DataPDF Available

supplemental tables

Authors:
Supplemental Table S1 Genotypes and major morphological features of the lettuce cultivars used in this study
Sample no.
Type
Original source
GRC No. or
trade name
Leaf color
Leaf shape
Leaf tip shape
Leaf texture
Glossiness of
leaf upper side
Degree of
undulation of
leaf blade margin
s13k014
Head (R)
California, USA
PI_536728
Light green
Spatulate
Circular
Smooth
Glossy
None
s13k035#*
Leaf
Netherlands
PI_342476-2
Yellow-green
Obovate
Circular
Slightly curled
Glossy
None
s13k037
Head (I)
Macedonia
PI_358043-1
Green
Obovate
Circular
Slightly curled
Glossy
None
s13k044
Leaf
Netherlands
PI_342502-1
Yellow-green
Long elliptic
Obtuse
Slightly curled
Glossy
None
s13k057
Leaf
Turkey
PI_164937
Yellow-green
Pandurate
Obtuse
Rugous
Glossy
None
s13k066
Leaf
New York, USA
PI_536700
Yellow-green
Oval
Circular
Rugous
Glossy
None
s13k068
Leaf
India
PI_271476-1
Amaranth
Pandurate
Obtuse
Rugous
Glossy
None
s13k072
Leaf
USA
PI_601060
Amaranth
Spatulate
Circular
Rugous
Glossy
None
14k374
Leaf
Washington, USA
PI_617958-3
Amaranth
Obovate
Circular
Slightly curled
Glossy
None
14k313
Head (R)
Greece
PI_491213*
Dark green
Long elliptic
Obtuse
Slightly curled
Glossy
None
14k320*
Head (R)
Netherlands
PI_342541-4
Green
Spatulate
Circular
Slightly curled
Glossy
None
s14k331
Leaf
China
W6_35654
Light green
Long elliptic
Acuminate
Smooth
Glossy
None
s14k332#*
Leaf
Pennsylvania, USA
PI_536777
Light green
Long elliptic
Obtuse
Smooth
Glossy
None
14k333#*
Leaf
Beijing, China
PI_391601-1
Light green
Pandurate
Obtuse
Slightly curled
Glossy
None
14k339
Leaf
California, USA
W6_29817-1
Amaranth
Lanceolate
Acute
Slightly curled
Glossy
Deep
14k342
Leaf
Netherlands
PI_342474-1
Yellow-green
Long elliptic
Circular
Slightly curled
Glossy
None
14k360
Head (R)
Unknown
PI_140394
Green
Long elliptic
Obtuse
Smooth
Glossy
None
s15k059
Head (B)
Netherlands
PI_342556-4
Light amaranth
Oval
Circular
Slightly curled
Lustreless
None
s15k104*
Head (B)
Netherlands
PI_342481-1
Green
Oblate
Circular
Slightly curled
Lustreless
None
s15k118
Leaf
China
Hongzhou
Amaranth
Oblate
Obtuse
Rugous
Lustreless
Slight
15k119
Leaf
China
Yanzhi
Amaranth
Long elliptic
Obtuse
Curled
Lustreless
None
15k121
Leaf
Viet Nam
VI046054
Yellow-green
Long elliptic
Acuminate
Slightly curled
Lustreless
None
s15k153
Head (B)
China
Flandria RZ
Green
Suborbicular
Circular
Smooth
Glossy
None
s15k157*
Leaf
Unknown
PI_178923-1
Yellow-green
Obovate
Circular
Curled
Glossy
Slight
s15k178*
Head (R)
Turkey
PI169495
Dark green
Long elliptic
Obtuse
Smooth
Lustreless
None
s15k203
Head (I)
China
Huanghou
Green
Suborbicular
Obtuse
Slightly curled
Glossy
None
s15k204
Leaf
China
Luoshalv
Yellow-green
Suborbicular
Obtuse
Curled
Glossy
Slight
s15k218
Head (R)
China
Aoluo
Dark green
Pandurate
Obtuse
Smooth
Glossy
None
s15k225
Head (I)
China
Baoyulai
Light green
Suborbicular
Circular
Rugous
Glossy
None
Bilvyi
Leaf
China
Bilvyi
Yellow-green
Obovate
Circular
Slightly curled
Glossy
None
Note: Head (R), a romaine cultivar of head lettuce type; Head (I), an iceberg cultivar of head lettuce type; Head (B), a butterhead cultivar of head lettuce type
# This cultivar in field was observed different phenotype compared with the description on the original website. We changed the classification based on our observation.
* This cultivar was also used in a RNA-seq study conducted by Zhang et al., 2017.
Supplemental Table S2. Lettuce metabolites putatively identified by GC×GC-TOF/MS
No.
1st
Dimension
Time (min)
2nd
Dimension
Time (s)
m/z for
quantification
Probable component
Similarity
Calculated
Retention
Index
Fiehn
Retention
Index
CV(%)
Level of
identification
GC_1
8.63
2.14
157
Tiglic acid
773
206167
n.a
n.a
2
GC_2
9.30
2.42
174
Pyruvic acid
875
213962
210436
1.7
1
GC_3
9.56
2.08
117
Lactic acid
945
219607
216758
1.3
1
GC_4
9.96
2.14
147
Glycolic acid
888
232532
225852
3.0
2
GC_5
10.63
1.84
44
L-alanine
898
245617
244218
0.6
1
GC_6
10.63
1.96
174
N-butylamine
807
245656
n.a
n.a
2
GC_7
11.10
2.00
146
Hydroxylamine
901
254897
254023
0.3
2
GC_8
11.23
2.14
131
2-Hydroxybutyric acid
889
257580
n.a
n.a
2
GC_9
11.63
2.80
125
2-Furoic acid
807
265707
264112
0.6
2
GC_10
11.63
2.40
147
Oxalic acid
704
265576
260477
2.0
1
GC_11
11.70
2.24
66
3-Hydroxypropionic acid
