ArticlePDF Available

Species diversity and successional dynamics in the secondary forest of Obafemi Awolowo University Biological Gardens Ile-Ife, Nigeria

Authors:
  • Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria

Abstract and Figures

Forests worldwide are being continuously disturbed by human activities and natural events, and tropical rainforest disturbance is specifically pronounced as indicated by its low biodiversity status. This study examined the floristic composition, species diversity and evenness in seven sample plots (100, 200, 400 and 2500 m2) in a secondary forest of different ages in the Biological Gardens of the Obafemi Awolowo University, Ile-Ife. The aim of this study was to determine changes in these parameters with succession. In each sample plot, all vascular plant species were accounted for and enumerated. The data collected were used to establish the floristic composition, density, diversity and evenness of plant species in the forest. There were 85 woody species (69%), 3 grass species (2%), 13 forb species (11%) and 21 climber species (17%) in the forest. These concern 113 genera and 52 families. The number of woody species in the plots varied with the age of the plots, however, there were no clear trends in the density and diversity of species with plot age. The forest was dominated by early successional species (50%) against the 33% contributed by the late successional species. Also, the youngest plot (Plot I) was dominated by early successional species while the older plots were dominated by a mixture of both early and late successional species. The similarity between plots during succession in the tropical forest was higher between plots of the same age. Also, this study showed that because of the directional pattern of succession, the species that converge to make up the diversity of forest of ages under consideration may be predictive of its recovery.
Content may be subject to copyright.
21
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002
SPECIES DIVERSITY AND SUCCESSIONAL DYNAMICS
IN THE SECONDARY FOREST OF OBAFEMI AWOLOWO UNIVERSITY
BIOLOGICAL GARDENS ILE-IFE, NIGERIA
Nelson O. Uwalaka*, Joseph I. Muoghalu, Afolabi O. Osewole
Obafemi Awolowo University, Nigeria
*e-mail: uwalakanelson@gmail.com
Received: 01.08.2017
Forests worldwide are being continuously disturbed by human activities and natural events, and tropical rainfor-
   
     2) in a
   

-






 

that converge to make up the diversity of forest of ages under consideration may be predictive of its recovery.
Key words: diversity, evenness, plant succession, secondary forest, similarity, successional species
Introduction
-
        -
sodic disturbance slowly regenerates a semblance of
its former self in the absence of further disturbances
-
tional process of community change in which commu-
nities replace each other sequentially until a stable com-
  
are being continuously disturbed by human activities
and natural events, and tropical rainforest disturbance
-
diversity status of tropical forests worldwide and the

disturbance drastically alters the community in the
disturbed area, and causes it to transform to an earlier
     

community. Forest disturbance is now pronounced in
    
-
rectional change in community composition following
-
don, 2008). Some studies have demonstrated that in
tropical forest fragments, the disturbances, whether

critical in determining the dynamics of tree commu-
  


   
visualised as a continuum from an early stage where
the factors that govern colonisation are most impor-

    
stored seeds and re-sprouts), to later stages where com-
petitive ability and environmental requirements of spe-

  
shade tolerance) largely dictate patterns of species re-


      -
bance is believed to be one of the main factors in-
 
      
in communities where post-disturbance succession
is not driven by competitive regimes, disturbance
       

22
chronosequence studies have also documented
rapid recovery of species richness and species di-
versity during tropical forest succession, but these

      


       
during tropical wet forest succession, three factors
are probably involved. First, long-living pioneer
species persist well into the understorey re-initia-
tion stage, pre-empting space and slowing the rate
of species turnover. Second, low light availability
in young and intermediate aged old-growth forests
and the rarity or absence of canopy gaps may re-
strict establishment and recruitment of gap-requir-

low seed availability may limit colonisation of tree

-
cession in a relatively small area where factors such
as soil fertility and land use history are similar, thus
facilitating a more in depth assessment of the suc-
cessional pattern without these confounding factors.

      
      
clearing, farming, establishment of infrastructural
facilities or fuelwood gathering. Knowledge on the
recovery pattern of tropical forests from previous
perturbations is important in the conservation of its
-
der to halt the current increasing rate of forest dis-
      
       

similar ages show the same pattern of species simi-
      

questions, the successional processes in disturbed
   -

and comparisons made in terms of species composi-

the species richness and diversity of these disturbed
  

Material and Methods
Study area
       

abundant plant species are Albizia zygia
 Blighia unijugata  Bombax buon-
opozense Bosqueia angolensis Ficalho,
Commiphora kerstingii Engl., Elaeis guineensis
 Ficus mucuso Funtumia
elastica   Holarrhena oribunda
   Manihot glaziovii
   Pycnanthus angolensis 
       
-
    
  
       -


-
      -



      
-2

 
soils, which are usually acidic, contain less than



2 sec-

-
         
-
       


-
eral natural regeneration monitoring studies have
  

2) marked out before the incidence
         

-
tural characteristics. Seven plots, between latitudes
  
 -
  




ages of the plots was estimated since the last time of
stand disturbance.
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

