ArticlePDF Available

Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides

Authors:
  • National Botanical Garden of Santo Domingo (Dominican Republic) - CEFAP (Italy)

Abstract and Figures

The monotypic genus Phylloporopsis is described as new to science based on Phylloporus boletinoides. This species occurs widely in eastern North America and Central America. It is reported for the first time from a neotropical montane pine woodland in the Dominican Republic. The confirmation of this newly recognised monophyletic genus is supported and molecularly confirmed by phylogenetic inference based on multiple loci (ITS, 28S, TEF1-α, and RPB1). A detailed morphological description of P. boletinoides from the Dominican Republic and Florida (USA) is provided along with colour images of fresh basidiomata in habitat, line drawings of the main anatomical features, transmitted light microscopic images of anatomical features and scanning electron microscope images of basidiospores. The taxonomic placement, ecological requirements and distribution patterns of P. boletinoides are reviewed and the relationships with phylogenetically related or morphologically similar lamellate and boletoid taxa such as Phylloporus, Phylloboletellus, Phyllobolites and Bothia are discussed.
Content may be subject to copyright.
Fungal Systemacs and Evoluon is licensed under a Creave Commons Aribuon-NonCommercial-ShareAlike 4.0 Internaonal License
© 2018 Westerdijk Fungal Biodiversity Instute 341
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
Fungal Systemacs and Evoluon
doi.org/10.3114/fuse.2018.02.10
VOLUME 2
DECEMBER 2018
PAGES 341–359
INTRODUCTION
Phylloporus is a genus of lamellate fungi in the family Boletaceae
that is primarily distributed throughout the tropics (Kirk et
al. 2008, Neves & Halling 2010, Neves et al. 2012, Zeng et al.
2013). Singer (1945b) moved Phylloporus to the subfamily
Xerocomoideae due to its Phylloporus-type hymenophoral
trama and olive-brown spore print. Bresinsky & Besl (2003)
synonymised Phylloporus with Xerocomus based on molecular
data, though only a few taxa were sampled in that study. Recent

support the monophyly of Phylloporus, showing that Xerocomus

et al. 2013, Wu et al.  
of Phylloporus in an expanded Xerocomoideae that now also
includes taxa with Boletus-type hymenophoral trama and pale
et al.
 Phylloporus to
include about 70 species, but several subsequent studies have
et al. 2010, 2012,
García-Jiménez 2013, Zeng et al. 2013, Ye et al. 2014, Hosen & Li
2015, 2017). Species of Phylloporus form ectomycorrhizal (ECM)
Casuarinaceae, Dipterocarpaceae,
Fabaceae, Fagaceae, Myrtaceae, and Pinaceae (Heinemann

Watling 2008, Neves & Halling 2010, Neves et al. 2012, García-
Jiménez 2013, Zeng et al. 2013, Ye et al. 2014, Hosen & Li 2015,
2017). Five species of Phylloporus have been described from
North America (Neves 2007, Neves et al. 2010).
Phylloporus bolenoides is a lamellate to subporoid bolete
that was formerly described based on material collected by Harry

        
eastern and south-eastern USA south to the Gulf Coast (Singer et
al.et al. 2000,
et
al.
Santana et al. (2007) as occurring in the Dominican Republic. It
 Pinus
spp., Pinaceae), but is also found in mixed pine and oak (Quercus
spp., Fagaceae  et al. 1990,
   et al.      
Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae),
a new smooth-spored lamellate genus to accommodate the American species Phylloporus
bolenoides
A. Farid1*§, M. Gelardi2*, C. Angelini3,4, A.R. Franck5, F. Costanzo2, L. Kaminsky, E. Ercole7, T.J. Baroni8, A.L. White1, J.R. Garey1, M.E.
Smith, A. Vizzini
1
2
3Via Cappuccini 78/8, I-33170 Pordenone, Italy
4
5

7
8Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 1304, USA
*Authors contributed equally to this manuscript
§Corresponding authors: alfredo.vizzini@unito.it, arian@mail.usf.edu
Abstract: The monotypic genus Phylloporopsis is described as new to science based on Phylloporus bolenoides. This


TEF1-α, and RPB1). A
P. bolenoides from the Dominican Republic and Florida (USA) is provided along
      
microscopic images of anatomical features and scanning electron microscope images of basidiospores. The taxonomic
P. bolenoides
    Phylloporus, Phylloboletellus,
Phyllobolites and Bothia are discussed.
Key words:
Boletales
lamellate boletes
molecular phylogeny
taxonomy
Xerocomoideae
Published online: 23 October 2018.
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
342
Singer et al.
the species in Phylloporus sect. Fibula. The species was originally
assumed to represent an intermediate taxon between Suillus and
Bolenuset al.
placed P. bolenoides in Phylloporus sect. Manausenses but later

          

within the genus because of its peculiar morphological features
with special reference to the pallid-coloured hymenophore and

   P. bolenoides from Belize, the
Dominican Republic and Florida were carefully examined
using morphological and molecular approaches. Outcomes
      
of Phylloporus      
sequences from four gene regions (ITS, 28S, TEF1-α, and RPB1)

Phylloporopsis as a unique and as yet monotypic generic lineage
in the Boletaceae
genus Bothia and the sequestrate genus Solioccasus.
This study also widens the geographical extension of P.
bolenoides to the Dominican Republic, where it is reported for
Pinus occidentalis,

on decayed wood or even on trunks of living trees, determining

MATERIALS AND METHODS
Collecon site and sampling
Specimens from Belize, Dominican Republic, and the USA were
examined from several public herbaria (CFMR, F, FLAS, JBSD,
MICH, USF), as well as private herbaria [personal herbaria of
      
of the public herbaria follow Thiers (2018), Herbarium

       
Fungorum, Authors of Fungal Names (www.indexfungorum.org/

Morphological studies
4OH,
4·7H2
       
  
    
Microscopic anatomical features were observed and recorded
        
         
with Congo Red. All anatomical structures were measured from
        

were made at 1000 × using an ocular micrometer. Basidiospores
were measured directly from the hymenium of mature basidiomata,

        
        
  
   2 

       

part, and the length was measured from the apex (sterigmata
       
        

Line drawings of microstructures were traced free hand based on
digital photomicrographs of rehydrated material. Scanning electron
micrographs have been obtained using a JEOL JSM IT300LV (High
        
     
          

thickness of 400 Å.
DNA extracon, PCR amplicaon and DNA sequencing
       
   
et al. (2015). Primers ITS1F and
ITS4 (White et al. 1990, Gardes & Bruns 1993) were used for
the ITS region; primers LR0R and LR5 (Vilgalys & Hester 1990,
Rehner & Samuels 1994) were used for the 28S rDNA, EF1-983F
        
   TEF1-α    
directed RNA polymerase II subunit 1 region (RPB1) were
       
      et al.

RPB1    Bothia clade were developed
(Table 2). A touchdown PCR was used to amplify the RPB1
region with the newly developed primer pairs RPB1-32-F/RPB1-
835-R, RPB1-147-F/RPB1-1091-R. The cycle parameters were as

 
  

  
 

Inc. (Seoul, Republic of Korea).
Sequence alignment, data set assembly and phylogenec
analyses
The sequences obtained in this study were checked and
assembled using Geneious v. 11.1.4 (Kearse et al. 2012) and
compared to those available in GenBank database by using the
Blastn algorithm (Altschul et al. 1990). Chromatograms were
examined and manually edited for accuracy. Sequences were

and accession numbers are reported in Table 1. Homologous
sequences from vouchered specimens and from environmental
samples were selected and retrieved from Halling et al. (2007),
Trappe et al. (2013), Zeng et al. (2013), Zhu et al. (2015) and
Orihara & Smith (2017). A general combined Maximum
likelihood tree including all the Boletaceae sequences deposited
      

