ArticlePDF Available

Retrofitting Fractional-Order Dynamics to an Existing Feedback Control System: From Classical Proportional-Integral (PI) Control to Fractional-Order Proportional-Derivative (FOPD) Control

Authors:

Abstract and Figures

This paper presents a method of retrofitting an external controller into an existing feedback control system governed by a classical proportional-integral (PI) controller to improve the overall dynamics of the entire control system by benefitting from the advantages of fractional-order dynamics in the form of a fractional-order proportional derivative (FOPD) controller. The retrofitting activity requires having access to the input and output signals of the existing control system ideally configured as a unity-feedback system. The difference between the input and output signals is then used as the input to an external controller having a fractional-order element. The design of the external controller is derived from the original values of the PI controller in the existing control system and the parameters of the desired FOPD controller to be used. A numerical example is presented in this paper to demonstrate how straightforward the process is. Discussion on some issues related to its hardware design and implementation is also presented in this paper.
Content may be subject to copyright.
Retrong Fraconal-Order Dynamics to an Exisng Feedback Control
System: From Classical Proporonal-Integral (PI) Control to Fraconal-Order
Proporonal-Derivave (FOPD) Control
Emmanuel A. Gonzaleza; AlekseiTepljakovb, Concepción A. Monjec, and Ivo Petrášd
Schindler Elevator Corporaona, Department of Computer Systems, Tallinn University of Technology, Tallinn, Estoniab,
Systems Engineering and Automaon Department, Universidad Carlos III de Madrid, Madrid, Spainc, Instute of Control and
Informazaon of Producon Processes, Faculty BERG, Technical University of Košice, Košice, Slovakia d
Corresponding Author Email: emm.gonzalez@delasalle.ph
ABSTRACT

-   
 - -
-
  -
 -

  


Keywords: control theory, control system analysis, fraconal calculus, operaonal ampliers, robust control
1. INTRODUCTION
-   

       
      
    
 -     
     

-
    
   
       
-
     
      
         

    -  
--
     -


      

       
-      
 -    
 - - 


    
    
 -    

       
   --- -
        



        


      
      

     

(1)
International Research Journal on Innovations in Engineering, Science and Technology
IRJIESTRetrong Fraconal-Order Dynamics...
     
     
        
         

      
      
     


       
        
   -  

and



         

       

 
   
         


        
 -     
       





       
     



 


     

   
       
     
     


  

-
     - 
         
        
        
   
     
    -  
-
    
      
       


        

Retrong Process and Architecture
      
       
  

  
        
of

Step 1: 

     
  -   




 
      
       
  

 

  

Figure 1. Architecture of an exisng closed-loop system retroed
with an external controller

by acquiring the dierence
between the input and output signals as the input to

Figure 2. Equivalent block diagram of Figure 1 where the
new controller

dened as a funcon of the
external controller

and the exisng classical
controller

(2)
International Research Journal on Innovations in Engineering, Science and Technology
IRJIESTRetrong Fraconal-Order Dynamics...
(3)
(4)
(5)
(6)
(7)
(8)
Step 2:      

      



Step 3:     
       
      
        
   
 
    
        

     
        

 
       
 
        

Proposion: 


 
       

  α  
        
  

   



Proof: -
       
       

   -   
-
A Numerical Example
      
   -    
   - 
  


 
-




        
     
   ω
  
   
  ϕ
  
°,    
       
      
      

-

-

(9)
(10)
(11)
International Research Journal on Innovations in Engineering, Science and Technology
IRJIESTRetrong Fraconal-Order Dynamics...
 
 
   

        
         
       
      
        

Hardware Implementaon of CR (s)
     

-       
        
    
-

CR (s)      

      -

-      
    

       
-
       
      
      
         
-      
-   -   
       

       

    
       
    


  -    
         
      


 -      
  -   
      
        
         
-
       

 



CONCLUSIONS
    
      
   -  
    

        
 


     
       
    
    

        
     

(12)
(13)
International Research Journal on Innovations in Engineering, Science and Technology
IRJIESTRetrong Fraconal-Order Dynamics...
5. RECOMMENDATION
          
        

     
       
      


Acknowledgements


        
      
     
--  ---   
      
      
     
       
    
  --    
---
REFERENCES
 
  -   
    Control
Engineering Pracce-
    Design Methods of Fraconal order
Controllers for Industrial Applicaons
    

 
     
IFAC Workshop on Digital Control. Past,
Present and Future of PID Control 
-
   -   λμ
 IEEE Transacons on Automac
Control-
 
  Fraconal Order Systems and Control:
Fundamentals and Applicaons 
    -

         
-  American Control Conference
2009-
 
    
16th Internaonal Carpathian Control
Conference (ICCC)-
 
-  The AUN/SEED-Net Fieldwise
Seminar on Control Engineering  
--
         
      
-    
Internaonal Journal of Pure and
Applied Mathemacs,      
-
 
      
     