Fig.       
study was carried out.
       -
cept for the presence of some mature tree spe-
cies and some regrowths that have colonised
    -
ing woody species, herbs, climbers, and some
mosses growing on decaying felled wood were
present in the plots.
Data collection
  
       
       
      




has undergone a series of successional stages,
in terms of species composition, diversity and
     
used as a plot with which the selected plots
    -
cies were determined. Specimens of plant spe-

      
  -
ing vegetation attributes were determined for
     -1),
   
   
of similarity between the plots.
Data analysis
   -
tablished by listing all the species encountered in
each plot and summing up to get the total number

of species per plot was used to compile a list of
dominant woody species and their successional
status was determined according to the results of
      
abundance were termed dominant.
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

Table 1. 
    
7°  °  
 7° ° 288 
 7° °  
 7° °  
7° °  
 7° °  
 7° °  
 7° °  >70 years

succession, the similarity in species composition in
each plot were compared using the Sørensen in-
       
the measurement of the similarity and dissimilar-
ity between sampling plot pairs was based on the
presence or absence of species of interest in each


   
indicate nearly identical community composition
between the pair of plots and values near 0 indi-
cates that communities have very little composi-


BA
C
ISS +
=2

   


   
= )
1
ii PPH
       
N
ni
P
i=  
i is the
number of individuals of species.
      
      
)
1
S
H
J=       

 -
tion of the density, diversity and evenness indices

Results
Floristic composition and successional status
of woody species in the plots
        -
 
-

 
      
        



-

         
   -

  
 
the plots having the highest number of woody species

      -
   
     
species were Cola millenii K. Schum., Ficus mucoso
 Mallotus oppositifolius
and Newbouldia laevis 

varied with the age of the plots.
   -
-
          

there was an abundant number of Bambusa vulgaris
 which suppressed the growth of
many woody species and as such, the woody species
found were thin-stemmed and short.

     
      
      

      

species could not be determined.
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

Table 2. -

)
   














1Abutilon sp.  +
Acanthus montanus
     + +   
Albizia adianthifolia
Schum. Fabaceae +
Albizia lebbeck 
 Fabaceae +
Albizia zygia 
 Fabaceae + + + + ++
7
Alchornea cordifolia


Euphorbiaceae +
8
Alchornea laxiora


Euphorbiaceae + + +
Allophylus africanus
 Sapindaceae   ++
10 Alstonia boonei 
       ++
11 Antiaris africana Engl.    ++++ +
12 Anthocleista djalonensis
    +
 Antidesma sp. Euphorbiaceae +   
 Baphia nitida  Fabaceae ++
 Blighia sapida 
Koenig. Sapindaceae + + +++
 Blighia unijugata  Sapindaceae + +
17 Bombax buonopozense
         +
18 Bridelia ferruginea
 Euphorbiaceae   ++ 
 Bridelia micrantha
 Euphorbiaceae +
20 Capsicum frutescens  Solanaceae +   +  
21 Carpolobia lutea 
  + + + +
22 Cassia sp. Fabaceae   +
 Celtis mildbraedii Engl.  + + + 
 Celtis philippensis
         +
 Celtis zenkeri Engl.     ++++
 Chassalia kolly
 Rubiaceae + +
27 Chrysophyllum albidum
 Sapotaceae ++
28 Cnestis ferruginea     ++++ 
 Coea ebracteolata
 Rubiaceae +
 Cola millenii K. Schum. Sterculiaceae   ++++++
 Dalbergia lactea  Fabaceae ++ 
 Daniella ogea 
 Fabaceae +
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

)
   














Deinbollia pinna-
ta 

Sapindaceae ++ +   +
 Dialium guineense
 Fabaceae +
 Diospyros monbuttensis
 Ebenaceae +  +  +
 Dracaena arborea
         +
 Drypetes sp. Euphorbiaceae +  
 Elaeis guineensis     +
 Fagara leprieurii
 Rutaceae +  
 Ficus exasperata   +
 Ficus mucoso   +++++  +
 Funtumia elastica
    +++++
 Glyphaea brevis
    ++ +
 Hedranthera barteri
    + + + 

Holarrhena oribunda


 + + +  +
 Homalium letestui
 Samydaceae + 
 Icacina trichantha   ++ +  
 Lecaniodiscus
cupanioides  Sapindaceae + +   +
 Microdesmis puberula
    +++  +
 Mallotus oppositifolius
 Euphorbiaceae ++++++
 Manihot glaziovii 
 Euphorbiaceae ++
 Margaritaria discoidea
 Euphorbiaceae +

Milletia thonningii


Fabaceae +  +
 Monodora tenuifolia
    ++
 Morinda lucida  Rubiaceae +
 Myrianthus arboreus 
      +  +
 Napoleona imperialis 
    ++++ 
 Napoleona vogelii
       ++

Newbouldia laevis


 ++++ + + +
 Olax sp.      + +  
 Oxyanthus speciosus
 Rubiaceae +
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002
27
)
   













