ArticlePDF Available

The Meruliaceae of Russia. II. Panus

Authors:
  • Perm State National Research University, Perm, Russia

Abstract and Figures

The history of taxonomical study of the genus Panus Fr. (Meruliaceae, Polyporales, Basidiomycota) is considered. A current revision of the genus in Russia was carried out. Two species of the genus Panus were recorded in various regions of Russia, Panus conchatus (Bull.) Fr. and P. lecomtei (Fr.) Corner. For P. conchatus, the lateral ecotype with conchiform pileus and rather dark wine-red to lilac-brown surface is more characteristic. Two main deviations from such a neutral type were described: 1) the chromatic one, characterized by light-colored (red or clay-yellow), usually conchiform pilei [P. conchatus var. inconstans (Pers.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko] and 2) the growth one, characterized by a central (often bulbous) stipe, funnel-shaped cap and strongly inrolled margin [P. conchatus var. torulosus (Pers.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. For P. lecomtei, the ecotype having small eccentric to lateral elegant stipe is considered. However, the stipe shape and size are variable. The stipe can be either central-rather small, with a bulbous base [P. lecomtei var. semirudis (Singer) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko], or strongly elongated [P. lecom-tei var. stipitata (Malk.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. Four new combinations, P. conchatus var. inconstans, P. conchatus var. torulosus, P. lecomtei var. semirudis, and P. lecomtei var. stipitata were suggested. It was concluded that Panus represents rather well-delimited genus belonging to merulioid phylo-genetic radiation, whose morphotype on essential features of its organization is trametoid, but superficial habitual features make it closer to the lentinoid one. Its essential features are the abundance of fibrohyphae which form textura intricata, slowly growing basidiocarps and strictly lamellate hymenophore. Apparently, such an adaptive structure was generated at arid and warm climatic zones, and only 2 species, P. conchatus, and P. lecomtei, have been irradiated into temperate latitudes. The substrate spectrum of these fungi is determined by their insensitivity to substrate moistening and best ability to colonize hardwood, so the greatest number of their finds can be made on stumps and large remnants of stand-formers of corresponding forest areas. In Russia, a reliable association of Panus species to Betula spp. and Populus spp. was revealed. An ecotypic differentiation of the genus Panus is related to the quality of sub-strate colonized. The basidiocarps, growing over top cuts of the stumps, are characterized by strong central stipe (P. conchatus var. torulosus, P. lecomtei var. semirudis), whereas basidiocarps with sublateral attachment are common on fallen logs. Certain chromatic adaptations (P. conchatus var. inconstans) are associated with an insolation regime of the habitat. During last years, the Panus representatives have attracted an interest in biomedical research development. Their resource potential estimation should proceed from the fact that within Russian territory, such areas as Middle Belt of European Russia, North Caucasus, Altai and other regions of Southern Siberia are promising for replenishing the strains of P. conchatus and P. lecomtei. Пермский государственный национальный исследовательский университет, ПГНИУ, ул. Букирева, 15, г. Пермь, 614990, Россия 3 Московский государственный строительный университет, МГСУ, Ярославское шоссе, д. 26, г. Москва, 129337, Россия 30 Zmitrovich I. V. et al. The Meruliaceae of Russia. II. Panus Ключевые слова: базидиомицеты, лентиноидные грибы, мерулиевые грибы, модификационная изменчивость, Россия. Аннотация. Рассмотрены этапы таксономического изучения рода Panus Fr. (Meruliaceae, Polyporales, Ba-sidiomycota). Проведена ревизия видов, известных для России. Изучены материалы Гербариев Ботанического института им. В. Л. Комарова (LE) и Пермского государственного национального исследовательского уни-верситета (PERM). Впервые обощены литературные и гербарные данные о внутривидовом полиморфизме бореальных таксонов рода. Согласно имеющимся гербарным и литературным данным, на территории России зафиксировано 2 вида рода Panus-Panus conchatus (Bull.) Fr. и P. lecomtei (Fr.) Corner. Для P. conchatus наибо-лее характерен латеральный экотип с раковинообразной шляпкой и довольно темной лилово-коричневой по-верхностью. Были описаны два основных отклонения от такого модального типа: 1) хроматическое, характе-ризующееся светло-красными (красными или глиняно-желтыми) шляпками [P. conchatus var. inconstans (Pers.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko] и 2) ростовое, характеризующееся центральной (часто бульбовидно вздутой) ножкой, воронковидной шляпкой и сильно подогнутым краем [P. conchatus var. torulosus (Pers.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. Для P. lecomtei наиболее харак-терным экотипом является латеральный, с небольшой ножкой. Встречаются экотипы со вздутой центральной [P. lecomtei var. semirudis (Singer) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko], либо сильно удлиненной латеральной ножкой (P. lecomtei var. stipitata). Для перечисленных разновидностей было пред-ложено 4 новые комбинации [P. conchatus var. inconstans, P. conchatus var. torulosus, P. lecomtei var. semirudis, P. lecomtei var. stipitata Malk.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. Проведенные ис-следования позволяют характеризовать Panus как хорошо ограниченный род, относящийся к мерулиоидной филогенетической радиации, морфотип которого в основе траметоидный, но несущий поверхностные черты лентиноидных грибов. Его существенными особенностями являются обилие фиброгиф, образующих «пере-путанную текстуру» ткани, медленно растущие базидиомы и строго пластинчатый гименофор. По-видимому, такая адаптивная структура была выработана изначально в условиях теплого засушливого климата, и лишь 2 вида (P. conchatus и P. lecomtei) позднее приспособились к обитанию в умеренных широтах. Субстратный спектр этих грибов определяется их нечувствительностью к обводненности субстрата и лучшей способно-стью к колонизации древесины лиственных пород, поэтому наибольшее количество их находок можно сделать на пнях и крупных остатках основных лесообразующих пород лесов умеренных и теплых широт. Гербарный материал с территории России собран с пней и валежной древесины из родов Betula и Populus. Экотипиче-ская дифференциация рода Panus связана с особенностями колонизированного субстрата. Базиодиомы, по-являющиеся сверху пней, характеризуются обычно крепкой центральной ножкой (P. conchatus var. torulosus, P. lecomtei var. semirudis), в то время как на боковых поверхностях валежных стволов развиваются латерально прикрепленные экотипы со слабо развитой ножкой. Оценка ресурсного потенциала представителей этого рода в пределах России должна исходить из наибольшей распространенности P. conchatus и P. lecomtei в Средней полосе России, на Северном Кавказе, Алтае и других районах Южной Сибири, где имеет смысл организовать работы по пополнению штаммового разнообразия этих видов.
Content may be subject to copyright.
ISSN 1560–7259 (print edition)
TURCZANINOWIA
ISSN 1560–7267 (online edition)
Turczaninowia 21 (3): 29–44 (2018)
DOI: 10.14258/turczaninowia.21.3.4
http://turczaninowia.asu.ru
Поступило в редакцию 28.02.2018 Submitted 28.02.2018
Принято к публикации 09.08.2018 Accepted 09.08.2018
УДК 582.284(470)
The Meruliaceae of Russia. II. Panus
I. V. Zmitrovich1, M. A. Bondartseva1, L. G. Perevedentseva2, A. G. Myasnikov3, A. E. Kovalenko1
1 Komarov Botanical Institute, BIN RAS, Prof. Popov str., 2, St. Petersburg, 197376, Russia. Е-mail: IZmitrovich@binran.ru
2 Perm State National Research University, PGNIU, Bukireva str., 15, Perm, 614990, Russia
3 Moscow State University of Civil Engineering, MSSU, Yaroslavskoe shosse, 26, Moscow, 129337, Russia
Keywords: basidiomycetes, broadleaf wood-associated fungi, merulioid fungi, modications variability, Russia.
Summary. The history of taxonomical study of the genus Panus Fr. (Meruliaceae, Polyporales, Basidiomycota)
is considered. A current revision of the genus in Russia was carried out. Two species of the genus Panus were re-
corded in various regions of Russia, Panus conchatus (Bull.) Fr. and P. lecomtei (Fr.) Corner. For P. conchatus, the
lateral ecotype with conchiform pileus and rather dark wine-red to lilac-brown surface is more characteristic. Two
main deviations from such a neutral type were described: 1) the chromatic one, characterized by light-colored (red
or clay-yellow), usually conchiform pilei [P. conchatus var. inconstans (Pers.) Zmitr., Bondartseva, Perevedentseva,
Myasnikov et Kovalenko] and 2) the growth one, characterized by a central (often bulbous) stipe, funnel-shaped cap
and strongly inrolled margin [P. conchatus var. torulosus (Pers.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et
Kovalenko]. For P. lecomtei, the ecotype having small eccentric to lateral elegant stipe is considered. However, the
stipe shape and size are variable. The stipe can be either central – rather small, with a bulbous base [P. lecomtei var.
semirudis (Singer) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko], or strongly elongated [P. lecom-
tei var. stipitata (Malk.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. Four new combinations,
P. conchatus var. inconstans, P. conchatus var. torulosus, P. lecomtei var. semirudis, and P. lecomtei var. stipitata
were suggested. It was concluded that Panus represents rather well-delimited genus belonging to merulioid phylo-
genetic radiation, whose morphotype on essential features of its organization is trametoid, but supercial habitual
features make it closer to the lentinoid one. Its essential features are the abundance of brohyphae which form textura
intricata, slowly growing basidiocarps and strictly lamellate hymenophore. Apparently, such an adaptive structure
was generated at arid and warm climatic zones, and only 2 species, P. conchatus, and P. lecomtei, have been irradiated
into temperate latitudes. The substrate spectrum of these fungi is determined by their insensitivity to substrate moist-
ening and best ability to colonize hardwood, so the greatest number of their nds can be made on stumps and large
remnants of stand-formers of corresponding forest areas. In Russia, a reliable association of Panus species to Betula
spp. and Populus spp. was revealed. An ecotypic dierentiation of the genus Panus is related to the quality of sub-
strate colonized. The basidiocarps, growing over top cuts of the stumps, are characterized by strong central stipe (P.
conchatus var. torulosus, P. lecomtei var. semirudis), whereas basidiocarps with sublateral attachment are common on
fallen logs. Certain chromatic adaptations (P. conchatus var. inconstans) are associated with an insolation regime of
the habitat. During last years, the Panus representatives have attracted an interest in biomedical research development.
Their resource potential estimation should proceed from the fact that within Russian territory, such areas as Middle
Belt of European Russia, North Caucasus, Altai and other regions of Southern Siberia are promising for replenishing
the strains of P. conchatus and P. lecomtei.
Мерулиевые грибы России. II. Род Panus
И. В. Змитрович1, М. А. Бондарцева1, Л. Г. Переведенцева2, А. Г. Мясников3, А. Е. Коваленко1
1 Ботанический институт им. В. Л. Комарова, БИН РАН, ул. Проф. Попова, 2, г. Санкт-Петербург, 197376, Россия
2 Пермский государственный национальный исследовательский университет, ПГНИУ,
ул. Букирева, 15, г. Пермь, 614990, Россия
3 Московский государственный строительный университет, МГСУ, Ярославское шоссе, д. 26, г. Москва, 129337, Россия
30 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
Ключевые слова: базидиомицеты, лентиноидные грибы, мерулиевые грибы, модификационная изменчивость,
Россия.