843
266841
269050
-0.8
2
GC_12
12.16
2.18
147
3-Hydroxybutyric acid
883
276049
278679
-0.9
2
GC_13
12.90
2.62
89
Succinate semialdehyde
688
290696
294326
-1.2
2
GC_14
13.43
2.46
147
Propanedioic acid
881
301189
n.a
n.a
2
GC_15
13.76
2.04
144
L-valine
886
312269
314036
-0.5
1
GC_16
14.36
2.30
147
4-Hydroxybutanoic acid
900
319593
n.a
n.a
2
GC_17
14.76
2.36
70
Dihydroxyacetone
659
327522
333585
-1.8
2
GC_18
14.96
2.84
105
Benzoic acid
858
336912
339866
-0.8
1
GC_19
15.30
2.36
117
Octanoic acid
940
338069
n.a
n.a
1
GC_20
15.43
2.12
103
Glycerol
931
340626
345180
-1.3
2
GC_21
15.43
2.24
158
L-leucine
859
345655
346389
-0.2
1
GC_22
16.10
2.12
158
L-isoleucine
874
353809
359232
-1.5
1
GC_23
16.30
2.44
142
L-proline
848
363727
363983
-0.1
1
GC_24
16.43
2.78
147
Maleic acid
921
360618
365916
-1.4
2
GC_25
16.50
2.98
180
Niacin
888
362002
354525
2.1
1
GC_26
16.56
2.26
174
Glycine
892
367542
368260
-0.2
1
GC_27
16.76
2.62
55
Succinic acid
879
371517
371179
0.1
2
GC_28
17.23
2.28
103
D-glyceric acid
860
376273
377282
-0.3
2
GC_29
17.56
2.80
99
Uracil
850
382804
385872
-0.8
2
GC_30
17.63
2.64
147
Itaconic acid
874
383925
387056
-0.8
2
GC_31
17.83
2.34
45
Fumaric acid
898
390833
390675
0.0
1
GC_32
17.96
2.70
240
Pyrrole-2-carboxylic acid
776
389777
394475
-1.2
2
GC_33
18.10
2.16
204
L-serine
831
391954
395017
-0.8
1
GC_34
18.30
2.38
117
Nonanoic acid
853
395519
n.a
n.a
2
GC_35
18.90
2.24
117
Threonine
914
405981
410252
-1.0
1
GC_36
20.23
2.34
201
Erythrose
802
429350
435855
-1.5
2
GC_37
20.23
2.72
160
L-Aspartic acid
875
429461
432795
-0.8
2
GC_38
20.30
2.28
174
Beta-Alanine
866
430499
434448
-0.9
2
GC_39
21.56
2.38
247
Citramalic acid
841
452701
456194
-0.8
2
GC_40
21.97
2.46
55
Malic acid
924
459726
462908
-0.7
1
GC_41
22.56
2.08
147
Meso-Erythritol
923
470118
n.a
n.a
2
GC_42
22.63
2.94
100
Asparagine
824
471536
476536
-1.0
2
GC_43
23.03
2.66
176
L-methionine
828
478457
482597
-0.9
2
GC_44
23.16
3.76
84
Pyroglutamic acid
908
481111
485159
-0.8
1
GC_45
23.36
2.38
174
4-Aminobutanoic acid
887
484210
n.a
n.a
2
GC_46
23.56
2.24
147
L-Threonic acid
901
487645
497167
-1.9
2
GC_47
23.76
3.16
155
Glutamine
772
491207
491841
-0.1
2
GC_48
24.43
2.76
267
3-Hydroxybenzoic acid
796
502126
507006
-1.0
2
GC_49
24.63
2.94
198
Alpha-ketoglutaric acid
758
505484
507334
-0.4
2
GC_50
25.30
2.16
217
Arabinofuranose
798
516298
n.a
n.a
2
GC_51
25.83
2.44
128
L-Glutamic acid
820
525198
528609
-0.6
2
GC_52
26.23
2.42
147
Tartaric acid
899
531810
534818
-0.6
2
GC_53
26.50
2.28
103
Arabinose
888
536183
n.a
n.a
2
GC_54
26.76
2.28
103
Xylose
921
540595
542483
-0.3
2
GC_55
26.90
2.44
117
Lauric acid
876
542844
547162
-0.8
1
GC_56
27.63
2.22
103
Lyxose
797
554916
545540
1.7
2
GC_57
28.50
2.08
217
Ribitol
891
569214
576302
-1.2
2
GC_58
28.70
2.24
117
Rhamnose
864
572567
n.a
n.a
2
GC_59
29.36
2.60
229
cis-Aconitic acid
789
583461
587501
-0.7
2
GC_60
29.70
2.22
103
Ribonic acid
842
587694
n.a
n.a
2
GC_61
29.83
2.34
217
Glucose-1-phosphate
689
589445
594823
-0.9
2
GC_62
30.90
2.36
204
Shikimic acid
843
603255
n.a
n.a
2
GC_63
31.90
2.44
82
Neophytadiene
913
616215
n.a
n.a
2
GC_64
32.10
2.48
117
Myristic acid
853
618812
635876
-2.7
1
GC_65
34.83
2.12
219
Caffeic acid
817
654111
688718
-5.0
2
GC_66
36.43
1.60
305
Myo-inositol
828
720856
729867
-1.2
2
GC_67
36.96
1.70
143
Beta-Glycerophosphoric
acid
707
758742
775162
-2.1
2
GC_68
37.36
1.86
80
Linolenic acid
847
774062
780147
-0.8
2
GC_69
37.56
1.78
117
Stearic acid
873
781603
787954
-0.8
1
GC_70
38.03
1.80
387
Glucose-6-phosphate
735
799327
817575
-2.2
2
GC_71
38.96
1.94
117
Arachidic acid
825
832360
855981
-2.8
1
GC_72
39.10
1.84
204
Cellobiose
777
926513
933726
-0.8
2
GC_73
40.36
1.94
437
Sucrose
806
891358
914209
-2.5
2
GC_74
41.16
2.12
204
Maltose
838
940962
946639
-0.6
2
GC_75
42.30
2.54
117
Lignoceric acid
879
986108
977654
0.9
2
GC_76
44.43
3.44
223
gamma-Tocopherol
787
1031876
n.a
n.a
2
Note:
RT, Retention time;
CV, Coefficient of variation. CV = (Calculated RI - Fiehn RI) / Fiehn RI
n.a, not available
Level 1 was achieved by commercial standard
Supplemental Table S3 Lettuce metabolites putatively identified by UPLC-IMS-QTOF-MS
No.
Component name
Neutral
(m/z)
Observed
(m/z)
Mass
Error
(ppm)
RT
(min)
CCS
2)
Adducts
Major fragments
m/z (%)
Molecular
Formula
Ref.