 Pauridiantha hirtella
 Rubiaceae + 
 Pavetta corymbosa
 Rubiaceae ++ 

Phyllanthus
muellerianus 

Euphorbiaceae + +

Piliostigma thonningii

Redh.
Fabaceae + 
 Piptadenastrum africa-
num  Fabaceae +  +
 Psychotria sp. Rubiaceae   +
 Pterocarpus
mildbraedii  Fabaceae ++
 Pycnanthus angolensis
  +  ++
70 Rauvola vomitoria
         +
71
Ricinodendron
heudelotii 

Euphorbiaceae   +++++
72 Ritchiea sp.     +  
 Rothmannia longiora
Salisb. Rubiaceae +  
 Securinega virosa
 Euphorbiaceae + +
 Solanum erianthum 
 Solanaceae + 
 Sorindeia warneckei
Engl.  ++ 
77 Sphenocentrum
jollyanum  Sterculiaceae   +++++
78 Spondias mombin   ++
 Sterculia tragacantha
 Sterculiaceae + +
80
Tetrapleura tetraptera


Fabaceae +
81 Trema orientalis 
  ++
82 Trichilia heudelotii
         +
 Trichilia prieureana 
  ++ +   +
 Trilepsium
madagascariense      + + + +
 Voacanga africana
Stapf.  + + +

1Anchomanes diormis
     +   
2Asystasia gangetica 
  ++  +
Canna indica   +
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002
28
)
   













Carica papaya   + + 
Chromolaena odorata

Rob.
 +  +  
Commelina sp.      +  
7Cyathula sp.   ++   
8Maranthocleoa sp.     +   
Musa sapientum      +   
10 Petiveria alliacea    + + 
11 Phaulopsis barteri 
  +
12 Talinum triangulare
       + 

1Bambusa vulgaris
  +
2Digitaria exilis
  ++ 
Panicum maximum
  + + + 

1Abrus precatorius  Fabaceae +
2Acacia ataxacantha
 Fabaceae +  +
Alaa barteri      ++
Baissea sp.  ++ + + +
Cissus sp.  + + + +  
Combretum sp.  +++++++
7Culcasia scandens 
      +  
8Hippocratea sp.    ++
Jateorhiza sp.  ++ +
10 Leptoderris micrantha
 Fabaceae +  
11 Memecylon sp.     +   
12 Mezoneuron
benthamianum  Fabaceae + +
 Momordica charantia
  +++
 Mondia whitei 
f.) Skeels  +
 Mussaenda eleganz
 Rubiaceae + 
 Parquetina nigrescens
  +
17 Paullinia pinnata  Sapindaceae + + 
18 Phyllantus sp. Euphorbiaceae +
 Salacia erecta 
        +
20 Sida urens   +
21 Smilax kraussiana
 Smilacaceae   +  + 
22 Thunbergia sp.     +  

Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

Table 3.
 















  20 27 28    
 2 1 1 0 0 2 0 0
   11 1 1 0
 7   
 27      21 
       21 
  22    18  
-1)       

      2.82  
        
Table 4.-

Species name Successional status 
      
Albizia lebbeck Early    +
Albizia zygia Early + +   
Alchornea cordifolia Early +   
Alchornea laxiora Early   ++
Alstonia boonei Early   + 
Blighia sapida Early ++++
Carpolobia lutea  +  +
Celtis zenkeri Early +  +
Cnestis ferruginea  + 
Cola millenii Early +++  
Deinbollia pinnata  ++  +
Ficus exasperata Early +   
Ficus mucoso Early + +   
Funtumia elastica Early +++
Glyphaea brevis     +
Icacina trichantha  ++ 
Lecaniodiscus cupanioides  +  +
Mallotus oppositifolius  +   
Microdesmis puberula  +  +
Napoleona imperialis  + 
Napoleona vogelii     +
Newbouldia laevis Early + +    +
Olax sp.    + 
Petivera alliacea  +   
Phyllanthus muellerianus  +  
Solanum erianthum  +   
Spondias mombin  +   
Trema orientalis Early +   
Trichilia prieureana Early    +
Trilepsium madagascariensis Early    +
Structural characteristics: density, diversity
and evenness of the plots
       
