ArticlePDF Available

Seedling and adult-plant stage resistance of a world collection of barley genotypes to stripe rust

Authors:
  • Indian Institute of Wheat and Barley Research
  • ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India

Abstract

Barley stripe rust caused by Puccinia striiformis f.sp. hordei (PSH) is one of the major diseases in barley production regions worldwide. A total of 336 barley genotypes with diverse genetic backgrounds targeted for low-input barley production were tested for seedling and adult-plant stage resistance against six PSH races (0S0, 0S0-1, 1S0, 4S0, 5S0 and 7S0) originated from India. The seedling resistance was evaluated by inoculating the barley genotypes with six races separately under controlled conditions in Shimla, India. The same barley genotypes were evaluated for adult-plant stage resistance in the Agricultural Research Station (ARS) of Rajasthan Agriculture University, Durgapura, Rajasthan, India. Out of the 336 barley genotypes tested for seedling resistance, 119 (35.4%), 101 (30.1%), 87 (25.9%), 100 (29.8%), 91 (27.1%) and 70 (20.8%) genotypes were resistant to races 0S0, 0S0-1, 1S0, 4S0, 5S0 and 7S0, respectively. In the field, 102 (30.3%) genotypes showed the resistance response of which 18 (5.3%) genotypes were highly resistant to PSH. Barley genotypes AM-14, AM-177, AM-37, AM-120, AM-300, AM-36, AM-103, AM-189, AM-291, AM-275 and AM-274 showed resistance response to all six races at seedling and adult-plant stages. Seedling resistance reported in the current study is effective against the newly emerged race 7S0 and previously reported five races in India. Therefore, resistant barley genotypes identified in the current study provided effective protection against all six races at seedling and adult-plant stages. The stripe rust resistance identified in the current studies may be potential donors of stripe rust resistance to barley breeding programmes in India and elsewhere.
Journal of Phytopathology. 2017;1–10. wileyonlinelibrary.com/journal/jph  
|
 1
© 2017 Blackwell Verlag GmbH
Received:13April2017 
|
  Accepted:23August2017
DOI: 10.1111/jph.12655
ORIGINAL ARTICLE
Seedling and adult- plant stage resistance of a world collection
of barley genotypes to stripe rust
Sanjaya Gyawali1| Ramesh Pal Singh Verma1| Subodh Kumar2|
Subhash Chand Bhardwaj2| Om Prakash Gangwar2| Rajan Selvakumar2|
Pradip Singh Shekhawat3| Sajid Rehman1| Dipak Sharma-Poudyal4
1BiodiversityandIntegratedGene
management(BIGM),ICARDA,Rabat,
Morocco
2IndianInstituteofWheatandBarley
Research(IIW&BR),IndianCouncilof
AgriculturalResearch(ICAR),Shimla,India
3RajasthanAgriculturalResearchInstitute
(RARI),S.K.N.AgricultureUniversity,
Durgapura,Rajasthan,India
4OregonDepartmentofAgriculture,Salem,
OR,USA
Correspondence
S.Gyawali,BIGMP,ICARDA,Rabat,Morocco.
Email:gyawalisanjaya@gmail.com
Abstract
Barleystripe rustcaused byPuccinia striiformis f.sp.hordei (PSH)is oneof themajor
diseasesinbarleyproductionregionsworldwide.Atotalof336barleygenotypeswith
diversegeneticbackgroundstargetedforlow-inputbarleyproductionweretestedfor
seedlingandadult-plantstageresistanceagainstsixPSHraces(0S0,0S0-1,1S0,4S0,
5S0and7S0)originatedfromIndia.Theseedlingresistancewasevaluatedbyinoculat-
ing the barley genotypes with six races separately under controlled conditions in
Shimla,India.Thesamebarleygenotypeswereevaluatedforadult-plantstageresist-
anceintheAgricultural Research Station(ARS)ofRajasthan Agriculture University,
Durgapura,Rajasthan,India.Outofthe 336barleygenotypestestedforseedlingre-
sistance,119(35.4%),101(30.1%),87(25.9%),100(29.8%),91(27.1%)and70(20.8%)
genotypeswereresistanttoraces0S0,0S0-1,1S0,4S0,5S0and7S0,respectively.In
thefield,102(30.3%)genotypesshowedtheresistanceresponseofwhich18(5.3%)
genotypeswerehighlyresistantto PSH.BarleygenotypesAM-14,AM-177, AM-37,
AM-120,AM-300,AM-36,AM-103,AM-189,AM-291,AM-275andAM-274showed
resistanceresponsetoallsixracesatseedlingandadult-plantstages.Seedlingresist-
ancereportedinthecurrent studyiseffective againstthe newlyemergedrace 7S0
andpreviouslyreportedfiveracesinIndia.Therefore,resistantbarleygenotypesiden-
tifiedinthecurrentstudyprovidedeffectiveprotectionagainstallsixracesatseedling
andadult-plantstages.Thestriperustresistanceidentifiedinthecurrentstudiesmay
bepotential donorsof striperust resistanceto barleybreeding programmesinIndia
andelsewhere.
KEYWORDS
barley,race,resistance,striperust,yellowrust
1 | INTRODUCTION
Barley (Hordeum vulagere L.) is one of the most important cereal
cropsgrown onmore than49.7 millionha (FAOStat2015)andis
mainlyusedas feed,foodandmalt inmanycountries(Newman&
Newman,2006).This cerealisadaptedtodry areascharacterized
byerraticrainandpoorsoilfertilitywhichareoften describedas
low-inputbarley(LIB)production systems.Biotic stresses,mainly
stripe rust (caused by Puccinia striiformis Westend. f.sp. hordei
Erikss.) (PSH), cause significant yield losses in barley.Stripe rust
often causes serious epidemics in South Asia (India, Nepal and
Pakistan)(Bahl&Bakshi,1963;Bakshi,Bahl,&Kohli,1964;Luthra
2 
|
   GYAWALI et AL.
&Chopra,1990;Murty,1942;Pradhanang&Sthapit,1995;Upreti,
2005;Vaish, Ahmed, & Prakash,2011), West Asia (Safavi,2012),
EastAfrica(Stubbs,1985;Woldeab,Fininsa,Singh,&Yuen,2007),
SouthAmerica(Capettini,2005;Stubbs,1985)andNorthAmerica
(Chen,2007,2008;Chen&Line,2002;Chen,Line,&Leung,1995;
Dubin & Stubbs, 1986; Line, 2000 and Roelfs & Huerta-Espino,
1994).Frequentand seriousstriperust epidemicscaused signif-
icantyieldlossrangingfrom5%to25%inwheatand barleywhile
yieldlossashighas70%wasreportedinbarleyinSouthAmerica
(Wellings,2011).
Deployment of durable resistance is the most profitable, cost
effective and environmentally sound strategy to manage the rust
disease(Park,2008).Incerealrusts,twomajortypesofresistances
have been described, including seedling/all-stage resistance and
adult-plantresistance(APR).Ithasbeendemonstratedthatall-stage
resistanceiseffectivethroughoutallstagesofplant growth,which
isoftencharacterizedbythehypersensitivetypeofresponseswhile
theAPRiseffectiveonlyatadult-plantstage,andisoftenregarded
asslowrusting (Park,2008). Recently,a newstriperust race, 7S0
was reported in 2014 which overcomes seedling stage resistance
ofbarleycultivarseffectiveagainstracesprevalentinIndia.Several
studieshavebeenreportedon seedlingandAPRresistanceinbar-
leyleafrustcausedbyPuccinia hordeiwhereasinformationonAPR
to stripe rust is still scant. Forexample, several P. hordeiall-stage
resistancegenesconferringhighlevelofresistance,includingRph1-
Rph19 (Golegaonkar, Singh, & Park, 2009), Rph21 (Sandhu etal.,
2012)andRph22(Johnson,Niks,Meiyalaghan,Blanchet,&Pickering,
2013),havebeencharacterized.Recently,Dracatosetal.(2016)and
EsveltKlosetal.(2016)reportedQTLmappingofPSHresistanceat
seedlingstageusing Europeanand NorthAmerican PSHraces, re-
spectively.Often,all-stageresistancegenesaredominant innature
withlargeeffects.Frequentmutationsinrustvirulencegenesoften
leadtothe breakdownofcorresponding majorresistance genesin
thehost withina shortperiod ofdeployment (Park,2008). Incon-
trast, APR is mostlyquantitative in nature, is often referred to as
incompleteorslowrustingandisoftenadditiveinnature(Carlborg&
Haley,2004;Golegaonkar etal.,2009;Singh,Dracatos,Derevnina,
Zhou,&Park,2015).Therefore,APRgenesaremoreofteneffective
foralongerperiod.
TheAPRgenesarelessstudiedinbarleyduetotheirpartialmode
of action. Verma etal. (2016) reported seedling (against five races)
andadult-plantstageresistancetostriperustingenotypesoriginat-
ing from high-inputbarley breeding programmeof the International
Center forAgricultural Research in the Dry Areas (ICARDA). They
identified 12 stripe rust-resistantgenotypes against five PSH races
inIndia.However,informationonAPRgenesagainstPSHracesfrom
barleyis stillinadequate.AmongPSHreported inIndia, race24has
been widely reported in major barley-growing regions across the
globe(Chen,2007)whileotherPSHracesusedbyVermaetal.(2016)
are endemic to India. Therefore, the objective ofthis study was to
identifysourcesofseedlingandAPR inbarleygenotypes adaptedto
LIB breeding programmes toIndian PSH races, including the newly
emergedrace7S0.
