ArticlePDF Available

Students' metacognition and cognitive style and their effect on cognitive load and learning achievement

Authors:

Abstract and Figures

The present research's objective is to examine the effects of metacognitive scaffolding and cognitive style in the Field Dependence - Independence (FDI) dimension on cognitive load (CL) and learning achievement (LA) in high school students, when they interact with a hypermedia environment on philosophy (logic). Fifty-four students belonging to two eleventh grade courses from a public school in Bogotá - Colombia participated in the study. One of the student courses interacted with a hypermedia environment that contained, within its structure, the metacognitive scaffolding. The other course interacted with the hypermedia environment that did not have the scaffolding. Students were given the Embedded Figures Test (EFT) to classify them into field dependent, intermediate, and independent subjects. A Repeated Measures Analysis was conducted with two intra-subject variables: (1) CL and (2) LA. Findings indicate that significant differences exist between intrinsic and extraneous cognitive load because of the effect of the metacognitive scaffolding. Students that interacted with the metacognitive scaffolding exhibited significantly greater achievements than those that did not use it. The field independent students also exhibited significant differences in CL with respect to their field independent and intermediate classmates.
Content may be subject to copyright.
López-Vargas, O., Ibáñez-Ibáñez, J., & Racines-Prada, O. (2017). Students’ Metacognition and Cognitive Style and Their
Effect on Cognitive Load and Learning Achievement. Educational Technology & Society, 20 (3), 145157.
145
ISSN 1436-4522 (online) and 1176-3647 (print). This article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC
3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). For further queries, please contact Journal Editors at ets-editors@ifets.info.
Students’ Metacognition and Cognitive Style and Their Effect on Cognitive
Load and Learning Achievement
Omar López-Vargas1*, Jaime Ibáñez-Ibáñez1 and Oswaldo Racines-Prada2
1School of Technology, Universidad Pedagógica Nacional, Bogotá, Colombia // 2Secretary of Education of
Bogotá, Bogotá, Colombia // olopezv@pedagogica.edu.co // jibanez@pedagogica.edu.co //
oswaldoracines@gmail.com
*Corresponding author
(Submitted February 20, 2016; Revised May 11, 2016; Accepted June 26, 2016)
ABSTRACT
The present research’s objective is to examine the effects of metacognitive scaffolding and cognitive style
in the Field Dependence - Independence (FDI) dimension on cognitive load (CL) and learning achievement
(LA) in high school students, when they interact with a hypermedia environment on philosophy (logic).
Fifty-four students belonging to two eleventh grade courses from a public school in Bogotá - Colombia
participated in the study. One of the student courses interacted with a hypermedia environment that
contained, within its structure, the metacognitive scaffolding. The other course interacted with the
hypermedia environment that did not have the scaffolding. Students were given the Embedded Figures Test
(EFT) to classify them into field dependent, intermediate, and independent subjects. A Repeated Measures
Analysis was conducted with two intra-subject variables: (1) CL and (2) LA. Findings indicate that
significant differences exist between intrinsic and extraneous cognitive load because of the effect of the
metacognitive scaffolding. Students that interacted with the metacognitive scaffolding exhibited
significantly greater achievements than those that did not use it. The field independent students also
exhibited significant differences in CL with respect to their field independent and intermediate classmates.
Keywords
Metacognitive scaffolding, Cognitive load, Cognitive style, Learning achievement, Hypermedia environment
Introduction
In recent decades, different computer-based learning environments (CBLE) have been used in an educational
context to provide support for the teaching-learning process in different levels of schooling. The use of these
environments in the classroom has generated high expectations among the academic community since it is
believed that when students interact with these scenarios, they can take on a more active role in their own
learning process and thus achieve more successful and motivating learning experiences (Clark & Meyer, 2008;
Mayer, 2005; McNamara & Shapiro, 2005; Shapiro, 2008). However, some studies indicate that little empirical
evidence exists to support these expectations since in some cases, students do not accomplish the desired
learning nor do they all equally benefit from these environments (Alomyan, 2004; Beserra, Nussbaum, Oteo, &
Martin, 2014; Calandra & Barron, 2005; López-Vargas, Hederich-Martínez, & Camargo-Uribe, 2012).