in the major clades of Boletaceae as circumscribed by Wu et al.
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
343
Table 1.                 TEF1-α    RPB1
combined datasets). Sequences newly generated for this study are highlighted in bold.
Tax on Voucher No. Locality ITS 28S TEF1-α RPB1
Afroboletus luteolus  Africa - KF030238 KF030397 -
Afrocastellanoa ivoryana  Mukuvisi, Zimbabwe -   -
Australopilus palumanus  Queensland, Australia -   -
Austroboletus fusisporus HKAS75207 China -   -
Austroboletus gracilis  MA, USA -  KF030425 KF030358
Austroboletus mutabilis BRI AQ0795793 Queensland, Australia -  - KP242078
Austroboletus subvirens BRI AQ0794171 Queensland, Australia - KP242227 - KP242045
Baorangia bicolor MB07-001 NY, USA -  - KF030370
Baorangia pseudocalopus  China - KY418895 - 
HKAS 75739 China - KJ184558 - 
HKAS 75081 Nanhua County, Yunnan Prov.,
China
-  -
Boletus aereus REH 8721 Humboldt County, California,
USA
- KF030339 - KF030377
Boletus edulis Be3 Bavaria, Germany - KF030282  -
BD380 Colorado, USA -  - -
Boletus pulchriceps DS4514 Chiricahua Mnts, AZ, USA -  KF030409 -
Boletus rufomaculatus 4414 Chestnut Ridge Park, NY, USA - KF030248  
Boletus semigastroideus  Auckland, New Zealand - KF030352 KF030430 -
Boletus variipes va r. fagicola A.H. Smith 4249 Cheboygan Co, Michigan, USA - JQ327014 JQ327017 -
Borofutus dhakanus HKAS 73792 Bangladesh -  JQ928575 -
Bothia castanella MB 03-053 MA, USA   KF030421 KF030382
NY28003 NY, USA  - - -
 NY, USA  - - -
NY28002 NY, USA  - - -
 MA, USA  - - -
Bothia fujianensis  Fujian Prov., China  - - -
 Fujian Prov., China    -
Buchwaldoboletus lignicola  Yichun, Heilongjiang Prov.,
China
- KF112350 KF112277 
Butyriboletus appendiculatus Bap1 Bavaria, Germany -  JQ327025 -
Butyriboletus roseoavus HKAS 54099 China -  - KF739741
Caloboletus rmus  Chestnut Ridge Park, NY, USA - KF030278 KF030408 
Caloboletus inedulis  Erie Co., NY, USA - JQ327013 JQ327020 
Chalciporus piperatus MB 04-001 Rutland State Park, MA, USA -   GU187453
Fistulinella prunicolor REH 9502 Fraser Island, Queensland,
Australia
-  -
Gymnogaster boletoides REH 9455 Cooloola, Queensland,
Australia
-  -
Gyrodon lividus Gl1 Bavaria, Germany - AF098378 GU187701 -
Harrya chromapes HKAS 50527 Dêqên, Yunnan Prov., China - KF112437 KF112270 -
Heliogaster columellifer KPM-NC 23012 Odawara, Kanagawa Pref.,
Japan
-  -
Hourangia cheoi  China - KF112385  -
Hourangia microcarpa 
(Wu1324)
China -   -
Hourangia nigropunctata  China - KF112388 KF112287 -
Hourangia sp.  China - KF112453 KF112301 -
Imleria badia xb2 Bavaria, Germany - KF030357 KF030422 -
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
344
Table 1. 
Tax on Voucher No. Locality ITS 28S TEF1-α RPB1
 Sweden -   -
Imleria obscurebrunnea HKAS 52557  - KF112374 KF112190 KC215225
Lanmaoa angusspora HKAS 74759 China -  -
Lanmaoa asiaca  Heqing, Yunnan Prov., China -   
Lanmaoa carminipes  Erie Co., NY, USA - JQ327001 JQ327022 -
Leccinellum  griseum KPM-NC 17831 Hyogo Pref., Japan - JN378508 JN378449 -
Leccinellum cremeum  China - - - 
Leccinellum crocipodium KPM-NC 18041  - KC552053 KC552094 -
Leccinum moncola  China - KF112443 - KF112592
Leccinum scabrum KPM-NC 17840  - JN378515 JN378455 -
Leccinum versipelle KPM-NC 17833 Scotland, UK - JN378514 JN378454 -
Neoboletus magnicus HKAS 74939 Baoshan, Yunnan Prov., China - KF112320 KF112148 -
Nigroboletus roseonigrescens GDGM 43238 Guangdong Prov., China - KT220588 KT220595 -
Octaviania decimae  Mt. Hiei, Kyoto Pref., Japan -  JN378409 -
Octaviania kobayasii KPM-NC 17785 Mt. Kasuga, Nara Pref., Japan - JN378478 JN378420 -
Octaviania nonae KPM-NC 17748 Amami-oshima, Kagoshima
Pref., Japan
- JN378459 JN378403 -
Octaviania tasmanica  Tasmania, Australia - JN378495  -
Octaviania yaeyamaensis KPM-NC 17819 Ishigaki Isl., Okinawa Pref.,
Japan
- JN378491 JN378432 -
Paragyrodon sphaerosporus  Iowa, USA - GU187593 - -
Paxillus vernalis  China -  - -
Phylloboletellus chloephorus  Veracruz, Municipio Coatepec,
El Grande, Mexico
- - -
Phylloporopsis bolenoides JBSD127411 Jarabacoa, Dominican
Republic
MH571675 MH571711 MH588312 -
JBSD127412 Jarabacoa, Dominican
Republic
MH571676 MH571712 MH588313 -
JBSD127413 Jarabacoa, Dominican
Republic
MH571677 MH571713 MH588314 -
JBSD127414 Jarabacoa, Dominican
Republic
MH571678 MH571714 MH588315 -
FLAS-F-60407 Putnam County, Florida, USA MG845193 - - -
FLAS-F-60413 Putnam County, Florida, USA MG845194 - - -
FLAS-F-61158 Putnam County, Florida, USA MH211774 - - -
Farid 617 (USF
296126)
Tampa, Florida, USA MG817716 MG817715 - MG820263
CORT014483 Mountain Pine Ridge, Belize MH571679 MH571715 MH588316 -
CORT010991 Kountze, Texas, USA - MH571716 MH588317 -
F1118420 Sarasota, Florida, USA MH571680 MH571717 - -
Phylloporus aenuatus 
(holotype)
Tangail, Bangladesh -  KR094791 -
Phylloporus bellus  Yunnan, SW China -   -
Phylloporus brunneiceps  Yunnan, SW China -   -
Phylloporus catenulatus  Bangladesh - KR094779 KR094789 -
Phylloporus gajari  Gazipur, Bangladesh -   -
Phylloporus imbricatus  Yunnan, SW China -   -
 China - KF112398 KF112299 -
Phylloporus leucomycelinus  eastern USA -   -
Phylloporus luxiensis  Yunnan, SW China -   -
HKAS 75077 China - KF112490 KF112298 
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
345
Table 1. 
Tax on Voucher No. Locality ITS 28S TEF1-α RPB1
Phylloporus maculatus  Yunnan, SW China -   -
Phylloporus pachycysdiatus HKAS 54540 Yunnan, SW China -   -
Phylloporus parvisporus  Yunnan SW China -   -
Phylloporus pelleeri Pp1 Austria -   KF030390
Phylloporus pelleeri Q7199c Slovakia -  - -
K 128205 England, UK -  - -
Phylloporus rhodoxanthus SAR 89.457 eastern USA - U11925 - -
MAN075 eastern USA -  - -
REH8714 eastern USA -  - -
MAN099 eastern USA -  - -
JLM1808 eastern USA -  - -
BD374 -  -
Phylloporus rubeolus HKAS 52573 Yunnan, SW China -   -
Phylloporus rubrosquamosus HKAS 54542 Yunnan, SW China -   -
HKAS 52552 China - KF112391 KF112289 -
Phylloporus rufescens HKAS 59722 Hainan, southern China -   -
Phylloporus yunnanensis HKAS 52225 Yunnan, SW China -   -
Phylloporus sp.  Hunan, central China -   -
 Fujian, SE China -   -
 Hainan, southern China -   -
 Yunnan, SW China -   -
 Yunnan, SW China -   -
 Fujian, SE China -   -
 Yunnan, SW China -   -
 Yunnan, SW China -   -
 Yunnan, SW China -   -
 Hainan, southern China -   -
Porphyrellus brunneus REH 9527 Fraser Island, QLD, Australia -   -
Porphyrellus porphyrosporus  Mt. Tarumae, Hokkaido, Japan    -
KPM-NC 25017 Rishiri Island, Hokkaido, Japan    -
MB 97-023 Walhalla, Bavaria, Germany   GU187734 -
 Yanbian, Jilin Prov., China - KF112482 KF112243 -
Porphyrellus sp.  Sanming, Fujian Prov., China - KF112480 KF112241 -
HKAS 75078 Chuxiong, Yunnan Prov., China - KF112481 KF112242 -
Pseudoboletus parasicus  Bavaria, Germany -  KF030443 -
Reboletus fuscus  Yunnan Prov., China -  JQ928580 -
Reboletus griseus Both sn NY, USA - KF030308 KF030414 KF030373
Rossbeevera griseoveluna  Hyogo, Japan - KC552031  -
Rossbeevera viaspora MEL2128491 NSW, Australia -   -
Royoungia boletoides  NSW, Australia -   -
Rubroboletus rhodosanguineus 4252 Chestnut Ridge Park, NY, USA - KF030252 KF030412 -
Solioccasus polychromus J. Trappe 15399 Australia  - - -
REH 9417 Queensland, Australia -   -
Spongiforma thailandica DED 7873 Thailand -   -
Strobilomyces strobilaceus (as
S. occopus)
Sf1 Bavaria, Germany -  JQ327037 -
Suillellus amygdalinus  Mendocino Co., CA, USA -  JQ327024 -
Sutorius  eximius  Kunming, Yunnan Prov. CHINA - KF112399 KF112207 -
Sutorius eximius REH 8594 Jardin de Dota, Costa Rica - JQ327008 JQ327027 -
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl

 
were restricted to the major clade including P. bolenoides
sequences and to selected genera in the Boletaceae.
      
TEF1-α dataset and a 28S/RPB1
        P. bolenoides
in the Boletaceae. According to the results by Orihara & Smith
(2017), species of Paxillaceae were chosen as outgroup taxa for
       
only on an ITS dataset was restricted to the taxa closely related
to P. bolenoides; Tylopilus felleus was used as outgroup taxon
Alignments were generated for the ITS, 28S, TEF1-α, and RPB1
datasets with MAFFT (Katoh et al.
 
manually adjusted using Geneious v. 11.1.4 (Kearse et al. 2012). We

        
(Darriba et al.

     
inference (BI) and Maximum likelihood (ML) criteria. The BI was
      et al. 2012) with
one cold and three incrementally heated simultaneous Monte
  