Аннотация. Рассмотрены этапы таксономического изучения рода Panus Fr. (Meruliaceae, Polyporales, Ba-
sidiomycota). Проведена ревизия видов, известных для России. Изучены материалы Гербариев Ботанического
института им. В. Л. Комарова (LE) и Пермского государственного национального исследовательского уни-
верситета (PERM). Впервые обощены литературные и гербарные данные о внутривидовом полиморфизме
бореальных таксонов рода. Согласно имеющимся гербарным и литературным данным, на территории России
зафиксировано 2 вида рода Panus – Panus conchatus (Bull.) Fr. и P. lecomtei (Fr.) Corner. Для P. conchatus наибо-
лее характерен латеральный экотип с раковинообразной шляпкой и довольно темной лилово-коричневой по-
верхностью. Были описаны два основных отклонения от такого модального типа: 1) хроматическое, характе-
ризующееся светло-красными (красными или глиняно-желтыми) шляпками [P. conchatus var. inconstans (Pers.)
Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko] и 2) ростовое, характеризующееся центральной
(часто бульбовидно вздутой) ножкой, воронковидной шляпкой и сильно подогнутым краем [P. conchatus var.
torulosus (Pers.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. Для P. lecomtei наиболее харак-
терным экотипом является латеральный, с небольшой ножкой. Встречаются экотипы со вздутой центральной
[P. lecomtei var. semirudis (Singer) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko], либо сильно
удлиненной латеральной ножкой (P. lecomtei var. stipitata). Для перечисленных разновидностей было пред-
ложено 4 новые комбинации [P. conchatus var. inconstans, P. conchatus var. torulosus, P. lecomtei var. semirudis,
P. lecomtei var. stipitata Malk.) Zmitr., Bondartseva, Perevedentseva, Myasnikov et Kovalenko]. Проведенные ис-
следования позволяют характеризовать Panus как хорошо ограниченный род, относящийся к мерулиоидной
филогенетической радиации, морфотип которого в основе траметоидный, но несущий поверхностные черты
лентиноидных грибов. Его существенными особенностями являются обилие фиброгиф, образующих «пере-
путанную текстуру» ткани, медленно растущие базидиомы и строго пластинчатый гименофор. По-видимому,
такая адаптивная структура была выработана изначально в условиях теплого засушливого климата, и лишь
2 вида (P. conchatus и P. lecomtei) позднее приспособились к обитанию в умеренных широтах. Субстратный
спектр этих грибов определяется их нечувствительностью к обводненности субстрата и лучшей способно-
стью к колонизации древесины лиственных пород, поэтому наибольшее количество их находок можно сделать
на пнях и крупных остатках основных лесообразующих пород лесов умеренных и теплых широт. Гербарный
материал с территории России собран с пней и валежной древесины из родов Betula и Populus. Экотипиче-
ская дифференциация рода Panus связана с особенностями колонизированного субстрата. Базиодиомы, по-
являющиеся сверху пней, характеризуются обычно крепкой центральной ножкой (P. conchatus var. torulosus,
P. lecomtei var. semirudis), в то время как на боковых поверхностях валежных стволов развиваются латерально
прикрепленные экотипы со слабо развитой ножкой. Оценка ресурсного потенциала представителей этого рода
в пределах России должна исходить из наибольшей распространенности P. conchatus и P. lecomtei в Средней
полосе России, на Северном Кавказе, Алтае и других районах Южной Сибири, где имеет смысл организовать
работы по пополнению штаммового разнообразия этих видов.
Introduction
This paper continues a taxonomical survey on the
genera of Meruliaceae (Polyporales, Basidiomycota)
presented in Russian mycobiota (Zmitrovich et al.,
2016), and it is devoted to an interesting genus
Panus Fr., for a long time considering rst within
Pleurotaceae, later within Polyporaceae families,
but in fact being closely related to the genera
Cerrena Gray and Steccherinum Gray of merulioid
phylogenetic radiation.
The genus Panus was described by Fries in
«Epicrisis Systematis Mycologici seu Synopsis
Hymenomycetum» (Fries, 1838) where it was
characterized as follows: «Totus fungus carnoso-
coriaceus, tenax, arescens, contexto broso.
Lamellae perfectae, tenaces, rmae, inaequales,
acie acuta integerrima, saepe venoso-connexae;
trama distincta, brosa in hymenium radians.
Sporidia alba. Fungi epixyli, diormes laterales,
diu persistens». From previously described genus
Lentinus Fr. (Fries, 1825) the genus Panus was
dierentiated by Fries in the following way: «A
Lentinis genuinis, quales omnes Europaei, lamellis
tenacibus et acie integerrima mox dignoscitur».
Hereby, an entire gills edge in Panus representatives
was established as the basic discriminant character
of two genera by Fries. In total, 17 species have been
distinguished by Fries in the genus Panus, while
some of which cannot be correlated with existing
herbarium material (below such species will be
marked with an interrogation point): Panus farneus
Fr. (?), P. cyatniformis (Schae.) Fr. [= Neolentinus
cyatniformis (Schae.) Della Mag. et Trassin.],
P. pycnoticus (Klotzsch) Fr. (?), P. torulosus (Pers.)
Fr. [= P. conchatus (Bull.) Fr.], P. rudis Fr. [= P.
lecomtei (Fr.) Corner], P. velutinus (Fr.) Sacc.,
31
Turczaninowia 21 (3): 29–44 (2018)
P. hirtus Fr. (?), P. foetens Fr. (?), P. dorsalis (Bosc.)
Fr. (?), P. stipticus (Bull.) Fr. [= Panellus stipticus
(Bull.) P. Karst.], P. farinaceus (Schumach.) Fr. (=
Panellus stipticus), P. lunatus Fr. (?), P. copulatus
(Ehrenb.) Fr. [= Lentinus copulatus (Ehrenb.)
Henn.], P. patellaris Fr. [= Tectella patellaris
(Fr.) Murrill], P. delastri Fr. (?), P. lithophilus Fr.
(?). Subsequently, the character of gills edge for
dierentiation Panus from Lentinus was adopted by
many agaricologists.
An important episode in Panus taxonomy is
related to the works by Singer. In 1951, on the basis
of complex similarities between Lentinus, Panus,
and Polyporus Fr., this mycologist has united three
genera with such genera as Pseudovafolus Pat.,
Mycobonia Pat., Phyllotopsis E.-J. Gilbert et Donk
ex Singer, and Pleurotus (Fr.) P. Kumm. in the
family Polyporaceae (Singer, 1951). Considering
the Lentinus lepideus (Fr.: Fr.) Fr. as type species
for Lentinus (the more correct modern typication
is L. crinitus L.), Singer unites all the small-spored
species within the genus Panus. Thereafter he has
reissued this system three times without essential
changing of the concept (Singer, 1962, 1975, 1986).
Corner (1981) has dierentiated the genera
Lentinus and Panus on the basis of the branching
pattern of skeletal hyphae which are organized as
dendrites with an inated axial element in Lentinus
and stay unbranched in Panus. In 1983, Pegler has
published a monograph on the genus Lentinus, which
includes according to this author the Panus-union
as a subgenus, but basing on Corner’s principles.
Within the Lentinus subgenus there are considered
species with branched and swollen sclerohyphae,
whereas the Panus subgenus unites the species with
brohyphae (Pegler, 1983).
In the period of molecular taxonomy (Ko, Jung,
1999; Grand, 2004; Larsson, 2007; Lee, Lim,
2010; Miettinen, Larsson, 2011; Zmitrovich, Maly-
sheva, 2013) it was shown that the genus Panus
sensu Corner is substantially distant from Lentinus
(core Polyporaceae), but closely related to the
genus Cerrena Gray (large merulioid phylogenetic
radiation). Within the framework of “splitter’s
approach”, even two closely related families –
Cerrenaceae and Panaceae – have been described
(Justo et al., 2017), although we believe that the
preservation of the “large Meruliaceae” lies in canvas
of more balanced classication of the Polyporales.
Distracting from macromorphology, it can be
seen that Cerrena and Panus have much in common:
e. g. unbranched brohyphae, highly characteristic
scleried elements protruding the hymenium,
traditionally called as sclerocystidia or metuloids
in the genus Panus, and as pseudocystidia in the
genus Cerrena, nally, rather similar basidia and
basidiospores. It should be emphasized the absence
of any inated hyphal elements (characteristic
feature of representatives of Lentinus and Polyporus
s. l.) in all tissues of representatives of the genus
Panus. This feature, as well as rather slow growth
of the basidiomata with the formation of solid and
often twisting stipe of textura intricata, allows to
interpret Panus-like morphotype consider only
supercially similar to lentinoid one. It is rather a
unique adaptive structure combining true lamellate
hymenophore and trametoid growth and tissues
organization. Studies on hymenophore development
in Panus conchatus, P. lecomtei, and P. fulvus
(Hibbett et al., 1993) also conrm this conclusion.
The aim of the present paper is detailed
characterization of the genus Panus in Russia,
including a modern morphological elaboration,
survey of intraspecies polymorphism, substrate
preferences and resource potential, considering that
some species of this genus are known as promising
subject for biomedical research, since produce
panepoxidone and isopanepoxidone, substances that
has an inhibitory eect on a number of inammatory
chemokines secreted by cancer tissues (Erkel et al.,
1996; Shotwell et al., 2000).
Materials and Methods
The macroscopic descriptions were based on a
study of fresh and dried specimens. The materials
of the herbaria of Komarov Botanical Institute (St.
Petersburg, LE) and Perm State National Research
University (PERM) were studied. Microscopic
preparations were mounted from dried material in
Melzer’s solution, 10 % ammoniacal Congo Red
and 5 % aqueous solution of KOH, using a LOMO
Micmed-6 light microscope. The hyphal system
was revealed and described according to updated
technique (Zmitrovich et al., 2009). The size of
mature spores was measured on 30 spores in distilled
water and Melzer’s solution.
Results and Discussion
Meruliaceae Rea, 1922, British Basid.: 620.
= Podoscyphaceae D. A. Reid, 1965, Beih. Nova
Hedwigia 18: 43.
= Steccherinaceae Parmasto, 1968, Consp. syst.
Cort.: 169.
= Bjerkanderaceae Jülich, 1982, Bibl. Mycol. 85:
356.
= Hapalopilaceae Jülich, 1982, Bibl. Mycol. 85:
370.
32 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
= Hyphodermataceae Jülich, 1982, Bibl. Mycol.
85: 373.
= Mycorrhaphiaceae Jülich, 1982, Bibl. Mycol.
85: 380.
= Phanerochaetaceae Jülich, 1982, Bibl. Mycol.
85: 384.