2 | MATERIALS AND METHODS
2.1 | Barley genotypes and stripe rust races
A worldcollection of association mapping (AM-2014) panel of 336
barleygenotypes withdiverse sources(TableS1) wasassembledfor
theLIBbreedingprogrammeofICARDA.Thegeneticdiversityandde-
taildescriptionsofAM-2014werereportedbyAmezrouetal.(2017).
Inbrief,outof336 barleygenotypes,230genotypeswerecollected
fromtheLIBbreedingprogramme(genotypesadaptedforabioticand
bioticstresstolerances)and82 fromthehigh-inputbarleybreeding
programme(genotypesadaptedtofavourableconditions)ofICARDA
andtheremaining26werefrequentlyusedinbothprogrammes(Table
S1).Basedon grain types,276genotypes werehulled and 60were
hull-lessbarley.Intermsofrowtype,137genotypesweretwo-rowed
and 199 were six-rowed. The majority (73.8%) of the barley geno-
types was collected from barley breeding programmes of ICARDA
(advancedbreeding lines), but also represented genotypes fromdif-
ferentsources, including the Genetic Resource Unit (GeneBank) of
ICARDA(9.5%)andbarleyvarietiesreleasedbybreedingprogrammes
(16.6%)fromIndia,Australia,USA,Canada andMorocco.Apartfrom
a few genotypesthat originated from Indian breeding programmes,
mostgenotypesintheAM-2014hadneverbeentestedforreactions
toIndian PSHraces.TheAM-2014wasevaluatedforPSHracesbe-
causeseveralgenotypesincludedinthispanelfurnishcrossingblock
ofthe LIBprogrammeofICARDAtargetedforfeedand foodbarley
improvementacrosstheglobe.
The AM-2014 was evaluated for seedling resistance undercon-
trolled glasshouse conditions at Indian Institute of Agricultural
Research (ICAR)-Indian Institute of Wheat and Barley Research
(IIW&BR), Regional Station, Shimla, India. Five common PSH races
[(57(0S0),24 (0S0-1),M (1S0),G (4S0) andQ (5S0)]anda recently
reportedrace,7S0,wereusedtoevaluateseedlingresistance.
2.2 | Seedling stage evaluation of resistance to stripe
rust in the glasshouse
Theseedlingresistanceof336barleygenotypeswasevaluatedtoeach
ofthesixPSHraces,57(0S0),24(0S0-1),M(1S0),G(4S0)Q(5S0)and
7S0atICAR-IIW&BR,Shimla, India,followingthemethods described
byresearchers(Nayar,Prashar,&Bhardwaj,1997;Prashar,Bhardwaj,
Jain,& Datta,2007; Vermaetal., 2016;Zadoks,1961).Inbrief,alu-
miniumtrays29cm long×12cmwide×7cm deepwerefilled with
amixture offine loamand farmyardmanure (3:1).Twenty holes(10
holesineachrow,4cmdeepand5cmapart)weremadewiththehelp
ofwoodenmarkerinthesoilbed.Fiveseedsofatestgenotypewere
sownineachhole,and18genotypeswereseededinonetray.Ineach
tray,thesusceptiblecheck“Bilara-2”wasincludedatlocationsof7th
and14thholes.Bilara-2doesnotcontain anyknownPSH resistance
againstanyracesknownso farinIndia. Theseedlingswereraisedin
glasshousechambersat22±2°C,50%–70%relativehumidityand12-
hrdaylightcycle.One-week-oldseedlingswithfullyexpandedprimary
leaves were inoculated with 100mg spores of individual races sus-
pendedin 10mllightgrademineraloil (Soltrol170;ChevronPhillips
    
|
 3
GYAWALI et AL.
Chemicals Asia Pvt. Ltd., Singapore). The inoculated seedlings were
keptfor48hrindewchambersat16±2°Cwith>90%relativehumid-
ityand12hroftheday/nightcycle.Theplantswerethentransferred
toglasshousebenchesandincubatedat16±2°Cwith>70%relative
humidity,illuminatedatapproximately15,000luxfor12hr.Powdery
mildewwascontrolledbysprayingsulphurpowder.
Reactionsofgenotypesasinfectiontypes(IT)torustinfectionwere
recorded16–18daysafterinoculationfollowingthemodifiedmethod
(Nayaretal., 1997; Stakman, Stewart, & Loegering, 1962): where0;
(naughtfleck)=novisibleinfection,;-(fleckminus)=slightlynecrosis/
microfleckingvisible,;(fleck)=nourediabutsmallhypersensitiveflecks
present,1(one)=urediaminute,surroundedbydistinctnecroticareas,
2(two)=smalltomediumuredia surroundedbychloroticornecrotic
boarder,3(three)=urediasmalltomediuminsizeandchloroticareas
maybe present,3+(three+)=uredia largewith orwithout chlorosis,
sporulatingprofuselyandformingrings.Infectiontype33+isclassified
whenboth3and3+pustulesoccurtogether.Apictorialviewofthese
ITsispresentedinFigureS1.Theexperimentwasrepeatedtwotimes.
In repeated experiments,the majority of ITswere consistent except
veryfewcaseswheresusceptibleITswerekeptoverresistanceITs.The
ITs0to2ratingswereconsideredresistantand3to3+assusceptible
while2+,22+and3−wereconsideredintermediateITs.
2.3 | Adult- plant stage evaluation of resistance to
stripe rust in the field
All genotypes screened for seedling resistance were also screened
foradult-plantstageresistancetostriperustattheARSofRajasthan
Agricultural University (RAU) Durgapura (75° 47’ E, 26° 51’ N),
Rajasthan (RJ), India, in the 2014–2015 cropping season. The ex-
periment was laid out in an augmented design where the suscepti-
blecheck,Bilara-2,wasrepeatedineachblockof20testgenotypes.
Seeds were sown in one-metre rows with 25-cm row to row dis-
tanceforeachgenotypeon 15November 2015.Bilara-2 wassown
asspreaderperpendicular totheplots throughout theexperimental
blocks and around the perimeter of the test blocks 15days before
thesowingofexperimentalgenotypes.Striperust epidemicwascre-
atedbyinoculatingamixtureofthesixPSHraces,including57(0S0),
24(0S0-1), M (1S0),G (4S0), Q(5S0)and 7S0receivedfrom ICAR-
IIW&BRShimla,India.Theseracesweremixedinequalamountbefore
inoculation.ThespreaderplotswerefirstsyringeinoculatedatZadoks
GS10-19(21daysofseedlingstage)(Zadoks,Chang,&Konzak,1974)
withthemixedinoculaofracesfollowedbyrepeatedspraysofinoc-
ulacollectedfromspreaderrowsontothetestgenotypes.Irrigations
werecarried outas requiredtomaintainsufficienthumidityforbet-
terrustinfection.Diseaseseverityandreactionswererecordedthree
timesatZadoks60-69growthstages.
A modified Cobb scale (Peterson, Campbell, & Hannah, 1948)
wasusedinthefieldtoassessstriperustseverityandhostreactions.
HostresponseswererecordedasR=nourediapresent;TR=traceor
minuteuredia onleaves withoutsporulation;TMR=traceorminute
urediaonleaveswithsomesporulation;MR=smallurediawithslight
sporulation; MR-MS=small-to-medium-sized uredia with moderate
sporulation; MS-S=medium-sized uredia with moderate to heavy
sporulation; and S=large uredia with abundant sporulation, uredia
oftencoalescedtoformlesionsasdescribedbyRoelfs,Singh,andSaari
(1992).Thecoefficientofinfection(CI)wascalculatedbyusingdisease
severityand hostresponseaccordingtoStubbs, Prescott,Saari, and
Dubin (1986). Areaunder the disease progress curve (AUDPC) was
calculated using CI ofdisease severity data recorded threetimes at
10-dayintervals.
AUDPC=
n
i=1
[
CIi
+1
+CIi
2]

ti
+1
ti

where, CIi=Coefficient of Infection as defined above on ith
days, ti =time in days at ith observation, and n =total number of
observations.
2.4 | Statistical analysis
The adult-plant stage rust severity wassubjected to ANOVA using
augmented block design. The ANOVA was performed using PROC
GLM of the SAS (SAS Institute 1988) statistical software package.
TheAUDPC ofbarleygenotypeswasdifferentiated byFisher’sleast
significant difference (LSD) (p=.05) based on the standard error of
themeandifference of17repeated checks,Bilara-2, thatwasused
in the experiment. The cut-off of rust resistance and susceptible
genotypewas245.7 AUDPCwhichwas determinedbysignificant t
testofBilara-2andtestgenotypesat0.05probability[AUDPC=162
(p < .05)] plus LSD0.05 which was AUDPC=83.7. Therefore, geno-
typeswithrust severity lowerthanthe cut-offAUDPC 245.7 were
consideredresistanceandviceversa.
3 | RESULTS
TheITsofstriperustonbarleygenotypesevaluatedatseedlingstage
arepresented inTable S1.Of thetotal genotypesevaluated,35.4%,
30.1%,25.9%,29.8%,27.1%and20.8%genotypesshowedresistance
reactionstothe races57(0S0),24 (0S0-1),M(1S0),G(4S0), Q(5S0)
and7S0, respectively(Table1). Amongthesegenotypes,91(20.8%)
genotypeswereresistant(R)andhadITsofeither0,ʹ;ʹ1,2or2-and
12(3.6%) genotypesweremoderatelyresistant(MR) andhad ITsof
2+, 22+ or 3− to race 7S0. In contrast, 225 (67%) genotypes were
susceptible(S)ITs(3,33+or3+)to7S0.TheITsofbarleygenotypesto
otherpreviouslyreportedracesarealsopresentedinTable1.