In this research field, some studies explain that LA obtained by students when intercting with computational
environments may be directly related to student’s cognitive style and CL. Regarding cognitive style, for
example, in the Field Dependence - Independence FDI- dimension, most of the studies show that field
independent novices, when interacting with hypermedia environments, organize and process information more
efficiently and obtain greater LAs in comparison to their field dependent classmates (Alomyan, 2004; Altun &
Cakan, 2006; Chen & Macredie, 2002; Handal & Herrington, 2004; López-Vargas & Valencia-Vallejo, 2012).
With respect to CL, some research show that the characteristics in the design of computational environments can
favor or limit students’ learning process. Thus, the mental effort employed by a subject when developing a
learning task may be negatively affected if the organization of the information presented overloads the limited
resources of the working memory. This situation efficiently affects knowledge building (Artino, 2008; Clark &
Mayer, 2008; Mayer, 2005; Sweller, Ayres, & Kalyuga, 2011; Sweller, van Merriënboer, & Paas, 1998).
On the other hand, studies show that the use of scaffolding favors subjects’ performance when they undertake
learning tasks in an autonomous manner in computational environments (Greene, Moos, Azevedo, & Winters,
2008; Delen, Liew, & Willson, 2014; Kim & Hannafin, 2011; Lehmann, Hähnlein, & Ifenthaler, 2014; Zhang,
2013). In this research area, the use of metacognitive scaffolding in computational environments is an aid for the
student when managing and regulating cognitive processes during the learning process. Thus, the subject plans
activities, monitors and controls the progress of proposed goals, and evaluates the obtained results (Molenaar,
Boxtel, & Sleegers, 2010; Quintana, Zhang, & Krajcik, 2005; Zhang, 2013; Zhang & Quintana, 2012).
146
Literature review
Field Dependence - Independence (FDI)
In an educational context, the most studied cognitive style is the Field Dependence - Independence (FDI)
dimension proposed and developed by Witkin and his colleagues (Witkin & Goodenough, 1981). In an
information technologies context, research on cognitive style in the FDI dimension systematically show that
students referred to as Field Independent (FI) obtain better LAs than their Field Dependent (FD) classmates
when interacting in hypermedia environments. Studies evidence that FD students prefer their study material to be
organized sequentially (linear) since they are easily disoriented and they do not know where to begin, nor in
what direction to continue; situation that makes it harder for them to effectively structure and restructure the
information. Additionally, they prefer the browsing process in the computational scenario to be in groups and
guided by external agents, and that the control over the learning process be exercised by the own computational
environment (Alomyan, 2004; Chen & Macredie, 2002; Handal & Herrington, 2004).
In contrast, FI students prefer autonomy to browse throughout the whole structure of the computational
environment and effectively handle hypermedia environments. They can establish browsing routes in a
structured fashion. Similarly, while browsing they are not easily distracted with irrelevant information and they
can effectively use most of the computational environment’s resources. On the other hand, they like to work
individually (Alomyan, 2004; Chen & Macredie, 2002; Chou, 2001).
In this research field, few studies inquire into the possible relationships that may exist between students’ stylistic
characteristics and CL as a function of LA (Angeline, 2013; Angeli, Valanides, & Kirschner, 2009). Knowledge
of these relationships help explain and understand the differences in LA in subjects when interacting with CBLE.
Cognitive load theory
Cognitive Load Theory (CLT) studies the existing relationship between working memory capacity and
knowledge building that novices achieve when interacting in computational scenarios. In this manner, LA shall
be affected if the structure and organization of the digital content overloads subjects’ limited memory resources.