= Phlebiaceae Jülich, 1982, Bibl. Mycol. 85:
385; Boidin, Mugnier et Canales, Mycotaxon 66:
486, 1998 illeg.
= Irpicaceae Spirin et Zmitr., 2003, Mycena 3:
48.
= Cerrenaceae Miettinen, Justo et Hibbett, 2017,
Fungal Biol. 121: 817.
= Panaceae Miettinen, Justo et Hibbett, 2017,
Fungal Biol. 121: 817.
Steccherinoideae Parmasto, 1968, Consp.
syst. Cort.: 172.
Panus Fr., 1838, Epicr. Syst. Mycol.: 396–397.
Nomen conservandum.
= Lentinopanus (Pilát) Pilát, 1941, Ann. Mycol.
39: 72 (type Agaricus conchatus Bull. : Fr.).
Basidiocarp solitary or caespitose, medium-sized
to large, slowly growing, tough and persistant, origi-
nating from a woody substratum or from sclerotium,
of lentioid habitus with gymnocarpic development.
Pileus convex, then depressed to umbilicate, tough
with dry, with hirsute, brillose-squamulose, squa-
mose, or glabrous surface. Margin mostly inrolled,
even, or radially ribbed. Hymenophore lamellate.
Gills of 2–4 levels, decurrent, rarely furcate, mod-
erately spaced to densely crowded; edge entire.
Stipe central to lateral and very reduced, sti, solid,
continuous with the pileus. Context brous, tough-
eshy to coriaceous, mostly thin. Spore print white
to cream colour.
Hyphal system dimitic with unbranched brohy-
phae. Skeletal hyphae (brohyphae) predominates
in mature basidiocarps, thick-walled, hyaline or
yellowish. Generative hyphae thin- to moderately
thick-walled, with clamp connections, hyaline. Pi-
leipellis as a repent epicutis of radially parallel
hyphae or collapsing trichoderm. Hymenophoral
trama irregular, of textura intricata, with sometimes
thickening hymenium. Gills-edge usually sterile; as
a rule, with emergent pseudocystidia (cheilocystid-
ia). Pleurocystidia absent or present pseudocystidia.
Basidia clavate with medial constriction, 4-spored,
with a basal clamp. Basidiospores cylindric, or
ellipsoid-cylindric to ovoid, hyaline, thin-walled,
smooth, lacking both a perisporium and a germ-
pore, inamyloid, acyanophilous.
On dying and dry trees, fallen logs, stumps and
large fallen branches of trees and shrubs, presum-
able angiosprems. Causes a white rot. Worldwide,
more abundant in the tropics.
Type species: Agaricus torulosus Pers.,
1801, Syn. meth. fung. 2: 475 : Fr., 1821, Syst. My-
col. 1: 181 = A. conchatus Bull., 1787, Herb. Fr. 7:
tab. 298 : Fr., 1821, Syst. Mycol. 1: 181 (selected in
Greuter et al. 2000).
Type specimen is deposited in Friesian herbari-
um of the Uppsala University Museum of Evolution
(UPS) (Ryvarden, 1991).
Dierential generic suggestions. The genus
Lentinus Fr. has a supercial resemblance, but dif-
fers by skeleto-binding hyphae with inated axial
segment (all the Panus representatives have unin-
ated skeletals). The genus Lignomyces R. H. Pe-
tersen et Zmitr. is supercially similar too, but dif-
fers by monomitic hyphal system with strongly in-
ated hyphal segments and a dorsal stem attachment
(Petersen et al., 2015). Phylogenetically related ge-
nus Cymatoderma Jungh. diers by podoscyphoid
habitus and the presence of ventricose hymenial
gloeocystidia. Phylogenetically related genus Cer-
rena diers by daedaleoid/trametoid habitus and
less elongated (in median) basidiospores.
Ecology and substrata. All the Panus repre-
sentatives are rather thermophilic, xerotolerant and
non-sensitive to substrate watercut, why they are es-
pecially often found on large logs and stumps, with-
out allocation of strict substrate specicity. On the
other hand, they have not very high enzymatic ac-
tivity and are generally not adapted to deep decom-
position of coniferous wood. This circumstance, as
well as their attraction to large-scale tree residues,
are the reasons that in zonal biomes they are most
often associated to deciduous stand formers (mostly
Betula and Populus in the temperate-boreal zone,
and Quercus and Fagus in the nemoral zone), al-
though they readily colonize many other trees.
Type of rot. All the Panus representatives cause
a white rot. Oxidative enzymes were carefully in-
vestigated in Panus lecomtei and P. conchatus
(Zhang et al., 2006; Zhou et al., 2014). It was shown
that puried enzymes of these fungi belong to the
laccases family, due to the following observations:
1) the enzyme exhibited a broad substrate pattern,
2) oxygen was used as an oxidative agent, while
there was no H2O2 to initiate the catalytic oxidation,
and 3) the determined N-terminal primary structure
of the enzyme exhibited a high degree of similarity
with the corresponding laccases sequences.
33
Turczaninowia 21 (3): 29–44 (2018)
Secondary metabolites and perspectives in
biomedical research. A metabolite of great appli-
cation value, panepoxidone has been detected in P.
lecomtei by Erkel group (Erkel et al., 1996). Such
metabolite as isopanepoxidone has been isolated
from P. conchatus by Shotwell et al. (2000), and this
substance has a similar eect reducible to the pre-
vention of degradation of inhibiting particles of NF-
κB (IκBα) that inactivate this transcriptional factor.
NF-κB chemokine represents the main pro-inam-
matory factor, constitutionally associated with can-
cer progression (Zmitrovich, 2015), therefore such
substance as panepoxidone is a prospective subject
for biomedical research, whereas the Panus species
have a great resource value.
Also, it should be mentioned the production of
pink-lilac pigment complexes by both tropical and
temperate Panus representatives which were noted
already by Miller (1967), but yet were not chemi-
cally fractioned.
Specics of Panus-like morphotype. Basidi-
ocarp development in the Panus representatives
was studied by Hibbett et al. (1993), whereas their
hyphal dierentiation was studied by Zmitrovich et
al. (2009). As it was shown, the hymenophore dif-
ferentiation in Panus involves the periclinal growth
of context hyphae below a closed surface palisade
of hymenial elements, resulting in a cantharelloid
appearance and radiate trama. This pattern is quali-
tatively dierent from that in Lentinus s. str., which
suggests that lamellae of Panus and Lentinus are not
homologous. P. conchatus and P. lecomtei basidi-
ocarps have short stipes, whereas P. fulvus basidi-
ocarps have an elongate stipe, and develop from a
pseudosclerotium. P. conchatus sporocarps devel-
oped an ephemeral partial veil that was obliterated
during basidiocarp expansion, whereas primordia
of P. lecomtei are initially gymnocarpic. Analy-
sis of hyphal system of all the tropical representa-
tives of the genus indicates the rigorous dimitism
of mature basidiocarp, whereas in P. conchatus and
P. lecomtei the hyphae sclerify slower, while mature
basidiocarps include the hyphal elements on dier-
ent stages of maturation (Zmitrovich et al., 2009).
The absence of physalohyphae determining the ac-
celerated growth of agaricoid basidiocarps makes
the growth of Panus representatives more monoto-
nous and slow, what, in combination with its hyphal
structure, brings Panus-like morphotype together
with trametoid one. However, the hymenophore of
Panus is a classical lamellate that indicates a sur-
prising convergence among agaricomycetes.
Tropical species. As a rather specic adaptive
type, the genus Panus was generated by arid and
warm climates of the planet, where the main species
diversity of the genus is concentrated. The follow-
ing species, common in various tropical regions, are
most known.
Panus ciliatus (Lév.) T. W. May et A. E. Wood,
1995, Mycotaxon 54: 148 (Bas.: Lentinus ciliatus
Lév., 1844; Syn.: L. melanophyllus Lév., 1844;
L. setiger Lév., 1844; L. echinopus Lév., 1846;
L. braccatus Lév. in Zolling., 1854; L. dichrous Lév.
In Zolling., 1854; L. zonifer Berk. et Broome, 1873;
L. egregious Massee, 1910; Panus brunneipes Cor-
ner, 1981).
P. fasciatus (Berk.) Singer, 1962, Agaricales
mod. Tax. 2nd ed.: 172 (Bas.: Lentinus fasciatus
Berk., 1840; Syn.: L. dealbatus Fr. in Lehmann,
1847; L. fuscopurpureus Kalchbr., 1880; L. holopo-
gonius Berk. ex Cooke, 1892; L. terrestris Lloyd,
1925).
P. hookerianus (Berk.) T. W. May et A. E. Wood,
1995, Mycotaxon 54: 148 (Bas.: Lentinus hookeria-
nus Berk., 1851).
P. similis (Berk. et Broome) T. W. May et A. E.
Wood, 1995, Mycotaxon 54: 148 (Bas.: Lentinus si-
milis Berk. et Broome, 1873; Syn.: L. velulinus Fr.
var. africanus P. Henn. in Engler, 1893; L. erring-
tohnii Pat., 1900; L. samurensis Pilát, 1941).
P. strigellus (Berk.) Chardon et Toro, 1934,
Monogr. Univ. Porto Rico Ser. B 2: 315 (Bas.: Lenti-
nus strigellus Berk., 1868; Syn.: Panus guaraniticus
Speg., 1883; Lentinus crispus Pat., 1889; L. tubarius
Pat., 1899; Pocillaria palmeri Earle, 1906; Lentinus
subglaber Lloyd, 1917).
P. tephroleucus (Mont.) T. W. May et A. E.
Wood, 1995, Mycotaxon 54: 148 (Bas.: Lentinus
tephroleucus Mont., 1851; Syn.: L. leprieurii Mont.,
1854; L. siparius Berk. et M. A. Curtis, 1868;
L. dentatus Bres., 1925).
P. velutinus (Fr.) Overh., 1930, J. Dept Agric.
Porto Rico 14: 353 non Fr., 1838 (Bas.: Lentinus ve-
lutinus Fr., 1830; Syn.: Lentinus fulvus Berk., 1842;
L. coelopus Lév., 1846; L. nepalensis Berk., 1854;
L. blepharodes Berk. et M. A. Curtis, 1868; L. fas-
tuosus Kalchbr. et MacOwan, 1881; L. fallax Speg.,
1883; L. castaneus Ellis et Macbr., 1896; L. holum-
brinus De Seynes, 1897; L. ssus P. Henn., 1897;
L. natalensis Van der Byl., 1924; L. thomensis
Coutinho, 1925; L. pseudociliatus Raithelhuber,
1974).
Provisional position: Lentinus hirtiformis Mur-
rill, N. Am. Fl. 9: 293, 1915; L. courtetianus Har. et
Pat., Bull. Mus. Hist. Nat. Paris 15: 88, 1909 (Zmi-
trovich, Malysheva, 2013).
34 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
Species irradiating into temperate zones. Two
species, being widespread in subtropical and tropical
regions, have been irradiated into temperate zones
of the northern and partly southern hemispheres.