TheAUDPCof the336barleygenotypesscreenedinthefieldis
presented inTable S1 and Figure1.The ANOVAof AUDPC ofrust
severityispresentedinTable2.Highlysignificant(p < .001)effectsof
genotypeswerefoundonrustseverityatadult-plantstage.Basedon
ITs at seedling stage and AUDPC cut-off(<245.5) for resistance re-
actions, nine genotypes, namelyAM-14, AM-177,AM-37,AM-120,
AM-300,AM-36,AM-103,AM-189andAM-291,showedresistance
in both seedling and adult-plant stages (Table3). Bilara-2 showed
highly susceptible reactionwith 100S severity at 65-69 Zadoks GS
andAUDPCLSmeanwas3,282.2.Incontrast,fivegenotypes(Group
2) showed resistance IRs to all six races in seedling but showed
4 
|
   GYAWALI et AL.
susceptiblereactiontothemixture ofsixPSH races(AUDPCranged
from1,350to3,100)atadult-plantstagesinthefield.
Theevaluationofadult-plant stageresistancerevealedthat18
genotypeswereimmune(I), 26genotypeshighlyresistant(HR),58
R,91MR,77moderatelysusceptible(MS),54Sand10highlysus-
ceptible(S)(Figure1). Intotal, 102(30.5%)genotypes wereresis-
tant,141(42.2%) genotypes weresusceptible whiletherest 27%
genotypeswereeitherMR.TheAPRtothe mixtureofthesixPSH
racesispresentedinTable4. Ofthe336 genotypes,88genotypes
that showed susceptible ITs at seedling stage to at least one or
more races,but were found resistance at adult-plantstage in the
field.TheAUDPCseverityinthese 88genotypesrangedfrom0 to
218. It was interestingto note that 16 genotypes which showed
susceptibleITs (3,33+ or 3+)to one ormultiple racesatseedling
screeningshowedhighlyresistancereaction(AUDPC=0)atadult-
plantstages(Table4).Amongthe89genotypeswhichshowedAPR,
68genotypesshoweddiseaseseverityof<20R, <20MRor<20MS
whileAUDPC rangedfrom3.4to162.However,sevengenotypes
TABLE1 Seedingreactionsofbarleygenotypes(n = 336)tosixPuccinia striiformisf.sp.hordeiracesundercontrolledconditionsin
glasshousein2015inShimla,India
Infection Number of genotypes
Type 57 (0S0)e24 (0S0- 1)eM (1S0)eG (4S0)eQ (5S0)e7S0e
ʹ0ʹʹ;ʹ 60(17.9) 65(19.3) 42(12.5)f22(6.5) 49(14.6) 58(17.3)
ʹ1ʹ 0(0) 0(0) 0(0) 22(6.5) 0(0) 0(0)
ʹ2ʹʹ2-ʹ 59(17.6) 36(10.7) 45(13.4) 56(16.7) 42(12.5) 12(3.6)
Resistanta119(35.4) 101(30.1) 87(25.9) 100(29.8) 91(27.1) 70(20.8)
ʹ3ʹ 33(9.8) 16(4.8) 17(5.1) 104(31) 51(15.2) 32(9.5)
ʹ33+ʹʹ3+ʹ 125(37.2) 172(51.2) 194(57.7) 72(21.4) 137(40.8) 193(57.4)
Susceptibleb158(47) 188(56) 211(62.8) 176(52.4) 188(56) 225(67)
Intermediatec33(9.8) 14(4.2) 15(4.5) 19(5.7) 30(8.9) 12(3.6)
NTd26(7.7) 33(9.8) 23(6.8) 41(12.2) 27(8) 29(8.6)
aNumberofgenotypesshowingresistantinfectiontype(IT)ʹ0ʹʹ;ʹʹ1ʹʹ2ʹʹ2-ʹ.
bNumberofgenotypesshowingsusceptibleinfectiontypeʹ3ʹʹ33+ʹʹ3+ʹ.
cIntermediateinfectiontypeswereconsideredasʹ2+ʹʹ22+ʹʹ3-ʹ.
dNottestedduetopoorgermination.
eStriperustracesusedinthestudy.
fNumberofgenotypes,valuesintheparenthesesarepercentage.
FIGURE1 Leastsquare(LS)meanof
areaunderthediseaseprogresscurve
(AUDPC)of336barleygenotypesto
striperust(Puccinia striiformisf.sp.hordei)
inDurgapura,Rajasthan,India.Disease
severityandinfectiontypeswererecorded
threetimes(attheintervalof10days)at
ZadoksGS60-69onbarleyleaves,and
areaunderthediseaseprogresscurve
(AUDPC)wascalculatedusingcoefficient
ofinfection(CI).TheAUDPCLSmeanof
Bilara-2(repeatedsusceptiblecheck)was
estimatedas3,282.2
TABLE2 Analysisofvarianceofareaunderthediseaseprogress
curve(AUDPC)ofstriperustseverityin336barleygenotypes
Source of
variation df SS MS p- Value
Block 8 4271995.5 533999 <.0001
Genotype 335 380209737 1134954 <.0001
Error 7 35535.9 5076.6
Coefficientofvariation(CV)=6.3%.
    
|
 5
GYAWALI et AL.
showedeither 10Sor 20MSreactionandAUDPCofthesegeno-
typeswas either187.5 or218.Bilara-2,the susceptiblecheck re-
peatedmultipletimesintheexperiment,alwaysrecorded3+ITtoall
sixracesatseedlingandrustseverityof100SorAUDPC=3,282.2
atadult-plantstages.
4 | DISCUSSION
Inthisstudy,wehavereportedstriperustresistanceofspringbar-
leygenotypesoriginatedfromICARDAtoIndianPSHraces.Nearly
21%(70outof336)genotypesshowedahighlevelofresistanceto
recentlyreportedvirulentrace7S0.Striperustresistancesidentified
inthisstudy arevaluablegeneticresourcesforthebarley breeding
programmeinthe subcontinent andelsewhere.Specifically, stripe
rustisoneofthemajorproductionconstraintsinbarleyproduction
inAsiancountriesincludingIndia,NepalandPakistan(Bahl&Bakshi,
1963;Chenetal.,1995;Luthra&Chopra,1990;Vermaetal.,2016).
Vaishetal.(2011) reportedthatPSH wasthe major foliardisease
reportedintrans-HimalayanLadakhregionofIndiawith>45%PSH
prevalence in the field. Similarly, the most popular barley cultivar
“SoluUwa”isreportedhighlysusceptibletostriperustcausing30%
yield loss in Nepal (Upreti, 2005). Several PSH-resistant cultivars
were released periodically in India in last two decades. However,
theeffectivenessofPSHresistanceislimitedtoIndiaduetothefre-
quentemergenceofnewracesandthebreakdownofseedlingand
all-stageresistance(Vermaetal.,2016).Chen(2007,2008)reported
that22newPSHisolatesweredetectedsince2002intheUSAwhile
74newraces werereported since1995–2005.The emergenceof
new PSH races was due to changes in the virulence spectrum of
TABLE3 ResistancereactionsofbarleygenotypestosixPuccinia striiformisf.sp.hordeiracesatseedlingandadult-plantstagesscreeningsin
2015 in India
Genotypes
Stripe rust infection type in seedlingaAdult- plant stageb
M (1S0) 24 (0S0- 1) 57 (0S0) G (4S0) Q (5S0) 7S0 Severity AUDPC
Group1c
AM-14 2− 0; 2 0; 0 0
AM-177 2 ; 2 2C 2+ ; 0 0
AM-37 ;0; 22+ 0; 5MR 24.4
AM-120 0; 0; 20; 2 0; 5MR 24.4
AM-300 0; ; 2 0; 5MR 24.4
AM-36 0; 0; 0; ;- 0; 0; 20MR 109
AM-103 2; 0; 0; 0; 0; 20MR 146
AM-189 ; 2 0; 2N 2 0; 10MS 150
AM-291 2− 2− 2− 1CN 10MS 150
Group2d
AM-188 2 0; 2 1 0; 60S 1,350
AM-283 0; 20; 2+ 0; 100S 2,060
AM-261 22 222 0; 80S 2,190
AM-173 2 2 2220; 100S 2,530
AM-87 22 2 1C 22+ 100S 3,100
Bilara-2e3+ 3+ 3+ 3+ 3+ 3+ 100S 3,282
BoldfacedgenotypesarealsoresistanttoleafandstemrustracesatseedlingstageinIndia.
aSeedlingresistancetesting(SRT)usingsixstriperacesinRustResearchStation,ICAR-IIW&BR,Shimla,India.C=pronouncedchlorosis,N=pronounced
necrosis,CN=bothnecroticandchloroticareapresentwithrustpostules,–=nottestedduetopoorgermination.
bStriperustresistanceevaluatedatadult-plantstageinDurgapuraResearchStation,Rajasthan,India.Theareaunderthediseaseprogresscurve(AUDPC)
wascalculatedforstriperustseverity.TheCV=6.3%andLSD0.05=83.7forAUDPCwereestimatedusingProc.GLMinSAS.
cGroup1—barleygenotypeswithseedlingandadult-plantstageresistancetostriperust.Thepedigreesofthebarleygenotypesarelistedbelow.