Level of
identification
LC_77
1-(sn-glycero-3-phospho)-
1D-myo-inositol
334.0665
333.0587
-1.6
0.68
162.87
M-H
241.0113(100); 92.9280(47);
154.0113(32); 259.0216(19)
C9H19O11P
Metlin
2
LC_78
Trisaccharide isomer 1a
504.1690
503.1615
-0.5
0.76
203.28
M-H
323.0981(22); 341.1082(6);
179.0554(9); 143.0345(2)
C18H32O16
Metlin
3
LC_79
Disaccharide isomer 1b
342.1158
341.1086
-1.1
0.77
169.05
M-H
179.055(22); 59.0131(22);
71.0139(10); 89.0245(7)
C12H22O11
Metlin
3
LC_80
UDP hexose isomer 1c
566.0550
565.0471
-1.1
0.86
206.66
M-H
323.0281(100); 384.9830(17);
272.9562(12)
C15H24N2O17P2
Metlin
3
LC_81
UDP hexose isomer 2c
566.0550
565.0474
-0.7
0.99
207.27
M-H
323.0278(100); 241.0119(11);
C15H24N2O17P2
Metlin
3
LC_82
Disaccharide isomer 2b
342.1162
341.1085
-1.3
1.06
169.52
M-H
59.0136(23); 179.0557(12);
71.0133(11)
C12H22O11
Metlin
3
LC_83
Disaccharide isomer 3b
342.1162
341.1083
-1.8
1.20
169.14
M-H
179.0549(8); 119.0350(2)
C12H22O11
Metlin
3
LC_84
Trisaccharide isomer 2a
504.1690
503.1616
-0.4
1.54
204.97
M-H
323.0977(34); 113.024(8);
179.0556(6); 161.0450(4);
89.0241(5)
C18H32O16
Metlin
3
LC_85
Cyanidin 3-O-galactoside
449.1084
449.1079
0.2
4.39
201.63
-e
287.0554(100)
C21H21O11
Standard
1
LC_86
Glutathione (oxidized form)
612.1520
611.1437
-1.5
4.45
216.74
M-H
306.0755(100); 272.0876(40);
254.0770(26); 210.0872(20)
C20H32N6O12S2
Metlin
2
LC_87
Guanosine
283.0917
282.0839
-1.9
4.50
158.10
M-H
133.0150(100); 150.04205(42);
C10H13N5O5
Metlin
2
108.0196(16)
LC_88
Xanthosine
284.0757
283.0680
-1.4
4.68
154.90
M-H
151.0254(100); 108.0197(30);
C10H12N4O6
Metlin
2
LC_89
L-Phenylalanine
165.0790
164.0714
-2.0
4.76
137.27
M-H
147.0450(86); 103.0555(12)
C9H11NO2
Metlin
2
LC_90
Dihydroxybenzoic acid
154.0266
153.0189
-1.2
4.77
168.87
M-H
109.0289(100)
C7H6O4
Metlin
3
LC_91
Cyanidin 3-(6''-
malonylglucoside)
535.1088
535.1081
-0.2
4.86
215.35
-e
287.0559(100)
C24H23O14
ResPect
2
LC_92
Dihydrocaffeic acid hexose
isomer 1
344.1107
343.1032
-0.7
4.93
165.78
M-H
163.0392(100); 181.0496(84);
119.0495(77); 135.0433(80)
C15H20O9
1
3
LC_93
Dihydroxybenzoic acid
hexose isomer 1
316.0794
315.0718
-1.0
5.07
169.83
M-H
152.0112(31); 108.0216(10);
109.0280(20)
C13H16O9
1
3
LC_94
4-(2-hydroxyethyl)
benzene-1,2-diol
154.0630
153.0552
-3.3
5.25
175.55
M-H
123.0443(100)
C8H10O3
In-house
database
2
LC_95
Caffeoylquinic acid hexose
isomer 1
516.1479
515.1411
-0.9
5.26
203.06
M-H
191.0556(100); 135.0453(5);
179.0347(4); 353.0876(3)
C22H28O14
2
3
LC_96
Dihydroxybenzoic acid
hexose isomer 2
316.0794
315.0723
0.4
5.30
163.88
M-H
109.0291(100); 153.0189(39)
C13H16O9
1
3
LC_97
Caffeoyl-hexose isomer 1
342.0951
341.0883
1.5
5.54
177.16
M-H
135.0449(100); 179.0349(20)
C15H18O9
3
3
LC_98
Hydroxybenzoic acid
hexose
300.0846
299.0773
0.1
5.54
162.30
M-H
137.0240(100)
C13H16O8
1
3
LC_99
Vanillic acid glucoside
330.0951
329.0877
-0.4
5.70
171.01
M-H
167.0345(100); 152.0105(19);
121.0294(10)
C14H18O9
4
2
LC_100
Caffeoylquinic acid hexose
isomer 2
516.1479
515.1412
1.2
5.71
205.81
M-H
191.0558(100)
C22H28O14
2
3
LC_101
Esculetin hexoside isomer 1
340.0794
339.0721
-0.1
5.75
172.34
M-H
177.0185(100); 133.0289(15)
C15H16O9
ResPect
3
LC_102
Dihydrocaffeic acid hexose
isomer 2
344.1107
343.1038
0.4
5.77
177.11
M-H
181.0500(100); 135.0447(90)
C15H20O9
1
3
LC_103
Geniposide
388.1369
387.1297
0.0
5.83
176.95
M-H
165.0554(33); 225.0769(100);
121.0291(34)
C17H24O10
5
2
LC_104
Quercetin hexoside
glucuronide isomer 1
640.1276
639.1196
-1.1
5.94
235.10
M-H
463.0882(100); 300.0272(35)
C27H28O18
ResPect
3
LC_105
Isopropylmalic acid
176.0685
175.0608
-2.2
5.97
129.12
M-H
115.0399(100); 113.0608(13);
85.0655(8)
C7H12O5
6
2
LC_106
Dihydrocaffeic acid hexose
isomer 3
344.1107
343.1029
-1.6
5.99
165.78
M-H
137.0607(100); 181.0502(78);
119.0495(29)
C15H20O9
1
3
LC_107
Quercetin hexoside
glucuronide isomer 2
640.1276
639.1195
-1.2
6.00
249.44
M-H
463.0883(100); 301.0336(33);
300.0268(24); 271.0240(15)
C27H28O18
ResPect
3
LC_108
Quercetin 3, 4’-di-glucoside
626.1483
625.1404
-1.0
6.02
244.34
M-H
300.0262(13); 463.0879(100);
462.0801(35); 464.0909(22)
C27H30O17
Standard
1
LC_109
Caffeoyl-hexose isomer 2
341.0951
341.0876
-0.6
6.03
175.53
M-H
135.0449(100); 179.0347(20);
96.9599(13)
C15H18O9
3
3
LC_110
5-Caffeoylquinic acid
(Caffeoylquinic acid isomer
1)d
354.0951
353.0877
-0.2
6.10
171.52
M-H
191.0558(100)
C16H18O9
Standard
1
LC_111
p-Coumaroyl glucoside
326.1002
325.0920
-1.6
6.12
167.90
M-H
119.0502(15); 163.0397(100)
C15H18O8
7
2
LC_112
Quercetin 3-O-(6''-O-
malonyl)-glucoside 7-O-
glucuronide
726.1280
725.1200
-1.0
6.19
243.85
M-H
505.0987(100); 300.0271(21);
301.0338(13)
C30H30O21
8
2
LC_113
Quercetin 3-O-(6''-O-
malonyl)-glucoside 7-O-
glucoside
712.1487
711.1407
-1.0
6.25
234.29
M-H
667.1510(100); 462.0804(59);
301.0345(38);
C30H32O20
Standard
1
LC_114
Esculetin hexoside isomer 2
340.0794
339.0723
0.6
6.31
166.90
M-H
177.0187(100)
C15H16O9
Metlin
3
LC_115
Caffeoyl-hexose isomer 3
342.0951
341.0879
0.3
6.47
169.55