They are characterized by less xeromorphic habitus
in comparison to strictly tropical species and dem-
onstrate pseudodimiticism even at rather advanced
developmental stages. Both species are distributed
throughout Russia: P. conchatus and P. lecomtei
(see below).
Key to temperate species
1. Upperside matt-subtomentose, soon glabres-
cent and cracking with formation of ne appressed
squamules; basidia 20–35 × 4.5–6 μm; basidiospores
5–6.5 × 2.2–3.5 μm, ellipsoid-cylindrical ...............
........................................................ 1. P. conchatus
‒ Upperside tomentose, then strigose; basidia
15–20 × 3.5–5 μm; basidiospores 4.5–6 × 2.5–3.7
μm, mostly ovoid ............................. 2. P. lecomtei
1. Panus conchatus (Bull.) Fr., 1838, Epicr.
Syst. Mycol.: 396.
Agaricus conchatus Bull., 1787, Herb. Fr. 7:
tab. 298 : Fr., 1821, Syst. Mycol. 1: 181.
= A. carneotomentosus L., 1753, Sp. pl. 2: 1171.
= A. abelliformis Schae., 1774, Fung. bavar.
palat. nasc. 4: 20.
= A. carneotomentosus Batsch, 1783, Elench.
fung.: 89.
= A. mesentericus Batsch, 1783, Elench. fung.
(Halle): 91.
= A. carnosus Bolton, 1792, Hist. fung. Halifax,
App. 3: 146.
= A. abellatus J. F. Gmel., 1792, Syst. Nat. 2(2):
1410.
= A. inconstans Pers., 1800, Comm. Schae.
Icon. Pict.: 17.
= A. fornicatus Pers., 1801, Syn. meth. fung. 2:
475.
= A. torulosus Pers., 1801, Syn. meth. fung. 2:
475.
= Pleuropus fornicatus Gray, 1821, Nat. Arr.
Brit. Pl. 1: 615.
= Panus monticola Berk., 1851, Hooker’s J. Bot.
Kew Gard. Misc. 3: 46.
= P. vaporarius Bagl., 1865, Comm. Soc. crittog.
Ital. 2(fasc. 2): 264.
= Lentinus percomis Berk. et Broome, 1875, J.
Linn. Soc., Bot. 14(no. 73): 42.
= L. bresadolae Schulzer, 1885, Hedwigia 24(4):
141.
= Panus abelliformis Quél., 1888, Fl. Mycol.
France (Paris): 325.
= Lentinus obconicus Peck, 1906, Bull. Torrey
bot. Club 33(4): 215.
I c o n .: Malkovský (1932: g. 1‒4, ut Panus
abelliformis); Phillips (1981: g. 267d); Pegler
(1983: g. 35); Hansen, Knudsen (1992: g. 2 ut
Lentinus conchatus); Courtecuisse, Duhem (1994:
g. 135); Zmitrovich et al. (2004: g. 25); Knudsen,
Vesterholt (2008: 73D).
Basidiocarp solitary or caespitose, medium-
sized, originating from a woody substratum, of
lentioid habitus. Pileus 1.5–15 cm diam., tough
eshy, then coriaceous, applanate or depressed, of-
ten conchoid or cyathiform. Upperside pinkish-lilac
to vinaceous-purple when young, then fading from
the centre to pale-clay, ochraceous-brown or cinna-
mon, matt-subtomentose, soon glabrescent, nally
smooth and shiny or cracking at the centre to form
indenite, appressed squamules. Margin sharp, thin,
inrolling, slightly undulate or lobed, pruinose when
young, occasionally strigose. Stipe central to lateral,
0.5–4 × 0.5–3 cm, cylindric to bulbous, sometimes
tapering at the base, solid; surface initially tinted
violaceous then fading to leave a pale grey, velu-
tinate to short strigose tomentum, pubescent at the
base, nally glabrous. Context tough eshy, then
coriaceous, 1–15 mm thick at the disk, ivory-white.
Hymenophore lamellate. Gills deeply decurrent
with a ridge extending down the stipe, often slightly
anastomosing over the stipe surface, at rst viola-
ceous or purplish then cream colour, pinkish to-
wards the edge; initially very narrow but eventually
becoming broader, 2–4.5 mm wide, very crowded,
with lamellulae of four lengths; edge entire (Fig. 1).
Hyphal system dimitic with rather prolonged
pseudodimitic stage. Generative hyphae 2–4.5
μm diam., non-inating, hyaline, thin-walled,
branched, with large clamp connections. Skeletal
hyphae 2–5 μm diam., unbranched, sinuose, hya-
line, thick-walled, the pseudoskeletal hyphae of the
same diameter, with clamp connections, and refrac-
tive contents predominate in young basidiocarps.
Pileipellis an epicutis, 45–90 μm thick, of repent,
radially parallel generative hyphae 3–5 μm diam.
with a golden-brown wall. Hymenophoral trama
irregular, hyaline, of radiate construction, similar
in structure to the context. Gills-edge sterile, with
conspicuous, crowded, clavate to sublageniform
cheilocystidia 24–60 × 7–16 μm, hyaline, thin- to
thick-walled. Pleurocystidia (pseudocystidia) abun-
dant, 25–70 × 5–10(12) μm, narrowly clavate, often
sinuous and constricted, thick-walled, originating
deep in the subhymenial layer and projecting 5–20
μm above the basidia. Basidia 20–35 × 4.5–6 μm,
35
Turczaninowia 21 (3): 29–44 (2018)
Fig. 1. The most typical laterally attached morphotype of
Panus conchatus (Kalinovskaya 4552M/12): 1 – an up-
perside view; 2 – a hymenophore. Scale bar – 1 cm. Fig. 2. Association of Panus conchatus with Trametes
multicolor-coll. (Zmitrovich 2014-12).
clavate-cylindrical, 4-spored, with a basal clamp.
Basidiospores 5–6.5 × 2.2–3.5 μm, ellipsoid-cylin-
drical, hyaline with few contents, thin-walled.
On dying trees, fallen logs and branches, stumps
of many hardwoods, causing a white rot.
S u b s t r a t a: on many hardwoods, especially
Betula spp. and Populus tremula, rarely on conifers
(Pinus sylvestris).
Cultural characteristics: Hibbett et al.
(1993); Johnson, Methven (1994); Grand (2004).
General distribution: EUROPE (Austria,
Belarus, Belgium, Bulgaria, Denmark, Estonia,
Finland, France, Germany, Latvia, Lithuania,
Norway, Russia, Scotland, Spain, Sweden, Ukraine);
AFRICA (Ethiopia); ASIA (Armenia, Georgia,
Japan, Korea, Russia); NORTH AMERICA
(Canada, Mexico, USA), CENTRAL AMERICA
(Costa Rica); SOUTH AMERICA (Equador);
AUSTRALIA and OCEANIA (Australia) (Pegler,
1983; Panus conchatus.., 2018).
Distribution in Russia: see Table 1.
Exsiccates examined. Panus torulosus:
“Sweden, Bohuslan, Uddevalla, Sarven Lake, on
stump of Betula sp., X 1947. S. Woldmar LE 3722 (S.
Lundell et J. A. Nannfeldt. Fungi exsiccati Suecici
praesertim Upsalienses, N 1771)”. “Sweden,
Västergötland, Göteborg, Naturparken, on stump
of Betula sp., 20 IX 1960. F. Karlvall LE 3723 (S.
Lundell et J. A. Nannfeldt. Fungi exsiccati Suecici
praesertim Upsalienses, N 2865)”. “Sweden,
Småland, Femsjö parish, on stump of Betula sp.,
28 IX 1959. F. Karlvall LE 3721 (S. Lundell et J.
A. Nannfeldt. Fungi exsiccati Suecici praesertim
Upsalienses, N 2866)”. “Russia, Khabarovsk
Region, Ragozhino vicinities, on Quercus sp.,
03 VI 1910. M. Korotkiy (M. Korotkiy. Museum
Botanicum Academiae Scientiarum Petropolitanae,
N 73)”. – “England, 15 III 1989. F. B. Delange
LE 24071, LE 24074 (R. B. G. K. Richmond.
Herbarium path/mixed debris England, N 73). –
“USSR, Bashkortostan Republic, Bashkirsky
Reserve, Drozdov Log vicinities, on stump of Pinus
sylvestris, VIII 1948. E. A. Selivanova-Gorodkova
LE 3703 (E. A. Selivanova-Gorodkova. Plantae
australiuralenses, N 459)”.
Association with Trametes multicolor.
According to our observations made on the
Karelian Isthmus clear cuttings, Panus conchatus
often settles on stumps, primarily colonized by
Trametes multicolor (Schae.) Jülich (Fig. 2).
Within ten records made for Betula stumps on the
Karelian Isthmus clear cuttings, seven ones have
contained an indication of the joint presence of
Panus conchatus and Trametes multicolor. The
latter species is an active producer of laccase and is
characterized by high growth rate (Zmitrovich et al.,
2017). Apparently, their primary delignication and
moistening of wood by T. multicolor creates a niche
for Panus conchatus, carrying out a deeper substrate
delignication. The pair in question certainly echoes
with another pair, Antrodiella pallescens/Fomes
36 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
fomentarius, described for dead wood in boreal
forests (Spirin, 2002).
Nomenclature. Two names sanctioned by
Fries (1821) were considered in the literature as a
t basionyms of this species, Agaricus conchatus
(Bulliard, 1787) and A. torulosus (Persoon, 1801).
Since both names are sanctioned by Fries and there
is no any doubt in their synonymy, the combination
based on A. conchatus name, i. e. Panus conchatus
(Fries, 1838), has a priority.
Intraspecic variability. As a neutral type
of this species (P. conchatus var. conchatus) the
more or less lateral ecotype with conchiform pileus
and rather dark wine-red to lilac-brown surface is
considered by default. Two main deviations from
such neutral type were described: 1) the chromatic
one, characterized by light-colored (red or clay-
yellow), usually conchiform pilei (P. conchatus var.
inconstans) and 2) the growth one, characterized
by entral (often bulbous) stipe, funnel-shaped cap
and strongly inrolled margin (P. conchatus var.
torulosus).
Panus conchatus var. inconstans (Pers.) Zmitr.,
Bondartseva, Perevedentseva, Myasnikov et
Kovalenko, comb. nov. (MB 824338). – Basionym:
Agaricus inconstans Pers., 1800, Comm. Schae.
Icon. Pict.: 17.
= A. conchatus var. carneotomentosus Fr., 1832,
Syst. Mycol. (Index): 11.
Persoon (1800) has characterized this taxon
as follows: «Subcespitosus, pileo carnoso tenaci
depresso integro, aut dimidiato lobato exuoso, ex
alutaceo subrufescente, lamellis subramosis basi
crispis albis subrutilesque, stipite brevi sublaterali».
I c o n .: Malkovský (1932: g. 5, ut Panus
abelliformis).
From type variety diers by clay-bu, carneous
of rufescent color of the upperside. Basidiocarps of
conchoid appearance, the stipe often reduced and
then the hymenophore is subporoid at the base. The
microstructures vary as in a neutral type.