performed independently. Trees were sampled every 1 000

    
remaining trees of the two independent runs, a majority rule


ML analysis was performed using RAxML v. 7.3.2 (Stamatakis

GTRGAMMA algorithm. Support values from bootstrapping runs


rapid bootstrapping algorithm. BI and ML analyses were run on
the CIPRES Science Gateway (Miller et al. 2010). Only BPP values
Table 1. 
Tax on Voucher No. Locality ITS 28S TEF1-α RPB1
Turmalinea persicina KPM-NC 18001 Iwakura Kyoto Pref., Japan - KC552038 KC552082 -
Tylopilus alpinus HKAS 55438 China - KF112404 - KF112538
Tylopilus ballouii Osmundson
1198
Thailand - EU430740 - EU434340
 Fraser Island, Queensland,
Australia
-  -
Tylopilus felleus AT2001011 Uppsala, Sweden -  JQ327015
HKAS 90203 China - KT990545 - KT990913
MCVE98230 Italy JF908787 - - -
Tylopilus ferrugineus  Erie Co., NY, USA -   -
Tylopilus microsporus (T.
neofelleus)
 Yunnan Prov., China - KF112450 KF112225 -
Tylopilus otsuensis HKAS 53401 Chenzhou, Hunan, China - KF112449 KF112224 -
Tylopilus plumbeoviolaceus  NY, USA - KF030350 KF030439 -
Veloporphyrellus alpinus HKAS 57490 Yunnan Prov., China - KF112380 KF112209 KF112555
Xerocomellus chrysenteron  Bavaria, Germany -  KF030415 -
Xerocomellus zelleri REH 8724 Humbolt Co., CA, USA - KF030271  
Xerocomus magniporus HKAS 59820 Yunnan, SW China -   -
Xerocomus perplexus MB00-005 USA - JQ003702 KF030438 -
Xerocomus subtomentosus  England, U.K. - KC215222 - -
 Bavaria, Germany -  JQ327035 KF030391
Zangia citrina  China -  - -
Zangia erythrocephala  Nujiang, Yunnan, Prov., China - KF112414  -
Zangia roseola  China -  - JQ928595
Uncultured Boletaceae clone 47C_G1_
H9
Jonathan Dickinson State Park,
Hobe Sound, Florida, USA
 - - -
clone 4C_G2_C3 Big Lagoon Start Park,
Pensacola, FL, USA
 - - -
Table 2. Newly designed RPB1Bothia clade.
Primer name Sequence (5’ → 3’)
RPB1-32-F AGGCYGATATCGTGAGTCGC
RPB1-147-F CTCGAGYTATCGAGGCGT
RPB1-835-R ACCCTCRTCYTCRTCCTTGGG
RPB1-1091-R CCATCYACYGCTATACTCGG
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
347
0.97/98
1/100
1/90
- /0.87
1/95
1/100
1/77
1/84
0.9/87
0.97/79
0.94/ -
0.99/ -
0.97/75
0.95/ -
0.99/ -
0.98/ -
0.99/ -
0.96/73
0.99/79
0.97/85
0.98 /76
1/ -
0.96/73
0.97/ -
0.98/97
- /74
0.98 / -
0.96/ -
Phylloporus luxiensis HKAS 57036
Phylloporus luxiensis HKAS 75077
Phylloporus sp. HKAS 74680
Phylloporus sp. HKAS 74684
Phylloporus sp. HKAS 74679
Phylloporus imbricatus HKAS 54647
Phylloporus imbricatus HKAS 68642
Phylloporus yunnanensis HKAS 52225
Phylloporus brunneiceps HKAS 56903
Phylloporus rhodoxanthus MAN075
Phylloporus rhodoxanthus REH8714
Phylloporus rhodoxanthus JLM1808
Phylloporus rhodoxanthus MAN099
Phylloporus sp. HKAS 74681
Phylloporus sp. HKAS 74682
Phylloporus sp. HKAS 74683
Phylloporus pelletieri Pp1
Phylloporus pelletieri Q7199c
Phylloporus pelletieri K 128205
Phylloporus rubeolus HKAS 52573
Phylloporus sp. HKAS 74685
Phylloporus rhodoxanthus SAR 89.457
Phylloporus sp. HKAS 74687
Phylloporus leucomycelinus HKAS 74678
Phylloporus sp. HKAS 74688
Phylloporus rubrosquamosus HKAS 54542
Phylloporus rubrosquamosus HKAS 52552
Phylloporus maculatus HKAS 56683
Phylloporus bellus HKAS 56673
Phylloporus pachycystidiatus HKAS 54540
Phylloporus sp. HKAS 74689
Phylloporus gajari HKAS 76158
Phylloporus attenuatus HKAS 76168
Phylloporus rufescens HKAS 59722
Phylloporus catenulatus HKAS 76157
Hourangia cheoi HKAS 52269
Hourangia nigropunctata HKAS 76657
Phylloporus parvisporus HKAS 54768
Xerocomus subtomentosus Xs1
Xerocomus subtomentosus KM167686
Xerocomus perplexus MB00-005
Xerocomus magniporus HKAS 59820
Australopilus palumanus REH 6791
Royoungia boletoides Trappe 27456
Harrya chromapes HKAS 50527
Zangia erythrocephala HKAS 75046
Rossbeevera vittatispora MEL2128491
Rossbeevera griseovelutina holotype TNSF36989
Turmalinea persicina holotype KPM-NC 18001
Leccinellum a. griseum KPM-NC 17831
Leccinellum crocipodium KPM-NC 18041
Octaviania nonae KPM-NC 1774
Octaviania decimae KPM-NC 17763
Octaviania tasmanica MEL2341996
Octaviania kobayasii KPM-NC 17783
Octaviania yaeyamaensis KPM-NC 17819
Leccinum versipelle KPM-NC 17833
Leccinum scabrum KPM-NC 17840
Spongiforma thailandica DED 7873
Borofutus dhakanus HKAS 73792
Retiboletus fuscus HKAS 59460
Retiboletus griseus Both sn
Sutorius eximius REH 8594
Sutorius a. eximius HKAS 52672
Austroboletus gracilis 112/96
Austroboletus fusisporus HKAS 75207
Veloporphyrellus alpinus HKAS 57490
Fistulinella prunicolor REH 9502
Caloboletus inedulis MB 06044
Caloboletus rmus MB 06060
Suillellus amygdalinus 112605ba
Rubroboletus rhodosanguineus 4252
Neoboletus magnicus HKAS 74939
Boletus pulchriceps DS4514
Butyriboletus appendiculatus Bap1
Porphyrellus porphyrosporus KPM-NC 22667
Porphyrellus porphyrosporus KPM-NC 25017
Porphyrellus porphyrosporus MB 97023
Porphyrellus porphyrosporus HKAS 76771
Porphyrellus sp. HKAS 75078
Porphyrellus sp. HKAS 53366
Afrocastellanoa ivoryana Arora 126
Porphyrellus brunneus REH 9527
Strobilomyces strobilaceus Sf1
Imleria badia Xb2
Imleria badia SF119691
Imleria obscurebrunnea HKAS 52557
Boletus edulis Be3
Boletus variipes var. fagicola AH Smith 4249
Boletus semigastroideus PBM3076
Tylopilus felleus AT2001011
Tylopilus ferrugineus MB 06053
Tylopilus balloui REH 9467
Tylopilus microsporus HKAS 59661
Tylopilus otsuensis HKAS 53401
Tylopilus plumbeoviolaceus MB 06-056
Afroboletus luteolus 00-436
Xerocomellus zelleri REH 8724
Xerocomellus chrysenteron Xch1
Heliogaster columellifer KPM-NC 23012
Nigroboletus roseonigrescens GDGM 43238
Boletus rufomaculatus 4414
Baorangia pseudocalopus HKAS 75081
Lanmaoa carminipes MB 06-061
Lanmaoa asiatica HKAS 63592
Phylloporopsis boletinoides JBSD127413 Dominican Republic
Phylloporopsis boletinoides JBSD127411 Dominican Republic
Phylloporopsis boletinoides JBSD127412 Dominican Republic
Phylloporopsis boletinoides JBSD127414 Dominican Republic
Phylloporopsis boletinoides CORT 010991 Texas, USA
Phylloporopsis boletinoides F1118420 Florida, USA
Phylloporopsis boletinoides CORT 014483 Belize
Bothia castanella MB 03-053 MA USA
Bothia fujianensis HKAS 82694 Fujian CHINA
Solioccasus polychromus REH 9417 QLD AUSTRALIA
Phylloboletellus chloephorus XAL3388
Gymnogaster boletoides REH 9455
Pseudoboletus parasiticus Xps1
Buchwaldoboletus lignicola HKAS 76674
Chalciporus piperatus MB 04-001
Gyrodon lividus Gl1
0.05
Hourangia sp. HKAS 68178
Hourangia microcarpa HKAS 83763
1/100
1/100
1/100
1/100
1/100
1
/100
1/100
1/100
1/100
1/100
1/100
1
/100
1/100
1/98
1
/96
1/100
1/96
1/72
1/100
1/100
1/100
1/100
1/100
1/97
1/99
1/100
1/100
1/100
1/100
1/100
1/100
1/100
1/100
1/92
1/100
1/86
1/86
1/100
1/99
1/100
1
/100
1
/100
1
/92
Bothia clade
Fig. 1. Phylogeny of the Boletaceae based on a Bayesian and Maximum likelihood inference analysis of a combined matrix of two nuclear gene regions
(28S and TEF1-α

© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
348



ITS sequences were calculated using Geneious v. 11.1.4 (Kearse
et al.
TreeBASE (www.treebase.org) under ID S22978.
RESULTS
Molecular analysis
Both Bayesian and Maximum Likelihood analyses produced
comparable topologies and therefore only Bayesian trees with
BPP and MLB values are shown (Figs 1–3). The combined 28S/
TEF1-α and 28S/RPB1 dataset comprised 123 and 45 taxa,

In the 28S/TEF- α dataset (Fig. 1), all the P. bolenoides


is part of a larger clade that includes Bothia and Solioccasus

includes Bothia, Solioccasus and P. bolenoides as the Bothia
clade. Phylloporus clusters with Xerocomus and Hourangia
            
is distantly related to the Bothia clade. In the combined 28S/
RPB1 dataset (Fig. 2), P. bolenoides was strongly supported in
the Bothia   Phylloporus clusters
with Xerocomus in a strongly supported clade (BPP = 1.0, MLB

hymenophore, Phylloboletellus, is resolved in an isolated and
 Boletaceae (Figs 1, 2). In the ITS
analysis (Fig. 3), the newly generated sequences of P. bolenoides

     
sequence from Jonathan Dickinson State Park, Hobe Sound,
       
sequence from Big Lagoon State Park, Pensacola, FL, USA. Both
sequences were obtained from ectomycorrhizal samples on
Pinus clausa 
of the ITS sequences of the Phylloporopsis
Fig. 2. Phylogeny of the Boletaceae based on a Bayesian and Maximum likelihood inference analysis of a combined matrix of two nuclear gene regions
(28S and RPB1

© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
349
TAXONOMY
Phylloporopsis Angelini, A. Farid, Gelardi, M.E. Smith, Costanzo,
& Vizzini, gen. nov. MycoBank MB828149.
Etymology: the generic epithet refers to the morphological
Phylloporus.
Basidiomata     
hymenophore, epigeal, evelate, medium-small sized;
      
hymenophore lamellate to subporoid with anastomosing and
interveined gills, strongly decurrent, beige to olive-cream or olive-

      


hymenophore and pileus context when injured or exposed; taste
       
   
smooth, ellipsoid-fusiform, spore wall cyanophilic; pleuro-, cheilo-

    Phylloporus 
      
     
analysis of the combined ITS, 28S, TEF1-α, and RPB1 sequences
the genus is unrelated to Phylloporus and close but separated
from Bothia and Solioccasus.
0.82/84
1/99
0.7/59
1/100
1/100
0.98/81
0.87/64
Bothia castanella NY8669 USA
Bothia castanella MB 03-067 USA
Bothia castanella NY28002 USA
Bothia castanella NY28003 USA
Bothia fujianensis HKAS 82693 China
Bothia fujianensis HKAS 82694 China
Solioccasus polychromus J. Trappe 15399 Australia
Tylopilus felleus MCVE98230 Italy
0.07
1/100
1/100
Phylloporopsis boletinoides Farid 617 Florida, USA
Phylloporopsis boletinoides FLAS-F-60407 Florida, USA
Phylloporopsis boletinoides FLAS-F-61158 Florida, USA
Phylloporopsis boletinoides FLAS-F-60413 Florida, USA
Phylloporopsis boletinoides F1118420 Florida, USA
uncultured Boletaceae clone 4C_G2_C3 Florida, USA
uncultured Boletaceae clone 47C_G1_H9 Florida, USA
Phylloporopsis boletinoides CORT014483 Belize
Phylloporopsis boletinoides JBSD127413 Dominican Republic
Phylloporopsis boletinoides JBSD127411 Dominican Republic
Phylloporopsis boletinoides JBSD127412 Dominican Republic
Phylloporopsis boletinoides JBSD127414 Dominican Republic
Bothia castanella MB 03-053 USA
Phylloporopsis
Bothia
Solioccasus
Fig. 3. Bayesian ITS phylogeny restricted to the clade including Phylloporopsis (Bothia

© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
350
Typus generis: Phylloporopsis bolenoides (A.H. Smith & Thiers)
Vizzini, Angelini, A. Farid, Gelardi, Costanzo, & M.E. Smith
Phylloporopsis bolenoides (A.H. Smith & Thiers) Vizzini,
Angelini, A. Farid, Gelardi, Costanzo & M.E. Smith comb. nov.