M-H
135.0449(100); 179.0341(24);
C15H18O9
3
3
96.9597(20)
LC_116
4-Caffeoylquinic acid
(Caffeoylquinic acid isomer
2)
354.0951
353.0877
-0.4
6.54
168.73
M-H
191.0554(65); 137.0241(6)
C16H18O9
9
1e
LC_117
Luteolin glucuronide-
hexoside
624.1327
623.1244
-1.5
6.73
226.88
M-H
285.0398(100); 287.0563(27)
C27H28O17
10
2
LC_118
5-p-coumaroylquinic acid
(p-coumaroylquinic acid
isomer 1)
338.1002
337.0926
-0.9
6.73
187.16
M-H
191.0556(100); 93.0341(8)
C16H18O8
9, 11
1e
LC_119
Luteolin pentosyl-hexoside
isomer 1
580.1428
625.1402
-1.3
6.76
225.12
M+FA-
H
285.0398(100); 151.0034(28);
287.0563(27); 192.0596(20);
C26H28O15
ResPect
3
LC_120
Quercetin hexoside
glucuronide isomer 3
640.1276
639.1198
-0.8
6.88
232.46
M-H
463.0878(20); 301.0343(100)
C27H28O18
ResPect
3
LC_121
Caffeoylmalic acid
296.0532
295.0455
-1.5
6.89
219.31
M-H
135.0453(100); 179.0347(92);
115.0036(81)
C13H12O8
8
2
LC_122
Luteolin diglucoside
610.1534
609.1456
-0.3
7.09
228.10
M-H
285.0399(100)
C27H30O16
ResPect
2
LC_123
15-deoxylactucin-8-sulfate
isomer 1f
340.0617
339.0536
-2.5
7.11
169.11
M-H
96.96002(90)
C15H16O7S
12
2
LC_124
p-coumaroylquinic acid
isomer 2
338.1002
337.0926
-1.0
7.13
167.56
M-H
191.0557(100)
C16H18O8
13
3
LC_125
Quercetin 3-
neohesperidoside
610.1534
609.1457
-0.7
7.19
230.57
M-H
301.0339(100); 271.0241(16);
255.0291(8);
C27H30O16
ResPect
2
LC_126
Luteolin pentosyl-hexoside
isomer 2
580.1428
579.1345
-1.8
7.42
224.12
M-H
285.0399(100); 461.0513(10)
C26H28O15
ResPect
3
LC_127
Luteolin 7-
neohesperidoside
594.1585
593.1502
-1.6
7.43
227.35
M-H
285.0401(100)
C27H30O15
ResPect
2
LC_128
Quercetin 3-rutinoside
(Rutin)
610.1514
609.1446
-2.5
7.43
230.57
M-H
301.0338(66); 300.0265(65)
C27H30O16
Standard
1
LC_129
(+)-5,5'-Dimethoxy-9-O-
beta-D-glucopyranosyl
lariciresinol
582.2312
581.2236
-0.7
7.48
227.54
M-H
329.1396(100); 341.1387(13)
C28H38O13
12
2
LC_130
Apigenin diglucoside
594.1573
593.1499
-2.1
7.54
234.31
M-H
269.0453(100)
C27H30O15
14
2
LC_131
Chicoric acid
474.0798
473.0724
-0.1
7.55
198.82
M-H
135.0448(100); 179.0345(64);
149.0088(34); 219.0293(15);
134.0366(9)
C22H18O12
Standard
1
LC_132
Quercetin 3-glucuronide
478.0747
477.0676
0.4
7.62
200.42
M-H
301.0348(100); 151.0031(15)
C21H18O13
Standard
1
LC_133
Quercetin 3-glucoside
464.0955
463.0878
-0.8
7.63
199.02
M-H
301.0348(100); 300.0269(35);
271.0239(21)
C21H20O12
Standard
1
LC_134
Luteolin 7-glucoside
448.1006
447.0933
0.2
7.65
209.25
M-H
285.0424(100)
C21H20O11
Standard
1
LC_135
Luteolin 7-glucuronide
462.0800
461.0727
0.2
7.67
194.05
M-H
285.0399(100)
C21H18O12
Standard
1
LC_136
Chicoric acid (isomer 2)
474.0798
473.0725
-0.1
7.69
202.18
M-H
135.0449(100); 179.0348(56);
149.0088(38); 219.0293(17);
161.0241(10); 191.0342(8)
C22H18O12
8
2
LC_137
Mono-hydroxylated
dicaffeoylquinic acid
532.1208
531.1135
-0.9
7.80
205.55
M-H
191.0556(100)
C25H24O13
15
3
LC_138
Quercetin 3-(6''-
malonylglucoside)
550.0959
549.0880
-0.6
7.82
216.03
M-H
505.0988(100); 300.0271(48)
C24H22O15
Standard
1
LC_139
Quercetin hexoside
(Quercetin glucoside isomer
2)
464.0953
463.0880
-0.4
7.85
198.90
M-H
300.0271(100); 271.0243(41);
255.0292(22)
C21H20O12
ResPect
3
LC_140
8-deacetylmatricarin-8-
sulfatef
342.0773
341.0697
-0.4
7.87
170.67
M-H
96.9600(100)
C15H18O7S
16
2
LC_141
Quercetin 3-glucoside -6’’-
acetate (isomer 1)
506.1060
505.0990
0.4
7.91
209.67
M-H
300.0271(100); 301.0336(48)
C23H22O13
ResPect
3
LC_142
Syringaresinol-glucoside
580.2156
579.2079
-0.4
7.94
234.54
M-H
417.1552(100)
C28H36O13
17
2
LC_143
15-deoxylactucin-8-sulfate
isomer 2f
340.0617
339.0541
-0.3
7.97
169.11
M-H
96.9599(100)
C15H16O7S
13
2
LC_144
Quercetin 3-glucoside -6’’-
acetate (isomer 2)
506.1060
505.0991
0.6
8.05
212.01
M-H
300.0272(100)
C23H22O13
ResPect
3
LC_145
3,5-Dicaffeoyl quinic acid
516.1268
515.1194
-0.1
8.05
208.13
M-H
353.0883(13); 191.0558(100);
135.0446(39)
C25H24O12
9
1e
LC_146
Luteolin hexoside (isomer
2)
448.1006
447.0933
0
8.05
198.07
M-H
285.0398(100); 243.0298(66);
135.0452(55); 227.0347(33)
C21H20O11
ResPect
3
LC_147
Apigenin 7-O-glucoside
432.1057
431.0987
0.7
8.16
205.79
M-H
268.0374(100); 269.0439(43)
C21H20O10
Standard
1
LC_148
Apigenin 7-O-glucuronide
446.0849
445.0779
-0.6
8.22
202.77
M-H
269.0449(100)
C21H18O11
ResPect
2
LC_149
Quercetin diacetyl-hexoside
548.1166
547.1097
0.7
8.45
226.40
M -H
301.0333(100); 505.0987(14)
C25H24O14
18
3
LC_150
Lactucinf
276.0998
275.0923
-0.6
8.71
201.69
M -H
213.0917(100); 185.0967(13)
C15H16O5
13
2
LC_151
Lactucopicrin isomer 1f
410.1366
409.1295
0.6
8.94
203.60
M-H
213.0920(100); 257.0813(30);
C23H22O7
13
3
LC_152
Lactucopicrin isomer 2 f
410.1366
409.1291
-0.4
9.30
199.85
M-H
213.0917(100); 151.0405(11)
C23H22O7
13
3
LC_153
Lactucopicrin-15-oxalate f
482.1211
481.1137
-0.7
9.43
199.52
M-H
213.0916(100); 185.0967(26);
257.0813(16)
C25H22O10
13
2
LC_154
Tri-4-hydroxyphenylacetyl
glucoside isomer 1
582.1737
581.1658
-1.1
9.53
221.01
M-H
295.0814(100)
C30H30O12
16
2
LC_155
Tri-4-hydroxyphenylacetyl