Panus conchatus var. torulosus (Pers.) Zmitr.,
Bondartseva, Perevedentseva, Myasnikov et
Kovalenko, comb. nov. (MB 824339). – Basionym:
Agaricus torulosus Pers., 1801, Syn. meth. fung. 2:
475.
I c o n .: Malkovský (1932: g. 2, 3, 6 ut Panus
abelliformis).
From type variety diers by funnel-shaped
basidiocarps on a central stipe, often with bulbous
base, and inrolled undulating margin. The
microstructures vary as in a neutral type (Fig. 3).
Fig. 3. Panus conchatus var. torulosus (Kalinovskaya
3850M/15): 1 – an upperside view; 2 – a hymenophore;
3 – generative hypha; 4 – pseudoskeletal hypha; 5 -
brohyphae; 6 – pseudocystidium; 7 – cheilocystidia; 8
basidia; 9 – basidiospores. Scale bars: 1, 2 – 1 cm, 39
10 μm.
37
Turczaninowia 21 (3): 29–44 (2018)
2. Panus lecomtei (Fr.) Corner, 1981, Beih.
Nova Hedwigia 69: 90.
Lentinus lecomtei Fr., 1825, Syst. Orb. Veg. 1:
77.
= Agaricus strigopus Pers. in Gaudichaud-
Beaupré in Freycinet, 1827, Voy. Uranie., Bot.: 167.
= A. hirtus Secr., 1833, Mycogr. Suisse 2: 452.
= A. macrosporus Mont., 1837, Annls Sci. Nat.,
Bot., sér. 2 8: 370.
= Panus rudis Fr., 1838, Epicr. Syst. Mycol.:
398.
= Lentinus capronatus Fr., 1838, Epicr. Syst.
Mycol.: 389.
= A. sainsonii Lév. in Demidov, 1842, Voyage
dans la Russie Meridionale et la Crimeé, par la
Hongrie, la Valachie et la Moldavie 2: 85.
= Lentinus chaetophorus Lév., 1844, Annls Sci.
Nat. Bot. 2: 177.
= L. melanophyllus Lév., 1844, Annls Sci. Nat.
Bot. 2: 175.
= Panus lamyanus Mont., 1856, Syll. gen. sp.
crypt.: 147.
= P. homannii Fr. in Homann, 1867, Icon.
Anal. Fung., Abbild. Beschr. Pilz. 1(4): 94.
= Lentinus sparsibarbis Berk. et M. A. Curtis,
1869, J. Linn. Soc., Bot. 10(no. 45): 301.
= L. substrigosus Henn. et Shirai in Hennings,
1900, Bot. Jb. 28(3): 270.
= Panus semirudis Singer, 1936, Beih. Botan.
Centralbl. B 56: 142.
= P. fragilis O. K. Mill., 1965, Mycologia 57(6):
943.
= P. neostrigosus Drechsler-Santos et Wartchow,
2012, J. Torrey bot. Soc. 139(4): 438.
I c o n .: Malkovský (1932: g. 10‒12, ut
P. rudis); Zerova (1974: tab. 90, 1 ut P. rudis); Pegler
(1983: g. 31, ut Lentinus strigosus); Zmitrovich
et al. (2004: Tab. 4, a, b ut Panus rudis); Bulakh
(2015: g. 418).
Basidiocarp solitary or caespitose, medium-
sized, originating from a woody substratum, of
lentioid habitus. Pileus 1.5–12 cm diam., tough
eshy, then coriaceous, convex, then depressed to
infundibuliform, or laterally attached and abelli-
form to spathulate. Upperside ivory-white to stra-
mineous with prominent lilac or vinaceous tints,
fading pale-ochraceous or grayish-brown, at rst to-
mentose, then strigose (hairs 1–2 mm long), without
a clear zonation. Margin thin, inrolling, slightly un-
dulate or lobed, strongly strigose. Stipe eccentric to
lateral, 0.5–3.8 × 0.3–1.5 cm, cylindric to bulbous,
solid, sometimes reduced; surface concolorous
with the pileus, tomentose-strigose. Context tough
eshy, then coriaceous, 1–7 mm thick at the disk,
ivory-white. Hymenophore lamellate. Gills deeply
decurrent, ivory-white to ochraceous-bu, some-
times with violaceous tints; initially very narrow but
eventually becoming broader, 1–2 mm wide, very
crowded, with lamellulae of four lengths; edge en-
tire (Fig. 4).
Hyphal system dimitic with expressed
pseudodimitic stage. Generative hyphae 2–4 μm
diam., non-inating, hyaline, thin-walled, branched,
with large clamp connections. Skeletal hyphae
2–7.5 μm diam., unbranched, sinuose, hyaline,
thick-walled to subsolid, the pseudoskeletal hyphae
of the same diameter, bearing clamp connections
and refractive contents, are abundant in young ba-
sidiocarps. Pileipellis a trichodermal epicutis, 25–
45 μm thick, of repent, radially parallel generative
hyphae 3–7.5 μm diam. with a golden-brown wall.
Hymenophoral trama irregular, hyaline, of radi-
ate construction, similar in structure to the context.
Fig. 4. The most typical laterally attached morpho-
type of Panus lecomtei (Myasnikov 4472A/15): 1
an upperside view; 2 – a hymenophore. Scale bar – 1
cm.
38 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
Gills-edge sterile, with conspicuous, crowded, cla-
vate to sublageniform cheilocystidia 18–35 × 4–6
μm, hyaline, thin- to thick-walled. Pleurocystidia
(pseudocystidia) abundant, 25–55 × 9–13 μm,
narrowly clavate, often sinuous and constricted,
thick-walled, originating deep in the subhymenial
layer and projecting up to 40 μm above the basid-
ia. Basidia 15–20 × 3.5–5 μm, clavate-cylindrical,
4-spored, with a basal clamp. Basidiospores 4.5–6 ×
2.5–3.7 μm, ovoid to ellipsoid-cylindrical, hyaline
with few contents, thin-walled.
On dying trees, fallen logs and stumps, causing
a white rot.
Substrata: On many hardwoods, especially
Carpinus betulus, Betula spp., Fagus sylvatica,
Quercus spp., rarely on conifers (Larix spp.).
Cultural characteristics: Hibbett et al.
(1993); Grand (2004); Vargas-Isla, Ishikawa (2008);
Petre, Tănase (2013).
General distribution: EUROPE
(Bulgaria, Estonia, France, Germany, Hungary,
Portugal, Romania, Russia, Serbia, Slovakia,
Slovenia, Spain, Ukraine); AFRICA (Madagascar,
Mayotte, Uganda, Zaire); ASIA [India, Iran, Japan,
Malaysia, Myanmar (Burma), Nepal, Pakistan,
Philippines, Russia, Sri Lanka, Taiwan, Thailand,
Turkey]; NORTH AMERICA (Canada, Mexico,
USA), CENTRAL AMERICA (Costa Rica, Cuba,
Guatemala, Honduras, Nicaragua, Panama, Puerto
Rico); SOUTH AMERICA (Argentina, Brazil,
Colombia, Guiana, Paraguay, Peru, Venezuela);
AUSTRALIA and OCEANIA (Galapagos, Norfolk
Island, Papua New Guinea, Australia) (Pegler, 1983;
Panus neostrigosus .., 2018).
Distribution in Russia: see Table 2.
Exsiccates examined. Agaricus sain-
sonii: “Russia, 1842. A. Demido LE 5848 (J.
Leveillé. Voyage dans la Russie Meridionale et la
Crimeé, N 85)”. – Lentinus lecomtei: “USA, Ohio,
VII 1883. W. A. Kellermann LE 5849 (Rabenhorst–
Winter. Fungi Europaei, N 2940)”. Panus rudis:
“Austria, trunk of Fagus sylvaticus. P. P. Strasser
LE 5854 (P. P. Strasser. Kryptogamae exsiccatae, N
1422)”. “Georgia, Tiis Hortus Botanicus, 12 X
1923. G. Woronow LE 208198 (G. Woronow. Fungi
Caucasici, N 2127)”. “Russia, Tomsk Region, on
stump of Betula sp., 3 III 1926. Lavrov LE 5803
(A. A. Jaczewski. Ex Herbario Instituti Mycologici
et Phytopathologici, N 81)”. “Austria, Salzburg,
on fallen trunk of Fagus sylvatica, 1914 C. Keissler
LE 5851 (C. Keissler. Kryptogamae exsiccatae, N
1422)”. “Baton Range, 23 II 1960. B. Lowy LE
5845 (B. Lowy. Ex Mycological Herbarium of Lou-
isiana State University)”. “Russia, Bashkortostan
Republic, Bashkirsky reserve, Drozdov Log vicini-
ties, on stump of Betula sp., 8 IX 1946 E. A. Seliva-
nova-Gorodkova LE 5838 (E. A. Selivanova-Goro-
dkova. Plantae australiuralenses, N 2427).” – “Rus-
sia, Bashkortostan Republic, Bashkirsky reserve,
Drozdov Log vicinities, on stump of Betula sp., 8
IX 1946 E. A. Selivanova-Gorodkova LE 5834 (E.
A. Selivanova-Gorodkova. Plantae australiuralens-
es, N 2429). – Panus sainsonii: “Austria, Salzburg,
IX 1868 Dr. Sauter LE 5855 (Rabenhorst–Winter.
Fungi Europaei, N 1207)”. – “Austria, Salzburg, on
fallen trunk of Fagus. Dr. Sauter LE 5850 (F. Thü-
men. Fungi austriaci, N 212)”.
Nomenclature. Two names in application to this
peculiar species persisted in the literature for a long
time, Lentinus strigosus and Panus rudis. Since, as
it was shown, this species does not belong to the
Lentinus s. str. (Zmitrovich, Malysheva, 2013; Zmi-
trovich, Kovalenko, 2016), it became necessary a
nomenclatural adaptation of species name within the
Panus. Because of the name P. strigosus Berk. et M.
A. Curtis was preoccupied by Berkeley and Curtis
(1859) in application to another species, the name
P. rudis (Fries, 1838) continued to be persisting.
Drechsler-Santos et al. (2012) proposed new name
P. neostrigosus without any nomenclature analysis,
and this name was taken as a basis for GBIF (Pa-
nus neostrigosus .., 2018). At the same time, Cor-
ner (1981) already made a combination P. lecomtei,
basing on the description by Fries Lentinus lecomtei
in his earlier work (Fries, 1825).
Intraspecic variability. As a neutral type of
Panus lecomtei (P. lecomtei var. lecomtei), the eco-
type having small eccentric to lateral minute and
often spalled stipe is considered by default. How-
ever, the stipe shape and size are variable. The stipe
can be either central – minute, with a bulbous base
(P. lecomtei var. semirudis), or strongly elongated
(P. lecomtei var. stipitata).