Basionym: Phylloporus bolenoides A.H. Smith & Thiers, Contr.
Monogr. North Amer. Species Suillus
Typus
Lake, east of Gainesville, solitary in deep sandy humus under
pines (Pinus spp.), low hammock, 31 Jul. 1958, H.D. Thiers
[MICH 11740 (holotype), SFSU 000741 (isotype
Basidiomata medium-small. Ontogenec development
gymnocarpic. Pileus     
      
      


       


        

         
         
gradually fading with age and becoming beige-ochraceous to

   

LIII). Hymenophore     
arcuate-decurrent, somewhat distant, undulate, shorter than




beige to pale cream-beige (Marguerite Yellow, Primrose Yellow,
  
  
due to mature spores, staining light blue (Pale Green-Blue Grey,
     Spe (2.5–)2.7–4.5(–5.0)
× 0.4–0.7 cm, shorter than or as long as the pileus diameter at
  
or curved, cylindrical but slightly swollen towards the base, not


Plate II) in the upper third, concolourous with the pileus to

    
       
  
when pressed; rhizomorphs not observed. Context  



  
 

  

air (Fig. 4H), especially above the tubes and eventually fading to

    Odour  Taste mild
 Spore-print not
obtained. Macrochemical reacons    
to dark brown on context and hymenophore, golden yellow on
4OH: staining purple-pink on pileus. FeSO4: slowly
pale yellowish-green to olive green on context, none elsewhere.
Basidiospores     
        
       3, inequilateral, very variable in
dimensions and versiform, cylindrical to fusiform or more
frequently ellipsoid-fusiform to broadly ellipsoid in side view,
ellipsoid to broadly ellipsoid in face view, smooth, apex rounded,
    
suprahilar depression although in some spores the depression
        

            
     
to very weakly dextrinoid, cyanophilic (Fig. 5E) and with a
    Basidia (27–)33–54(–58)
        
     
    
        
         
        
basidioles subcylindrical, cylindrical-clavate to clavate, similar
in size to basidia. Cheilocysdia (42–)45–108(–118) × (8–)10–
         
     
ventricose-fusiform to sublageniform, less frequently cylindrical
to irregularly cylindrical, subclavate, sausage-like or peanut-like,
rarely mucronate or subcapitate, with rounded to subacute
       
          

Pleurocysdia
  
Pseudocysdia not recorded. Pileipellis
 

tending to be repent in the outermost layer and thus turning



        

yellow to yellowish-orange (inamyloid to weakly dextrinoid) in
      

pigments. Spipellis a layer of slender, parallel to subparallel
Fig. 4. Phylloporopsis bolenoides. A–F. Fresh basidiomata (A: JBSD127411, B: JBSD127412, C: JBSD127413, D: JBSD127414, E: CORT014483, F:
CORT010991). G. Detail of the lamellate hymenophore (JBSD127411). H. Detail of the context turning blue on exposure (JBSD127415). Bars = 1 cm.
Pictures: A–D, G–H by C. Angelini; E–F by T.J. Baroni.
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
351
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
352
Fig. 5. Phylloporopsis bolenoides. A–B. Lignicolous basidiomata (A: JBSD127414, B: JBSD127414). C. Elements of the pileipellis (JBSD127412). D. Basidia
E.F. Basidiospores under SEM (JBSD127411). C–D

and longitudinally running, smooth walled, adpressed hyphae,
 

     
          
       
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
353
fusiform, ventricose-fusiform, irregular cylindrical to subclavate
       

Lateral
spe stratum under the caulohymenium absent. Spe trama
composed of confusedly and densely arranged, subparallel
      
       
Hymenophoral trama     Phylloporus-
        
     
   
   
          
     
       
 
mediostratum is concolorous with the lateral strata. Oleiferous
hyphae very common. Clamp connecons 
Hyphal system
Ecology: usually under Pinus spp., occasionally in mixed Pinus
and Quercus forests, solitary to gregarious or less frequently

but also on logs or living trunks of pine trees.
Edibility: unknown.
Materials examined: Dominican Republic, La Vega Province, Jarabacoa,
   
specimens growing on soil under Pinus occidentalis, 21 Dec. 2013,
C. Angelini (JBSD127411, ANGE120 and MG709); ibid  
specimens growing on soil under P. occidentalis, 22 Dec. 2013, C.
Angelini (JBSD127412, ANGE121 and MG710); ibid., a single mature
specimen growing on soil under P. occidentalis    C.
Angelini (JBSD127413, ANGE551); ibid., several basidiomata in all
     
of P. occidentalis, 28 Nov. 2017, C. Angelini (JBSD127414, ANGE1007
and MG711); ibid., several basidiomata in all developmental stages
   P. occidentalis, 23 Nov. 2017,
C. Angelini (JBSD127415, ANGE1013 and MG712). Belize, Cayo District,
Mountain Pine Ridge, Hidden Valley Inn property, near Lake Lolly Folly,

Jan. 2002, T.J. Baroni (9195 TJB = BZ745) (CORT014483). USA, Alabama,
Baldwin Co., Orange Beach, solitary in a sandy area with oaks nearby,
21 Jul. 1982, D.P. Lewis  

Fig. 6. Phylloporopsis bolenoides. Drawings of the anatomical features (JBSD127412). A. Elements of the pileipellis. B.C.
Basidia. D.del.).
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
354
hammock, 31 Jul. 1958, H.D. Thiers   holotype);

Pinus sp., 11 Aug. 1985, N.S. Weber    

line, 1.3 km E of C-731, 9 Sep. 2012, A.R. Franck 3125 (USF 273159);
Hillsborough Co., Violet Cury Nature Preserve, under Quercus sp. and
Pinus sp., 15 Jun. 2017, A. Farid
Pinus
N. Kraisitudomsookibid., under Quercus sp. and
Pinus M.E. Smith
M.E. Smith s.n. (USF 298023); Sarasota Co., Myakka Valley Ranches, on
soil near Pinus sp. and Quercus     R.S. Williams 
      Pinus sp., 12
Jan. 1991, R. Singer (F3912) (F 1118420); Mississippi, Harrison Co.,
 Pinus sp., 10 Sep. 1981, D.
Guravich          
Cemetery, solitary in Pinus D.P. Lewis 3324
Pinus sp.
 D.P. Lewis  ibid., solitary on well-
decayed Pinus taeda stump, 13 Sep. 1979, D.P. Lewis 1982 (F 1089019);
         
         
T.J. Baroni (TJB 8172) (CORT010991).
Known distribuon: Eastern and south-eastern USA (Maine,
Delaware, New Jersey, Georgia, Florida, Mississippi, Alabama,
     
mycoportal.org/portal/index.php. Accessed on June 29, 2018),
in Central America reported from Belize and in the Greater


in tropical areas, western and southern limits yet to be
established.
DISCUSSION
Taxonomic circumscripon of P. bolenoides
      
features that characterize P. bolenoides.    
reddish-orange then deep red or cinnamon-brown to cocoa brown
and becomes pale ochraceous-brown with age. The strongly
     
  




         
turns purplish-pink or reddish with ammonia. Anatomical traits
include the ellipsoid-fusiform, cyanophilic, smooth basidiospores,
Phylloporus-

Singer et al.et al.et al.
2007, Neves & Halling 2010, this study). The Dominican material
        
         
basidiospores, (11.1–)13.4 ± 1.27(–18.0) × (4.7–)5.8 ± 0.59(–8.2)

     
2.7 in Singer et al.
Santana et al.
& Halling 2010). This morphological variability likely represents a
 
species (Fig. 3).


was updated by Singer et al. (1990) to point out the inconsistent

samples found in Alachua County, Florida, near the type locality
        
bluing. A recent treatment on the boletes from eastern North
et al.

in P. bolenoides       
et al. 1990).
Data obtained from top BLASTn results on GenBank and ITS

    P. bolenoides with Pinus.

(clone 4C_G2_C3) were obtained from ectomycorrhizal root
samples from Pinus clausa. Florida material is typically found
under stands of Pinus spp., though occasionally in mixed Pinus
and Quercus forests. In the Dominican Republic P. bolenoides
was found with Hispaniolan pine (Pinus occidentalis) at high
       
Fagaceae occur in the Dominican Republic), despite several

        
trees (Figs 4D, 5A, B). The occurrence of the Belizean material
of P. bolenoides      et al. 2007)
        
some neotropical sites. Previous studies have shown that
       
et al. 1985, Henkel et al.
2000). Examples of lignicolous growth of ECM Boletaceae have
been reported from the Americas, Europe, southeast Asia and
Australasia and include taxa such as those of the Boletellus
ananas complex and several Tylopilus species (Singer 1945a,
Corner 1972, Alessio 1985, Rayner et al. 1985, Henkel 1999,
    
       
           

   et al. 1987, Henkel et al.
2000, 2012, Lindahl & Tunlid 2015).
Outside of the USA, P. bolenoides
restricted to Belize and the Dominican Republic but given its
         

throughout the neotropical mainland and the Caribbean where
pines occur.
Taxonomic and phylogenec relaonships of
Phylloporopsis to Bothia, Phylloporus, Phylloboletellus
and Phyllobolites
Phylloporopsis
Bothia
Bolenus castanellus) and the sequestrate Solioccasus
with S. polychromus)        
Phylloporus sensu stricto (Figs 1–2). Based on the available data
there are no obvious shared morphological or ecological features
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
355

the spore wall (Trappe et al.
TJB on B. castanella
synapomorphy known to date, though this feature has been only
Boletaceae
et al. (2013) established the
genus Solioccasus as a sister clade with Bothia, although they
did not address the shared morphological character between
the two genera. More extensive sampling is needed to elucidate
the taxonomic boundaries of the Bothia clade.
Though Phylloporopsis is Bothia,
        