glucoside isomer 2
582.1737
581.1659
-1.0
9.62
218.65
M-H
295.0814(100); 143.0340(13)
C30H30O12
16
2
LC_156
Tri-4-hydroxyphenylacetyl
glucoside isomer 3
582.1737
581.1658
-1.2
9.82
216.38
M-H
175.0397(100); 217.0500(52);
C30H30O12
16
2
LC_157
12-HpOTrE
310.2137
309.2064
-2.4
10.08
178.16
M-H
211.1335(100); 229.1440(60);
183.1387(27); 171.1022(19);
291.1859(14)
C18H30O4
19
2
LC_158
9S,12S,13S-trihydroxy-
10E, 15Z-octadecadienoic
acid
328.2250
327.2174
-0.3
10.08
182.51
M-H
229.1440(17); 283.0624(11);
233.1144(9); 171.1022(7);
212.1367(5)
C18H32O5
In-house
database
3
LC_159
9,12,13-TriHOME
330.2407
329.2334
0.2
10.52
183.66
M-H
211.1338(100); 229.1439(54);
183.1390(26); 212.1370(11);
171.1024(9); 230.1472(6);
193.1220(6)
C18H34O5
In-house
database
3
LC_160
Dodecanedioic acid
230.1505
229.1433
-5.9
10.52
152.32
M-H
211.1333(100)
C12H22O4
HMDB
3
LC_161
7E,9Z,11-Dodecatrienyl
acetate
222.1602
221.1539
-3.6
12.24
182.04
M-H
220.1465(66); 177.0918(20);
148.0527(19); 192.1152(12)
C14H22O2
In-house
database
3
LC_162
MGDG(18:5(3Z,6Z,9Z,12Z
,15Z)/18:5(3Z,6Z,9Z,12Z,1
5Z))
766.4656
811.4666
3.7
13.29
279.51
M+FA-
H
742.3920(100)
C45H66O10
Lipidmaps
3
LC_163
PE(16:0/0:0)
453.2855
452.2781
-0.3
13.72
212.79
M-H
255.2326(100)
C21H44NO7P
Lipidmaps
3
LC_164
27-nor-campestan-
3beta,4beta,5alpha,6alpha,7
beta,8beta,14alpha,15alpha,
24-nonol
516.3298
561.3267
-2.7
13.93
236.61
M-H
480.3077(100)
C27H48O9
Lipidmaps
3
LC_165
PG(19:1 (9Z)/0:0)
524.3114
505.2958
4.2
14.00
221.99
M-H2O-
152.9949(100)
C25H49O9P
Lipidmaps
3
Note: a consist of three molecules of aldohexoses; b consist of three molecules of aldohexoses; c the major forms are glucoside and galactoside. d common name is Chlorogenic acid;
e identified by a surrogate standard from green coffee beans20; f validated by chicory and endive.
H
LC_166
PA(16:0/18:2 (9Z,12Z))
672.4730
671.4623
-5.1
14.86
263.26
M-H
279.2325(100); 277.2170(89);
253.2160(5)
C37H69O8P
HMDB
3
LC_167
MGDG(20:5(5Z,8Z,11Z,14
Z,17Z)/18:3(9Z,12Z,15Z))
798.5282
843.5247
-2.2
15.13
299.43
M+FA-
H
742.4717(100); 241.0097(6)
C47H74O10
Lipidmaps
3
LC_168
PS(14:1 (9Z)/14:1 (9Z))
675.4111
720.4108
2.1
15.49
275.24
M+FA-
H
537.2716(100)
C34H62NO10P
Lipidmaps
3
LC_169
PI (18:4 (6Z, 9Z, 12Z, 15Z)
/0:0)
592.2649
591.2586
1.7
16.02
255.58
M-H
515.2427(100); 500.2180(7)
C27H45O12P
Lipidmaps
3
LC_170
MGDG (18:3 (9Z, 12Z,
15Z) / 18:3 (9Z, 12Z, 15Z))
774.5282
819.5254
-4.7
17.61
297.87
M+FA-
H
277.2171(100); 513.3069(5)
C45H74O10
Lipidmaps
3
LC_171
MGDG (18:5(3Z, 6Z, 9Z,
12Z, 15Z)
/18:4(6Z,9Z,12Z,15Z))
768.4812
813.4794
-0.1
17.84
288.67
M+FA-
H
813.4784(100); 577.2680(3)
C45H68O10
Lipidmaps
3
Supplemental Table S4 The volcano plot analysis of metabolites in leaf and head lettuce
No.
Name
Fold Change
(FC)
log2(FC)
raw.pval
-log10(p)
LC_149
Quercetin diacetyl-hexoside
14.0810
3.8157
9.92E-12
11.0040
LC_103
Geniposide
9.1727
3.1973
5.75E-07
6.2401
LC_91
Cyanidin 3-(6''-malonylglucoside)
7.3238
2.8726
7.83E-05
4.1062
LC_144
Quercetin 3-glucoside -6''-acetate
(isomer 2)
5.0893
2.3475
1.42E-13
12.8480
LC_113
Quercetin 3-O-(6''-O-malonyl)-glucoside
7-O-glucoside
4.0630
2.0226
1.31E-11
10.8810
LC_121
Caffeoylmalic acid
3.7293
1.8989
1.79E-04
3.7464
LC_85
Cyanidin 3-O-galactoside
3.6849
1.8816
1.26E-04
3.9012
LC_128
Quercetin 3-rutinoside (Rutin)
3.4468
1.7853
8.61E-07
6.0651
LC_111
p-Coumaroyl glucoside
3.2963
1.7208
1.22E-04
3.9136
LC_127
Luteolin 7-neohesperidoside
3.2619
1.7057
1.06E-03
2.9760
LC_95
Caffeoylquinic acid hexose isomer 1
3.2288
1.6910
5.98E-18
17.2230
LC_117
Luteolin glucuronide-hexoside
3.1286
1.6455
2.36E-05
4.6274
LC_141
Quercetin 3-glucoside -6''-acetate
(isomer 1)
3.0946
1.6298
1.07E-13
12.9700
LC_122
Luteolin diglucoside
3.0704
1.6184
1.75E-10
9.7571
LC_125
Quercetin 3-neohesperidoside
2.9348
1.5533
1.11E-07
6.9536
LC_126
Luteolin pentosyl-hexoside isomer 2
2.8428
1.5073
5.29E-06
5.2761
LC_120
Quercetin hexoside glucuronide isomer 3
2.6560
1.4093
6.55E-09
8.1837
LC_112
Quercetin 3-O-(6''-O-malonyl)-glucoside
7-O-glucuronide
2.5374
1.3434
1.19E-09
8.9259
LC_135
Luteolin 7-glucuronide
2.5051
1.3249
1.14E-07
6.9434
LC_102
Dihydrocaffeic acid hexose isomer 2
2.4825
1.3118
4.26E-10
9.3711
LC_100
Caffeoylquinic acid hexose isomer 2
2.4770
1.3086
2.72E-15
14.5660
LC_145
3,5-Dicaffeoylquinic acid
2.4770
1.3086
3.83E-04
3.4168
GC_65
Caffeic acid
2.4758
1.3079
9.90E-06
5.0044
LC_90
Dihydroxybenzoic acid
2.3941
1.2595
8.11E-10
9.0909
LC_136
Chicoric acid (isomer 2)
2.3817
1.2520
2.38E-03
2.6240
LC_106
Dihydrocaffeic acid hexose isomer 3
2.3556
1.2361
2.49E-09
8.6034
LC_131
Chicoric acid
2.3477
1.2312
2.95E-04
3.5303
LC_97
Caffeoyl-hexose isomer 1
2.3016
1.2026
1.43E-05
4.8433
LC_108
Quercetin3, 4’-di-glucoside
2.2090
1.1434
2.54E-06
5.5948
LC_116
4-Caffeoylquinic acid (Caffeoylquinic
acid isomer 2)
2.1826
1.1260
1.97E-03
2.7062
LC_132
Quercetin 3-glucuronide
2.0107
1.0077
1.43E-06
5.8445
Supplemental Table S5 The VIP scores of metabolites in leaf and head lettuce
No.