AM-14=GK58/3/Kc/MullersHeydla//Sls/4/Wieselbuger//Ahor1303-61//Ste/Antares.
AM-36=PENCO/CHEVRON-BAR/3/LEGACY//PENCO/CHEVRON-BAR.
AM-37=PENCO/CHEVRON-BAR/3/LEGACY//PENCO/CHEVRON-BAR.
AM-103=Arar/H.spont.19-15//Hml/3/H.spont.41-1/Tadmor/4/Barque.
AM-120=ArabiAbiad/Arar//H.spont.41-5/Tadmor/3/ArabiAbiad/Arar//H.spont.41-5/Tadmor.
AM-177=Rihane-03/3/As46/Aths*2//Aths/Lignee686/4/Alanda-01.
AM-189=Avt/Attiki//M-Att-73-337-1/3/Aths/Lignee686/4/CYDBA89#49/3/Ssn/Bda//Arar.
AM-291=IG:153849(landracefromNepal).
dGroup2—seedlingresistancebutsusceptibletoadultstage.
eBilara-2wasastriperustsusceptiblecheck.
6 
|
   GYAWALI et AL.
TABLE4 Barleygenotypesshowingadult-plantresistance(APR)toPuccinia striiformisf.sp.hordeiin2015inDurgapura,Rajasthan,India
Genotypea
Infection type at seedling stageb
Adult- plant
severitycGenotypea
Infection type at seedling stageb
Adult- plant severityc
IS0 0S0- 1 0S0 4S0 5S0 7S0 IS0 0S0- 1 0S0 4S0 5S0 7S0
AM-52 2 0; 0; ;- 3+ 0; 0(0)dAM-43 3+ e0; 3 3+ 3+ 10MR(75)
AM-73 233+ 23− 32− 0(0) AM-119 3+ 33+ 0; 2+ 2+ 2− 10MR(75)
AM-90 3+ 3+ 33+ 333+ 3+ 0(0) AM-143 0; 33+ 23N 33+ 3+ 10MR(75)
AM-108 3+ ;2+ 3C 2+ 0; 0(0) AM-147 3+ 3+ 33+ 33+ 3+ 10MR(75)
AM-162 3+ 0; 3+ 33− 3+ 0(0) AM-201 2+ ;2+ 1C 33+ 0; 10MR(75)
AM-169 3+ 3+ 3+ 3+ 3+ 3+ 0(0) AM-210 3+ 2 2 2 33+ 33+ 10MR(75)
AM-178 e3 0; – 2 33+ 0(0) AM-245 3 0; 3 0; 0; 10MR(75)
AM-222 333+ 33+ 33+ 30(0) AM-248 0; 3+ 3+ 33+ 3+ 10MR(75)
AM-226 3+ 33+ 3+ 30(0) AM-251 ; – 3 3 – – 10MR(75)
AM-228 3+ 33+ 3+ 3+ 3 2 0(0) AM-264 32+ 21C 33+ 2+ 10MR(75)
AM-235 3+ 3+ 3+ 3 ; 33+ 0(0) AM-305 2+ 33+ 2+ 3 3 33+ 10MR(75)
AM-247 233+ 3 3 33+ 3+ 0(0) AM-314 3+ – ––––10MR(75)
AM-252 3;- 0; 2 ; 33+ 0(0) AM-40 3+ 0; 22+ 33+ 0; 10MS(82.8)
AM-312 0; 0; 3+ 0(0) AM-70 3+ 22+ 2− 23+ 10MS(82.8)
AM-319 2− 33+ 33+ 32+ 30(0) AM-187 3+ 3+ 2− 3C 33+ 3+ 10MS(82.8)
AM-322 2 ; 2 3 3 33+ 0(0) AM-306 33+ 0; 2 2− 3 3 10MS(82.8)
AM-10 3+ 3+ 3+ 33+ 3+ TMR(3.4) AM-307 33+ 33+ 222+ 2+ 3+ 10MS(82.8)
AM-96 33+ 233+ 3 3 3+ TMR(3.4) AM-213 3+ 32+ 3C 3+ 3+ 20MR(109)
AM-227 3+ 3+ 3+ 3+ 3+ 3+ TMR(3.4) AM-45 3+ 0; 0; 3+ 0; 0; 10MR(111.5)
AM-296 3+ 3+ 33+ 3+ 33+ TMR(3.4) AM-146 3+ 2− 3+ 3+ 33+ 3+ 10MS(142)
AM-326 33+ 33+ 33+ 23+ 0; TMR(3.4) AM-44 0; – 0; 2− 0; 3+ 15MR(145)
AM-330 3+ 3 2 3 0; 3+ TMR(3.4) AM-74 3+ 2 3 2 0; 0; 20MR(146)
AM-184 3+ 32− 3+ 2+ 3+ 5MR(17) AM-86 33+ 333320MR(146)
AM-76 3+ 3+ ;3N 0; 2− 5MR(20.7) AM-158 3+ 3 0; 2− 33+ 20MR(146)
AM-196 0; 3+ 33+ 333+ 3+ 5MR(20.7) AM-176 3+ ; 0; 3 0; 10MS(146)
AM-54 33+ 0; 1C 2+ 2− 5MR(24.4) AM-282 2− 2 3 ;- 33+ 0; 20MR(146)
AM-83 2;- ;1C ; 1 33+ 5MR(24.4) AM-4 3+ 33+ 3+ 3+ 3+ 33+ 10MS(150)
AM-85 3+ 3+ 33+ 33+ 33+ 5MR(24.4) AM-38 3+ 3+ 3+ 33+ 3+ 10MS(150)
AM-113 3+ 0; 3 3 33+ 3+ 5MR(24.4) AM-63 33+ 3 2 3 3 3+ 10MS(150)
(Continues)
    
|
 7
GYAWALI et AL.
Genotypea
Infection type at seedling stageb
Adult- plant
severitycGenotypea
Infection type at seedling stageb
Adult- plant severityc
IS0 0S0- 1 0S0 4S0 5S0 7S0 IS0 0S0- 1 0S0 4S0 5S0 7S0
AM-114 3+ 33+ 3+ 33+ 33+ 3+ 5MR(24.4) AM-193 33+ 3+ 3+ 3C 33+ 10MS(150)
AM-118 3+ 3+ 3+ 3 3 3+ 5MR(24.4) AM-277 ;33+ 3+ 3+ 33+ 10MS(150)
AM-241 333+ 2+ 3+ 2 0; 5MR(24.4) AM-281 3+ 3+ 3+ 3 3 3+ 10MS(150)
AM-263 2+ 2 3 0; – 5MR(24.4) AM-302 3+ 3+ 33+ – – 33+ 10MS(150)
AM-272 0; 0; 3+ ;- 0; 0; 5MR(24.4) AM-236 3+ 33+ 0; 3 2+ 3+ 10MS(152)
AM-315 3+ 3+ 3+ 33+ 3+ 10R(37.5) AM-200 3+ 3+ 3+ 3+ 3+ 3+ 20MR(162)
AM-128 2 0; 2− 1N 23+ 10MR(41.4) AM-270 3+ 3+ 3+ 33+ 3+ 20MR(162)
AM-205 0; 3+ 0; 3+ 3+ 310MR(41.4) AM-293 33+ 3+ 3+ 33+ 3+ 3+ 20MR(162)
AM-78 0; 3+ 33+ 3C 3+ 3+ 5S(61) AM-81 33+ 33+ 0; 2N 33+ 10S(187.5)
AM-333 3+ 3+ 3+ 3+ 3+ 3+ 10MR(71) AM-123 3+ 3+ 2 0; – 10S(187.5)
AM-7 2 – 0; 2 3+ 3+ 10MR(73) AM-165 3+ 3 3 33+ 33+ 10S(187.5)
AM-102 3+ 3+ 33+ 33+ 3+ 3+ 10MR(73) AM-209 33+ 22+ ; 3 2+ 3+ 10S(187.5)
AM-160 33+ 33+ 33+ 32+ 3+ 10MR(73) AM-271 2− 3+ 33+ 3N 33+ 10S(187.5)
AM-3 32+ 0; 2 33+ 3+ 10MR(75) AM-284 3+ 0; 33+ 3+ 3+ 3+ 10S(187.5)
AM-6 3− 3+ 33+ 3 3 3+ 10MR(75) AM-240 3+ 0; 2+ 3+ 3 0; 20MS(218)
AM-23 2− 22− 2N 2+ 3+ 10MR(75)d
Bilara-2f3+ 3+ 3+ 3+ 3+ 3+ 100S(3,282) Bilara-2f3+ 3+ 3+ 3+ 3+ 3+ 100S(3,282)
aBarleygenotypes.
bInfectiontypeofbarleygenotypesatseedlingstageafterchallengedwithsixstriperustracesundercontrolledconditionsintheglasshouseinShimla,India.
cStriperustseverityrecordedatadult-plantstagetoscreenresistance.Valuesintheparenthesesareareaunderthediseaseprogresscurveofstriperustseverity.TheCV=6.3%andLSD0.05=83.7wereesti-
matedusingProc.GLMinSAS.
dStriperustseverityrecordedatthirdreading,valuesintheparenthesesistheareaunderthediseaseprogresscurve(AUDPC)calculatedusingcoefficientofinfectionestimatedfromstriperustseverityrecorded
atthreedatesafterpostfloweringgrowthstages(ZadoksGS60-69)inDurgapura,Rajasthan,India.
eDatanotrecordedduetopoorseedgermination.
fBilara-2wasastriperustsusceptiblecheckandwasrepeated18timesinbothseedlingscreeningintheglasshouseinFlowerdale,Shimla,andadult-plantstagescreeninginthefieldinDurgapura,Rajasthan,
India.