Consequently, the student is unable to effectively relate new information to the one stored in the long-term
memory (Clark & Mayer, 2008; Sweller, 2006). Following this line of thought, it could be asserted that CL is all
the mental activity imposed on the working memory when an individual is solving a learning task (Andrade-
Lotero, 2012; Paas, Tuovinen, Tabbers, & van Gerven, 2003; Sweller, 2010).
CL is divided into three classes: (1) intrinsic, (2) extraneous, and (3) germane. With respect to Intrinsic Cognitive
Load (ICL), it is inherent to the type of task to be developed. In other words, it considers the difficulty of domain
knowledge to learn and the student’s prior knowledge. On the other hand, Extraneous Cognitive Load (ECL) is
related to the information available in the computational environment that is irrelevant to task development and
acts as a distraction that may divert the student’s attention. Finally, the Germane Cognitive Load (GCL) is
directly responsible for knowledge building and is represented by actual LA (Andrade-Lotero, 2012; Sweller,
2006). The sum of the three loads is equal to total CL; thus, GCL will be favored when reducing both ICL and
ECL (Chong, 2005; Sweller, 2006; Van Merriënboer & Sweller, 2005).
In CBLE, ICL cannot be manipulated by instructional design. However, in the design of computational
environments, the objective is to reduce ECL and thus increase space in working memory to maximize GCL
(Mayer & Moreno, 2003; Paas, Renkl, & Sweller, 2003; Sweller, 2010). Thereon, Medula (2012) found that ECL
increases when audio, video, and text is articulated because of the overstimulation of the senses. In a more recent
study, Andrade, Huang, and Bohn (2014) found that students exposed only to visual formats exhibited a lower
ECL in comparison to those that combined visual and auditory information.
In another study, Cheon, Crooks, and Chung (2014), asked one group of students questions on content as they
read texts (active segmentation), while another group was asked questions at the end of the interaction (passive
segmentation). Results showed that in active segmentation students achieved better academic performances,
probably when ECL decreased. More recently, Chen, and Wu (2015) reported a greater CL in students when
interacting with videos that contain PowerPoint presentations and voice, compared to live conference and
MOOC-type recordings.
147
Based on CLT, these studies contribute empirical evidence with respect to the use of some tools in the design of
hypermedia environments that reduce CL. However, few studies focus on the use of scaffolding within the
structure of web environments to favor students’ learning and reduce CL (Andrade-Lotero, 2012).
Metacognitive scaffolding
The concept of scaffolding was defined based on the Zone of Proximal Development (ZPD) posited by Vygotsky
in his sociocultural theory of learning, which refers to the aid that an adult can give a child with the purpose of
fulfilling the latter’s learning objectives (Tuckman, 2007; Wood, Bruner, & Ross, 1976; Wu & Pedersen, 2011).
The scaffolding provides support to the student to successfully complete a learning task (Wood et al., 1976).
Metacognitive scaffolding favor conscientious planning, monitoring, self-evaluation, and control of cognitive
processes during learning task development in computational environments (Kim & Hannafin, 2011; Molenaar et
al., 2010; Zhang & Quintana, 2012).
To that respect, Quintana et al. (2005) and Molennar et al. (2010) posit that metacognitive scaffolding are
characterized for managing and regulating cognitive processes. This type of scaffolding is useful to the student
to: (1) plan what they want to learn, in other words, it proposes defining learning goals, strategies, and
timetables; (2) execute and monitor the progress of the proposed goals; and (3) reflect on the obtained results in
order to review the effectiveness of the planning and adjust the strategies that have not been effective in
achieving the learning goals. This process allows the student to acquire knowledge on how they learn, strategies
to use, and time to invest according to the learning task.
Statement of the problem
In line with these statements, questions arise regarding the design of CBLE insofar as the use of scaffolding may
be associated to the CL that the student experiences when interacting with these scenarios. Similarly, CL may be
associated to the subject’s cognitive style. In this order of ideas, the present study posits the following research
questions:
How does the metacognitive scaffolding influence CL and LA in students that learn in a hypermedia
environment covering philosophy content? Do significant differences exist in CL between students with differing
cognitive styles in the FDI dimension when they learn in a hypermedia environment?