   14th Internaonal
Carpathian Control Conference (ICCC)  
-
         
     
   -  
  13th Internaonal Conference on
Control Automaon Robocs & Vision (ICARCV)
--
        
   
-
    ISA Transacons  
-
          
    
     IEEE
Transacons on Control Systems Technology 
-
        
    
 2008 Chinese Control and Decision
Conference-
      -
    
  
2009 American Control Conference
-
 
     
-   Entropy
       
-
International Research Journal on Innovations in Engineering, Science and Technology

    - 
 μ   


--
   μ  
Journal of Computaonal Innovaons and
Engineering Applicaons-

  - - 
-   μ 
 2015 Internaonal Conference on
Humanoid, Nanotechnolo gy, Informaon
Technology, Communicaon and Control,
Environment and Management (HNICEM)  
-
  
       
 -  
  Fraconal Calculus and
Applied Analysis-
IRJIESTRetrong Fraconal-Order Dynamics...
International Research Journal on Innovations in Engineering, Science and Technology
... The application of fractional order calculus provides an extra degree of freedom that facilitates the design of more flexible and powerful control methods that satisfy system specifications [34]. FOSMC designs were shown to exhibit minimal chattering, robust performance against variations in gain, and the ability to reject noise and output disturbances [35]. A FOSMC approach was designed in [36] for a DC buck using switching surfaces based on fractional-order PID and PI structures. ...
Article
This paper proposes a control topology that integrates the robust performance of fractional order sliding mode control with the high charging/discharging rate and low maintenance requirements of super-capacitors to improve the transient stability of wind energy systems. The observer-based fractional-order sliding mode control (FOSMC) approach is designed to regulate the dc-link voltage and mitigate dynamic instabilities resulting from grid faults, matched and mismatched uncertainties and parameter variations. The super-capacitor, on the other hand, serves as an additional energy storage element that prevents dangerous current surges thereby stabilizing the power delivered to the grid. The proposed approach was validated using a DFIG-based wind energy system installed in a small-scale standalone power supply network. The obtained results confirmed the approach’s ability to effectively reduce current fault induced ripples and properly regulate the dc link voltage. They also revealed a remarkable reduction in the thermal stress of semiconductor junctions in the presence of grid faults and disturbances. A further comparison with a standard sliding mode control (SSMC) approach showed that the use of fractional calculus to formulate the FOSMC resulted in smoother control actions and reduced chattering effects compared to SSMC.
Article
Full-text available
This paper presents the design and implementation of an analog fractional-order differentiator (FOD) in a microelectronics scale. It focused on the design and implementation of sixteen selectable fractional-order (0.10, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85 and 0.90) differentiators in a 0.35um CMOS technology operated at 1.5-V supply. In comparison with the previous work that uses generic microcontroller for switching an FOD from one order to the next, this design of a 16 selectable FOD was realized in an analog microelectronic scale, thus, the physical implementation is relatively smaller. The authors employed reusability of resistors and capacitors when switching from one order to the other. The RC ladder in the design was implanted using NMOS capacitor and NWELL resistors while the IC design was implemented using TANNER software. The whole chip layout of the design has a dimension of 11.55mm x 8.32mm or equivalent to a final area of 96.10mm2. Each fractional order was characterized in terms of its frequency response – magnitude and phase response – in the bandwidth from 10Hz to 1kHz.
Conference Paper
Full-text available
In this paper, we study the problem of fractional-order PID controller design for an unstable plant - a laboratory model of a magnetic levitation system. To this end, we apply model based control design. A model of the magnetic lévitation system is obtained by means of a closed-loop experiment. Several stable fractional-order controllers are identified and optimized by considering isolated stability regions. Finally, a nonintrusive controller retuning method is used to incorporate fractional-order dynamics into the existing control loop, thereby enhancing its performance. Experimental results confirm the effectiveness of the proposed approach. Control design methods offered in this paper are general enough to be applicable to a variety of control problems.
Conference Paper
Full-text available
Fractional calculus is more than a three hundred-year-old concept way back during the time of de l'Hospital and Leibniz focusing on derivative and integrals having non-integer orders. Almost four decades ago, engineers and scientists began to venture into the field of fractional calculus by unfolding its applications where fractional differential equation models are valid. It has been found that fractional calculus indeed is becoming ubiquitous, seeing applications in many fields of sciences and engineering, from fractional diffusion equations and various biomedical applications, to signal processing and control engineering applications. A conclusion was then later proposed that fractional calculus is actually a generalization of integer-order calculus, being so powerful, it could overcome the advantages of its integer-order counterparts. This paper offers a comprehensive discussion on the applications of fractional calculus in the design and implementation of fractional-order systems in the form of electronic circuits which could be used for signal processing and control engineering applications. The article starts with the introduction to fractional calculus including some history and mathematical definitions. The second part of the article focuses on fractional-order differential equations and systems. Example circuit designs and implementation are then discussed which includes an elaboration of some papers related to this area. The final part of the article presents possible research topics in this area.