-

       
       

species were dominant in terms of their densities

Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

Table 5.-

Species name Family 
     
Albizia lebbeck Fabaceae    
Albizia zygia Fabaceae 10   
Alchornea cordifolia Euphorbiaceae 17   
Alchornea laxiora Euphorbiaceae   8 
Alstonia boonei    
Blighia sapida Sapindaceae    
Carpolobia lutea    
Celtis zenkeri    10
Cnestis ferruginea    
Cola millenii Sterculiaceae 710  
Deinbollia pinnata Sapindaceae   
Ficus exasperata  8   
Ficus mucoso  17   
Funtumia elastica   
Glyphae brevis     10
Icacina tricantha  7 
Lecaniodiscus cupanioides Sapindaceae   
Mallotus oppositifolius Euphorbiaceae   
Microdesmis puberula     8
Napoleona imperialis  7 
Napoleona vogelii    
Newbouldia laevis  10   
Olax sp.    
Petivera alliacea  8   
Phyllantus muellerianus Euphorbiaceae 8  
Solanum erianthum Solanaceae    
Spondias mombin    
Trema orientalis     
Trichilia prieureana    
Trilepsium madagascariensis    
  77      81
-
  -
tion to the ages of the plots did not follow a clear trend
        




were least evenly distributed in the youngest plot

Similarity of the plots
      

high similarity among them in their species composi-

-



the least similarity in terms of species composition


Discussion
-
position did not increase with age although the oldest
       

     
years since abandonment) are certainly more dynamic


density does not show a predictable pattern with stand
 Trema orientalis

         

Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

Table 6. 
      
      0.21
     0.28  
 0.77 0.70     
       
0.87      
 0.77 0.72     
 0.88 0.81 0.71   0.70  
  0.70    0.+  


stages of secondary succession, species such as Trema
micrantha -

of some species in the older plots, such as Deinbollia
pinnata Icacina trichantha
 Lecaniodiscus cupanioides  Micro-
desmis puberula       
suggests that these species make up part of the late
successional stage of a forest. Furthermore, the older
-


the forest would be replaced with tree species that are

    
early successional phase of regeneration had a high
  
are still undergoing an early building phase of re-
  

of forest succession after site abandonment in lowland
moist and wet neotropics is characterised by vegeta-

       

did not have the highest number of species could be
attributed to succession, during which early colonis-
ers are lost leading to a subsequent drop in the species


  -
      
peak at intermediate phases of succession, followed by
  
        -
green forest fallow, where tree density increased over
7 years but stabilised after 10 years.
Species diversity and evenness of species did
not follow a clear trend with age of plots in this
        
some early successional species in some of the plots.
 Trema orientalis dominated the spe-


that as the forest develops, new species begin to col-
onise and recruit, leading to a gradual accumulation

Some studies have documented an increasing
        
      




       -
sity is low because only the best competitors persist.

intensities and frequencies of disturbance, as well as
intermediate time since the last disturbance. Fantini
-
pecially species richness over time since abandon-
ment. Similar cases have been found in other studies

       


     

between relative abundance of species and stand
      
      
during succession as proposed in the model of suc-


of more early successional tree and grass species in

study showed that older plots had the highest diver-
sity which is in line with the assertion of Fantini et
      
greatest during mid-successional stages that contain
both early and late successional species.
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002


study was the least in the youngest plot but high in

plot was still in the preliminary phase of coloni-
sation whereby newer species are still arriving,
whereas the older plots have attained some level of
stability and tending towards another successional

-


  
as a proportion of all species with successional age
and also because the proportion of rare tree species
was higher in the oldest site than in the youngest.
  
ages had more evenness pattern compared to those

       -
     
youngest plot had the least similarity with the un-
burnt plot as against the comparison made between

the young plot must pass through some seral stages

Conclusions and Recommendations
        
similar ages had higher similarities in species
  
        
seral stage, similarity increases provided they are
        
youngest plot had the least species diversity and
     
composition and evenness of distribution were not

conducted on a small area) can serve as a means
of predicting how a forest that has been disturbed
would look like, per seral stage, in terms of species
composition and diversity, most especially in the

-


of this study highlight the need for the establish-
  

with minimal human disturbance and has a high
value for biodiversity management and conser-
     
studies which will check the recovery of the for-
est can be conducted.
References

pattern of tree community dynamics in a secondary for-

Global Ecology and Conservation   

       
      
     Forest Ecology
and Management    



-
 Jour-
nal of Ecology 
      
Tropical Agriculture (Trini-
dad)
       
  -
munities in wet tropical secondary forests. Journal
of Ecology    

Map of Ecological zones of Nigerian Veg-
etation
       
human impact and natural disturbances. Perspectives
in Plant Ecology, Evolution and Systematics 

-
 
Tropical Forest Community Ecology

-
fects of climate and stand age on annual tree dynam-
ics in tropical second-growth rain forests. Ecology

       
        
change in tree communities of secondary tropical
Proceedings of
the Royal Society of London, Series B

   -
ating conditions in the dynamics of ecological com-
munities. American Naturalist   


reefs. Science    -


 
Journal of Ecology

Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

       
cover on seedling and sapling dynamics in sec-
       Jour-
nal of Tropical Ecology    

        
   Journal of Ecology 

       
  
      -
  ISRN Ecology   

  Legend to Soil Map of the World.
Vol.1. World soil classication
     Nature  

        -
       
Trends in Ecology and Evolution   

    -
   
Forest Succession:
Concepts and Application  -

  -
est succession: changes in structural and functional char-
acteristics. Forest Ecology and Management 

          -
   
Forest Succession: Concepts and Appli-
cation. 
         