Panus lecomtei var. semirudis (Singer) Zmitr.,
Bondartseva, Perevedentseva, Myasnikov et Kova-
lenko, comb. nov. (MB 824340). – Basionym: Pa-
nus semirudis Singer, 1936, Beih. Botan. Centralbl.,
Abt. B 56: 142.
From type variety is distinguished by short, but
strong and often bulbous stipe of central or sub-
central position. Upperside is moderately strigose
to glabrous at the center, color usually fading to
ochraceous-brown. The microstructures vary as in a
neutral type (Fig. 5).
39
Turczaninowia 21 (3): 29–44 (2018)
Panus lecomtei var. stipitatus (Malk.) Zmitr.,
Bondartseva, Perevedentseva, Myasnikov et Kova-
lenko, comb. nov. (MB 824341). – Basionym: Pa-
nus rudis f. stipitata Malk., 1932, Annls mycol.
30(1/2): 40.
I c o n .: Malkovský (1932: g. 12, ut Panus ru-
dis f. stipitata).
From type variety is distinguished by long lateral
or eccentric stipe and spathulate pilei. Upperside is
strongly strigose, color usually fading to cinnamon.
The microstructures vary as in a neutral type (Fig. 6).
Fig. 5. Panus lecomtei var. semirudis (LE 3660): 1 – hy-
menophore; 2 – upperside view; 3 – brohypha; 4 – gen-
erative hyphae; 5 – cheilocystidia; 6 – pseudocystidium;
7 – basidia; 8 – basidiospores. Scale bars: 1, 2 – 1 cm,
38 – 10 μm.
The problem of Lentinus martianoanus.
This problematic species was described by Thü-
men (1877) with reference to Kalchbrenner, and
its authentic material kept in Kew Herbarium (K).
There is a single specimen, collected on Populus
balsamifera by Martiano near Minussinsk in 1880
and distributed within exsiccate series by Thümen
(Fung. Exot. Dec. 21).
The Kew material was studied by Pegler (1983)
and described as follows: “Imbricate. Pileus later-
ally attached, 3–5 cm diam., thin, coriaceous, irreg-
ularly abelliform, depressed; surface pale yellow-
ish rufous, uniformly velutinate-strigose becoming
hispid towards the margin; margin irregular, deeply
lobed, faintly sulcate, densely ciliate with hair-like
squamules, 1–2 mm long. Lamellae decurrent, pal-
lid, narrow, about 1 mm wide, very crowded, with
lamellulae of three lengths; edge entire. Stipe lat-
eral, 1–1.5 cm × 8–12 mm, short, cylindric or com-
pressed, solid; surface concolorous with the pileus,
densely strigose, glabrescent. Context up to 2 cm
Fig. 6. Panus lecomtei var. stipitatus (Myasnikov
4350A/16): 1 – upperside view; 2 – hymenophore. Scale
bar – 1 cm.
40 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
Table 1
Herbarium data on distribution of Panus conchatus over Russian territory and its substrate preferences
Region Substrata Date of collection Collector Herbarium
numbers
European part
Karelia Republic Betula pubescens 08 X 1950 A. S. Bondartsev LE 3704
Leningrad Region unidentied substrate 19 VIII 1960 M. A. Bondartseva LE 3702
Leningrad Region Betula pubescens 20 VII 2014 I. V. Zmitrovich LE 287527
Leningrad Region Populus tremula 05 VIII 2001 I. V. Zmitrovich LE 212955
Leningrad Region Betula sp. 23 VI 1997 O. V. Morozova LE 215053
Leningrad Region unidentied substrate 07 X 2007 N. V. Psurtseva LE 265028
Leningrad Region unidentied substrate VIII 1918 V. P. Savich LE 3716
Mari El Republic Betula sp. 14 VI 1938 B. P. Vasilkov LE 3708
Mari El Republic Populus sp. 03 VII 1935 B. P. Vasilkov LE 3713
Moscow Region Betula sp. 19 VIII 1925 L. A. Lebedeva LE 3715
Moscow Region unidentied substrate 17 VI 2016 O. V. Anisimova LE 315401
Orel Region Betula sp. 06 VIII 1912 A. S. Bondartsev LE 3718
Pskov Region unidentied substrate 23 VII 2002 O. V. Morozova LE 217599
Saint Petersburg unidentied substrate 27 IX 1994 O. V. Morozova LE 227995
Stavropol Territory unidentied substrate 15 VIII 1925 A. I. Lobik LE 3711
Tver Region unidentied substrate VII 1924 L. A. Lebedeva LE 3712
Vologda Region Betula sp. 25 VIII 2002 E. S. Popov LE 246368
Urals
Perm Territory Populus tremula 15 VIII 1994 L. G. Perevedentseva PERM 118-3
Siberia
Irkutsk Region Populus tremula 15 VIII 1983 A. E. Kovalenko LE 18116
Irkutsk Region Betula sp. 20 VIII 1947 B. P. Vasilkov LE 3710
Irkutsk Region Betula sp. 26 VIII 1947 B. P. Vasilkov LE 3714
Irkutsk Region Betula sp. 27 VIII 1947 B. P. Vasilkov LE 3707
Krasnoyarsk Territory Betula sp. 11 IX 1965 A. L. Yavorskiy LE 3705
thick at the base, very thin over the hymenophore,
white, consisting of a dimitic hyphal system with
skeletal hyphae. Generative hyphae 2–5 μm diam.,
not inating, hyaline, branched, thin-walled or
occasionally with a slightly thickened wall, and
clamp-connexions. Skeletal hyphae 2–6 μm diam.,
unbranched, hyaline, with a thickened wall (up to 2
μm) and a narrow lumen, intercalary and terminal in
origin, nally tapering to an obtusely rounded apex.
Spores 4.7–6.2 × 1.7–2.5 μm, Q = 2.37, narrowly
cylindric, at times arcuate, hyaline, thin-walled,
with few contents. Basidia 16‒22 × 4.5‒5.5 μm,
clavate, bearing four sterigmata. Lamella-edge ster-
ile, forming a narrow zone of small, inconspicuous
cheilocystidia, together with scattered metuloids.
Cheilocystidia 16‒24 × 3.5×5 μm, basidioid, sinu-
ous fusoid, often constricted, with a rounded apex,
hyaline, thin-walled. Metuloids scattered to numer-
ous, on both sides and edge of lamellae, 26‒45 ×
7‒12 μm, inated clavate to fusoid-submucronate,
usually with a thickened wall (1‒2.5 μm) and res-
inous, yellowish brown contents, projecting to 25
μm beyond the basidia, sometimes surrounded by
a sheath of thin-walled, generative hyphae, 2‒5 μm
diam. Hymenophoral trama irregular, hyaline, of ra-
diate construction, comprising mostly of generative
hyphae. Subhymenial layer well developed, 14‒20
μm wide, tightly interwoven. Pileipellis a disrupted
and irregular trichodermial palisade, forming fas-
cicles of unbranched, scleried generative hyphae,
4‒6 μm diam., with an obtusely rounded apex”
(Pegler, 1983).
Since the molecular testing of any Kew material
is prohibited, only the morphological description
may be considered on, which unambiguously indi-
cates the close relationships of this taxon with Pa-
nus lecomtei-coll. Only basidiospores are something
diverse, since are not ovoid, but rather ellipsoidal-
cylindrical. Malkovský (1932) has considered Len-
tinus martianoanus as a synonym of Panus rudis,
whereas Pegler (1983) has abstained from synony-
mization procedure. In any case, this taxon belongs
to the genus Panus, although there have been at-
tempted to associate this name with the Lentinus
41
Turczaninowia 21 (3): 29–44 (2018)
Table 2
Herbarium data on distribution of Panus lecomtei over Russian territory and its substrate preferences
Region Substrata Date of collection Collector Herbarium
numbers
European part
Adygeya Republic Fagus sylvatica V 1910 N. Shestunov LE 5815, LE
5817, LE 5827
Adygeya Republic Fagus sylvatica 18 IX 2003 N. V. Psurtseva LE 241942
Kirov Region unidentied substrate 23 VII 1921 M. K. Khokhryakov LE 5799
Krasnodar Territory unidentied substrate 13 VIII 2003 N. V. Psurtseva LE 227998
Krasnodar Territory unidentied substrate 31 VII 1979 A. E. Kovalenko LE 5837
Krasnodar Territory unidentied substrate 17 VII 1976 A. E. Kovalenko LE 5829
Leningrad Region Betula pubescens 06 VII 1998 I. V. Zmitrovich LE 214737
Mari El Republic unidentied substrate 10 VI 1932 B. P. Vasilkov LE 5832
North Ossetia–Alainia
Republic
Carpinus betulus 15 V 1925 Z. Chernetskaya LE 5813
Penza Region Betula sp. 27 VII 1921 Shtukenberg LE 5841
Ryazan Region unidentied substrate IX 1960 G. K. Milberg LE 5828
Stavropol Territory unidentied substrate 24 VIII 1915 A. I. Lobik LE 5836
Voronezh Region unidentied substrate 1946 V. Ya. Chastukhin LE 5833
Urals
Perm Territory Betula pendula 25 VIII 1980 L. G. Perevedentseva PERM 118-1
Perm Territory Betula pendula 30 VIII 1985 L. G. Perevedentseva PERM 118-2
Perm Territory Betula pendula 22 VIII 1999 L. G. Perevedentseva PERM 118-4
Perm Territory Betula pendula 04 VIII 2004 L. G. Perevedentseva PERM 118-5
Siberia
Altai Republic Betula sp. 17 VIII 2008 N. V. Psurtseva LE 254518
Altai Republic Betula sp. 18 VIII 2008 N. V. Psurtseva LE 254519
Altai Republic Populus sp. VIII 1937 R. Singer LE 5842
Chita Region unidentied substrate V 08.1910 no data LE 5812
Irkutsk Region Betula sp. 20 VIII 1921 T. Smirnov LE 5804
Irkutsk Region Betula sp. 04 IX 1947 B. P. Vasilkov LE 5805
Tumen Region unidentied substrate 20 VI 1914 Varentsov LE 5831
Yakutia Republic Larix sp. 10VIII1908 N. A. Palchevskiy LE 5844
Far East
Amur Region Quercus sp. 17VII1959 B. A. Tomilin LE 5791
Amur Region unidentied substrate 13VI1910 M. Korotkiy LE 3663
Primorye Region unidentied substrate 1913 V. L. Komarov LE 3664
Primorye Region unidentied substrate 29VI1913 V. L. Komarov LE 5840
Primorye Region Betula dahurica 19VII1934 B. Kolesnikov LE 5797
Primorye Region Quercus sp. 15 VII 1952 E. V. Volkova LE 5808
Sakhalin Region Larix decidua 1960 B. P. Vasilkov LE 5839
Sakhalin Region Sorbus aucuparia 29 VIII 1954 M. G. Tarabaev LE 5820
piloso-squamulosus Lj. Vassilieva (current name is
Lignomyces vetlinianus) (Bulakh, 2015).