Following this line of thought, the hypotheses that guide the present study are: (1) A reduction in CL exists and
student performance increases because of the effect of the metacognitive scaffolding and (2) significant
differences exist in CL between students with differing cognitive styles in the FDI dimension because of their
stylistic differences.
Method
Design
The research was quasi-experimental with two eleventh (11th) grade groups from a public school of Bogotá
Colombia. The hypermedia environment is taken as the study’s independent variable with two values: group with
metacognitive scaffolding and group without metacognitive scaffolding. The study’s dependent variables were:
LA and CL. The latter with three values: ICL, ECL, and GCL.
Participants
This research was conducted with 54 eleventh grade students (26 women and 28 men) from a public school of
the city of Bogotá Colombia. The range of ages varied between 15 and 19 years (M = 16.87, SD = 0.953).
148
Instruments
Metacognitive scaffolding
The web-based learning environment on logic consists of three learning modules: (1) Definition and
classification, (2) Aristotelian Logic: Parts, prepositions, and syllogisms, and (3) Symbolic Logic: Prepositions
and classes, symbols and laws and connectors, as shown in Figure 1. The metacognitive scaffolding was
implemented within its computational structure, which is displayed as pop-up windows. It is based on the model
proposed by Winne and his colleagues (Hadwin & Winne, 2001). The scaffolding has the following
characteristics:
Figure 1. Main browsing menu in the computational scenario
Stage 1. Introduction to the learning task: The general content of each learning module is presented to the
student, who is informed of schedules and spaces available to them for their development. In the first module, a
general test on prior knowledge on philosophy was given to the student to get them to reflect on how much they
know about the subject matter and on the learning strategies they could implement during the learning process.
Stage 2. Learning Planning: During this stage, the novice imposes on himself a learning goal based on his prior
knowledge considering the following scale: (1) basic level; provides introductory and general information about
the modules subject matters; (2) intermediate level; examines in greater detail the content of each module, and
(3) advanced level: in-depth study of each one of the subject matters. The scale’s objective is to consider their
individual differences, as shown in Figure 2.
Figure 2. Learning goal selection window
Subsequently, the novice establishes a work plan to achieve said goal. They set study times and choose the
learning strategy according to the environment’s content and structure. This encourages reflection from the
novice as a function of fulfilling the proposed goal.
Stage 3. Execution of the work plan: This stage begins with the implementation of the learning strategy. This
activity has the objective of inducing the novice into metacognitive monitoring of the lessons learned, as shown
Learning
goal
selection
Lesson Module
Selection Menu
Browsing Menu
149
in Figure 3. According to this valuation, the student is in the capacity to make the necessary corrections
regarding the self-imposed learning goal. This stage concurs with the metacognitive control process.
Figure 3. Lesson self-evaluation window
Stage 4. Learning Results: During this stage, the novice conducts the lesson’s final evaluation. They also reflect
on the whole learning process. In other words, they evaluate the level of achievement reached, the planning of
activities, and the chosen learning strategy to perform the corresponding adjustments in future learning modules,
as shown in Figure 4.
.
Figure 4. Lesson module final reflection window
Cognitive load questionnaire
The cognitive load questionnaire developed by Leppink, Paas, van Gog, van der Vleuten, and van Merriënboer
(2014), which allows identifying students’ perception on CL through 13 items, was employed to determine
students’ CL. For ICL, items 1 to 4. For ECL, items 5 to 8. Regarding GCL, items 9 to 13. The instrument is a
self-reporting questionnaire and presents a Likert scale of 0 to 10, where 0 is “completely disagree” and 10 is
“completely agree.” To obtain the grade in each load, the valuations were averaged. In this research, the
instrument had a Cronbach’s alpha for ICL of 0.796; for ECL of 0.727, and finally, GCL of 0.816. Students
answered the questionnaire three times, one for each lesson module.