  Journal of Tropical Ecology  

   An Outline of Nigerian Vegetation. 3rd
edition-

        -
cruitment, and canopy gap formation during a 10-year
period in a tropical moist forest. Ecology  



Ecology 
  

-
       -
sequence of tropical abandoned pastures: implications
for restoration ecology. Restoration Ecology

        -
Bio-
diversity in Managed Landscapes: Theory and Prac-
tice. 
      
and composition in altitudinal gradient on an in-
    Nigerian Journal of
Botany
-

Rodriguesia
     Forest Stand Dynamics.


term chronosequence of forest succession in the up-
  Journal of
Ecology 
  -
cal forests. Trends in Ecology and Evolution 

  
-
Revista Brasileira de Biologia

    
following slash and burn agriculture in north-eastern
Journal of
Ecology 
Soil Taxonomy, Agriculture Handbook. -

        -
       
forest after logging and shifting cultivation. Bio-
diversity and Conservation   

-
es controlling successional change. Oikos 
The Vegetation of Africa. A descriptive memoir
to accompany map of Africa.
Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002

ВИДОВОЕ РАЗНООБРАЗИЕ И ДИНАМИКА СУКЦЕССИИ
ВТОРИЧНОГО ЛЕСА БИОЛОГИЧЕСКИХ САДОВ
УНИВЕРСИТЕТА ОБАФЕМИ АВОЛАУ, ИЛЕ-ИФЕ, НИГЕРИЯ
Н. О. Увалака*, Дж. И. Муогалу, А. О. Осеволе
Университет Обафеми Аволау, Нигерия
*e-mail: uwalakanelson@gmail.com
-


           2   
-
     
   
   

-
      
     
  