Сonclusion
The Panus represents rather well-delimited ge-
nus belonging to merulioid phylogenetic radiation,
whose morphotype on essential features of its or-
ganization is trametoid, but supercial habitual fea-
tures make it closer to the lentinoid one. One of its
essential features is the abundance of brohyphae
which forms a textura intricata, slowly growing
basidiocarps and strictly lamellate hymenophore.
Apparently, such an adaptive structure was gener-
ated under the inuence of arid and warm climate
conditions at the dierent regions of the planet, and
only 2 species, Panus conchatus, and P. lecomtei,
have been irradiated into temperate latitudes, in-
cluding Russian territory. The substrate spectrum
of these fungi is determined by their insensitivity to
the substrate moistening and best ability to colonize
42 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
hardwood, so the greatest number of their nds can
be made on stumps and large remnants of stand-
formers of corresponding forest areas. In Russia, a
reliable association of Panus species to Betula spp.
and Populus spp. was revealed. An ecotypic dier-
entiation of the genus Panus is related to the qual-
ity of substrate colonized. The basidiocarps, grow-
ing over top cuts of the stumps, are characterized
by strong central stipe (P. conchatus var. torulosus,
P. lecomtei var. semirudis), whereas basidiocarps
with sublateral attachment are common on fallen
logs. Certain chromatic aberrations (P. conchatus
var. inconstans) are associated with an insolation
regime of the habitat. During last years, the Panus
representatives have attracted an interest in biomed-
ical research development. Their resource potential
estimation should proceed from the fact that within
Russian territory, such areas as Middle Belt of Eu-
ropean Russia, North Caucasus, Altai and other re-
gions of Southern Siberia are promising for replen-
ishing the strains of P. conchatus and P. lecomtei.
Acknowledgements
The authors are very grateful to N. I. Kalinovs-
kaya for kindly provided photos of Panus concha-
tus. The work by I. V. Zmitrovich, M. A. Bondartse-
va, and A. E. Kovalenko was carried out in canvas
of the State Task of Komarov Botanical Institute of
the Russian Academy of Sciences named as “Bio-
diversity and spatial structure of fungi and myxo-
mycetes communities in natural and anthropogenic
ecosystems” (АААА-А18-118031290108-6). All
experimental work has been fully implemented on
the equipment of the Center for collective use of sci-
entic equipment “Cellular and molecular technol-
ogy of studying plants and fungi” at the Komarov
Botanical Institute of the Russian Academy of Sci-
ences (Saint Petersburg).
REFERENCES / ЛИТЕРАТУРА
Berkeley M. J., Curtis M. A. 1859. Centuries of North American fungi. Ann. Mag. Nat. Hist. 4: 284–296.
Bulakh E. M. 2015. Fungi of the forests of Far East of Russia. Dalnauka, Vladivostok, 404 рp. [In Russian]. (Бу-
лах Е. М. Грибы лесов Дальнего Востока России. Владивосток: Дальнаука, 2015. 404 с.).
Bulliard P. 1787. Herbier de la France ou collection complete des plantes indigènes de ce royaume. Paris, 1‒603
pp.
Corner E. J. H. 1981. The agaric genera Lentinus, Panus, and Pleurotus, with particular reference to Malasyan
species. Beih. Nova Hedwigia 69: 1–169.
Courtecuisse R., Duhem B. 1994. Guide des champignons de France et d’Europe. Lausanne, 476 pp.
Drechsler-Santos E. R., Wartchow F., Coimbra V. R. M., Gibertoni D. B., Cavalcanti M. A. Q. 2012. Studies
on lentinoid fungi from the semi-arid region of Brazil. J. Torrey Bot. Soc. 139, 4: 437–446. DOI: 10.3159/TORREY-
D-12-00019.1.
Erkel G., Anke T., Sterner O. 1996. Inhibition of NF-kappa B activation by panepoxydone. Biochem. Biophys.
Res. Commun. 226, 1: 214–221. DOI: 10.1006/bbrc.1996.1335.
Fries E. 1821. Systema mycologicum, sistens fungorum ordines, genera et species, huc usque cognitas, quas ad
normam methodi naturalis determinavit, disposuii atque descripsit. Vol. 1. Gryphiswald, 520 pp.
Fries E. 1825. Systema orbis vegetabilis. Pars I. Plantae homonemae. Typographia Academica, Lund, 374 pp.
Fries E. 1836–1838. Epicrisis Systematis Mycologici seu Synopsis Hymenomycetum. Typographia Academica,
Uppsala, 610 pp.
Grand E. A. 2004. Systematics and species concepts in the genera Lentinus Fr. and Panus Fr., with emphasis on
the Lentinus tigrinus, L. crinitus and Panus lecomtei complexes. Doctoral dissertation. Tennessee, 116 pp.
Greuter W., McNeill J., Barrie F. R., Burdet H.-M., Demoulin V., Nicolson D. H., Silva P. C., Skog J. E., Tre-
jane P., Turland N. J., Hawksworth D. L. 2000. International Code of Botanical Nomenclature (St. Louis Code).
Koeltz Scientic Books, Köningstein.
Hansen L., Knudsen H. 1992. Nordic macromycetes. Nordsvamp, Copenhagen, 474 pp.
Hibbett D. S., Murakami S., Tsuneda A. 1993. Sporocarp ontogeny in Panus (Agaricomycotina): evolution and
classication. Am. J. Bot. 80, 11: 1336–1348.
Johnson J. E., Methven A. 1994. Panus conchatus: Cultural characters and mating data. Mycologia 86, 1: 146–
150.
Justo A., Miettinen O., Floudas D., Ortiz-Santana B., Sjökvist E., Linder D., Nakasone K., Niemelä T., Larsson
K.-H., Ryvarden L., Hibbett D. L. 2017. A revised family-level classication of the Polyporales (Basidiomycota).
Fungal Biol. 121, 9: 798–824. DOI: 10.1016/j.funbio.2017.05.010.
Knudsen H., Vesterholt J. 2008. Funga Nordica: agaricoid, boletoid and cyphelloid genera. Nordsvamp, Copen-
hagen, 970 pp.
43
Turczaninowia 21 (3): 29–44 (2018)
Ko K. S., Jung H. S. 1999. Molecular phylogeny of Trametes and related genera. Antonie Van Leeuwenhoek. 75,
3: 191–199.
Larsson K.-H. 2007. Re-thinking the classication of corticioid fungi. Mycol. Res. 111: 1040–1063. DOI:
10.1016/j.mycres.2007.08.001.
Lee J. S., Lim Y. W. 2010. Cerrena aurantiopora sp. nov. (Polyporaceae) from Eastern Asia. Mycologia 102:
211–216. DOI: 10.3852/09-048.
Malkovský K. M. 1932. Über die europäischen Arten der Gattung Panus. Ann. Mycol. 30, 1/2: 10–80.
Miettinen O., Larsson K.-H. 2011. Sidera, a new genus in Hymenochaetales with poroid and hydnoid species.
Mycol. Progress 10, 2: 131–141. DOI: 10.1007/s11557-010-0682-5
Miller O. K. 1967. The role of light in the fruiting of Panus fragilis. Can. J. Bot. 45, 11: 1939–1943.
Panus conchatus (Bull.) Fr., 1838 in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset, 2018.
URL: https://www.gbif.org/species/search?q=Panus%20conchatus on 2018-02-07.
Panus neostrigosus Drechsler-Santos et Wartchow, 2012 in GBIF Secretariat. GBIF Backbone Taxonomy.
Checklist Dataset, 2018. URL: https://www.gbif.org/species/search?q=Panus%20neostrigosus on 2018-02-07.
Pegler D. N. 1983. The genus Lentinus: a world monograph. Her Majesty’s stationary oce, Kew Bulletin ad-
ditional series X. L. 281 pp.
Persoon C. H. 1800. Commentarius, Schaeeri fungorum Bavariae indigenorum icones pictas, dierentiis speci-
cis etc. illustrans. Erlangen, 130 pp.
Persoon C. H. 1801. Synopsis methodica fungorum. Gotting, 706 pp.
Petersen R. H., Psurtseva N. V., Zmitrovich I. V., Chachuła P., Arslanov S. N., Hughes K. W. 2015. Lignomyces,
a new genus of pleurotoid Agaricomycetes. Mycologia 107, 3: 1045‒1054. DOI: 10.3852/14-355.
Petre C. V., Tănase C. 2013. Culture characteristics of 20 lignicolous basidiomycetes species that synthesize
volatile organic compounds. An. Stiin. Univ. Al. I. Cuza 59, 2: 37–51.
Phillips R. 1981. Mushrooms and other fungi of Great Britain and Europe. Pan Books, London, 319 pp.
Ryvarden L. 1991. Genera of polypores. Nomenclature and taxonomy. Synopsis Fung. 5: 1–363.
Shotwell J. B., Hu S., Medina E., Abe M., Cole R., Crews C. M., Wood J. L. 2000. Ecient stereoselective
synthesis of isopanepoixdone and panepoxidone: a re-assignment of relative conguration. Tetrahedron Lett. 41:
9639–9643. DOI: 10.1002/chem.201103988.
Singer R. 1951. The Agaricales (Mushrooms) in modern taxonomy. Lilloa 22: 1–832.
Singer R. 1962. The Agaricales in modern taxonomy. 2nd ed. Weinheim, 915 pp.
Singer R. 1975. The Agaricales in modern taxonomy. 3rd ed. J. Cramer, Vaduz, 912 pp.
Singer R. 1986. The Agaricales in modern taxonomy. 4th ed. Koeltz Scientic Books, Koenigstein, 981 pp.
Spirin W. A. 2002. Aphyllophorales of the Nizhegorod Region: species composition and ecological features. Cand.
biol. Dissertation. St. Petersburg, 242 pp. [In Russian]. (Спирин В. А. Афиллофоровые грибы Нижегородской об-
ласти: видовой состав и особенности экологии. Дисс. … канд биол. наук. СПб., 2002. 242 с.).
Thümen F. 1877. Beiträge zur Pilze-Flora Sibiriens. Byulleten Moskovskogo obshchestva ispytateley prirody 54:
128–152.
Vargas-Isla R., Ishikawa N. K. 2008. Optimal conditions of in vitro mycelial growth of Lentinus strigosus, an ed-
ible mushroom isolated in the Brazilian Amazon. Mycoscience 49: 215. DOI: 10.1007/S10267-007-0404-2.
Zerova M. Ya. 1974. Atlas of fungi of Ukraine. Kiev, 251 pp. [In Ukrainian]. (Зерова М. Я. Атлас грибiв Украïни.
Киев, 1974. 251 с.).
Zhang M., Wu F., Wei Z., Xiao Y., Gong W. 2006. Characterization and decolorization ability of a laccase from
Panus rudis. Enzyme and Microbia Technology 39, 1: 92–97. DOI: 10.1016/j.enzmictec.2005.09.012.
Zhou P., Fu Ch., Fu Sh., Zhan H. 2014. Purication and characterization of white laccase from the white-rot
fungus Panus conchatus. BioRecources 9, 2: 1964–1976. DOI: 10.1016/0922-338X(95)98183-L.