Cognitive style test
EFT was used to determine cognitive style in the FDI dimension. The instrument proposed by Sawa (1966)
consists of five subtests presented in separate pages. Each page has one simple figure and ten complex figures,
which must be found within a given timespan. Previous applications of this test have shown an internal
consistency varying between 0.85 and 0.9. (López-Vargas & Valencia-Vallejo, 2012; López-Vargas, Ibañez-
Response
Indicator
Lesson self-
evaluation
150
Ibáñez, & Chiguasuque-Bello, 2014). The EFT sample average was 24.72; standard deviation (SD = 8.886).
Over a maximum grade of 50; the minimum value was 6 points and the maximum value was 41 points.
Students were grouped into FDs, intermediates, and FIs. This was done defining tertiles for the test’s total grade;
hence, three grade ranges were identified: (a) 20 FD students (first tertile), (b) 16 intermediate students (second
tertile), and (c) 18 FI students (third tertile).
Learning achievement
Students took three evaluations, one for each lesson module contained in the computational environment. All the
evaluations consist of 10 multiple-choice points. The evaluations presented a high reliability of the instrument,
Cronbach’s alpha was 0.872.
Procedure
To conduct the research, the educational institution’s board was contacted, who agreed to allow the eleventh-
grade students’ participation in the study. Subsequently, students and teachers of philosophy were presented with
the proposal. Then, parents were requested to give their informed consent regarding their children’s participation
in the study, previously clarifying that the results would be confidential and for research purposes. Once the
informed consents from all parents were gathered, the group was given the EFT.
Two computer labs were used to install the two hypermedia versions. One student course worked with the
software version that contained the metacognitive scaffolding and a second course interacted with the software
without the scaffolding. Students were assigned an identification password to access the software. The
philosophy (logic) content was distributed in seven work sessions, each one with a duration of one hour per
week. During each one of the work sessions, participants could not access Internet or other computer programs.
Results
Effect of the metacognitive scaffolding on CL
A repeated measures ANOVA is used. There are two intra-subject variables: (1) CL with three values: intrinsic
(I.L.), extraneous (E.L.), and germane (G.L.), in each one of the three lesson modules, and (2) LA in each one of
the three modules. On the other hand, there are two inter-subject variables: (1) Hypermedia environment with
two values: with metacognitive scaffolding and without scaffolding and (2) Cognitive scaffolding, with three
values: field dependent, intermediate, and independent.
Table 1 shows a summary of the descriptive statistics of total CL in each one of the study modules of the
students that worked in the hypermedia environment with and without scaffolding. Similarly, the novices
cognitive style was considered.
Table 1. Results of total CL in each module: Mean scores and standard deviations in parenthesis
Software
Cognitive style
No.
Total load
Module 1
Total load
Module 2
Total load
Module 3
With scaffolding
Field dependent
10
19.09(2.57)
20.76(1.28)
21.35(1.18)
Field intermediate
7
19.58(2.88)
21.59(0.64)
21.95(1.17)
Field independent
10
15.60(2.32)
19.89(1.62)
19.01(2.06)
Total
27
17.92(3.07)
20.65(1.43)
20.64(1.98)
Without
scaffolding
Field dependent
10
22.56(3.85)
23.75(2.07)
23.59(2.44)
Field intermediate
9
21.74(2.85)
22.71(2.75)
22.29(2.41)
Field independent
8
22.06(4.14)
22.02(3.48)
20.84(3.24)
Total
27
22.14(3.52)
22.89(2.76)
22.34(2.82)
Firstly, total CL is obtained by adding the intrinsic, extraneous, and germane load. Mauchly’s test indicated that
the sphericity assumption does not hold. The data show that the main effect of the total load variable is: (X2(2) =
30.54, p < .05). Therefore, the degrees of liberty were corrected with Greenhouse-Geisser (ε = .68). Results show
151
a significant double interaction between total load and software (F(1.35, 64.96) = 6.62, p = .007, η2 = .121). A
significant difference also exists in the total load variable (F(1.35, 64.96) = 12.04, p < .001, η2 = .200).