TABLE4 (Continued)
8 
|
   GYAWALI et AL.
stripe rust (Chen, 2007). Kumar, Holtz, Xi, and Turkington (2012)
reportedhighlydiversePSHpathotypesfromCanadacompared to
isolatesreportedinthepast.Theemergenceofnew PSHrace7S0
in India was consistent with previous reports (Chen, 2007, 2008;
Kumar etal., 2012). Genotypes AM-177, AM-37, AM-120, AM-
300,AM-36,AM-130,AM-189andAM-274providedresistanceto
newlyevolvedvirulent race 7S0 atseedlingand adult-plantstage
besidespreviouslyreportedPSHraces.Therefore,theidentification
ofresistance sourcesin low-input genotypes,in thecurrent study,
willprovideprotectionagainstmajorPSHracescurrentlyprevalent
in India.
GenotypesAM-14,AM-177, AM-37,AM-120,AM-300,AM-36,
AM-130,AM-189,AM-291and AM-274showed resistanceat both
seedlingandadult-plantstages.Park(2008)suggestedthatwhengen-
otypesshow rustresistance atboth seedlingand adult-plantstages,
itcanbereferredtoasall-stageresistance.Possibly,thesegenotypes
mighthaveall-stageresistanceto PSHracesprevalentinIndia. The
seedlingresistanceisnotgrowthstage-dependent(Park,2008;Singh,
1992;Singhetal., 2015). However,seedlingresistance does notal-
waysprovide protectionagainst rust atadult-plant stages.Our data
also suggested that genotypes AM-87, AM-173, AM-188,AM-261
andAM-283possessedseedlingresistance,butfailedtoprotectfrom
PSH,withAUDPC>218,atadult-plantstage.Therefore,a genotype
withstriperust resistanceat seedling stagealone is notsustainable
andeffectivefor along-term deployment(Park,2008; Singh,1992;
Singh etal., 2015). Often, seedling resistance is governedby major
gene(s)andfrequentmutationsin correspondingavirulencegenes in
therust pathogenmayleadtocatastrophicfailureofthecrop(Park,
2008). Therefore, identification of any new sources of resistance
to new PSH races is extremely important for barley breeding pro-
grammes. The central barley breeding programme ofICAR-IIW&BR
at Karnal aswell as several regional barley breedingprogrammes in
Indiawillimmediatelybenefitfromthecurrentlyidentifiedstriperust
resistancesinthisstudy.
Eightgenotypes,resistancetoPSHrace7S0thatisidentifiedin
thecurrentstudy,havediverse pedigrees.AM-36andAM-37are
sister lines and share a common pedigree(PENCO / CHEVRON-
BAR/3/LEGACY//PENCO/CHEVRON-BAR);however,thedonor
plant is unknown. Genotypes AM-103 and AM-120 also share
commonparentagesapartfromonewildbarleyaccession.TheAM-
103 contains two wild accessions in its pedigree, Hordeum spon-
taneum19-15andH. spontaneum41-5(IG_138213)whileAM-120
has H. spontaneum 41-5 only. Among these, two wild accessions,
IG_138213 is one of the important sources ofdrought tolerance
in the LIB programmes of ICARDA.We do not know which wild
accessions contributed to PSH resistance in these two resistant
genotypes.Therefore,furtherresearch iswarranted to studyPSH
7S0resistanceinthesewildaccessions.Similarly,AM-177andAM-
189alsosharecommonparentage,buttheirITsweredifferentthan
otherresistantgenotypes.Possibly,thesegenotypesmaycarrydif-
ferentresistantgene(s),but furtherresearchonallelic relationship
oftheseresistance sourcesisneededtoverifythenatureofthese
resistancesources.
TheAPRto IndianPSHracesreportedinthisstudyisunique.Of
88genotypes,whichshowedahighlevelofAPR,16genotypesexhib-
ited immune (AUDPC=0) responses at adult-plant stage screening.
Vermaetal. (2016) reported that weather conditions in Durgapura,
RJ,favoursthestriperustdevelopmentinbarleycomparedtoKarnal
andotherlocationsinIndia.Theweatherconditions,temperatureand
humidity in 2014–2015 growing season (data not presented) were
favourableforstripe rustinfection, rustdevelopmentandsecondary
spreadsofstriperusturediniosporesfromspreaderrowstotestgeno-
types.AsBilara-2consistentlyscored100SandanabaverageAUDPC
of3,282onall17repeatedplots,the16linesthatshowedimmunere-
sponsesarelikelyduetostrongresistance.Park(2008),Carlborgand
Haley(2004),Golegaonkaretal.(2009);Singhetal.(2015)andSingh
(1992)reportedthatAPRisconditionedbyadditivegenes;therefore,
phenotypicresponsesofAPRgenesaregenerallyquantitativeinna-
ture.Similarly,theadult-plantstagePSH-resistantgenotypesreported
by Safavi (2012) exhibitedslow rusting responses which suggested
thatPSH resistancewasquantitativeinnature.In thisstudy,the im-
muneresponseofthese16genotypes,atadult-plantstagescreening,
wasuniqueinnatureandrequiresfurthergeneticstudiestoelucidate
natureofPSHresistance.However,thisresultwasconsistentwithim-
munetype ofstriperustresistanceattheadult-plantstagereported
byVermaetal.(2016) inIndia.Inwheat,severalreportsareavailable
whereimmuneorhigherlevelofAPRhasbeenreported(Milus,Moon,
Lee,& Mason,2015;Sørensen, Hovmøller,Leconte,Dedryver, &de
Vallavieille-Pope, 2014). Milus etal. (2015) described these APRs
asrace-specificAPRin winterwheat.The89 barleygenotypeswith
higher levelof APR reported in this studyshowed susceptible IT to
atleastone PSHraceatseedlingstage, butrecordedAUDPC ≤218
(Table4). Therefore, these genotypes were able to slow down the
stripe rust infections at adult-plantstage, which were in agreement
withpreviouslyreportedAPRto stripe,leafandstemrusts inbarley
(Carlborg&Haley,2004;Golegaonkaretal.,2009;Park,2008;Singh,
1992;Singhetal.,2015)andAPRtostriperustinwheat(Hickeyetal.,
2011;Milusetal., 2015;Sørensen etal.,2014). TheAPR genotypes
identifiedin thisstudyarevaluable resourcesofPSH resistanceand
canprovideeffectiveanddurableresistanceagainstPSHparticularly
iftheyarecombinedwithseedlingresistance.Themarker–traitasso-
ciationstudiesusing9KiSelectIlluminaInfiniumSNPschipandstripe
rustresistanceto thesixracesatseedlingandadult-plantstagesare
inprogress.
ACKNOWLEDGEMENTS
Theauthors sincerelyacknowledgeinternal reviewerDr.SeidKemal
fromICARDAforvaluablecomments andsuggestions.Thisresearch
wasfundedbytheCRPDrylandCerealsProgram.Theauthorsdeclare
thatthereisnoconflictofinterest.
ORCID
Sanjaya Gyawali http://orcid.org/0000-0003-1202-909X
Om Prakash Gangwar http://orcid.org/0000-0002-5393-163X
    
|
 9
GYAWALI et AL.
REFERENCES
Amezrou,R., Gyawali,S., Belqadi,L., Chao,S.,Arbaoui,M., Mamidi,S.,…
Verma,R.P.S.(2017). Molecularandphenotypic diversityofaworld-
wide ICARDA spring barley collection. Genetic Resources and Crop
Evolution.https://doi.org/10.1007/s10722-017-0527-z
Bahl,P.N., &Bakshi, J.S. (1963).Genetics ofrustresistanceinbarley-II.
The inheritance of seedling resistance to four races of yellow rust.
Indian Journal of Genetics & Plant Breeding,23,150–154.
Bakshi,J.S.,Bahl,P.N.,&Kohli,S.P.(1964).Inheritanceofseedlingresistance
tosomeIndianracesofyellowrustinthecrossesofrustresistantbarley
varietyE.B.410.Indian Journal of Genetics & Plant Breeding,24,72–77.
Capettini, F. (2005). Barley in Latin America. In: S. Grando & H. G.
Macpherson (Eds.), Food barley: Importance, uses and local knowledge
(x+156 pp). Proceedingsof the international workshop on food bar-
leyimprovement,14-17January2002.Hammamet,Tunisia: ICARDA,
Aleppo,Syria,En.
Carlborg, O., & Haley,C. (2004). Epistasis: Too often neglected in com-
plex trait studies? Nature Reviews Genetics, 5, 618–625. https://doi.
org/10.1038/nrg1407
Chen,X.M. (2007).Challengesandsolutions forstriperustcontrolin the
UnitedStates.Australian Journal of Agricultural Research,58,648–655.
Chen,X.M.(2008).RacesofPuccinia striiformisf.sp.hordei intheUnited
Statesfrom2004to2007.Barley Newsletter,51,WABNL51.
Chen,X. M.,& Line,R. F. (2002).Identification ofgenesfor resistanceto
Puccinia striiformisf.sp.hordeiin 18barleygenotypes.Euphytica,129,
127–145.https://doi.org/10.1023/A:1021585907493
Chen, X. M., Line, R. F.,& Leung, H. (1995). Virulence and polymorphic
DNA relationships ofPuccinia striiformis f. sp. hordei to other rusts.
Phytopathology,85,1335–1342.