       Bothia
       
and radially stretched pores that are only slightly decurrent
       
et al. 2007). Conversely, in Phylloporopsis the basic structure
of the hymenophore is lamellate though anastomosing,
        
       
     Bothia and blue in Phylloporopsis
and the spore print is pale brownish-yellow in Bothia while in
Phylloporopsis        et al. 1990,
et al
 Bothia is associated with Fagaceae (mostly Quercus
spp.) whereas Phylloporopsis forms ECM with pine trees (see
below). Finally, the geographic range of Bothia 
overlapping with that of Phylloporopsis, since B. castanella (=
Bolenus squarrososides according to Halling et al. 2007) is
only found in eastern and south-eastern North America [Peck
       B. squarrososides
    Phylloporus squarrosoides  
Xerocomus squarrosoides       B.
squarrososidesB. squarrososides
et al.
Roody 2003, Watling 2008, Halling et al. 
B. fujanensis is restricted
to south-eastern China (Fujian and probably Taiwan) (Chen et al.
1997, Zeng et al. 2015). These characters are a sound basis for a
Bothia castanella
   P. bolenoides    

B. castanella

(Halling et al.et al.
Phylloporopsis suggests that

the Boletaceae from poroid ancestors, viz. in Phylloporopsis,
Phylloporus and Phylloboletellus.
Phylloporopsis is morphologically similar to species of
Phylloporus     
However, Phylloporus       
golden-yellow lamellate hymenophore with the bright yellow

      
microscope (SEM) (although a number of tropical species have
   
       

et
al. 2010, 2012, Zeng et al.
trait that was considered unifying in Phylloporus is the pileus
surface that stains vivid blue to bluish-green with ammonia
         
     Phylloporopsis. However, it
 
tested on species described from tropical Africa (Heinemann
1951), Malaysia (Corner 1970, 1974), China (Zeng et al. 2013, Ye
at al  
a few taxa from tropical Central and South America, India and
Thailand (e.g. P. bulatus, P. manausensis, P. septocysdiatus, P.
castanopsidis   
3 and NH4
2010, Neves et al. 2012, Pradeep et al. 2015). Accordingly, the
bluing of the pileus surface with ammonia cannot be considered
a synapomorphy within Phylloporus. Phylloporus is a large
assemblage encompassing nearly one hundred species so far as

yet been formally described), it appears to be widespread being
best represented throughout temperate and pantropical regions
of both hemispheres and is apparently most diverse in Australasia
         
Montoya & Bandala 1991, 2011, Halling et al. 1999, Watling & Li
et al. 2007, Neves & Halling 2010, Neves et
al. 2012, García-Jiménez 2013, Ye et al. 2014, Hosen & Li 2015,
2017, Pradeep et al. 2015). The neotropical P. centroamericanus
P. bolenoides but diverges,
apart from the generic discrepancies cited above, in the smaller
size (pileus 2–3 cm broad), pileus surface tending to become
 
        

         

with some eastern Asian species such as P. rubiginosus and P.
pachycysdiatus; the former is separated by the bright yellow
to orangish-yellow lamellae, context evenly yellowish and slowly
       
surface with ammonia, smaller spores [9.8–11.2(–13) × 3.5–4.9

the occurrence under Castanopsis and Dipterocarpus in Thailand
and south-western China (Yunnan Province) (Neves et al. 2012,
Ye et al.    
size (pileus 3–5 cm in diameter), yellow hymenophore, cream-

 
  Lithocarpus     
southern and south-western China (Hainan and Yunnan Provinces)
(Zeng et al. 2013, Ye et al. 2014). There appears to exist a minor
P. bolenoides and the type species of the genus
Phylloporus, P. pelleeri, which is separated from the former by
the bright yellow to golden yellow hymenophore, bright yellow
 
ammonia on pileus surface, bacillate basidiospores under SEM
and the occurrence in temperate Europe (Pilát & Dermek 1974,
Breitenbach & Kränzlin 1991, Lannoy & Estadès 2001, Ladurner
& Simonini 2003, Watling & Hills 2005, Klofac 2007, Muñoz et al.

      Boletaceae
is Phylloboletellus, a monotypic genus based on P. chloephorus.
This taxon was described from subtropical to tropical montane
   

Mexico (García-Jiménez et al.     et al.
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl

1992, Bandala et al. 2004, García-Jiménez 2013). This species,
P. bolenoides by the subumbonate pileus,
yellowish basal mycelium, evenly yellow context discolouring

     Boletus 

short, broadly ellipsoid, longitudinally winged basidiospores


Petersen 1974, Pegler & Young 1981, Singer et al. 1992, Bandala
et al. 2004, Watling 2008). Moreover, the original material of
P. chloephorus was collected under Lauraceae, Myrtaceae,
Sapindaceae, Ulmaceae, etc., but the authors were unable to
        
the species was thought to be presumably saprotrophic (Singer
        
subsequently Bandala et al.
Tedersoo et al.
Phylloboletellus chloephorus var. mexicanus ad interim was
informally proposed by Singer et al. (1992) to circumscribe the
        
         
     mexicanus with respect to the type
species were nearly inconsistent, thus it has never been validated
et al. 2011,
2014, Zeng et al.
P. chloephorus.
It is also worth nothing here the existence of the poorly
known genus Phyllobolites, which some authors have argued
may belong to the Boletaceae (Kirk et al. 2008, Magnago 2014).
Phyllobolites was erected based on Phyllobolites miniatus
from tropical northern South America (Guyana, Suriname,
     et al. 1983, Henkel et al.
2012, Sulzbacher et al. 2013). This taxon has been originally
assigned to the broadly conceived family Paxillaceae, along with
unrelated agaricoid genera such as Omphalotus, Lampteromyces,
Hygrophoropsis, Neopaxillus and Ripartes
is easily delimited by the presence of a membranous ring deriving
       
    
      
       
  
Singer et al. 1983, Watling 2008). Since it has not been possible to
locate and re-examine the type specimen of P. miniatus from the
 
Rick was found by Singer to be referred to either Lennus (Singer
Tapinella or Pleurotus, the assignment of Phyllobolites to
the Boletaceae (Kirk et al. 2008, Magnago 2014) or Paxillaceae
et al. 1983, Neves &
Capelari 2007, Henkel et al. 2012) or even to the order Boletales
Phyllobolites
might belong in the order Gomphales near the genus Linderomyces
(a later synonym of Gloeocantharellus) (Watling, 2008). A modern


ACKNOWLEDGEMENTS
         
  
(MICH) for the loan of dried fungal materials. CA also wishes to thank
Ricardo G. García, Francisco Jiménez, Brígido Peguero, Yuley E. Piñeyro
and Alberto Veloz (Jardín Botánico Nacional Dr. Rafael M. Moscoso, Santo
Domingo, Dominican Republic) for their interest and encouragement in


         
technical help in taking SEM images. Mycological biodiversity research in
   
      
 
funding from the Faculty Research Program of the State University of New
York – College at Cortland for research work in the Gulf Coast region of

Arizona State University for his assistance with sequencing. Funding for

Ordway-Swisher Research grants (to MES).
REFERENCES
Alessio CL (1985). Boletus Dill. ex L. Fungi Europaei 2. Giovanna Biella,
Saronno, Italy.
Altschul SF, Gish W, Miller W, et al. (1990). Basic local alignment search
tool. Journal of Molecular Biology 215: 403–410.
Alvarado P, Moreno G, Vizzini A, et al. (2015). Atractosporocybe,
Leucocybe and Rhizocybe, three new clitocyboid genera in the
Tricholomatoid clade (Agaricales     
species of Clitocybe and Lepista. Mycologia 107
         
       Persoonia
18
  North American boletes.
A color guide to the eshy pored mushrooms. Syracuse University
Press, Syracuse, USA.
  Boletes of eastern North
America. Syracuse University Press, Syracuse, USA.
        
Boletales. Mycologia 98: 971–981.
Both EE (1993). The boletes of North America. A compendium

Breitenbach J, Kränzlin F (1991). Fungi of Switzerland. Vol. 3. Boletes
and agarics 1. Mykologia, Luzern, Switzerland.
 
      
     
Regensburger Mykologische Schrien 11
Chen C-M, Peng J-J, Yeh K-W (1997). The boletes of Taiwan (VIII).
Taiwania 42
Coker WC, Beers AH (1943). The Boletaceae of North Carolina. University
of North Carolina Press, Chapel Hill, USA.
Corner EJH (1970). Phylloporus Quél. and Paxillus Fr. in Malaya and
Borneo. Beihee zur Nova Hedwigia 20: 793–822.
Corner EJH (1972). Boletus in Malaysia. The Botanic Gardens,

Corner EJH (1974). Boletus and Phylloporus in Malaysia: further notes
Gardens’ Bullen Singapore 27
Darriba D, Taboada GL, Doallo R, et al.    
  Nature Methods
9: 772.
        
using the bootstrap. Evoluon 39: 783–791.
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
357
García-Jiménez J (2013). Diversidad de macromicetos en el estado
de Tamaulipas, México    
      
Mexico.
et al.
boletáceos en México. Revista Mexicana de Micología 2
   
Basidiomycetes       
and rusts. Molecular Ecology 2: 113–118.
Halling RE, Baroni TJ, Binder M (2007). A new genus of Boletaceae from
eastern North America. Mycologia 99
Halling RE, Mueller GM, Dallwitz MJ (1999). A new Phylloporus
(Basidiomycetes, Boletaceae) with a key to species in Colombia and
Costa Rica. Mycotaxon 63
Halling RE, Mueller GM (2005). Common Mushrooms of the Talamanca
Mountains, Costa Rica. Memoirs of the New York Botanical Garden
90. New York Botanical Garden Press, Bronx (NY), USA.
Heinemann P (1951). Champignons récoltés au Congo Belge par
     Bullen du Jardin
Botanique de l’État à Bruxelles 21
Heinemann P, Rammeloo J (1987). Phylloporus (Boleneae). Flore
Illustrée des Champignons d´Afrique Centrale 13: 277–309.
Tylopilus from
Dicymbe forests of Guyana. Mycologia 91
         