-
  



Ключевые слова:-

Nature Conservation Research. Заповедная наука 2018. 3(1): 21–34 DOI: 10.24189/ncr.2018.002
... Ile-Ife lies in the lowland rainforest zone (Keay, 1959) and Guineo-congolian forest drier type (White, 1983). The most frequently occurring woody plant families are Apocynaceae, Euphorbiaceae, Fabaceae, Moraceae, and Sterculiaceae (Uwalaka et al., 2018). Six sample plots (0.25 ha each) were established using a measuring tape in the secondary rain forest in the Biological Gardens. ...
... A part of the forest in the Biological Gardens of the Obafemi Awolowo University, Ile-Ife was damaged by surface fire three decades ago and is still undergoing some stages of regeneration as shown by the fewer number of late-successional host species compared to the early-successional host species. Liana infestation in the regenerating forest of the Biological Gardens of Obafemi Awolowo University, Ile-Ife had been found to increase with the abundance of host tree species, not considering the successional status of the host species (Muoghalu and Okeesan, 2005;Uwalaka and Muoghalu, 2017), although Uwalaka et al. (2018) had earlier reported a dominance of early-successional trees over late-successional trees in the forest. The fewer number of late-successional host species compared to early-successional hosts is in contrast to the findings of Kirika et al. (2010) who reported a far higher number of late-successional tree species than early-successional tree species in the tropical forests of Budongo and Mabira in Uganda, and Kakamega in Kenya, respectively. ...
Article
Full-text available
Studies on the influence of host tree successional status on liana infestation are few or lacking in regenerating forests in Africa. This study examined some likely predictors of the abundance of dominant lianas in a regenerating lowland rainforest in Ile-Ife, Nigeria. Six sample plots (0.25 ha each) were sampled in the secondary forest in the Biological Gardens of Obafemi Awolowo University, Ile-Ife, Nigeria. All trees and shrubs (≥ 2 m in height) and lianas attached to the trees and shrubs, were enumerated and their girth sizes were measured. The successional status of the host and lianas was determined. A chi-square analysis was carried out to determine the preferential liana infestation on host species in the forest while logistic binary regression analysis was used to determine the probability of infestation of the host species by each liana species. Liana colonization was species-specific with Chasmanthera dependens, Combretum sp. and Motandra guineensis being the only lianas that preferentially infested specific host species. Senegalia ataxacantha and Combretum sp. were the only lianas that preferred both late-and early-successional host species while Motandra guineensis was the only liana species that preferred both small and large host species. Since late-successional host species are gradually replacing the early-successional hosts in the forest, this makes it more necessary to monitor the tree regeneration process in the forest closely especially because most of the dominant lianas are early-successional species that would impede the regeneration of the trees and shrubs in the forest.
... It is important to maintain a high level of diversity for many reasons, including the fact that the natural world brings to human life. Therefore, in recent years, nature conservation and biodiversity conservation have been viewed as the same issue (Mathews 2016;Uwalaka et al. 2018;Kestemont 2019;Mellard et al. 2019;Cicort-Lucaciu 2020;Kroll et al. 2020;Wang et al. 2020). ...
Article
Full-text available
Ruchin AB, Egorov LV, Polumordvinov OA. 2021. Coleoptera of the Penza region, Russia based on fermental crown trap). Biodiversitas 22: 1946-1960. There are the results of processing the material of the 2019-2020 studies on Coleoptera from the Penza region, Russia. The surveys were carried out using fermental crown traps in various habitats on the territory of 18 districts of the region. In total, 18 traps were installed in 2019 and 96 traps – in 2020. During the research, 5,577 specimens were collected and recorded. Ninety-seven species from 19 families were found, of which 43 species are new to the Penza region. The most diverse families are Cerambycidae (24 species) and Elateridae (11 species). Species from the families Nitidulidae (3281 specimens), Scarabaeidae (1497 specimens), and Cerambycidae (453 specimens) predominated in the traps. A list of species is given, indicating references and information on biology. New data is given for 4 species included in the Red Data Book of the region (Protaetia fieberi, Protaetia speciosissima, Gnorimus variabilis, Purpuricenus globulicollis).
... The study of landscape succession is mentioned later than the vegetation succession. In the literature of foreign authors, "succession" was first used in the study of vegetation (Pielke, 1999;Nguyen et al., 2013;Nguyen et al., 2018;Nelson et al., 2018;John et al. 1997), then used in ecological research, the motion of ecosystems (Soumana, 2013;Triskov, 2012). Therefore, the current reality when scientists talk about succession, is to talk about ecological succession and landscape transformation, in Russian Federationn language, that is: "Экологическая сукцессия" and "Динамика ландшафта" (Bulatov, 1996;Gusev, 2012;Triskov, 2012). ...
Article
Full-text available
Изучение характеристик разнообразия, изменения и экологической cукцессии ландшафтов является важным при определении территориальной дифференциации, особенно в муссонных тропиках, как Центральное нагорье Вьетнама, где наблюдается сильная дифференциация по азональности. Заповедное территория Конкакинь-Кончыранг имеет особое географическое положение, расположено в северо-восточной части провинции Зялай и отличается глубоким разделением природных и антропогенных компонентов и факторов. На влажный тропический климат этой области одновременно влияет Центральное нагорье и Центральное побережье. Как разнообразные природные условия, так и сильное антропогенное влияние, способствовали созданию типичной природно-антропогенной ландшафтной системы в изучаемом районе. Природно-антропогенные ландшафты достаточно дифференцированы от 1 системы, 1 подсистемы, 3 классов, 5 подклассов, 13 типов и 87 видов. Ландшафтное разнообразие проявляется в закономерности высотной поясности. Разнообразие ландшафтов отражается не только по их количеству, но и по частоте встречаемости какого-либо определенного ландшафта на исследуемой территории. В течение периода исследований с 2005 по 2017 год наблюдали значительные изменения в ландшафтах исследуемой территории, как в количественном, так и в качественном отношении. В течение примерно 13 лет, ландшафты изучаемого района сильно изменились. В 2005 году насчитывалось 94 вида ландшафта, включая группы вечнозеленых широколиственных тропических лесных ландшафтов, кустарников, саванн, агроландшафтов. Сравнение этих двух периодов показывает, что исчезли 43 вида ландшафта и сформировано 33 новых вида. Остальные ландшафты имеют колебания в площади. В этом изучаемом районе формирование типичной ландшафтной сукцессии обусловлено деятельностью местных жителей. Вечнозеленый широколиственный лесной ландшафт под воздействием человека привел к катастрофическим изменениям. Сукцессионные изменения происходят в короткие промежутки времени, что приводит к созданию новых ландшафтов.