With respect to the inter-subject variables, significant differences exist between the type of software with CL
(F(1, 48) = 20.73, p < .001, η2 =.302) in favor of the subjects that interacted with the software version that
included the metacognitive scaffolding. Similarly, significant differences exist between cognitive style with CL
(F(2, 48) = 5.04, p = .010, η2 = .174). With respect to the use of the hypermedia environment with and without
metacognitive scaffolding, the data show significant differences in total CL (F(1, 48) = 27.73, p < .001, η2
= .312) in module 1. In module 2, significant differences also exist in total CL (F(1, 48) = 12.28, p = .001, η2
= .204). Finally, in module 3, significant differences are found between the two student groups (F(1, 48) = 5.97,
p = .018, η2 = .111) as shown in Figure 5.
Figure 5. Effect of hypermedia environment on total cognitive load in each module
To conduct a more detailed analysis of each one of the CLs (intrinsic, extraneous, and germane) in each module,
Table 2 shows the following descriptive data.
Table 2. Results of the different cognitive loads in each module: Mean scores and standard deviations in
parenthesis
Software
Cognitive
style
No.
Module 1
Module 2
Module 3
I.L.
E.L.
G.L.
I.L.
E.L.
G.L.
I.L.
E.L.
G.L.
With
Scaffolding
Field
Dependent
10
5.4
(1.35)
6.23
(1.81)
7.46
(1.12)
6.70
(1.43)
6.38
(1.17)
7.68
(0.96)
6.85
(1.39)
6.58
(1.10)
7.92
(0.64)
Field
Intermediate
7
5.89
(1.76)
6.00
(1.59)
7.69
(1.04)
7.00
(0.99)
6.64
(0.72)
7.94
(0.47)
7.25
(1.15)
6.79
(1.36)
7.91
(0.51)
Field
Independent
10
4.38
(1.62)
4.30
(0.91)
6.92
(0.53)
6.80
(1.48)
5.83
(0.39)
7.26
(0.54)
6.15
(2.19)
5.50
(0.69)
7.36
(0.39)
Total
27
5.15
(1.63)
5.45
(1.68)
7.32
(0.94)
6.81
(1.31)
6.24
(0.88)
7.59
(0.74)
6.69
(1.69)
6.23
(1.16)
7.71
(0.57)
Without
Scaffolding
Field
Dependent
10
7.4
(1.51)
7.30
(1.70)
7.86
(1.19)
7.70
(0.84)
8.03
(0.65)
8.02
(1.13)
7.88
(0.96)
7.78
(0.95)
7.94
(1.06)
Field
Intermediate
9
7.28
(0.81)
7.08
(0.87)
7.38
(1.60)
7.22
(1.11)
7.67
(0.74)
7.82
(1.21)
7.39
(0.83)
7.31
(0.69)
7.60
(1.31)
Field
Independent
8
7.72
(1.53)
7.56
(1.04)
6.78
(2.24)
7.66
(1.41)
7.31
(0.53)
7.05
(1.77)
7.34
(1.04)
6.88
(1.02)
6.63
(1.49)
Total
27
7.45
(1.29)
7.31
(1.25)
7.38
(1.68)
7.53
(1.10)
7.69
(0.69)
7.67
(1.38)
7.56
(0.94)
7.35
(0.94)
7.44
(1.35)
Mauchly’s test indicated that the sphericity assumption does not hold. The data show that the main effect of the
module variable is: (X2(2) = 30.54, p < .05) and of the CL variable is: (X2(2) = 14.634, p < .05). The double
interaction between module and CL yielded: (X2(9) = 59.30, p > .05). Therefore, the degrees of freedom were
corrected with Greenhouse-Geisser for module (ε = .68), CL (ε = .79), and for the interaction between module
152
and CL (ε = .64). The results show a triple and significant interaction between module, CL, and software (F(2.56,
122.90) = 4.54, p = .007, η2 = .086). Significant differences exist between the following double interactions:
module and CL (F(2.56, 122.90) = 2.98, p = .042, η2 = .058); between CL and software (F(1.58, 75.74) = 12.61,
p < .001, η2 = .208); and between module and software (F(1.35, 64.96) = 6.62, p = .007, η2 = .121). Finally,
significant differences exist in CL components (F(1.58, 75.74) = 12.28, p < .001, η2 = .204) and module (F(1.35,
64.96) = 12.04, p < .001, η2 = .200).