Russulaceae from Guyana and Japan, with notes on their
ectomycorrhizal status, Mycologia 92: 1119–1132.
Henkel TW, Aime MC, Chin MML, et al. (2012). Ectomycorrhizal
fungal sporocarp diversity and discovery of new taxa in Dicymbe
monodominant forests of the Guiana Shield. Biodiversity and
Conservaon 26: 2195–2220.
Synopsis generum Agaricalium (Die Gaungstypen der
Agaricales)       
Waber, Bern, Switzerland.
Hosen I, Li T-H (2015). Phylloporus gajari, a new species of the family
Boletaceae from Bangladesh. Mycoscience 56: 584–589.
Hosen I, Li T-H (2017). Two new species of Phylloporus from Bangladesh,
with morphological and molecular evidence. Mycologia 109: 277–

Jurgensen MF, Larsen MJ, Graham RT, et al.   
in woody residue of northern Rocky Mountain conifer forests.
Canadian Journal of Forestry Research 17: 1283–1288.
   Bolete Workshop – Studies in Boletology. Retrieved
 

Katoh K, Misawa K, Kuma K, et al. (2002). MAFFT: a novel method for

Nucleic Acids Research 30
Kearse M, Moir R, Wilson A, et al. (2012). Geneious Basic: an integrated

analysis of sequence data. Bioinformacs 28
Kirk PM, Cannon PF, Minter DW, et al. (eds.) (2008). Diconary of the
Fungi. 10th
        
europäischen Arten der Boletales mit röhrigem Hymenophor.
Österreichische Zeitschri für Pilzkunde 16: 187–279.
Knudsen H, Taylor AFS (2012). Xerocomus Quél. In: Funga Nordica –
Agaricoid, boletoid, clavarioid, cyphelloid and gastroid genera (2nd
ed.). Vol. 1 (Knudsen H, Vesterholt J, eds). Nordsvamp, Copenhagen:
228–233.
Ladurner H, Simonini G (2003). Xerocomus s.l. Fungi Europaei 8. Edizioni
Candusso, Alassio, Italy.
Lannoy G, Estadès A (2001). Flore Mycologique d’Europe 6 - Les
Bolets  

Li YC, Feng B, Yang ZL (2011). Zangia, a new genus of Boletaceae
supported by molecular and morphological evidence. Fungal
Diversity 49: 125–143.
Li YC, Li F, Zeng NK, et al. (2014). A new genus Pseudoaustroboletus
(Boletaceae, Boletales) from Asia as inferred from molecular and
morphological data. Mycological Progress 13
       
     New Phytologist 205:
1443–1447.
Magnago AC (2014). Taxonomia e sistemáca de Boletaceae (Boletales)
para o Brasil     
Fungos, Algas e Plantas, Universidade Federal de Santa Catarina,

 
Proceedings
of the Gateway Compung Environments Workshop (GCE), 14
November 2010, New Orleans, LA: 1–8.
Montoya L, Bandala VM (1991). Studies on the genus Phylloporus in
          
new species and a new record. Mycotaxon 41: 471–482.
Montoya L, Bandala VM (2011). A new Phylloporus from two relict
Fagus grandifolia var. mexicana     
forest. Mycotaxon 117: 9–18.
         
Xerocomus en la Peninsula Iberica.
Bolen de la Sociedad Micológica de Madrid 32: 249–277.
Murrill WA (1909). The Boletaceae of North America – I. Mycologia 1:
4–18.
Murrill WA (1914). American Boletes. Privately published, New York.
Neves MA (2007). Toward a revision of the genus Phylloporus (Boletaceae):
systemacs and phylogeny of species from various parts of the world,

Neves MA, Capelari M (2007). A preliminary checklist of Boletales from
Brazil and notes on Boletales
(SP) Herbarium, São Paulo, SP, Brazil. Sienbus Série Ciências
Biologicas 7
Neves MA, Halling RE (2010). Study on species of Phylloporus I:
Neotropics and North America. Mycologia 102: 923–943.
Neves MA, Henkel TW, Halling RE (2010). Phylloporus colligatus sp. nov.,
a new gilled bolete from Guyana. Mycotaxon 111: 143–148.
Neves MA, Binder M, Halling RE, et al. (2012). The phylogeny of selected
Phylloporus species, inferred from NUC-LSU and ITS sequences, and
   Fungal Diversity
55: 109–123.
Nuhn ME, Binder M, Taylor AF, et al.
the Boleneae. Fungal Biology 117: 479–511.
     
Octaviania ivoryana (Boletaceae, Boletales), and the
proposal of a new genus, Afrocastellanoa. Mycologia 109: 323–332.
et al. (2007). Boletes from Belize
and the Dominican Republic. Fungal Diversity 27
Peck CH (1900). New species of fungi. Bullen of the Torrey Botanical
Club 27
Pegler DN, Young TWK (1981). A natural arrangement of the Boletales,
with reference to spore morphology. Transacons of the Brish
Mycological Society 76
Petersen RH (1974). Notes on cantharelloid fungi V. Some fungi
suspected of being gomphoid. The Journal of the Elisha Mitchell
Scienc Society 90: 53–54.
© 2018 Westerdijk Fungal Biodiversity Instute
Farid et al.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
358
Pilát A, Dermek A (1974). Hríbovité huby. Československé hríbovité a
sliziakovité huby (Boletaceae – Gomphidiaceae)
Pradeep CK, Vrinda KB, Varghese SP, et al. (2015). A new species of
Phylloporus (Agaricales, Boletaceae) from India. Phytotaxa 226:

   
overview. In: Developmental biology of higher fungi (Moore D,
Casselton LA, Wood DA, et al., eds). Cambridge University Press,
Cambridge: 1–40.
Rehner SA, Buckley E (2005). A Beauveria phylogeny inferred from

and links to Cordyceps teleomorphs. Mycologia 97: 84–98.
Rehner SA, Samuels GJ (1994). Taxonomy and phylogeny of Gliocladium
analysed from nuclear large subunit ribosomal DNA sequences.
Mycological Research 98
     Brotéria, série
Botânica 5: 4–53.
Basidiomycetes eubasidii in Rio Grande do Sul - Brasilia.
5. Agaricaceae. Iheringia, série Botânica 8
Ridgway R (1912). Color standards and color nomenclature. Self-
published, Washington D.C.
Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2:
 
a large model space. Systemac Biology 61: 539–542.
Roody WC (2003). Mushrooms of West Virginia and the Central
Appalachians. University of Kentucky Press, Lexington.
Singer R (1938). Sur les genres Ixocomus, Bolenus, Phylloporus,
Gyrodon et Gomphidius. 2. Les Bolenus. Revue de Mycologie 3:
157–177.
Singer R (1942). Das System der Agaricales. II. Annales Mycologici 40:
1–132.
Singer R (1945a). The Boleneae of Florida with notes on extralimital
species. I. The Strobilomycetaceae. Farlowia 2: 97–141.
Singer R (1945b). The Boleneae of Florida with notes on extralimital
species. II. The Boletaceae (Gyroporoideae). Farlowia 2: 223–303.
    Boleneae of Florida with notes on extralimital
species. IV. The lamellate families (Gomphidiaceae, Paxillaceae, and
Jugasporaceae). Farlowia 2
Singer R (1953). Type Studies on Basidiomycetes. VI. Lilloa 26: 57–159.
         
Monograph of South American Basidiomycetes, especially those
of the east slope of Andes and Brazil VI. The families Paxillaceae,
Gomphidiaceae, Boletaceae and Strobilomycetaceae. Nova
Hedwigia 7: 93–132.
Singer R (1970). Strobilomycetaceae (Basidiomycetes). Flora Neotropica
5. Hafner, New York.
Singer R (1978). Notes on bolete taxonomy – II. Persoonia 9: 421–438.
Singer R (1981). Notes on bolete taxonomy – III. Persoonia 11
   The Agaricales in Modern Taxonomy. 4th ed. Koeltz

        Basidiomycetes,
Agaricales) en relacion a las especies Mexacanas. Revista Mexicana
de Micología 4
          
Lilloa 22
         
ectomycorrhiza in Amazonian forests II. The Ectotrophically
Mycorrizal Fungi of the Neotropical Lowlands, Especially Central
Amazonia. Beihee Nova Hedwigia 77: 1–352.
  Basidiomycetes of Costa Rica. III. The
genus Phylloporus (Boletaceae). Brenesia 22
Singer R, Ovrebo CL, Halling RE (1990). New species of Phylloporus
and Tricholomopsis from Colombia, with notes on Phylloporus
bolenoides. Mycologia 82: 452–459.
        Boleneae of Mexico and
Central America IV. Beihee zur Nova Hedwigia 105
Singer R, Williams R (1992). Some boletes from Florida. Mycologia 84:
724–728.
     A contribuon toward a monograph of
North American species of Suillus (Boletaceae). Privately published,
Ann Arbor.
Mycologia 28
          
discussions and a new subspecies. Mycologia 50
Snell WH, Dick EA (1970). The bole of northeastern North America. SH
Service Agency, J. Cramer, Lehre.
     
    
Bioinformacs 22
Sulzbacher MA, Grebenc T, Jacques RJS, et al. (2013). Ectomycorrhizal
fungi from southern Brazil – a literature-based review, their origin
Mycosphere 4
   Xerocomus s.l. in the light of the present state of
knowledge. Czech Mycology 60
Tedersoo L, May TW, Smith ME (2010). Ectomycorrhizal lifestyle in
   
lineages. Mycorrhiza 20
  Index Herbariorum: a global
directory of public herbaria and associated sta. New York botanical

Trappe JM, Castellano MA, Halling RE, et al. (2013). Australasian
sequestrate fungi 18: Solioccasus polychromus gen. & sp. nov., a
richly colored, tropical to subtropical, hypogeous fungus. Mycologia
105: 888–895.

Cryptococcus
species. Journal of Bacteriology 172
Watling R (2008). A manual and source book of the boletes and their
allies
Watling R, Hills AE (2005). Boletes and their allies - Boletaceae,
Strobilomycetaceae, Gyroporaceae, Paxillaceae, Coniophoraceae,
Gomphidiaceae      Brish Fungus
Flora, Agarics and Bole. Vol. 1 (Henderson DM, Watling R eds).
HMSO, Edinburgh.
Watling R, Li T-H (1999). Australian boletes. A preliminary survey. Royal
Botanic Garden Edinburgh, Edinburgh.

Plant and Soil 90: 419–425.
White TJ, Bruns TD, Lee S, et al.    
       