Dracatos,P.M.,Khatkar,M.S.,Singh,D.,Stefanato,F.,Park,R.F.,&Boyd,L.
A.(2016).ResistanceinAustralianbarley(Hordeum vulgare)germplasm
to the exotic pathogen Puccinia striiformisf. sp. hordei, causal agent
ofstripe rust.Plant Pathology,65, 734–743.https://doi.org/10.1111/
ppa.12448
Dubin,H.J.,&Stubbs,R.W.(1986).Epidemicspreadofbarleystriperustin
SouthAmerica.Plant Disease,70,141–144.
EsveltKlos,K.,Gordon,T.,Bregitzer,P.,Hays,P.,Chen,X.M.,delBlanco,
I. A., … Bonman, J. M. (2016). Barley stripe rust resistance QTL:
DevelopmentandvalidationofSNPmarkersforresistancetoPuccinia
striiformis f.sp. hordei. Phytopathology, 106, 1344–1351. https://doi.
org/10.1094/PHYTO-09-15-0225-R
FAOStat. (2015). Retrieved from http://www.fao.org/faostat/en/#home
(VerifiedFeb8,2017)
Golegaonkar,P.G., Singh,D., &Park, R.F. (2009).Evaluation ofseedling
andadultplantresistancetoPuccinia hordei in barley. Euphytica,166(2),
83–197.https://doi.org/10.1007/s10681-008-9814-2
Hickey,L.T.,Lawson,W.,Platz,G.J.,Dieters,M.,Arief,V.N.,German,S.,…
Franckowiak,J.(2011).MappingRph20:Ageneconferringadultplant
resistance to Puccinia hordei in barley. TAG. Theoretical and Applied
Genetics,123,55–68.https://doi.org/10.1007/s00122-011-1566-z
Johnson, P. A., Niks, R. E., Meiyalaghan,V., Blanchet, E., & Pickering,P.
(2013). Rph22: Mapping of a novel leaf rust resistance gene intro-
gressed from the non-hostHordeum bulbosum L into cultivated bar-
ley (Hordeum vulgareL).TAG. Theoretical and Applied Genetics,126(6),
1613–1625.https://doi.org/10.1007/s00122-013-2078-9
Kumar, K., Holtz,M. D., Xi, K., & Turkington, T. K. (2012). Virulenceof
Puccinia striiformis on wheat and barleyin central Alberta. Canadian
Journal of Plant Pathology,34(4), 551–561.https://doi.org/10.1080/0
7060661.2012.722130
Line,R.F.(2002).StriperustofwheatandbarleyinNorthAmerica:Aret-
rospectivehistoricalreview.Annual Review of Phytopathology,40,75–
118.https://doi.org/10.1146/annurev.phyto.40.020102.111645
Luthra,J. K.,& Chopra,V.L.(1990). Geneticsof striperust resistancein
barley. Indian Journal of Genetics,50,390–395.
Milus,E. A.,Moon,D.E.,Lee,K.D.,& Mason,R. E.(2015). Racespecific
adult-plantresistanceinwinterwheat tostriperust andcharacteriza-
tionofpathogenvirulencepattern.Phytopathology,105,1114–1122.
https://doi.org/10.1094/PHYTO-11-14-0305-R
Murty, S. S. (1942). Segregation and correlated inheritance of rust re-
sistance and epidermal characters in a barleycross. Indian Journal of
Genetics,2,73–75.
Nayar,S.K.,Prashar,M.,&Bhardwaj,S.C.(1997).Manualofcurrenttech-
niquesinwheatrust.Researchbulletin2,(pp.1–32).RegionalStation,
Flowerdale, Shimla, Himachal Pradesh, India: Directorate of Wheat
Research.
Newman,C.W.,& Newman,R.K.(2006).Abrief historyofbarleyfoods.
Cereal Food World,51(1),4–7.https://doi.org/10.1094/CFW-51-0004
Park, R. F. (2008). Breeding cereals for rust resistance in
Australia. Plant Pathology, 57, 591–602. https://doi.
org/10.1111/j.1365-3059.2008.01836.x
Peterson,R. F.,Campbell, A.B.,& Hannah,A. E. (1948).A diagrammatic
scale for estimating rust intensity on leaves and stems of cereals.
Canadian Journal of Research,26,496–500.
Pradhanang, P. M., & Sthapit, B. R. (1995). Effect of cultivar mix-
tures on yellow rust incidence and grain yield of barley in the
hills of Nepal. Crop Protection, 14(4), 331–334. https://doi.
org/10.1016/0261-2194(94)00022-Z
Prashar,M.,Bhardwaj,S.,Jain,S.K.,& Datta,D.(2007).Pathotypicevolu-
tioninPuccinia striiformisinIndiaduring1995-2004.Australian Journal
of Agricultural Research,58,602–604.
Roelfs,A.P.,&Huerta-Espino,J.(1994).SeedlingresistanceinHordeumto
barleystriperustfromTexas.Plant Disease,78,1046–1049.
Roelfs,A.P.,Singh,R.P.,&Saari,R.E.(1992).Rust diseases of wheat, con-
cepts and methods of disease management.Mexico:CIMMYT.
Safavi, S. A. (2012). Sources of resistance in advanced barley lines to
Puccinia striiformisf.sp.hordei. Advances in Environmental Biology,6(2),
708–712.
Sandhu,K. S.,Forrest,K.L., Kong,S.,Bansal, U.K.,Singh, D.,Hayden,M.
J.,& Park,R. F.(2012).Inheritance andmolecular mappingof agene
conferringseedlingresistanceagainstPuccinia hordeiinthebarleyculti-
var Ricardo. TAG. Theoretical and Applied Genetics.,125(7),1403–1411.
https://doi.org/10.1007/s00122-012-1921-8
SASInstitute(1988).Users guide: Statistics,6thedn.Cary,NC:SASInst.
Singh,R.P.(1992).GeneticassociationofleafrustresistancegeneLr34with
adultplantresistancetostriperustinbreadwheat.Phytopathology,82,
835–838.
Singh,D.,Dracatos,P.,Derevnina,L.,Zhou,M.,&Park,R.F.(2015).Rph23:
A new designated additive adult plant resistance gene to leaf rust
in barley on chromosome 7H. Plant Breed, 134, 62–69. https://doi.
org/10.1111/pbr.12229
Sørensen,C.K.,Hovmøller,M.S.,Leconte,M.,Dedryver,F.,&deVallavieille-
Pope,C. (2014).Newraces ofPuccinia striiformisfound inEuropere-
veal race specificity of long-term effective adult plant resistance in
wheat. Phytopathology, 104, 1042–1051. https://doi.org/10.1094/
PHYTO-12-13-0337-R
Stakman,E.C.,Stewart,D.M.,&Loegering,W.Q.(1962).Identificationof
physiologicracesofPuccinia graminis var. tritici,US Dept.Agriculture.
Agricultural Research Service,4691,E-617.
Stubbs,R.W.(1985).Striperust.InA.P.Roelfs,&W.R.Bushnell(Eds.),The
cereal rusts,Vol.II(pp.61–101).Orlando:AcademicPressInc.
Stubbs, R. W.,Prescott, J. M., Saari, E. E., & Dubin, H.J. (1986). Cereal
diseasemethodologymanualiii(46p).Mexico,DF(Mexico).CIMMYT.
Upreti,R.P. (2005).StatusoffoodbarleyinNepal.In: S.Grando&H.G.
Macpherson (Eds.), Food barley: Importance, uses and local knowledge
(x+156pp.).Proceedingsofthe internationalworkshop onfood bar-
leyimprovement,14-17January2002.Hammamet,Tunisia: ICARDA,
Aleppo,Syria.En.
Vaish,S.S.,Ahmed,S.B.,&Prakash,K.(2011).Firstdocumentationofsta-
tusofbarleydiseasesfromthe highaltitudecoldaridtrans-himalayan
10 
|
   GYAWALI et AL.
Ladakh region of India.Plant Protection, 30, 1129–1137. https://doi.
org/10.1016/j.cropro.2011.04.015
Verma,R.P.S.,Selvakumar,R.,Gangwar,O.P.,Shekhawat,P.S.,Bhardwaj,
S. C., Rehman, S., … Gyawali, S. (2016). Identification of additional
sourcesof resistanceto striperust inbarley. Reportonresistanceof
ICARDA’shighinputgermplasmtoyellowrustinbarleyinIndia.
Wellings,C.R.(2011).Globalstatusofstriperust:Areviewofhistoricaland
current threats. Euphytica, 179, 129–141. https://doi.org/10.1007/
s10681-011-0360-y
Woldeab,G.,Fininsa,C.,Singh,H.,&Yuen,J.(2007).Virulencespectrumof
Puccinia hordeiinbarleyproductionsystemsinEthiopia.Plant Pathology,
55,351–357.https://doi.org/10.1111/j.1365-3059.2006.01357.x
Zadoks, J. C. (1961).Yellowrust on wheat, studies in epidemiology and
physiologicspecialization.Tijdschrift Plantenziekten,67,69–256.
Zadoks,J.C.,Chang,T.T.,&Konzak, C.F.(1974).Adecimal codeforthe
growthstages ofcereals.Weed Research,14(6), 415–421.https://doi.
org/10.1111/j.1365-3180.1974.tb01084.x
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supportinginformationtabforthisarticle.
How to cite this article:GyawaliS,VermaRPS,KumarS,etal.