The multiple comparisons according to Bonferroni indicate that statistically significant differences exist (p < .05)
in total CL, between FD (M = 7.28, SD = .15) and FI students (M = 6.63, SD = .16) and between intermediate (M
= 7.21, SD = .17) and FI students (M = 6.63, SD = .16). No significant differences exist in total CL between FD
and field intermediate subjects as shown in Figure 6.
Figure 6. Effect of cognitive style on total cognitive load
Regarding the student groups’ use of the hypermedia environment with and without scaffolding and the different
CLs, the data show that in module 1, significant differences exist in ICL (F(1, 48) = 31.75, p < .001). Significant
differences also exist in ECL (F(1, 48) = 22.70, p < .001) and no significant differences exist in GCL. In module
2, significant differences exist in ICL (F(1, 48) = 4.12, p = .048). Similarly, significant differences exist in ECL
(F(1, 48) = 45.27, p < .001) and, as in Module 1, no significant differences exist in GCL. Finally, in Module 3,
the same trend is identified; in other words, significant differences exist in ICL (F(1, 48) = 4.37, p = .042), in
ECL (F(1, 48) = 14.85, p < .001), and no significant differences are present in GCL, as shown in Figure 7.
Figure 7. Effect of hypermedia environment on cognitive load (1 = intrinsic cognitive load, 2 = extraneous
cognitive load, 3 = germane cognitive load)
Effect of the metacognitive scaffolding on learning achievement
A repeated measures ANOVA is used. The intra-subject variable is students’ performance in each one of the three
lesson modules. There are two inter-subject variables: Hypermedia environment with three values: field
153
dependent, intermediate, and independent. Table 3 shows a summary of the descriptive statistics of LA in each
one of the study modules considering the inter-subject variables.
Table 3. Results of learning achievement in each module: Mean scores and standard deviations in parenthesis
Software
Cognitive style
No.
Achievement
Module 1
Achievement
Module 2
Achievement
Module 3
With scaffolding
Field dependent
10
76.40(5.74)
80.40(6.02)
77.50(8.89)
Field Intermediate
7
75.29(4.68)
82.29(4.15)
76.00(6.00)
Field Independent
10
71.80(7.66)
78.50(6.33)
75.80(6.92)
Total
27
74.41(6.41)
80.19(5.72)
76.48(7.27)
Without
scaffolding
Field dependent
10
61.30(5.54)
66.60(5.91)
64.60(10.21)
Field Intermediate
9
59.56(7.57)
58.78(6.53)
59.78(10.40)
Field Independent
8
59.13(8.18)
63.88(4.29)
59.38(16.76)
Total
27
60.07(6.87)
63.19(6.45)
61.44(12.29)
Mauchly’s test indicated that the sphericity assumption does not hold. The data showed that the main effect of
achievement is: (X2(2) = 80.09, p < 0.05). Consequently, the degrees of freedom were corrected with
Greenhouse-Geisser (ε = .86). Results show that significant differences exist only in the achievement variable
(F(1.73, 82.89) = 7.16, p = .002, η2 = .130). With respect to the inter-subject variables, significant differences
exist only between the hypermedia environment and LA (F(1, 48) = 90.64, p < .001, η2 = .654). Students that
worked with the metacognitive scaffolding obtained a greater achievement (M = 77.11, SD = 1.17) compared to
students that did not use it (M = 61.44, SD = 1.16), as shown in Figure 8. No significant differences were found
in LA between students with different cognitive styles.