PCR protocols: a guide to methods and applicaons (Innis MA,
Gelfand DH, Sninsky J, et al., eds). Academic Press, San Diego: 315–
322.
      et al.    
    
the fungal family Boletaceae. Fungal Diversity 69: 93–115.
     et al.    
from China. Fungal Diversity 81: 25–188.
      et al. (2014). The Genus Phylloporus
(Boletaceae, Boletales), from Mekong River Basin (Yunnan Province,
China). Chiang Mai Journal of Sciences 41: 1–13.
Zeng N-K, Cai Q, Yang ZL (2012). Corneroboletus, a new genus to
accommodate the southeastern Asian Boletus indecorus. Mycologia
104: 1420–1432.
© 2018 Westerdijk Fungal Biodiversity Instute
Phylloporopsis gen. nov.
Editor-in-Chief
Prof. dr P.W. Crous,Westerdijk Fungal BiodiversityInstitute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail:p.crous@westerdijkinstitute.nl
359
Zeng N-K, Tang L-P, Li Y-C, et al. (2013). The genus Phylloporus
(Boletaceae, Boletales  
DNA sequence analyses. Fungal Diversity 58: 73–101.
Zeng N-K, Su M-S, Liang Z-Q, et al. (2015). A geographical extension of
the North American genus Bothia (Boletaceae, Boletales) to East
Asia with a new species B. fujianensis from China. Mycological
Progress 14: 1015.
      et al. (2015). Hourangia, a new genus of
Boletaceae to accommodate Xerocomus cheoi and its allied species.
Mycological Progress 14: 37.
... Over the years, our survey of bolete diversity in tropical Africa (here restricted to suborder Boletineae) has resulted in a collection of specimens both with poroid and with lamellate hymenophores. Among the stipitate-pileate Boletineae, poroid forms are the most common, but there are several well-separated lamellate clades dispersed among the clades with poroid hymenophores (Farid et al. 2018;Zhang and Li 2018). The genera Paxillus Fr. (Paxillaceae) and Phylloporus Quél. ...
... Over the years several Paxillus and Phylloporus species have been recombined into new genera (e.g., Gilbert 1931;Singer 1942;Bresinsky et al. 1999;Farid et al. 2018;Vadthanarat et al. 2019), some outside the Boletineae, and a few new species have also been described in new lamellate genera (Singer and Digilio 1952;Zhang and Li 2018), resulting in a total of six lamellate lineages in the Boletineae: Paxillus, Phylloporus, Phyllobolites Singer (Boletaceae), Phylloboletellus Singer (Boletaceae), Phylloporopsis Angelini, Farid, Gelardi, ME Sm., Costanzo & Vizzini (Boletaceae), and Erythrophylloporus Ming Zhang & TH Li (Boletaceae). However, hitherto only Paxillus and Phylloporus are known from tropical Africa, with 6 of the 38 known Paxillus species and 15 of the 86 known Phylloporus species occurring in the region (Kirk 2021;Rammeloo 1986, 1987a). ...
... The four-gene (LSU, RPB1, RPB2 and TEF1-α) data set of Gelardi et al. (2015) was used as a base alignment to place the specimens phylogenetically. Publicly available sequences of the lamellate genera Phylloporopsis (two specimens; Farid et al. 2018), Phylloboletellus (one specimen; Binder and Hibbett 2006) and Erythrophylloporus (six specimens; Zhang and Li 2018;Vadthanarat et al. 2019;Haelewaters et al. 2020) were added to the matrix, along with the sequences of our specimens. No sequence data is available for Phyllobolites. ...
Article
Full-text available
This study presents Paxilloboletus gen. nov., a new lamellate bolete genus represented by two tropical African species, Paxilloboletus africanus sp. nov. and Paxilloboletus latisporus sp. nov. Although the new taxa strongly resemble Paxillus (Paxillaceae), they lack clamp connections and form a separate generic clade within the Boletaceae phylogeny. The new species are lookalikes, morphologically only separable by their spore morphology. Descriptions and illustrations of the new genus and new species are given, as well as comments on ecology, distribution, and morphological differences with other gilled Boletaceae.
... The Boletaceae appear to have undergone an early evolutionary radiation between 60 and 100 million years ago (mya) (Bruns and Palmer 1989;Binder and Hibbet 2006;Dentinger et al. 2010;Wu et al. 2014Wu et al. , 2016Sato et al. 2017;Varga et al. 2019;Sato 2023). This early radiation has been correlated with the convergent evolution of morphological traits, such as the lamellate hymenophore and gasteromycetization (Badou et al. 2022;Castellano et al. 2016;Farid et al. 2018;Smith et al. 2015;Zhang and Li 2018). ...
... phaeoxanthus, P. aff. arenicola, P. attenuatus, P. bellus, P. catenulatus, P. foliiporus, P. gajari, P. imbricatus, P. infuscatus, P. manausensis, P. rhodoxanthus, and P. sp., have been reported as probable ectomycorrhizal (ECM) associates of plants from the families Casuarinaceae, Dipterocarpaceae, Fabaceae, Fagaceae, Myrtaceae, and Pinaceae, which was inferred mainly in taxonomic researches, based on records of basidiomes occurring with particular plants in the ecosystems studied (Trappe 1962;Singer 1978;Singer et al. 1983;Montoya et al. 1987; Montoya and Bandala 1991;Ortiz-Santana et al. 2007;Rinaldi et al. 2008;Neves and Halling 2010;Neves et al. 2012;García-Jiménez 2013;Zeng et al. 2013;Ye et al. 2014;Li 2015, 2017;Farid et al. 2018). Only the study of Lee et al. (1997) described an ECM morphotype, as "possibly Phylloporus sp.", with Shorea leprosula Miq. ...
Article
Full-text available
The genus Phylloporus has a worldwide distribution and although members of it are known to be ectomycorrhizal associates of several tree families, their ectomycorrhizas and specific symbiotic interactions are almost unknown. In this study, basidiomes and ectomycorrhizas of Phylloporus were sampled in two monodominant tropical areas from Quercus sapotifolia and Quercus oleoides in eastern Mexico. Mycorrhizal root tips were characterized morpho-anatomically and using molecular method. Phylloporus rimosus and Phylloporus sp. were identified as ectomycorrhizas after bioinformatic analysis of the internal transcribed spacer (ITS) region and large subunit (28S) of nuclear ribosomal DNA and translation elongation factor 1α (tef1-α) region of root-tips. The morphoanatomical description of these two ectomycorrhizas are presented here. Although there was presence of Phylloporus basidiomes in the two areas where Q. sapotifolia and Q. oleoides trees were dominant, the presence of belowground ectomycorrhizas was scarce. They were only found in a pure stand of Q. sapotifolia. This is the first work that confirms from both morphoanatomical and molecular evidence the ectomycorrhizal association of members of the genus Phylloporus. Moreover, we proved the interaction of Quercus sapotifolia from the tropical Forest of eastern Mexico with two species of Phylloporus.
... All these genera are currently settled in the Boletaceae but with an uncertain phylogenetic placement (incertae sedis). The "Bothia clade" might represent an additional subfamily within the Boletaceae, although the only known synapomorphy of this grouping appears to be the cyanophily of the basidiospore wall as previously highlighted by Farid et al. (2018). On the other hand, Pseudoboletus, Gymnogaster and Baorangia do not appear to be strictly related to one another from morphological, ecological, or trophic standpoints and their phylogenetic close proximity could be only artifactual. ...
Article
Full-text available
Only two Coccoloba-associated xerocomoid boletes with smooth basidiospores are currently known from the Dominican Republic, namely Boletus ruborculus and Xerocomus coccolobae. A multilocus phylogenetic analysis of four gene markers (ITS, LSU, RPB2, TEF1) reveals that B. ruborculus forms an autonomous clade in the Boletaceae corresponding to a novel genus, which is introduced here as Tropicoboletus gen. nov., whereas X. coccolobae is confirmed as a member of Xerocomus s. str. Tropicoboletus is sister to subfamily Xerocomoideae in the combined RPB2/TEF1 Boletaceae-wide analysis. Accurate morphological descriptions of the two species based on well-annotated samples are provided, accompanied by color photographs of fresh specimens in habitat and line drawings of their main anatomical features. The holotype collections of B. ruborculus and X. coccolobae were successfully sequenced and re-examined anatomically. The distribution range of Tropicoboletus ruborculus comb. nov. is extended from the original locality in Puerto Rico to the Dominican Republic and Mexico where its presence is reported for the first time. Similarly, the Dominican collections of X. coccolobae represent the first documented occurrence of this species for the Island of Hispaniola. Based on molecular and morphological evidence, we conclude that the Belizean species Xerocomus olivaceus is conspecific with X. coccolobae and is therefore reduced into synonymy. In addition, the holotypes of Xerocomus caeruleonigrescens, Xerocomus cuneipes, and Xerocomus pseudoboletinus var. pini-caribaeae were microscopically re-studied, although their exact taxonomic placement remains unresolved in the absence of any phylogenetic inference. Molecular investigation of a paratype of Boletus guadelupae resulted in a conspecificity with the recently described Singerocomus atlanticus from Brazil, extending the biogeographic coverage of Singerocomus to the Caribbean. Accordingly, the new combination Singerocomus guadelupae is proposed and S. atlanticus is synonymized. Finally, a putative novel Xerocomus s. str. species is discovered from the Dominican Republic but not formally described for the time being due to the paucity of material available.
... However, since molecular techniques and phylogenetic analyses have been developed and used as an advanced tool for the modern concepts in systematics and taxonomy, many genera, and species in Boletaceae have been recognized and described as new, e.g., [1][2][3]. In the last five years only, nine new Boletaceae genera have been described worldwide, namely [4][5][6][7][8][9][10][11][12]. Five of those genera were described from tropical to subtropical Asia, where high fungal diversity has been reported, but yet, remains poorly known to science, e.g., [13,14]. ...
Article
Full-text available
Rubinosporus, a new bolete genus from tropical forests of Thailand is introduced with R. auriporus as the type species. The genus is unique among Xerocomoideae in producing dark ruby spore deposits. It can be differentiated from all other Boletaceae genera by the following combination of characters: pileus surface evenly covered with matted tomentum; stipe surface with evenly scattered minute squamules; golden yellow tubular hymenophore, which is relatively thin especially when young; unchanging surfaces and context when bruised or cut; smooth, broadly ellipsoid basidiospores; and dark ruby spore deposits. The Boletaceae-wide and Xerocomoideae-wide phylogenetic analyses based on four-gene data sets (atp6, cox3, rpb2, and tef1) support Rubinosporus as monophyletic and places it in Boletaceae subfamily Xerocomoideae. Full descriptions and illustrations of the new genus and species are presented.
... Most Boletaceae species have value for humans and are essential for mutualistic symbiosis with trees [3][4][5][6]. Although the family Boletaceae was established nearly two centuries ago, the species diversity of the family increased significantly in the last few decades [7][8][9][10][11][12][13][14][15][16][17][18][19]. Because the morphology of Boletaceae has convergent characteristics, the classification did not correspond to the phylogeny of Boletaceae for a long time. ...
