipe, a pileipellis of entangled hyphae with cylindro-clavate terminal cells, a suprapellis with cytoplasmic pigments, a subpellis with encrusted pigments, heterogeneous lamellar edges, lageniform to rostrate-ventricose leptocystidia, cheilocystidia and pleurocystidia, abundant aborted basidia, and basidiospores averaging
Article
Full-text available
Here we report on a park meadow in the Zittau Mountains with a remarkable amount of rare praticolous fungi, notable is the first record of Microglossum rufescens (GRÉLET) BON for Germany and of Clavaria amoenoides CORNER, K. S. THIND & ANAND for Saxony. Selected species are illustrated macro-and microscopically. Critical species have been investigated with molecular biological methods and obtained ITS and 28S rRNA gene sequences were submitted to GenBank (NCBI). A phylogenetic tree was constructed using selected sequences.
Article
Full-text available
Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. Copyright © 2014, American Association for the Advancement of Science.
Article
Full-text available
Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem‐based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi, their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation: as providers of habitats and processes important for other organisms; as indicators of desired or undesired trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links between human societies and the natural world because of their value as food, medicine, and biotechnological tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate the crucial role of fungi in nature. Una Perspectiva Micótica de la Biología de la Conservación
Article
Full-text available
A literature-based checklist of Entolomataceae species (Agaricales, Basidiomycota) occurring in Central and South Americas is provided. In total, 271 species belonging to 13 genera are reported, representing roughly 18% of the known taxa worldwide. Here, Brazil (107 spp.) and Argentina (80 spp.) were the most representative countries. This list does not reflect the real diversity of Entolomataceae in Neotropics but covers only our limited and inconclusive knowledge. Introduction Entolomataceae Kotl. & Pouzar (Agaricales, Basidiomycota) is a very rich family which includes more than 1,500 species distributed worldwide and occurring in almost every kinds of vegetation and soil (Noordeloos 1987, Co-David 2009, Noordeloos & Gates 2012). Most of its members are saprophytic, but few ectomycorrhizal species are known (Antibus et al. 1981, Noordeloos 1984, Agerer & Waller 1993). This family has been subject of several taxonomic studies around the world, mainly: Africa (Eyssartier et al. are noteworthy. Despite of these contributions, some of the Entolomataceae species occurring in these continents are recorded on Agaricales or macrofungi regional monographs or checklists, most with limited availability. The aim of this work is provide a complete literature-based checklist of the Entolomataceae species recorded to Central and South America, evidencing the current panorama of taxonomic knowledge of these fungi. Mycosphere 5 (3): 475-487 (2014) ISSN 2077 7019
Article
Macrofungi represent one of the most difficult taxonomic groups of organisms to study and monitoring the diversity over time and space often requires a high field sampling effort. Two different monitoring approaches were used to assess macrofungal biodiversity in broadleaf Mediterranean forests in order to determine whether different sampling efforts can provide statistically similar diversity indices. Despite the different number of field visits, the results obtained show that some biodiversity indices (e.g. Shannon index, Eveness, Simpson index) values do not seem to be significantly affected by the survey approach chosen and a single survey per year has achieved comparable results to multiple surveys. This, in a wider biodiversity context it could produce a quick field methodology to study complex taxonomic groups, such as macrofungi.
Article
Boletus edulis and allied species (porcini) are one of the most appreciated and consumed species in the world. Despite their ecological and economic importance, little information is available on the mycobiota that characterize their natural growing habitats. Due to the importance to preserve the areas where these precious species grow, three different broadleaf sites were investigated to describe the above ground macrofungal communities. These forests, located in North-west Italy (Liguria), were intensively surveyed over three consecutive years by sporomata analysis. Altogether 243 fungal taxa were recorded in the selected 60 plots. The statistical results reveal that the studied sites, despite differing in vegetation type, are very similar in macrofungal species richness and composition. The ectomycorrhizal fungal group was the richest both in number and percentage. Comparisons of our results with other European mycological investigations suggest that porcini broadleaf sites are characterized by a similar and peculiar mycobiota.
Article
The goal of this paper is to integrate and update the first edition of the checklist of Ligurian macrofungi with data resulting from mycological research conducted mainly in holm-oak woods during the past last three years. Of the 172 new taxa collected, 15 represent Ascomycota, 157 represent Basidiomycota; 12 taxa are recorded for the first time from Italy and many others are considered rare or infrequent. Each taxonomic entry includes Latin name, author, habitat, height, and WGS-84 Global Position System (GPS) coordinates. This work, together with the original Ligurian checklist, represents a contribution to the national checklist. The complete checklist is available at http://www.mycotaxon.com/ resources/weblist.html.