Name
Comp.
1
Comp.
2
Comp.
3
Comp.
4
Comp.
5
LC_95
Caffeoylquinic acid hexose isomer 1
2.5000
1.9135
1.7658
1.7078
1.6795
LC_100
Caffeoylquinic acid hexose isomer 2
2.3254
1.8359
1.6942
1.6385
1.6100
LC_141
Quercetin 3-glucoside -6''-acetate
(isomer 1)
2.2078
1.7044
1.5634
1.5195
1.4904
LC_144
Quercetin 3-glucoside -6''-acetate
(isomer 2)
2.1984
1.6906
1.5472
1.5006
1.4717
LC_94
4-(2-hydroxyethyl) benzene-1,2-diol
2.0963
1.7342
1.5853
1.5327
1.5033
LC_149
Quercetin diacetyl-hexoside
2.0467
1.5710
1.4427
1.3964
1.3795
LC_113
Quercetin 3-O-(6''-O-malonyl)-
glucoside 7-O-glucoside
2.0360
1.6667
1.5211
1.4865
1.4580
LC_122
Luteolin diglucoside
1.9333
1.5509
1.4428
1.4112
1.3844
LC_118
5-p-coumaroylquinic acid (p-
coumaroylquinic acid isomer 1)
1.9123
1.5679
1.4311
1.3879
1.3873
LC_102
Dihydrocaffeic acid hexose isomer 2
1.8961
1.4439
1.4202
1.3848
1.3583
LC_90
Dihydroxybenzoic acid
1.8684
1.4583
1.3655
1.3484
1.3444
LC_112
Quercetin 3-O-(6''-O-malonyl)-
glucoside 7-O-glucuronide
1.8518
1.4890
1.3602
1.3480
1.3255
LC_106
Dihydrocaffeic acid hexose isomer 3
1.8188
1.4086
1.3916
1.3663
1.3523
LC_120
Quercetin hexoside glucuronide
isomer 3
1.7746
1.3853
1.2764
1.2912
1.2787
LC_101
Esculetin hexoside isomer 1
1.7345
1.3433
1.2705
1.2704
1.2486
GC_75
Lignoceric acid
1.7105
1.5742
1.4874
1.4671
1.4391
GC_26
Glycine
1.6740
1.2759
1.2956
1.2688
1.2448
LC_125
Quercetin 3-neohesperidoside
1.6355
1.3693
1.3003
1.2851
1.2670
LC_135
Luteolin 7-glucuronide
1.6343
1.4224
1.3749
1.3290
1.3134
LC_124
p-coumaroylquinic acid isomer 2
1.6267
1.3569
1.2385
1.2322
1.2193
GC_63
Neophytadiene
1.5965
2.0456
1.8846
1.8232
1.8123
LC_103
Geniposide
1.5474
1.7780
1.6689
1.6135
1.5881
LC_115
Caffeoyl-hexose isomer 3
1.5378
1.1918
1.2669
1.2246
1.2067
LC_128
Quercetin 3-rutinoside (Rutin)
1.5248
1.3664
1.2489
1.2553
1.2316
GC_22
L-isoleucine
1.5051
1.1699
1.1419
1.1292
1.1086
GC_56
Lyxose
1.5003
1.6611
1.5183
1.4717
1.4629
LC_132
Quercetin 3-glucuronide
1.4957
1.3286
1.2402
1.2409
1.2398
LC_108
Quercetin3, 4’-di-glucoside
1.4619
1.3177
1.2071
1.1957
1.1897
GC_35
Threonine
1.4322
1.0967
1.1262
1.1048
1.0952
LC_126
Luteolin pentosyl-hexoside isomer 2
1.4174
1.5133
1.4332
1.3980
1.3730
GC_65
Caffeic acid
1.3782
1.0578
1.0650
1.0869
1.0738
LC_133
Quercetin 3-glucoside
1.3593
1.4083
1.4105
1.3661
1.3474
GC_14
Propanedioic acid
1.3590
1.0464
1.0215
0.9906
0.9879
LC_97
Caffeoyl-hexose isomer 1
1.3543
1.6831
1.6280
1.5781
1.5548
LC_117
Luteolin glucuronide-hexoside
1.3215
1.0706
0.9913
0.9592
1.0274
GC_15
L-valine
1.3144
1.0213
1.0567
1.0557
1.0427
LC_91
Cyanidin 3-(6''-malonylglucoside)
1.2384
0.9751
0.9112
0.9428
0.9499
GC_24
Maleic acid
1.2382
1.3407
1.3831
1.3680
1.3696
LC_98
Hydroxybenzoic acid hexose
1.2264
1.2975
1.2268
1.1863
1.1636
LC_111
p-Coumaroyl glucoside
1.2061
1.1984
1.2650
1.2258
1.2022
LC_85
Cyanidin 3-O-galactoside
1.2040
0.9407
0.8909
0.9365
0.9355
Supplemental Table S6 The Mean Decrease Accuracy of metabolites in leaf
and head lettuce
No.