Article
Full-text available
The family Boletaceae primarily represents ectomycorrhizal fungi, which play an essential ecological role in forest ecosystems. Although the Boletaceae family has been subject to a relatively global and comprehensive history of work, novel species and genera are continually described. During this investigation in northern China, many specimens of boletoid fungi were collected. Based on the study of their morphology and phylogeny, four new species, Butyriboletus pseudoroseoflavus, Butyriboletus subregius, Tengioboletus subglutinosus, and Suillellus lacrymibasidiatus, are introduced. Morphological evidence and phylogenetic analyses of the single or combined dataset (ITS or 28S, rpb1, rpb2, and tef1) confirmed these to be four new species. The evidence and analyses indicated the new species’ relationships with other species within their genera. Detailed descriptions, color photographs, and line drawings are provided. The species of Butyriboletus in China were compared in detail and the worldwide keys of Tengioboletus and Suillellus were given.
Article
Full-text available
Agaricales, Russulales and Boletales are dominant orders among the wild mushrooms in Basidiomycota. Boletaceae, one of the major functional elements in terrestrial ecosystem and mostly represented by ectomycorrhizal symbionts of trees in Indian Himalaya and adjoining hills, are extraordinarily diverse and represented by numerous genera and species which are unexplored or poorly known. Therefore, their hidden diversity is yet to be revealed. Extensive macrofungal exploration by the authors to different parts of Himalaya and surroundings, followed by through morphological studies and multigene molecular phylogeny lead to the discovery of five new species of wild mushrooms: Leccinellum bothii sp. nov., Phylloporus himalayanus sp. nov., Phylloporus smithii sp. nov., Porphyrellus uttarakhandae sp. nov., and Retiboletus pseudoater sp. nov. Present communication deals with morphological details coupled with illustrations and phylogenetic inferences. Besides, Leccinellum sinoaurantiacum and Xerocomus rugosellus are also reported for the first time from this country.
Article
Full-text available
Boletaceae, the largest family in Boletales, has been attracted by mycologists in the world due to its diverse morphology and complex history of evolution. Although considerable work has been done in the past decades, novel taxa are continually described. The current study aimed to introduce three new taxa and one new record of Boletaceae from China. The morphological descriptions, color photographs, phylogenetic trees to show the positions of the taxa, and comparisons with allied taxa are provided. The new genus Hemilanmaoa is unique in the Pulveroboletus group, and Hemilanmaoa retistipitatus was introduced as the type species. It can be distinguished by its bluing basidioma when injured, a decurrent hymenophore, a stipe covered with distinct reticulations, and a fertile stipitipellis. Porphyrellus pseudocyaneotinctus is characterized by its pileipellis consisting of broadly concatenated cells and thin-walled caulocystidia in Porphyrellus . In Phylloporus , Phylloporus biyangensis can be distinguished by its hymenophores that change to blue when injured and yellow basal mycelium. Lanmaoa angustispora , as a new record, is first reported in Northern China. Internal transcribed spacer (ITS), 28S rDNA (28S), translation elongation factor 1-alpha (tef1-α), RNA polymerase II subunit 1 (rpb1), and RNA polymerase II subunit 2 (rpb2) were employed to execute phylogenetic analyses.
Article
Full-text available
Approximately 1,700 mushroom specimens were collected in the Dominican Republic from 2004 to 2021, comprising 450 species and 210 genera, as determined by morphological and/or molecular characteristics. The macrofungi belonging to Ascomycota include 28 species and 15 genera, while those in Basidiomycota include 432 species and 195 genera. Much taxonomic work is still ongoing, both for the identification of many collections and additional collecting for species not yet catalogued. It is estimated that this checklist represents 5−10% of the macrofungi present in the country. The webpage, www.neotropicalfungi.com, has been set up to document and illustrate the fungi of the Dominican Republic.
Article
Full-text available
The Boletaceae is the largest family of fleshy fungi in the Boletales. Despite the extensive history of work in the Boletaceae in North America, novel species and genera are continually being described. Multigene molecular phylogenetic analyses of five loci were combined with thorough morphological studies to investigate the taxonomy of several boletes from the southeastern USA. Based on our results, we describe four new species: Aureoboletus pseudoauriporus, Cyanoboletus bessettei, Hemileccinum floridanum, and Xerocomellus bolinii. We also propose three combinations to reflect the results of our molecular analyses: Cyanoboletus cyaneitinctus comb. nov., a bolete that is widespread across the eastern USA, C. cyaneitinctus f. reticulatus, and Lanmaoa sublurida, a rarely-documented bolete that is so far known only from Florida.
Article
Full-text available
Three species of pleurotoid, putatively lignicolous basidiomycetes previously described in the genus Lactarius sect Panuoideiwere redescribed from fresh material collected in Guyana and Japan. In Guyana, Lactarius panuoides and Lactarius campinensis were restricted to forests dominated by ectomycorrhizal Dicymbe species (Caesalpiniaceae) and basidiomata of both pleurotoid species were subtended by ectomycorrhizal rootlets. This suggested an ectomycorrhizal nutritional mode for these fungi. Analysis of DNA sequences in the nuclear large subunit region taken from basidiomata and co-occurring ectomycorrhizae of L. panuoides and L. campinensis confirmed that these fungi are ectomycorrhizal and that their fruiting habit on organic deposits and well rotted wood at elevated positions is not due to saprotrophy, as previously assumed. Lactarius uyedae was collected in Japan from mature temperate forests dominated by Fagaceae, yet ectomycorrhizal rootlets were not found in association with the basidiomata. Morphological features and analysis of DNA sequences suggested that L. panuoides and L. uyedae have affinities with established sections of the genus Lactarius, regardless of the pleurotoid morphology of their basidiomata, and that L. campinensis should be transferred to the genus Russula. Discussion is provided for the genus Pleurogala, which was erected to accomodate putatively lignicolous, pleurotoid species of Lactarius.
Article
Full-text available
Phylloporus fibulatus and Tricholomopsis humboldtii from Colombian oak forests are newly described, and a new section of Phylloporus, sect. Fibulati, is proposed. Phylloporus boletinoides is redescribed from recently collected material and placed in sect. Manausensis. A comparison of characters distinguishing Paxillus and Phylloporus is given.
Article
Full-text available
Two new species of Phylloporus from Bangladesh forests dominated by Shorea robusta are described and illustrated, based on morphological and molecular phylogenetic evidence. Phylloporus attenuatus is characterized by its wine-red to brownish-red pilei, decurrent lamellae that stain blue, downwards tapering stipe, trichodermium pileipellis, and ellipsoidalovoid to ellipsoidal basidiospores (7–8 × 4–5 µm). Phylloporus catenulatus is characterized by its small-sized basidiomata with reddish-brown pilei, narrowly decurrent with distant lamellae that stain blue, sub epithelium pileipellis, and ellipsoidal to ellipsoidal-ovoid basidiospores (8–9.5 × 4–5 µm). Both new species of Phylloporus are distinctive from any known taxa based on phylogenetic analyses of partial sequences of the nuc rDNA internal transcribed spacer (ITS, including ITS1-ITS2 but not 5.8S) region, partial sequence of nuclear ribosomal large subunit (28S) domains D1 and D2, and translation elongation factor 1-α (TEF1α). Both species are compared with phenotypically similar taxa and illustrated with line drawings and photographs. A key to the species of Phylloporus known from Bangladesh is provided.
Article
Four species of Boletaceae are here described or discussed, one new to the state of Florida, and two with new observations. A new species Leccinum roseoscabrum is proposed.
Article
The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.
Article
The sequestrate (truffle-like) basidiomycete Octaviania ivoryana was originally described based on collections from Zimbabwe, Kenya, Guinea, and Senegal. This species has basidiomes that stain blue-green and basidiospores with crowded spines that are characteristic of the genus Octaviania. However, O. ivoryana is the only Octaviania species described from sub-Saharan Africa, and the phylogenetic relationship of the species to other species of Octaviania sensu stricto has not been previously investigated. We examined the phylogenetic position of the isotype and paratype specimens of O. ivoryana based on two nuc rDNA loci—ITS1-5.8S-ITS2 (internal transcribed spacer [ITS]) and partial 28S—and the translation elongation factor 1-α gene. The resultant phylogenies indicate that O. ivoryana does not belong to Octaviania s. s. but instead forms a clade with the epigeous bolete genus, Porphyrellus sensu stricto (i.e., P. porphyrosporus and allies). The internal transcribed spacer phylogeny also recovers a monophyletic clade that includes sequences from O. ivoryana basidiomes as well as sequences from ectomycorrhizal root tips of Uapaca, Anthonotha, and assorted ectomycorrhizal Fabaceae species, suggesting that there is likely additional undescribed diversity within the lineage. We accordingly propose a new genus, Afrocastellanoa M.E. Sm. & Orihara, to accommodate the species O. ivoryana. Afrocastellanoa is morphologically distinct from Octaviania in the combination of a solid gleba, multilayered peridium, and the lack of distinct hymenium within the gleba. Our data suggest that the genus Afrocastellanoa is a unique sequestrate lineage with one described species and several undescribed species, all of which likely form ectomycorrhizas with African trees.
Article
Bothia is described as a new genus in the Boletaceae based on Boletinus castanellus described by C.H. Peck from eastern North America. A widespread, occasionally encountered taxon, Bothia castanella possesses a combination of macro- and microscopic features that has prompted past placement in seven different genera. Yet, as a species it is readily recognizable with its chestnut brown, dry pileus, decurrent, pale brown hymenophore with radially elongated tubes, a short, sometimes eccentric, exannulate stipe, yellow brown spore deposit and constant association with Quercus. Phylogenetic analyses of large subunit rDNA and BLAST searches using the ITS region confirm the placement of B. castanella as a unique generic lineage in the Boletaceae.