... Forests are biologically diverse ecosystems that represent some of the richest communities of living organisms on Earth. Due to the diversity of these ecosystems, they are home to a significant species diversity of insects [1][2][3][4][5][6][7][8]. While many insect species thrive, some forest species are on the verge of extinction due to forest degradation, pollution, fragmentation, changes in tree composition, climate change, and other factors, such as fires, tree felling, and draining [9][10][11][12][13][14][15][16]. ...
Article
Full-text available
The possibilities of applying various methods to study Coleoptera give unexpected and original results. The studies were carried out with the help of fermental crown traps in 2018-2020 on the territory of eight regions in the central part of European Russia. The biodiversity of the Coleoptera that fall into crown traps includes 294 species from 45 families. The number of species attracted to the fermenting bait is about a third of the total number of species in the traps (this is 97.4% of the number of all of the caught specimens). The largest number of species that have been found in the traps belong to the families Cerambycidae, Elateridae and Curculionidae. The most actively attracted species mainly belong to the families Cerambycidae, Nitidulidae and Scarabaeidae. The species of these families are equally attracted by baits made of beer, white and red wines. In order to identify the Coleoptera biodiversity of a particular biotope, two-year studies are sufficient, and they should be carried out throughout the vegetation season. Especially good results can be obtained from studies of rare species that are actively attracted by such baits. It is possible to study the vertical-horizontal distribution of Coleoptera fauna in individual biotopes.
... Forests are biologically diverse ecosystems that represent some of the richest communities of living organisms on Earth. Due to the diversity of these ecosystems, they are home to a significant species diversity of insects [1][2][3][4][5][6][7][8]. While many insect species thrive, some forest species are on the verge of extinction due to forest degradation, pollution, fragmentation, changes in tree composition, climate change, and other factors, such as fires, tree felling, and draining [9][10][11][12][13][14][15][16]. ...
Preprint
Full-text available
The possibilities of applying various methods to study Coleoptera give unexpected and original results. The studies were carried out with the help of fermental crown traps in 2018-2020 on the territory of eight regions in the central part of European Russia. The biodiversity of Coleoptera that fall into crown traps includes 294 species from 45 families. The number of species attracted to the fermenting bait is about a third of the total number of species in the traps (this is 97.4% of the number of all caught specimens). The largest number of species that have been found in traps belong to the families Cerambycidae, Elateridae and Curculionidae. The most actively attracted species mainly belong to the families Cerambycidae, Nitidulidae and Scarabaeidae. Species of these families are equally attracted by baits made of beer, white and red wines. To identify the Coleoptera biodiversity of a particular biotope, two-year studies are sufficient, which should be carried out throughout the vegetation season. Especially good results can be obtained from studies of rare species that are actively attracted by such baits. It is possible to study the verti-cal-horizontal distribution of Coleoptera fauna in individual biotopes.
... The study was carried out within a 205 000 m 2 secondary rain forest in the Biological Gardens of the Obafemi Awolowo University, Ile-Ife, Nigeria which was ravaged by a ground fire in 1983, and was recommended to Protected Area establishing (Uwalaka et al., 2018). Ile-Ife lies established in the secondary forest in locations undergoing different degrees of regeneration for this study (Muoghalu & Okeesan, 2005;Uwalaka & Muoghalu, 2017). ...
Article
Full-text available
This study examined variation in liana composition, abundance and environmental variables associated with them in a regenerating secondary rainforest in Ile-Ife, Nigeria. Six sample plots were established in the secondary forest in locations undergoing different degrees of regeneration for this study. All individual lianas were enumerated and girths at breast height were measured. Five soil samples were randomly collected from each sample plot using a soil auger, air-dried and sieved, and were analyzed for pH, particle size distribution, organic carbon, total nitrogen, phosphorus, exchangeable cations and organic matter content. Using Canonical Correspondence Analysis, Correlation and regression analysis, we determined soil variables that influenced the liana abundance in the forest. There were 41 liana species in the forest with Motandra guineensis (Apocynaceae) being the most important species. The soil variables affected the liana species differently with the “group IV” liana species showing more preference for all the environmental variables. Liana individuals showed no significant relationship with all the soil variables in the forest. Also, only Motandra guineensis showed a strong relationship with all the soil variables in the forest. The study concluded that soil variables affected the liana abundance in the forest differently.
Article
Full-text available
This study investigated the metabolized energy values of succulent leaf of Vernoma amygdalina (Bitter leaf meal) mixed with Musa sapientum leaf (Banana leaf meal) (BBLM) on performance of growing pigs. The experiment was conducted at the Swine Unit of the Teaching and Research Farm, University of Uyo, Uyo, Akwa Ibom State, Nigeria. A total of 40 large white breeds of pigs (growers) were used for the study. The pigs were divided into 5 groups based on average initial weights (20 to 25 kg) and each group of grower pigs were respectively allotted to each of the five treatment diets using a completely randomized design (CRD). Each treatment group contained 2 replicates of 4 pigs (2 males and 2 females). These pigs were fed twice daily and water supplied was given ad libitum. The treatment diets consisted of BBLM at 0 (control), 20, 40, 60 and 80%. The 50:50 ratios of banana leaf and bitter leaf meal were derived by equal weighing (kg) of the two test ingredients percentage in the diet using a manual scale. All diets were formulated to be iso-nitrogenous and iso-caloric. During