Name
Mean Decrease Accuracy
LC_100
Caffeoylquinic acid hexose isomer 2
1.95E-02
LC_117
Luteolin glucuronide-hexoside
1.70E-02
LC_95
Caffeoylquinic acid hexose isomer 1
1.53E-02
GC_63
Neophytadiene
1.42E-02
GC_56
Lyxose
1.41E-02
LC_144
Quercetin 3-glucoside -6''-acetate (isomer 2)
1.34E-02
LC_90
Dihydroxybenzoic acid
1.32E-02
LC_103
Geniposide
1.10E-02
LC_86
Glutathione (oxidized form)
1.09E-02
LC_102
Dihydrocaffeic acid hexose isomer 2
1.03E-02
LC_113
Quercetin 3-O-(6''-O-malonyl)-glucoside 7-O-
glucoside
1.01E-02
GC_42
Asparagine
9.62E-03
LC_141
Quercetin 3-glucoside -6''-acetate (isomer 1)
8.37E-03
LC_122
Luteolin diglucoside
7.95E-03
LC_149
Quercetin diacetyl-hexoside
7.22E-03
GC_67
Beta-Glycerophosphoric acid
7.20E-03
LC_112
Quercetin 3-O-(6''-O-malonyl)-glucoside 7-O-
glucuronide
7.12E-03
LC_120
Quercetin hexoside glucuronide isomer 3
6.91E-03
LC_143
15-deoxylactucin-8-sulfate isomer 2
6.90E-03
LC_119
Luteolin pentosyl-hexoside isomer 1
6.55E-03
GC_35
Threonine
6.47E-03
LC_167
MGDG(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z))
6.42E-03
GC_26
Glycine
6.32E-03
GC_22
L-isoleucine
6.31E-03
GC_62
Shikimic acid
5.82E-03
GC_41
Meso-Erythritol
5.82E-03
GC_38
Beta-Alanine
5.78E-03
GC_57
Ribitol
5.77E-03
LC_99
Vanillic acid glucoside
5.49E-03
LC_97
Caffeoyl-hexose isomer 1
5.38E-03
LC_147
Apigenin 7-O-glucoside
5.19E-03
LC_118
5-p-coumaroylquinic acid (p-coumaroylquinic acid
isomer 1)
5.17E-03
LC_106
Dihydrocaffeic acid hexose isomer 3
5.11E-03
LC_140
8-deacetylmatricarin-8-sulfate
4.94E-03
GC_8
2-Hydroxybutyric acid
4.55E-03
LC_124
p-coumaroylquinic acid isomer 2
4.40E-03
LC_150
Lactucin
4.28E-03
LC_101
Esculetin hexoside isomer 1
4.27E-03
LC_135
Luteolin 7-glucuronide
4.10E-03
LC_156
Tri-4-hydroxyphenylacetyl glucoside isomer 3
4.10E-03
Supplemental Table S7 Characteristics of leaf and head lettuce networks
Leaf
Head
Network description
Average degree
3.053
2.496
Network diameter
5
7
Density
0.033
0.022
Modularity
0.602
0.614
Modules
Module I (27.66%)
Module II (25.53%)
Module III (10.64%)
Module IV (10.64%)
Other modules a (25.53%)
Module I (21.24%)
Module II (17.70%)
Module III (12.39%)
Other modules a (48.67%)
Weakly connected components
11
16
Strongly connected components
94
113
Node description
Total nodes
94
113
Node connectivity
2.519
2.067
Average clustering coefficient
0.263
0.206
Eigenvector centrality (sum change)
0.0124
0.0119
Edge description
Total edges
287
282
Average path length
1.677
2.094
Note: a Other modules included all the module with less than 10% connections.
Supplemental Reference
1. Viacava, G. E. et al. Characterization of phenolic compounds in green and red oak-leaf lettuce
cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. J. Mass Spectrom. 52, 873-
902 (2017).
2. Liao, S. et al. Rapid screening and identification of caffeic acid and its esters in Erigeron
breviscapus by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid
Commun. Mass Sp. 24, 2533-2541 (2010).
3. Amessis-Ouchemoukh, N. et al. Tentative characterisation of iridoids, phenylethanoid
glycosides and flavonoid derivatives from Globularia alypum L. (globulariaceae) leaves by
LC-ESI-QTOF-MS. Phytochem. Analysis. 25, 389-398 (2014).
4. Fang, N. Yu, S. & Prior, R. L. LC/MS/MS characterization of phenolic constituents in dried
plums. J. Agr. Food Chem. 50, 3579-3585 (2002).
5. Wang, X. et al. Analysis of the constituents in the rat plasma after oral administration of Yin
Chen Hao Tang by UPLC/Q-TOF-MS/MS. J. Pharmaceut. Biomed. 46, 477-490 (2008).
6. Gómez-Romero, M. Segura-Carretero, A. & Fernández-Gutiérrez, A. Metabolite profiling and
quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry. 71,
1848-1864 (2010).
7. Seeram, N. P. Lee, R. Scheuller, H. S. & Heber, D. Identification of phenolic compounds in
strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem.
97, 1-11 (2006).
8. Llorach, R. Martínez-Sánchez, A. Tomás-Barberán, F. A. Gil, M. I. & Ferreres, F.
Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole.
Food Chem. 108, 1028-1038 (2008).
9. Clifford, M. N. Johnston, K. L. Knight, S. & Kuhnert, N. Hierarchical scheme for LC-MSn
identification of chlorogenic acids. J. Agr. Food Chem. 51, 2900-2911 (2003).
10. Abu-Reidah, I. M. Arráez-Román, D. Segura-Carretero, A. & Fernández-Gutiérrez, A.
Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara
scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem. 141, 2269-2277 (2013).
11. Clifford, M. N. Wu, W. Kirkpatrick, J. & Kuhnert, N. Profiling the chlorogenic acids and other
caffeic acid derivatives of herbal Chrysanthemum by LC-MSn. J. Agr. Food Chem. 55, 929-936
(2007).
12. Abu-Reidah, I. M. Contreras, M. M. Arráez-Román, D. Segura-Carretero, A. & Fernández-
Gutiérrez, A. Reversed-phase ultra-high-performance liquid chromatography coupled to
electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for
metabolic profiling of vegetables: Lactuca sativa as an example of its application. J.
Chromatogr. A. 1313, 212-227 (2013).
13. Sessa, R. A. Bennett, M. H. Lewis, M. J. Mansfield, J. W. & Beale, M. Metabolite profiling of
sesquiterpene lactones from Lactuca species major latex components are novel oxalate and
sulfate conjugates of lactucin and its derivatives. J. Biol. Chem. 275, 26877-26884 (2000).
14. Pacheco-Palencia, L. A. Duncan, C. E. & Talcott, S. T. Phytochemical composition and thermal
stability of two commercial açai species, Euterpe oleracea and Euterpe precatoria. Food Chem.
115, 1199-1205 (2009).
15. Santos, M. D. Lopes, N. P. & Iamamoto, Y. HPLC-ESI-MS/MS analysis of oxidized di-
caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions. Quim. Nova. 31, 767-
770 (2008).
16. García, C. J. García-Villalba R, Garrido Y, Gil M. I. & Tomás-Barberán, F. A. Untargeted
metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut
iceberg lettuce. Metabolomics. 12, 138 (2016).
17. Sun, H. et al. Characterization of the multiple components of Acanthopanax Senticosus stem
by ultra high performance liquid chromatography with quadrupole time-of-flight tandem mass
spectrometry. J. Sep. Sci. 39, 496-502 (2016).
18. Navarro-González, I. González-Barrio, R. García-Valverde, V. Bautista-Ortín, A. B. & Periago,
M. J. Nutritional composition and antioxidant capacity in edible flowers: characterisation of
phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16, 805-822 (2014).
19. Sooman, L. & Oliw, E. H. Discovery of a novel linoleate dioxygenase of Fusarium oxysporum
and linoleate diol synthase of Colletotrichum graminicola. Lipids. 50, 1243-1252 (2015).
20. Clifford, M. N. & Madala N. D. Surrogate standards: a cost-effective strategy for identification
of phytochemicals. J. Agric. Food Chem. 65, 3589-3590 (2017).