Article
Full-text available
In the past decade, researchers working on fractional-order systems modeling and control have been considering working on the design and development of analog and digital fractional-order differentiators, i.e. circuits that can perform non-integer-order differentiation. It has been one of the major research areas under such field due to proven advantages over its integer-order counterparts. In particular, traditional integer-order proportional-integral-derivative (PID) controllers seem to be outperformed by fractional-order PID (FOPID or PIλ Dμ ) controllers. Many researches have emerged presenting the possibility of designing analog and digital fractional-order differentiators, but only restricted to a fixed order. In this paper, we present the conceptual design of a variable fractional-order differentiator in which the order can be selected from 0 to 1 with an increment of 0.05. The analog conceptual design utilizes operational amplifiers and resistor-capacitor ladders as main components, while a generic microcontroller is introduced for switching purposes. Simulation results through Matlab and LTSpiceIV show that the designed resistor-capacitor ladders can perform as analog fractional-order differentiation.
Data
Full-text available
(Available Online: http://viXra.org/abs/1401.0016) In this short note, we present the analog realization of a fractional-order differentiator of order α = 1/2 in 0.35 µm CMOS technology.
Conference Paper
Full-text available
Real objects in general are fractional-order (FO) systems, although in some types of systems the order is very close to integer order (IO). Since major advances have been made in the theory and practice of the identification of FO controlled objects and in the design of FO controllers, it is possible to consider also the real order of the dynamical systems and consider more quality criterion while designing the FO controllers with more degrees of freedom compared to their IO counterparts. In this paper, we present an application of the retuning method to design and apply new FO controller for the existing laboratory feedback control system with no modifications in the internal architecture of the oridinal feedback control system. Along with the mathematical description, presented are also simulation results.
Article
Full-text available
Proportional-Integral-Derivative (PID) controllers have been the heart of control systems engineering practice for decades because of its simplicity and ability to satisfactory control different types of systems in different fields of science and engineering in general. It has receive widespread attention both in the academe and industry that made these controllers very mature and applicable in many applications. Although PID controllers (or even its family counterparts such as proportional-integral [PI] and proportional-derivative [PD] controllers) are able to satisfy many engineering applications, there are still many challenges that face control engineers and academicians in the design of such controllers especially when guaranteeing control system robustness. In this paper, we present a method in improving a given PID control system focusing on system robustness by incorporating fractional-order dynamics through a returning heuristic. The method includes the use of the existing reference and output signals as well as the parameters of the original PID controller to come up with a new controller satisfying a given set of performance characteristics. New fractional-order controllers are obtained from this heuristic such as PIλ and PIλDμ controllers, where λ,μ∈(0,2) are the order of the integrator and differentiator, respectively.
Article
A more general structure for the classical PID controller is proposed in this paper by using fractional integral and differential operators. A frequency domain approach is used to show the advantages of using these fractional PID controllers, which can be sumarized in the possibility of dealing with a more general class of control problems, in which the fractional nature of the controller can be imposed by the fractional nature of the system to be controlled, or by the special nature of the required time or frequency responses. Some illustrative examples and comments on controller tuning and realizations are given.
Conference Paper
The analog realization of a selectable fractional-order differentiator (FOD) in a microelectronics scale is mainly the focus of this study. From this design, the order of differentiation can be selected between FOD(0.25) and FOD(0.50). While the aim is to make the hardware implementation as compact and small as possible, the authors employed reusability of resistors and capacitors when switching from one order to the other. The top-level schematic was generated using S-Edit while the physical layout implementation was outlined using L-Edit. The resulting integrated circuit (IC) design has a total chip area of 4.05mm × 3.10mm or equivalent to a final area of 12.56mm2. The whole chip is powered using dual supply voltage of only +0.75V Vdd and −0.75V Vss. Each order of differentiation was characterized in its magnitude and phase response in the working bandwidth from 10Hz to 1kHz.
Article
The problem of changing the dynamics of an existing DC motor control system without the need of making internal changes is considered in the paper. In particular, this paper presents a method for incorporating fractional-order dynamics in an existing DC motor control system with internal PI or PID controller, through the addition of an external controller into the system and by tapping its original input and output signals. Experimental results based on the control of a real test plant from MATLAB/Simulink environment are presented, indicating the validity of the proposed approach.