the feeding trial, daily feed consumption, metabolized energy values, weight changes, and nutrient digestibility were determined and recorded for all the levels, while weight gain, feed conversion ratio and protein efficiency ratio were estimated to assess performance of the weaner pigs. The results revealed that metabolized energy values of BBLM as shown in T1, T2, T3, T4 and T5 obtained in this study were significantly (p<0.05) increased in each of the diets. The reason for the significant increase was as a result of the presence of banana leaf meal in the feed formulation due to its high fibre content. The results from the study also showed significant (p<0.05) differences on the performance characteristics of grower pigs. It was found that animals on 80% diet gave the best performance compared to other diets in final weight gain, feed conversion ratio and protein efficiency ratio (25.67 kg, 2.06 and 2.52) respectively. There were significant differences (p<0.05) on the nutrient digestibility of the pigs. It was concluded that the metabolized energy values of BBLM increases as the level of inclusion were higher and as such can completely replace maize as a source of energy without adversely affecting the overall growth performance of the pigs.
Article
The study determined successional replacement model among the functional groups in a secondary rain forest that was ravaged by a ground fire, 29 years ago. This was with a view to determining the stand temporal pattern of tree community dynamics in a moist tropical forest regenerating after fire disturbance. Two plots, 0.25 ha each, established in burnt and unburnt parts of the forest immediately after the fire to study community dynamics in the forest were used for the study. In each plot, woody plant species ≥1 cm in girth and 1 m and above in height were completely enumerated, identified to species level, and girth size measured at breast height (gbh). The number of species, genera and families were established for each plot. The data collected were used to calculate species diversity indices, basal area, species evenness, density, similarity and dissimilarity indices for the plots. Tree mortality and recruitment rates were calculated using data from this study and previous studies in the burnt plot in 1983, 1984, 1997 and 2008. Correlation and regression analyses were used to assess whether decadal changes in rainfall and temperature were the major drivers of changes in the forest after calculating decadal temperature and rainfall data for 29 years. The results showed that a total of 380 trees were present in the 0.25 ha burnt plot, representing 63 species, 46 genera and 25 families. Tree stem density decreased from 4332 stem ha⁻¹ to 1520 stem ha⁻¹ 29 years after the fire. The species diversity (H1) which decreased to 2.50 in 2008 increased to 3.50 in 2012. The species evenness which peaked (0.80) in 1997 decreased to 0.48 in 2012. The basal area which increased to 20.18 m² ha⁻¹ in 1997 and dropped to 14.62 m² ha⁻¹ in 2008 has increased to 21.34 m² ha⁻¹ in 2012. Tree annual mortality rates which continued to decrease one year after the fire (−2.02% y⁻¹ in 1984–1997, −5.16% y⁻¹ in 1997–2008) had increased to 25.7% y⁻¹ in 2008–2012). The annual recruitment rates continued to decrease since the fire, decreasing to the lowest rate of −25.7% y⁻¹ in 2008–2012. There was a non-significant positive correlation between decadal mean minimum temperature, decadal mean maximum temperature and decadal mean annual rainfall and tree density but a non-significant negative correlation between these climatic data and basal area, species richness and species diversity. The changes in community parameters in the forest as it recovers from the fire disturbance followed the tolerance model of succession. It was concluded that changes in the floristic, structural character, mortality and recruitment rates were still going on in the forest, 29 years after the fire disturbance.
Chapter
The contrasts and paradoxes of ideas about succession are well illustrated by the history of my own ideas about succession. My introduction was the Boy Scouts’ Wildlife Management Merit Badge pamphlet (Allen 1952); old fields are invaded by sun-loving species, which by their growth gradually create an environment in which only shade-tolerant species can thrive. My observation at Camp Quinapoxet in West Ridge, New Hampshire was that all the sun-loving gray birches (Betula populifolia) are on sandy uplands and all the shade-tolerant hemlocks (Tsuga canadensis) are in ravines, regardless of the ages of the stands.
Article
Secondary succession, although examined in various climatic regions, has been most intensively studied in the north temperate zone. The motivation for these studies has been scientific interest in the investigation of vegetational changes through time and space, and not because secondary succession in these areas represents the best expression of changes during the regeneration of terrestrial ecosystems.
Article
All trees = or >2.5 cm dbh were censused on a 1.5 ha tract of 60-yr-old Barro Colorado Island, Panama, forest in 1968 and again in 1978 to determine rates of tree mortality, recruitment, dbh increment, and canopy gap formation. Species composition changed very little. The pioneer or gap species Cordia alliodora, Luehea seemanii and Spondias radlkoferi had no recruitment and accounted for most mortality in the larger size classes. Some 90% of all mortality was for stems <10 cm dbh. Total tree density declined 11% (from 3112 to 2781 trees/ha), but basal area increased 22% (from 25.7 to 31.4 m 2/ha). Growth in diameter was highly variable, both among species and among size classes. Trees in the 30-50 cm dbh class had a mean dbh increment of 0.9 cm/yr. Gaps occurred over an area equal to 7.3% of the plot during the 10-yr period, suggesting that about 137 yr would be required for the 1.5 ha plot to be affected by tree falls. -Authors
Article
(1) The biomass, productivity and litterfall patterns during a 20-year fallow, subsequent to shifting agriculture were studied in north-eastern India. (2) The early colonizers varied depending upon the type of vegetation before farming and the seed and rhizome sources in the soil, and these depended largely on the agricultural practices. Initially, weeds predominated, but a bamboo (Dendrocalamus hamiltonii) was an important component of 10-20-year old fallow; later this was replaced by shade-intolerant trees. (3) The succession was accompanied by increased species diversity, reduced dominance, and increased above-ground net primary productivity which reached 1.8 kg m-2 year-1 in a 20-year old fallow. (4) The above-ground biomass increased linearly with age up to 15 kg m-2 in a 20-year old fallow. The rate of accumulation of biomass increased for 15 years, when it was 0.9 kg m-2 year-1; it then declined slightly. (5) Litterfall increased with the age of the fallow up to 1.0 kg m-2 year-1 in a 20-year old fallow.