File (1)

Content uploaded by Xiao Yang
Author content
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Introduction The shelf-life of fresh-cut lettuce after storage is limited by several factors that affect its quality and lead to consumer rejection. Different metabolic events occur after cutting as an abiotic stress response. Objectives This study aims to explore the metabolome of iceberg lettuce and to understand the changes related to storage time and genetics applying an untargeted metabolomics approach. Methods Two cultivars with different browning susceptibility, fast-browning (FB) and slow-browning (SB), were analyzed by UPLC-ESI-QTOF-MS just after cutting (d0) and after five days of storage (d5). Extraction, metabolic profiling, and data-pretreatment procedures were optimized to obtain a robust and reliable data set. Results Preliminary principal component analysis and hierarchical cluster analysis of the full dataset [around 8551 extracted, aligned and filtered molecular features (MFs)] showed a clear separation between the different samples (FB-d0, FB-d5, SB-d0, and SB-d5), highlighting a clear storage time-dependent effect. After statistical analysis applying Student’s t test, 536 MFs were detected as significantly different between d0 and d5 of storage in FB and 633 in SB. Some of them (221) were common to both cultivars. Out of these significant compounds, 22 were tentatively identified by matching their molecular formulae with those previously reported in the literature. Five families of metabolites were detected: amino acids, phenolic compounds, sesquiterpene lactones, fatty acids, and lysophospholipids. All compounds showed a clear trend to decrease at d5 except phenolic compounds that increased after storage. Conclusion The untargeted metabolomics analysis is a powerful tool for characterizing the changes on lettuce metabolome associated with cultivar and especially with storage time. Some families of compounds affected by storage time were reported to be closely related to quality loss.
Article
Full-text available
Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu's reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat-showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified.
Article
Full-text available
This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.
Article
Lettuce (Lactuca sativa) is one of the most popular leafy vegetables in the world and constitutes a major dietary source of phenolic compounds with health promoting properties. In particular, the demand for green and red oak-leaf lettuces have considerably increased in the last years but few data on their polyphenol composition is available. Moreover, the utilization of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols. In the present study the phenolic profiles of green and red oak-leaf lettuce cultivars were exhaustively characterized by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS), using the MS(E) instrument acquisition mode for recording simultaneously exact masses of precursor and fragment ions. One hundred fifteen phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried lettuce leaves. Forty eight of these compounds were tentatively identified for the first time in lettuce, and only twenty of them have been previously reported in oak leaf lettuce cultivars in literature. Both oak leaf lettuce cultivars presented similar phenolic composition, except for apigenin-glucuronide and dihydroxybenzoic acid, only detected in the green cultivar; and for luteolin-hydroxymalonylhexoside, an apigenin conjugate with molecular formula C40 H54 O19 (monoisotopic MW = 838.3259 u), cyanidin-3-O-glucoside, cyanidin-3-O-(3"-O-malonyl)glucoside, cyanidin-3-O-(6"-O-malonyl)glucoside and cyanidin-3-O-(6"-O-acetyl)glucoside, only found in the red cultivar. The UHPLC-DAD-ESI-QToF/MS(E) approach demonstrated to be a useful tool for the characterization of phenolic compounds in complex plant matrices.
Article
Acanthopanax Senticosus Harms. has been used widely in traditional Chinese medicine for the treatment of chronic bronchitis, neurasthenia, hypertension, and ischemic heart disease. However, the constituents in vivo of the stem of Acanthopanax Senticosus (AS) remain unknown. In this paper, ultra-high-pressure liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS) technology and the MarkerLynxTM software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. The aqueous extract from the AS stem and the compositions in rat serum after intragastric administration were completely analyzed. Consequently, 115 compounds in the aqueous extract from AS stem and 41 compounds absorbed into blood were characterized. Of the 115 compounds in vitro, 54 were reported for first time, including sinapyl alcohol, sinapyl alcohol diglucoside, 1-O-sinapoyl-β-D-glucose, etc. In the 41 compounds in vivo, 7 were prototype components and 34 were metabolites which were from 21 components of aqueous extract from AS stem as well as the metabolic pathways of the metabolites were also elucidated for first time. The results narrowed the range of screening the active components and provided a basis for the study of action mechanism and pharmacology.
Article
Fungal pathogens constitute serious threats for many forms of life. The pathogenic fungi Fusarium and Colletotrichum and their formae speciales (f. spp.) infect many types of crops with severe consequences and Fusarium oxysporum can also induce keratitis and allergic conditions in humans. These fungi code for homologues of dioxygenase-cytochrome P450 (DOX-CYP) fusion proteins of the animal heme peroxidase (cyclooxygenase) superfamily. The objective was to characterize the enzymatic activities of the DOX-CYP homologue of Colletotrichum graminicola (EFQ34869) and the DOX homologue of F. oxysporum (EGU79548). The former oxidized oleic and linoleic acids in analogy with 7,8-linoleate diol synthases (LDSs), but with the additional biosynthesis of 8,11-dihydroxylinoleic acid. The latter metabolized fatty acids to hydroperoxides with broad substrate specificity. It oxidized 20:4n-6 and 18:2n-6 to hydroperoxides with an R configuration at the (n-10) positions, and other n-6 fatty acids in the same way. [11S-(2)H]18:2n-6 was oxidized with retention and [11R-(2)H]18:2n-6 with loss of deuterium, suggesting suprafacial hydrogen abstraction and oxygen insertion. Fatty acids of the n-3 series were oxidized less efficiently and often to hydroperoxides with an R configuration at both (n-10) and (n-7) positions. The enzyme spans 1426 amino acids with about 825 residues in the N-terminal domain with DOX homology and 600 residues at the C-terminal domain without homology to other enzymes. We conclude that fungal oxylipins can be formed by two novel subfamilies of cyclooxygenase-related DOX.
Article
Introduction: Globularia alypum L., belonging to the Globulariaceae family, is a perennial wild shrub found throughout the Mediterranean area, Europe, and Africa. This plant is widely used to treat many diseases, but no previous work on the phytochemical composition of the Algerian G. alypum species has yet been reported. Objective: To investigate the phytoconstituents of the methanolic extract of G. alypum using an LC-ESI-QTOF-MS method. Methods: Ground air-dried leaves of G. alypum were macerated with methanol at room temperature for 24 h. The supernatant was filtered and concentrated to dryness under reduced pressure in a rotary evaporator, and extracts were recovered with methanol and filtered. Afterwards, the G. alypum extract was injected into the LC-ESI-QTOF-MS system. Results: The combined LC-MS/MS led to the tentative characterisation of 63 phytochemicals. In this work, a large number of compounds have been characterised in the leaf-extract analysis of this plant. Among others, 24 iridoids and secoiridoids were found, of which nine compounds have not previously been recorded in G. alypum. Also, nine unusual phenylethanoid glycosides were characterised for the first time in this species. Conclusion: The method used has proved to be a valued tool for the characterisation of a wide range of compounds from G. alypum leaves. This work constitutes a detailed investigation of the chemical composition of G. alypum leaves, which are widely used in different traditional systems of medicine.
Article
The aim of this work was to characterise the phenolic compounds in artichoke (hearts) by using HPLC coupled to DAD-ESI-QTOF-MS, which proved useful in characterising 61 phenolic and other polar compounds. Notably, of the 61 compounds characterised, 34 new phenolic compounds with their isomers have been tentatively characterised in artichoke for the first time, namely: 3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative. Moreover, a total of 28 isomers of previously described phenolics have also been detected. The data compiled from the qualitative polyphenol characterisation indicate that the artichoke extract analysed (Blanca de Tudela variety) could be regarded as a bioactive functional food and also as a promising source of antioxidant phenolic compounds.
Article
Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole–time-of flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 m), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses.