ArticlePDF Available

Proof of the Riemann Hypothesis

Authors:

Abstract

I give a proof of Riemann Hypothesis
A proof of the Riemann Hypothesis.
Let ali HxLbe the inverse of the log
integral function li HxL.In the paper
https : arxiv.org pdf 1203.5413.pdf
I found this result :
I define :
RHHnLΠpn-aliHn
n log5
2HnL.
We have :
ali HnL<pn<Jn
nN10000 ali HnLfor every n ³1010. On the other hand,
limn®¥
ΠaliHnLKJ n
nN10000 -1O
nlog5
2HnL=limn®¥
ΠnlogHnLKJ n
nN10000 -1O
nlog5
2HnL=0, de donde limn®¥ RHHnL=0.
CONESTOCREO
HABER DEMOSTRADO LA
HIPÒTESISDERIEMANN !
2
ProofRiemann.nb
In[1167]:=
LimitBn Log@nDKJ n
nN10000 -1O
n Log@nD52,n® ¥F
Out[1167]=
0
Mathematica implementation of
ali HxL
ali@x_D:=ModuleB8p, f, Ρ<,
:p=Ix1-10-xHLog@Log@xDD+Log@xD-1LMN;
f@Ξ_D:=LogIntegral@ΞD;
Ρ =
NBRootB-4800 n fH3L@pD3+4800 f@pDfH3L@pD3-4800 p f¢@pDfH3L@pD3+2400 p2f¢¢@pDfH3L@pD3-
800 p3fH3L@pD4+7200 n f¢¢@pDfH3L@pDfH4L@pD-7200 f@pDf¢¢@pDfH3L@pDfH4L@pD+
7200 p f¢@pDf¢¢ @pDfH3L@pDfH4L@pD-3600 p2f¢¢@pD2fH3L@pDfH4L@pD-
1200 n p fH3L@pD2fH4L@pD+1200 p f@pDfH3L@pD2fH4L@pD-1200 p2f¢@pDfH3L@pD2fH4L@pD+
1800 p3f¢¢@pDfH3L@pD2fH4L@pD-1800 n f¢@pDfH4L@pD2+1800 f@pDf¢@pDfH4L@pD2-
1800 p f¢@pD2fH4L@pD2+900 n p f¢¢ @pDfH4L@pD2-900 p f@pDf¢¢@pDfH4L@pD2+
1800 p2f¢@pDf¢¢@pDfH4L@pD2-450 p3f¢¢ @pD2fH4L@pD2-300 n p2fH3L@pDfH4L@pD2+
300 p2f@pDfH3L@pDfH4L@pD2-600 p3f¢@pDfH3L@pDfH4L@pD2-75 n p3fH4L@pD3+
75 p3f@pDfH4L@pD3-2160 n f¢¢@pD2fH5L@pD+2160 f@pDf¢¢@pD2fH5L@pD-
2160 p f¢@pDf¢¢ @pD2fH5L@pD+1080 p2f¢¢@pD3fH5L@pD+1440 n f¢@pDfH3L@pDfH5L@pD-
1440 f@pDf¢@pDfH3L@pDfH5L@pD+1440 p f¢@pD2fH3L@pDfH5L@pD+
720 n p f¢¢ @pDfH3L@pDfH5L@pD-720 p f@pDf¢¢@pDfH3L@pDfH5L@pD-
720 p3f¢¢@pD2fH3L@pDfH5L@pD+240 n p2fH3L@pD2fH5L@pD-240 p2f@pDfH3L@pD2fH5L@pD+
480 p3f¢@pDfH3L@pD2fH5L@pD-360 n p f¢@pDfH4L@pDfH5L@pD+
360 p f@pDf¢@pDfH4L@pDfH5L@pD-360 p2f¢@pD2fH4L@pDfH5L@pD+
180 n p2f¢¢@pDfH4L@pDfH5L@pD-180 p2f@pDf¢¢ @pDfH4L@pDfH5L@pD+
360 p3f¢@pDf¢¢@pDfH4L@pDfH5L@pD+120 n p3fH3L@pDfH4L@pDfH5L@pD-
120 p3f@pDfH3L@pDfH4L@pDfH5L@pD-72 n p2f¢@pDfH5L@pD2+72 p2f@pDf¢@pDfH5L@pD2-
72 p3f¢@pD2fH5L@pD2-36 n p3f¢¢@pDfH5L@pD2+36 p3f@pDf¢¢ @pDfH5L@pD2-
360 n p f¢¢ @pD2fH6L@pD+360 p f@pDf¢¢@pD2fH6L@pD-360 p2f¢@pDf¢¢@pD2fH6L@pD+
180 p3f¢¢@pD3fH6L@pD+240 n p f¢@pDfH3L@pDfH6L@pD-240 p f@pDf¢@pDfH3L@pDfH6L@pD+
240 p2f¢@pD2fH3L@pDfH6L@pD-120 n p2f¢¢@pDfH3L@pDfH6L@pD+
120 p2f@pDf¢¢@pDfH3L@pDfH6L@pD-240 p3f¢@pDf¢¢ @pDfH3L@pDfH6L@pD-
40 n p3fH3L@pD2fH6L@pD+40 p3f@pDfH3L@pD2fH6L@pD+60 n p2f¢@pDfH4L@pDfH6L@pD-
60 p2f@pDf¢@pDfH4L@pDfH6L@pD+60 p3f¢@pD2fH4L@pDfH6L@pD+
- +
ProofRiemann.nb
3
60 p2f@pDf¢@pDf@pDf@pD+60 p3f¢@pD2f@pDf@pD+
30 n p3f¢¢@pDfH4L@pDfH6L@pD-30 p3f@pDf¢¢ @pDfH4L@pDfH6L@pD+
ð13J800 fH3L@pD4-1800 f¢¢@pDfH3L@pD2fH4L@pD+450 f¢¢ @pD2fH4L@pD2+600 f¢@pDfH3L@pD
fH4L@pD2+75 n fH4L@pD3-75 f@pDfH4L@pD3+720 f¢¢@pD2fH3L@pDfH5L@pD-480 f¢@pD
fH3L@pD2fH5L@pD-360 f¢@pDf¢¢@pDfH4L@pDfH5L@pD-120 n fH3L@pDfH4L@pDfH5L@pD+
120 f@pDfH3L@pDfH4L@pDfH5L@pD+72 f¢@pD2fH5L@pD2+36 n f¢¢@pDfH5L@pD2-
36 f@pDf¢¢@pDfH5L@pD2-180 f¢¢ @pD3fH6L@pD+240 f¢@pDf¢¢@pDfH3L@pDfH6L@pD+
40 n fH3L@pD2fH6L@pD-40 f@pDfH3L@pD2fH6L@pD-60 f¢@pD2fH4L@pDfH6L@pD-
30 n f¢¢@pDfH4L@pDfH6L@pD+30 f@pDf¢¢ @pDfH4L@pDfH6L@pDN+
ð12J2400 f¢¢@pDfH3L@pD3-2400 p fH3L@pD4-3600 f¢¢@pD2fH3L@pDfH4L@pD-
1200 f¢@pDfH3L@pD2fH4L@pD+5400 p f¢¢@pDfH3L@pD2fH4L@pD+
1800 f¢@pDf¢¢@pDfH4L@pD2-1350 p f¢¢@pD2fH4L@pD2-300 n fH3L@pDfH4L@pD2+
300 f@pDfH3L@pDfH4L@pD2-1800 p f¢@pDfH3L@pDfH4L@pD2-225 n p fH4L@pD3+
225 p f@pDfH4L@pD3+1080 f¢¢ @pD3fH5L@pD-2160 p f¢¢@pD2fH3L@pDfH5L@pD+
240 n fH3L@pD2fH5L@pD-240 f@pDfH3L@pD2fH5L@pD+1440 p f¢@pDfH3L@pD2fH5L@pD-
360 f¢@pD2fH4L@pDfH5L@pD+180 n f¢¢@pDfH4L@pDfH5L@pD-180 f@pDf¢¢ @pDfH4L@pD
fH5L@pD+1080 p f¢@pDf¢¢ @pDfH4L@pDfH5L@pD+360 n p fH3L@pDfH4L@pDfH5L@pD-
360 p f@pDfH3L@pDfH4L@pDfH5L@pD-72 n f¢@pDfH5L@pD2+72 f@pDf¢@pDfH5L@pD2-
216 p f¢@pD2fH5L@pD2-108 n p f¢¢ @pDfH5L@pD2+108 p f@pDf¢¢@pDfH5L@pD2-
360 f¢@pDf¢¢@pD2fH6L@pD+540 p f¢¢@pD3fH6L@pD+240 f¢@pD2fH3L@pDfH6L@pD-
120 n f¢¢@pDfH3L@pDfH6L@pD+120 f@pDf¢¢ @pDfH3L@pDfH6L@pD-720 p f¢@pD
f¢¢@pDfH3L@pDfH6L@pD-120 n p fH3L@pD2fH6L@pD+120 p f@pDfH3L@pD2fH6L@pD+
60 n f¢@pDfH4L@pDfH6L@pD-60 f@pDf¢@pDfH4L@pDfH6L@pD+180 p f¢@pD2
fH4L@pDfH6L@pD+90 n p f¢¢@pDfH4L@pDfH6L@pD-90 p f@pDf¢¢ @pDfH4L@pDfH6L@pDN+
ð1J4800 f¢@pDfH3L@pD3-4800 p f¢¢ @pDfH3L@pD3+2400 p2fH3L@pD4-
7200 f¢@pDf¢¢@pDfH3L@pDfH4L@pD+7200 p f¢¢@pD2fH3L@pDfH4L@pD+
1200 n fH3L@pD2fH4L@pD-1200 f@pDfH3L@pD2fH4L@pD+2400 p f¢@pDfH3L@pD2fH4L@pD-
5400 p2f¢¢@pDfH3L@pD2fH4L@pD+1800 f¢@pD2fH4L@pD2-900 n f¢¢ @pDfH4L@pD2+
900 f@pDf¢¢@pDfH4L@pD2-3600 p f¢@pDf¢¢@pDfH4L@pD2+1350 p2f¢¢@pD2fH4L@pD2+
600 n p fH3L@pDfH4L@pD2-600 p f@pDfH3L@pDfH4L@pD2+1800 p2f¢@pDfH3L@pDfH4L@pD2+
225 n p2fH4L@pD3-225 p2f@pDfH4L@pD3+2160 f¢@pDf¢¢@pD2fH5L@pD-
2160 p f¢¢ @pD3fH5L@pD-1440 f¢@pD2fH3L@pDfH5L@pD-720 n f¢¢@pDfH3L@pDfH5L@pD+
720 f@pDf¢¢@pDfH3L@pDfH5L@pD+2160 p2f¢¢ @pD2fH3L@pDfH5L@pD-
480 n p fH3L@pD2fH5L@pD+480 p f@pDfH3L@pD2fH5L@pD-1440 p2f¢@pDfH3L@pD2fH5L@pD+
360 n f¢@pDfH4L@pDfH5L@pD-360 f@pDf¢@pDfH4L@pDfH5L@pD+720 p f¢@pD2fH4L@pD
fH5L@pD-360 n p f¢¢@pDfH4L@pDfH5L@pD+360 p f@pDf¢¢@pDfH4L@pDfH5L@pD-
1080 p2f¢@pDf¢¢@pDfH4L@pDfH5L@pD-360 n p2fH3L@pDfH4L@pDfH5L@pD+
360 p2f@pDfH3L@pDfH4L@pDfH5L@pD+144 n p f¢@pDfH5L@pD2-
144 p f@pDf¢@pDfH5L@pD2+216 p2f¢@pD2fH5L@pD2+108 n p2f¢¢ @pDfH5L@pD2-
+ - +
4
ProofRiemann.nb
144 p f@pDf¢@pDf@pD2+216 p2f¢@pD2f@pD2+108 n p2f¢¢ @pDf@pD2-
108 p2f@pDf¢¢@pDfH5L@pD2+360 n f¢¢ @pD2fH6L@pD-360 f@pDf¢¢@pD2fH6L@pD+
720 p f¢@pDf¢¢ @pD2fH6L@pD-540 p2f¢¢@pD3fH6L@pD-240 n f¢@pDfH3L@pDfH6L@pD+
240 f@pDf¢@pDfH3L@pDfH6L@pD-480 p f¢@pD2fH3L@pDfH6L@pD+240 n p f¢¢ @pDfH3L@pD
fH6L@pD-240 p f@pDf¢¢@pDfH3L@pDfH6L@pD+720 p2f¢@pDf¢¢ @pDfH3L@pDfH6L@pD+
120 n p2fH3L@pD2fH6L@pD-120 p2f@pDfH3L@pD2fH6L@pD-120 n p f¢@pDfH4L@pD
fH6L@pD+120 p f@pDf¢@pDfH4L@pDfH6L@pD-180 p2f¢@pD2fH4L@pDfH6L@pD-
90 n p2f¢¢@pDfH4L@pDfH6L@pD+90 p2f@pDf¢¢ @pDfH4L@pDfH6L@pDN&, 3FF.n®x>;
N@ΡDF;
In[1168]:=
TableBSetPrecision@8x, ali@LogIntegral@xDD<, 20D,:x, 11, 25, 1
2>F
Out[1168]=
8811.000000000000000000 , 11.000000000336104478 <,
811.707106781186547524 , 11.707106781231447101 <,
812.414213562373095049 , 12.414213562377547362 <,
813.121320343559642573 , 13.121320343559711219 <,
813.828427124746190098 , 13.828427124746021093 <,
814.535533905932737622 , 14.535533905931703913 <,
815.242640687119285146 , 15.242640687119122234 <,
815.949747468305832671 , 15.949747468305110587 <,
816.656854249492380195 , 16.656854249491829023 <,
817.363961030678927720 , 17.363961030679043063 <,
818.071067811865475244 , 18.071067811865241026 <,
818.778174593052022768 , 18.778174593050405150 <,
819.485281374238570293 , 19.485281374235661644 <,
820.192388155425117817 , 20.192388155419376261 <,
820.899494936611665342 , 20.899494936601971773 <,
821.606601717798212866 , 21.606601717782329075 <,
822.313708498984760390 , 22.313708498960398430 <,
823.020815280171307915 , 23.020815280136748271 <,
823.727922061357855439 , 23.727922061310771085 <,
824.435028842544402964 , 24.435028842481617772 <<
In[1169]:=
TableBSetPrecision@8x, LogIntegral@ali@xDD<, 20D,:x, 11, 25, 1
2>F
Out[1169]=
8811.000000000000000000 , 10.999999999987243981 <,
811.707106781186547524 , 11.707106781158293174 <,
812.414213562373095049 , 12.414213562324073692 <,
813.121320343559642573 , 13.121320343486175375 <,
813.828427124746190098 , 13.828427124646802682 <,
814.535533905932737622 , 14.535533905808316391 <,
815.242640687119285146 , 15.242640686971977715 <,
815.949747468305832671 , 15.949747468138236073 <,
816.656854249492380195 , 16.656854249307752269 <,
817.363961030678927720 , 17.363961030481267045 <,
818.071067811865475244 , 18.071067811657719915 <,
818.778174593052022768 , 18.778174592837444834 <,
819.485281374238570293 , 19.485281374019361778 <,
820.192388155425117817 , 20.192388155203943256 <,
820.899494936611665342 , 20.899494936390741628 <,
821.606601717798212866 , 21.606601717579074773 <,
822.313708498984760390 , 22.313708498768349386 <,
823.020815280171307915 , 23.020815279958750210 <,
823.727922061357855439 , 23.727922061150099608 <,
824.435028842544402964 , 24.435028842342202182 <<
ProofRiemann.nb
5
Article
In the design process of an unmanned aerial vehicle, there are many facets to consider not only in the realm of controls, but also in the study of dynam-ics, structures, aerodynamics, propulsion and other related topics. In order to accomplish our design goals, the Unmanned Vehicle Group this semester fo-cused their attention on diverse aspects of the project. Various challenges of this semester included stability analysis, dynamic modeling, sensor calibration, hardware-in-the-loop simulations and optimizing vehicular capability. This paper details the analysis of the Unmanned Vehicle Group. The Undergraduate team would like to thank our graduate advisors James Goppert and Brandon Wampler for their dedication, patience, and helpful guid-ance throughout the semester. We would also like to thank Dr. Inseok Hwang for the opportunity to participate in this project.
ResearchGate has not been able to resolve any references for this publication.