Zmitrovich I. V. 2015. Anti-cancer metabolites of Basidiomycota and their molecular targets. Vestnik Permskogo
universiteta. Biologya 3: 264–286 [In Russian]. (Змитрович И. В. Метаболиты базидиальных грибов, эффектив-
ные в терапии рака и их молекулярные мишени: Обзор // Вестник Пермского университета. Биология, 2015.
Вып. 3. С. 264–286).
Zmitrovich I. V., Bondartseva M. A., Psurtseva N. V., Wasser S. P. 2017. Typication and characterization of
Trametes multicolor (Agaricomycetes), a perspective species of medicinal mushrooms. Int. J. Medicinal Mushrooms
19, 2: 137–144. DOI: 10.1615/IntJMedMushrooms.v19.i2.50.
Zmitrovich I. V., Bondartseva M. A., Vasilyev N. P. 2016. The Meruliaceae of Russia. I. Bjerkandera. Turcza-
ninowia 19, 1: 5–18. DOI: 10.14258/turczaninowia.19.1.1.
Zmitrovich I. V., Kovalenko A. E. 2016. Lentinoid and polyporoid fungi, two generic conglomerates containing
important medicinal mushrooms in molecular perspective. Int. J. Medicinal Mushrooms 18, 1: 23–38. DOI: 10.1615/
IntJMedMushrooms.v18.i1.40
Zmitrovich I. V., Malysheva V. F. 2013. Towards a phylogeny of Trametes alliance (Basidiomycota, Polyporales).
Mikologiya i topatologiya 47, 6: 358–380.
44 Zmitrovich I. V. et al.
The Meruliaceae of Russia. II. Panus
Zmitrovich I. V., Malysheva V. F., Malysheva E. F. 2009. The hyphal types of polyporoid and pleurotoid fungi: a
terminology revision. Ukrainian botanical journal 66, 1: 71–87 [In Russian]. (Змитрович И. В., Малышева В. Ф.,
Малышева Е. Ф. Типы гиф полипороидных и плевротоидных грибов: терминологическая ревизия // Укр . бот.
журнал, 2009. Т. 66, № 1. С. 71–87).
Zmitrovich I. V., Malysheva V. F., Malysheva E. F., Spirin V. A. 2004. Pleurotoid fungi of Leningrad Region
(with notes on rare and interesting East-European taxa). VIZR, St. Petersburg, 124 pp. [In Russian]. (Змитрович
И. В., Малышева В. Ф., Малышева Е. Ф., Спирин В. А. Плевротоидные грибы Ленинградской области (с за-
метками о редких и интересных восточноевропейских таксонах). СПб.: Изд-во ВИЗР, 2004. 124 с.).
... and Betula spp. (Zmitrovich et al., 2018). ...
... The present collection is typical for P. lecomtei. The diagnostic features are in conformity with Zmitrovich et al. 24 P. lecomtei is easily recognized by its purplish fruiting body having coarse, rigid, dense hairs on cap, pubescent stipe, and abundant metuloids cystidia (Fig.1). ...
Article
Panus lecomtei is emerging as an edible mushroom found worldwide and particularly in the Northern Hemisphere. The mushroom contains a substantial amount of useful nutritional and medicinal compounds. In the present study, we have examined a specimen of P. lecomtei submitted to the ICAR-Directorate of Mushroom Research gene bank. The specimen was examined for taxonomical characters using classical and molecular tools. Attempts were made for cultivation of this mushroom under controlled conditions using sawdust-based substrate. The specimen was characterized by its purplish fruiting body having coarse, rigid, dense hairs on the cap, pubescent stipe, and abundant metuloids. Molecular identification through conserved ITS region was done and the sequence was deposited in NCBI GenBank under accession number MN332200. Nutritional profiling and biochemical analysis showed that the mushroom contained high carbohydrate but low fat contents. The mushroom showed the presence of phenolics, β-carotene, and lycopene. The analysis also showed substantial antioxidant properties in the mushroom. The findings presented herein point out that P. lecomtei can be used as a potential edible mushroom for diversification of mushroom production in India.
Article
Full-text available
Bjerkandera adusta is a species of common white rot polyporoid fungi found worldwide. Despite playing an important role in deadwood decay, the species strains are used in bioremediation due to its ability to degrade polycyclic hydrocarbons and some of them are important etiological agents of chronic coughs and are associated with lung inflammations. In our experiments, diversity within the species was investigated using molecular approaches and we found that sequence diversity seen at ITS sequence level is not due to cryptic speciation but to intragenomic variability of ITS sequences in this species.
Article
Several specimens of putative Lentinus pilososquamulosus (including the type specimen) and Le. martianoffianus from Siberia and the Russian Far East associated with different hosts and collected during the past two decades were studied. Morphological examination of the studied specimens showed a close similarity to specimens of Lignomyces vetlinianus, a species originally described from Central Europe, but later discovered in European Russia, the Caucasus (Abkhazia), and the Urals. Cultures of Li. vetlinianus were characterized by growth and morphology, and their adaptation to various temperatures was evaluated. Growth rate of the strains at 25 °C varied between 1.2 and 3.1 mm/day; the majority of them could survive freezing at −20 °C and grew at temperature ranging from 5 to 35 °C. Comparative culture characters, mating compatibility, and ITS sequencing revealed that the specimens earlier identified as Le. pilososquamulosus or Far East Russian Le. martianoffianus (misapplied name) were identical to Li. vetlinianus. It was shown that the distribution area of Li. vetlinianus extends from Central Europe to the South (Caucasus) and through Western Siberia to the Russian Far East. Since several attempts of Le. pilososquamulosus holotype sequencing were unsuccessful, an epitype of this taxon, represented by a successfully sequenced old topotype specimen, was proposed. Le. pilososquamulosus is considered as synonym of Li. vetlinianus, following the principle of priority. A molecular study of true Le. martianoffianus (type specimen) supported its conspecificity with Panus lecomtei.
Article
Full-text available
Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus higher-level classification within the group is a barrier to further taxonomic revision. We amplified nrLSU, nrITS and rpb1 genes across the Polyporales, with a special focus on the latter. We combined the new sequences with molecular data generated during the PolyPEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification. Eighteen clades are assigned a family name, including three families described as new (Cerrenaceae fam. nov., Gelatoporiaceae fam. nov., Panaceae fam. nov.) and fifteen others (Dacryobolaceae, Fomitopsidaceae, Grifolaceae, Hyphodermataceae, Incrustoporiaceae, Irpicaceae, Ischnodermataceae, Laetiporaceae, Meripilaceae, Meruliaceae, Phanerochaetaceae, Podoscyphaceae, Polyporaceae, Sparassidaceae, Steccherinaceae). Three clades are given informal names (/hypochnicium,/climacocystis and/fibroporia+amyloporia). Four taxa (Candelabrochete africana, Mycoleptodonoides vassiljevae, Auriporia aurea and Tyromyces merulinus) cannot be assigned to a family within the Polyporales. The classification proposed here provides a framework for further taxonomic revision and will facilitate communication among applied and basic scientists. A survey of morphological, anatomical, physiological and genetic traits confirms the plasticity of characters previously emphasized in taxonomy of Polyporales.
Article
Full-text available
Collections of a pleurotoid fungus from dead aspen in eastern Russia were initially identified as Lentinus sp., then as Phyllotopsis nidulans. DNA sequencing of cultures derived from these specimens using the nuclear ribosomal 28S (nrLSU) and nuclear ribosomal ITS1-5.8S-ITS2 regions (nrITS) showed that they were neither Lentinus nor Phyllotopsis and were not related to other pleurotoid genera Hohenbuehelia and Pleurotus. Subsequent investigation showed that the Russian fungus was the same as Pleurotus vetlinianus described from Poland. A new genus, Lignomyces, is described and characterized and L. vetlinianus comb. nov. is proposed. Copyright © 2015, Mycologia.
Article
Full-text available
Cultural characters, phenoloxidase production, and mating data are provided for isolates of Panus conchatus from Illinois and Switzerland. Intracollection pairings of single-spore isolates revealed a tetrapolar mating system. Intercollection pairings showed that collections from these geographic areas were fully intercompatible. These data indicate that no genetic barriers to gene flow exist between populations of P. conchatus from Illinois and Switzerland.
Article
Full-text available
This study aims to identify the lignicolous basidiomycetes species that synthetize volatile organic compounds with potential applications in various industries: food industry, cosmetics and perfumery or in agriculture. These species are among the very few organisms that thanks to their complex enzymatic system can degrade lignin, one of the most abundant and resistant biopolymers. With this purpose in mind, we have collected fruiting bodies from different phytocenoses and the lignicolous basidiomyctes species were identified by their macroscopic and microscopic characteristics. From the context of the fresh fruiting bodies small fragments of dikaryotic mycelium were extracted and inoculated on classic and adapted synthetic media and incubated in the dark at a temperature of 25°C. 20 species of lignicolous basidiomycetes, belonging to 8 families and 3 orders were isolated in pure culture. The isolates were analyzed in vitro and the main characteristics that were observed are: the general aspect of the surface and the reverse of the colonies, the changing in color and the growth rate of the mycelium and also the specific odor which indicates the presence of the organic volatile compounds.
Article
Ontogenies of cultured Panus conchatus, P. rudis, and P. fulvus sporocarps were observed macroscopically and with scanning electron microscopy. Hymenophore differentiation in Panus involves periclinal growth of context hyphae below a closed surface palisade of hymenial elements, resulting in a cantharelloid appearance and radiate trama. This pattern is qualitatively different from that in Lentinus s. str., which suggests that lamellae of Panus and Lentinus are not homologous. Panus conchatus and P. rudis sporocarps have short stipes, develop directly from the mycelium, and mature in 5-10 d. Panus fulvus sporocarps have an elongate stipe, develop from a pseudosclerotium, and mature in about 3 wk, the first approximately 15 d of which involve apical elongation of a stipelike primordium that is able to dedifferentiate and regenerate cut apices. Panus conchatus and P. rudis sporocarps lacked regeneration ability. Panus conchatus sporocarps developed an ephemeral partial veil that was obliterated during sporocarp expansion. Outgroup comparison suggests that evolutionary changes in developmental programs in Panus have included: 1) delay in offset of primordium growth, with a corresponding increase in primordium size and time to maturation (hypermorphosis); 2) insertion of the pseudosclerotial stage in ontogeny; 3) gain of ability for dedifferentiation and regeneration; and 4) nonterminal gain or loss of veil tissue.
Article
The role of light in the fruiting of Panus fragilis was explored under controlled temperature and light cycles. No fruiting occurred in the absence of light. A daily light cycle of 1.5 h at 792 ft-c was sufficient to produce fruiting initials, but not mature sporophores. Only at the longest daily light cycle tested, 12 h at 792 ft-c, were mature sporophores produced. The time required was 22–31 days with a daily fluctuating temperature cycle of 22 °C for 12 h followed by 8 °C for 12 h. The development of a pink pigment associated with fruiting initials and young sporophores was strongest at the longer light cycles and almost absent in the short cycles.