Seedlingandadult-plantstageresistanceofaworldcollection
ofbarleygenotypestostriperust.J Phytopathol. 2017;00:
1–10. https://doi.org/10.1111/jph.12655
... The crop is commonly referred to as a "poor man's crop" due to its low input requirement and better adaptability to drought, salinity, alkalinity, and marginal lands (Verma et al., 2012). This cereal is adapted to dry areas characterized by erratic rain and poor soil fertility, often described as low-input barley production systems (Gyawali et al., 2018). The production of barley faces a multitude of biotic and abiotic factors. ...
Article
Full-text available
Rust fungi are devastating plant pathogens, and several Puccinia species have exerting substantial financial impacts on global barley cultivation. Fungicides are used on a large scale as an effective method for combating phytopathogenic fungi. The negative environmental impacts of fungicides are steadily escalating on a daily basis. Consequently, researchers are currently exploring alternative approaches to mitigate the use of fungicides, such as the utilization of plant extracts. This method has proven effective due to its incorporation of natural antifungal substances. Among the nine natural elicitors that were tested, the application of plant extracts on barley seedlings resulted in an increase in the incubation and latent periods of Puccinia hordei. These periods are integral components of partial and induced resistance, effectively mitigating the incidence of barley leaf rust disease by over 70% on mature plants. Similarly, the biochemical analyses demonstrated a notable augmentation in all the tested treatments’ overall phenolics and oxidative enzyme activities (peroxidase and polyphenol oxidase). Random amplified polymorphic DNA (SCoT) test serves as a viable approach for assessing the impact of plant extracts and microorganisms on barley plants. The results obtained from this study indicate that the detection of DNA polymorphism through SCoT analysis holds a significant potential powerful tool to evaluate genetic changes compared with untreated plants although some of them tested displayed high similarities at the morphological reaction.
... Some of these MQTLs included QTLs for both SR and APR. The combination of both the SR and APR has also been found to provide durable resistance against rusts in wheat [94]. ...
Article
Full-text available
Background Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. Results Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker–trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. Conclusion The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
... The area under the diseases progress curve (AUDPC) was calculated using CI of disease severity [18]. ...
Article
Full-text available
Naked barley (Hordeum vulgare L.) is a major winter crop grown in Nepal’s higher altitude hilly region. Yellow rust (Puccinia striiformis f.sp. hordei) is the most damaging fungal disease of naked barley in Nepal; it causes great losses when the environment is favorable. Evaluation of naked barley landraces for yield and diseases should be carried out in plant breeding and conservation initiatives. During the crop seasons of 2016 and 2017, twenty naked barley landraces from the National Genebank were tested in a randomized complete block design (RCBD) with three replications at Khumaltar, Lalitpur, Nepal. The results showed that grain yield and AUDPC (Area Under Diseases Progress Curve) values were highly different (p < 0.001) among the evaluated landraces. Resistance was found in naked barley landraces NGRC00837 (70.3), NGRC02357 (32.7), NGRC06026 (36.9), and NGRC02306 (38.8). The landraces NGRC04902 (3460 kg ha-1), NGRC00886 (3280 kg ha-1), NGRC02309 (3210 kg ha-1) and NGRC06026 (3100 kg ha− 1 ) were found to be high yielding. The yield and the AUDPC (− 0.383) were negatively and significantly correlated. The results indicated that sources of resistance to yellow rust in naked barley genotypes available in Nepal could be used for resistant breeding programs in the future.
... Various diseases and insect pests lead to huge losses in the yield and quality of triticale, among which, yellow rust caused by Puccinia striiformis f. sp. tritici (Pst) has caused serious damage in cool climates (Gyawali et al., 2017). The pathogen prefers humid, cool habitats (3-15°C) and can overwinter on autumn-sown plants (Sodkiewicz et al., 2009). ...
Article
Full-text available
Yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici (Pst) is a major destructive fungal disease of small grain cereals, leading to large yield losses. The breeding of resistant varieties is an effective, sustainable way to control yellow rust. Elucidation of resistance mechanisms against yellow rust and identification of candidate genes associated with rust resistance are thus crucial. In this study, seedlings of two Triticosecale Wittmack cultivars, highly resistant Gannong No. 2 and susceptible Shida No. 1, were inoculated with Pst race CYR34. Transcriptome sequencing (RNA-seq) was then used to investigate their transcriptional responses against pathogen infection before and after the appearance of symptoms—10 and 20 days after inoculation, respectively. According to the RNA-seq data, the number of upregulated and downregulated differentially expressed genes (DEGs) in the resistant cultivar was greater than in the susceptible cultivar. A total of 2,560 DEGs commonly expressed in the two cultivars on two sampling dates were subjected to pathway analysis, which revealed that most DEGs were closely associated with defense and metabolic activities. Transcription factor enrichment analysis indicated that the expressions of NAC, WRKY, and FAR1 families were also significantly changed. Further in-depth analysis of resistance genes revealed that almost all serine/threonine-protein kinases were upregulated in the resistant cultivar. Other genes related to disease resistance, such as those encoding disease-resistance- and pathogenesis-related proteins were differentially regulated in the two cultivars. Our findings can serve as a resource for gene discovery and facilitate elucidation of the complex defense mechanisms involved in triticale resistance to Pst.
Article
Full-text available
O tomate é um fruto muito importante para alimentação e economia mundial, contudo, sofre ataques de diversos microrganismos fitopatogênicos, que diminuem sua produtividade. O objetivo deste trabalho foi realizar a fitopatometria da murcha bacteriana (Ralstonia pseudosalanacearum) em gerações de tomateiro. O delineamento estatístico foi em blocos casualizados em esquema fatorial (6 x 2), com 12 tratamentos constituídos dos genitores Yoshimatsu (testemunha de resistência), IPA-7 (testemunha de suscetibilidade) e das gerações F1, F2, RC11 e RC12 avaliados aos 10 e 20 dias após a inoculação. Através da escala descritiva de notas da murcha bacteriana no tomateiro foi realizada a fitopatometria da doença avaliando Incidência (INC), Indicie de Murcha Bacteriana (IMB), Indicie da Doença (ID), Área Abaixo da Curva do Progresso da Doença (AACPD), Taxa de Infecção (TI) e Período de Latência (PL 50). Houve interação significativa entre gerações e as épocas de avaliações para as variáveis Incidência, Índice de Murcha Bacteriana e Índice da Doença. A testemunha Yoshimatsu demonstrou resistência nas duas épocas de avaliação; Para as variáveis Íncidência, Índice de Murcha Bacteriana e Índice da Doença a testemunha IPA-7 e as gerações RC12 e F2 demonstraram suscetibilidade; segundo as variáveis Área Abaixo da Curva do Progresso da Doença, Taxa de Infecção e Período de Latência a murcha bacteriana (R. pseudosolanacearumem) se caracterizou como epidêmica.
Article
In the past 40 years, the causal agent of yellow rust in barley, Psh (Puccinia striiformis f. sp. hordei Erikss), has been registered worldwide. However, it has caused the greatest damage in areas with cold and humid climates, where yield losses reached up to 70%. Races of P. striiformis f. sp. tritici (Pst), the causal agent of yellow rust in wheat, are usually not found in barley, and those that infect barley (Psh) are rarely virulent on wheat. However, there are barley genotypes that can be infected by certain Pst races. The causal agent of yellow rust in triticale (Pst) leads to significant yield losses and quality reduction in triticale. It is important to note that the Pst races (Warrior and Kranich), which have caused enormous wheat yield losses in Europe since 2011, have also been registered on triticale. The aggressive race of triticale (since 2006) and the Warrior and Kranich races (since 2011) have become prevalent over large areas of Europe within one or only a few years. Despite the occurrence of yellow rust on wheat in Serbia in previous years, it has not been registered on barley and triticale. This is the first report of yellow rust on barley and triticale in Serbia.
Preprint
Full-text available
Spot form of net blotch (SFNB), caused by the necrotrophic fungus Pyrenophora teres f. maculata ( Ptm ), is considered one of the emerging and devastating foliar diseases of barley. Deployment of host resistance against this pathogen remains one of the most effective strategies for its sustainable management. The SFNB resistance in a panel of 336 diverse barley genotypes (AM-2014) was evaluated against three isolates (FGO- Ptm [USA], SM4-2 [Morocco], and SM30-1 [Morocco]), at the seedling stage and under natural conditions in seven environments in Morocco at the adult-plant stage. We identified nine barley genotypes that confer high SFNB resistance in at least five distinct environments and against two isolates. The AM-2014 panel was genotyped with 9K single nucleotide polymorphism (SNP) using an Illumina Infinium select assay. Genome-wide association studies (GWAS) were carried out using mixed linear models accounting for population structure as covariates. Significant marker-trait associations were subject to false discovery rate (FDR) at q <0.05. At the seedling stage, we identified 23 isolate-specific loci associated with SFNB resistance/susceptibility. At the adult stage, 19 QTLs were detected. Fourteen of the identified QTL corresponded to previously mapped SFNB resistance QTL, including QRpts4 , QRpt6 , QRpt7 , and SFNB-3H-58.64 , while the remaining may represent novel loci. Together, the associated SNPs and resistance sources identified in this study will be useful resources for SFNB resistance breeding.
Article
Puccinia striiformis f. sp. hordei (Psh) causing barley stripe rust has only recently been known to be heteroecious, for which reason the inheritance of its virulence has not been analyzed. Herein we selfed a Psh isolate XZ-19-972 on Berberis aggregata and obtained 53 progenies, the virulence phenotypes (VPs) for these progenies were identified on 11 barley differentials, and their genotypes were assessed with 22 KASP-SNP markers. In total, 18 VPs were detected among progenies, 17 (VP2-VP18) of which, corresponding to 43 isolates, were different from the parental isolate showing VP1. Of the 53 progenies, 8 exhibited increased virulence and 34 decreased virulence. One progeny, belonging to VP18, showed different virulence formula but without virulence increase or decrease. The parental isolate and all progenies were avirulent to yrc6, but virulent to yrc7. The parental isolate was heterozygous in terms of avirulence/virulence to nine barley resistance genes loci. KASP-SNP marker analysis identified 36 multi-locus genotypes (MLGs), based on which a linkage map was constructed, with total genetic distance intervals of 516.07 cM, spanning 16 avirulence or virulence loci. Taken together, our results provide important insights into the inheritance and virulence diversity of Psh.
Chapter
Barley (Hordeum vulgare) is a pristine sacred cereal, which globally contributes nearly 12% of the coarse cereal production. It is an important winter crop of India, particularly in the states of Rajasthan, Uttar Pradesh, Maharashtra, Bihar, Haryana, Punjab, Madhya Pradesh, Uttarakhand, Himachal Pradesh and Jammu & Kashmir. Presently, barley occupies about 0.62 million hectares area with the production of 1.59 million tonnes. In India, barley produce is mainly utilized as animal feed, malt and for human consumption. Its straw is used as animal fodder, bedding and cover material for hut roofs. The crop has been recognized as potential dual-purpose crop for both grain and green fodder. The utilization of barley in malting and brewing industries has increased many folds in recent years and it has emerged as an industrial crop for malt purpose. Moreover, the barley is known for its good nutritional and medicinal value and becoming very popular as healthy food and food products. Therefore, the demand of barley is increasing continuously all over the world including India. Like other cereals, barley also encounters different plant pathogens and succumbs to various diseases which result in significant yield reduction and poor grain quality. Now, the crop is being grown under contract farming in high fertility and assured irrigation conditions with high-yielding barley varieties resulted more attack by pathogens. Rusts, spot blotch, net blotch, powdery mildew, leaf stripe, loose smut, covered smut and CCN (Molya) diseases are the major biotic constrains in enhancing the barley yield in India. Keeping this in view, this review seeks to provide an overview of major barley diseases and their integrated management strategies.KeywordsBarleyCerealDisease Heterodera Net blotchMaltSmut
Chapter
Barley is the most ancient crop among the cereals with a significant role in the human civilization. Under the fast-changing climate, it is considered as a future crop of choice as this can thrive well under the abiotic stresses. Geographic distribution of barley and a variety of its end-uses have been discussed, the major uses being as a feed and fodder for animals and health food for mankind, besides barley being an important commodity for malting and brewing industries. The insight of commerce due to off-shore trading is also discussed for grain and malt in the world. An account of genetic resources and the breeding strategies to combat the challenges posed by the climate change have also been given to tailor climate-smart barley for the future. A bird’s-eye view of genetic enhancement and quality improvement for its uses in feed, food, and industrial uses is presented. Progress made globally in the barley improvement and strategies adopted to ward off adverse effects of different economically important biotic and abiotic stresses through conventional and biotechnological approached is discussed in this chapter. Exploration for genetic diversity and pre-breeding is suggested for further improvement of barley to match barley breeding progress with the climate changes. A brief account of seed systems with a special reference to the developing world is also included. Stumbling blocks in the barley improvement and future prospects under climate change are explained as an attempt to set breeding goals for immediate future.KeywordsBarleyTradeGenetic improvementFeed and foodMalting qualityBiotic and abiotic stressesIndustrial useBiotechnologySeed system
Article
Full-text available
Plant breeders are interested in using diverse genotypes in hybridization that can segregate for traits of importance with possibility of selection and genetic gain. Information on molecular and agro-morphological diversity helps the breeders reduce the effort for parental selection and helps the advancement of generations. A phenotypic and molecular diversity study, using 24 traits (agronomic and disease) and 6519 SNPs in a diverse collection of 336 spring barley genotypes, was carried out at Marchouch and Jemma Shiam research stations in Morocco. Based on structure and multivariate analyses, strong differentiation between the two- and six-row types were observed. The linkage disequilibrium (LD) decay of the current collection (for the combined population) was up to 3.58 cM (r² = 0.15) while LD decay were estimated 3.91 and 2.36 cM for two- and six-row barley, respectively. PCA of agro-morphological traits revealed grain per spike, net form of net blotch (NFNB), spot form of net blotch (SFNB), and 1000 kernel weight were the most discriminatory traits in the current collection. Association mapping in the two independent populations will be ideal for identification of markers, and QTL related to traits. The generated information on relatedness between individuals will help identify diverse genotypes for breeding programs.
Article
Full-text available
A set of forty-seven advanced barley lines, obtained from SPII, along with susceptible check were studied to assess their resistance to yellow rust. Adult plant resistance were evaluated by measuring of final rust severity (FRS), and coefficient of infection (CI) under natural infection conditions with once artificial inoculation during 2010 - 2011 cropping season in field plots at Ardabil Agricultural Research Station (Iran). Artificial inoculation in field was carried out by yellow rust inoculum having virulent genes against rps1, rps2 and Topper. Results showed that lines AEBYTC-89-3, AEBYTC-89-4, AEBYTC-89-8, AEBYTC-89-16, AEBYTC-89-20, AEBYTC-89-27, AEBYTC-89-29 and AEBYTC-89-33 along with susceptible check had the highest values of FRS and CI, therefore were selected as moderately susceptible to susceptible (MSS) or susceptible lines. The lines ABYTC-89-24, ABYTC-89-39, ABYTC-89-42, ABYTC-89-43, ABYTC-89-44 and ABYTC-89-45 had low level infection at adult plant stage. Consequently these lines with low values of CI and FRS at adult plant stage most probably have better level partial resistance. The remaining lines with different high values of FRS and CI were considered as having moderate or low level of partial resistance.
Article
Full-text available
Eighty-eight Australian and 10 international barley cultivars were assessed for resistance to the barley stripe (yellow) rust pathogen, Puccinia striiformis f. sp. hordei (Psh). All cultivars were tested for seedling resistance to two UK-derived isolates of Psh (11.01 and 83.39) that were shown to differ in virulence based on responses on 16 differential barley genotypes. The 98 barley cultivars differed substantially in stripe rust response; 45% were susceptible to Psh 11.01, 53% to Psh 83.39 and 44% to both isolates. The observed diverse infection types (ITs) suggest the presence of both known and uncharacterized resistance. However, further multipathotype tests are required for accurate gene postulation. The Yerong × Franklin (Y×F) doubled haploid (DH) population was phenotypically assessed as seedlings using both Psh isolates. Yerong and Franklin were immune and highly resistant, respectively, to both isolates used in this study. Marker-trait and QTL mapping identified a major effect on the long arm of chromosome 7H contributed by Franklin in response to all isolates. The resistance of Yerong was mapped to 113·96 and 169·38 cM on chromosome 5HL in response to Psh 11.01 and 83.39, respectively. The Psh resistance sources identified in this study can be used for further genetic analysis and introgression for varietal improvement.
Article
Quantitative trait loci (QTL) for barley stripe rust resistance were mapped in recombinant inbred lines (RILs) from a Lenetah x Grannelose Zweizeilige (GZ) cross. GZ is known for a major seedling resistance QTL on chromosome 4H, but linked markers suitable for marker assisted selection have not been developed. This study identified the 4H QTL (LOD = 15.94 at 97.19 cM), and additional QTL on chromosomes 4H and 6H (LOD = 5.39 at 72.7 cM and 4.24 at 34.46 cM, respectively). A QTL on chromosome 7H (LOD=2.04 at 81.07 cM) was suggested. All resistance alleles were derived from GZ. Evaluations of adult plant response in Corvallis, OR in 2013 and 2015 provided evidence of QTL at the same positions. However, the minor QTL on 4H was not statistically significant in either location/year, while the 7H QTL was significant in both. The SNP markers flanking the resistance QTL were validated in RILs from a 95SR316A x GZ cross for their ability to predict seedling resistance. In 95SR316A x GZ, 91-92% of RILs with GZ alleles at the major 4H QTL and at least one other were resistant to moderate in reaction. In these populations, at least two QTL were required to transfer the barley stripe rust resistance from GZ.
Chapter
Stripe rust was first described by Gadd in 1777. Westendorp introduced stripe rust, collected from rye under the name Puccinia striaeformis; the name was later revived as Puccinia striiformis. Puccinia striiformis has its hosts only in the Gramineae family. In the cereal group, wheat and barley are the principal hosts. Several wild grasses can harbor stripe rust pathogenic to wheat and barley; however, their role in the epidemiology of stripe rust differs from area to area. Environmental conditions are more critical for stripe rust than for other cereal rusts. In studies of physiologic specialization, either in a greenhouse or growth room, the most critical aspect is maintaining low night temperature, preferable 15°C or lower, for the host, particularly prior to inoculation. Daytime temperatures are less critical. Relative humidity (RH) is another important factor. The general tendency is an increase in infection type with increasing RH. Stripe rust uredia on the leaves can be parasited by Verticillium lecani at an RH of higher than 90%. For the long-term storage of urediospores, either under vacuum or liquid nitrogen, predrying of moist spores at an RH of approximately 40% is essential. Stripe rust is more sensitive to air pollution than other cereal rusts. A high concentration of large ions in the air because of air pollution decreases the germination rate of urediospores. Stripe rust on barley can be either of the form that infects wheat or of the form that infects barley.
Article