Figure 8. Effect of hypermedia environment on learning achievement
Discussion and conclusions
First research question
The results showed that the implementation of the metacognitive scaffolding, within the structure of a
hypermedia environment, positively influenced students’ LA.
The study’s analyses indicate that LA was significantly greater in students that used the metacognitive
scaffolding in comparison to the achievement of their classmates that did not. Hence, in each lesson module the
scaffolding favors metacognitive monitoring and process control insofar as the student learns to plan their study
activities as a function of a self-imposed learning goal and to conduct a constant monitoring of their actual
learning process, action they execute through different self-evaluations.
154
The self-evaluations carried out by the student leads them to reflect on the knowledge they have acquired
throughout the modules. Accordingly, they can establish what concepts are still pending to be studied or
reinforced to achieve the self-imposed learning goal. Thus, they can perform metacognitive control to review the
content, change the learning goal, or adjust the learning strategy they have implemented to understand concepts
and definitions. Hence, the scaffolding provides them with options and favors student’s autonomy, while the
student undertakes the responsibility of their learning process.
In this sense, the study evidenced that the use of the metacognitive scaffolding fosters a more structured and
systematic behavior in the student, which, probably, allows them to browse and perform different study activities
in an organized fashion, adjust learning strategies, and process information in more detail with the objective of
achieving a self-imposed goal.
With respect to CL, the results show that the metacognitive scaffolding reduced the perception of total CL in
students that interacted with this hypermedia version. A separate analysis of each one of the CLs showed that the
scaffolding significantly reduced ICL and ECL. The students’ perception of GCL was expected to decrease and
enable a greater unloading of the working memory (Andrade-Lotero, 2012; Paas, Renkl, & Sweller, 2003);
however, the scaffolding did not have any effect on the GCL.
It is noteworthy that the average GCL, in comparison to ICL and ECL, is greater and tends to be constant in the
different lesson modules. This result is promising insofar as it is a first approach that indicates that metacognitive
scaffolding may have positive effects on LA and, in addition, reduce ICL and ECL.
From the results, it is possible to assert that the students’ reflection on their own learning process can trigger
them to change or adjust the chosen learning strategy, the manner of browsing, to read different content, etc.
Thus, the use of the scaffolding helps the novice organize in a structured and systematic fashion their own
learning process.
Because of the foregoing, it is possible to assert that the perception of the student’s ICL and ECL is lower in
comparison to the group that did not use the scaffolding. These results evidence that the reduction in ICL, when
beginning a learning task, helps the student easily learn the subject. Regarding ECL, it is possible that the
scaffolding could be considered a distraction since it presents pop-up windows that aim to encourage the student
to reflect on their own learning process; but, it is not so. The results show that ECL was reduced, which shows
that the inclusion of scaffolding in hypermedia environments does not act as a distraction, but rather the
scaffolding is a structural part of the computational environment.
On the other hand, no significant differences were found in GCL. A possible explanation for these results is that
the perception of the two groups of students, with respect to content comprehension, in general, vas highly
valued, despite LA being significantly greater in the group that used the scaffolding.
This could indicate that the perception of the mental effort employed to comprehend the concepts and definitions
covered in the hypermedia environment is always highly valued, independently of the LAs obtained in the
evaluations the participants took at the end of each lesson module. It is noteworthy that the perception of
learning difficulty was the same for both group of students. Thus, the scaffolding that was used did not exhibit
any effect on GCL. It is likely that beginning a new learning process will always imply a high level of difficulty
for novices and therefore germane load tends to be high. In accordance to the foregoing, it is suggested that this
subject be studied in more detail insofar as other associate variables probably exist that influence these results.
These results validate the first working hypothesis.
Second research question
With respect to the second research question, the results evidence that no differences exist in LA between
students with different cognitive styles. It was verified that FD and field intermediate students achieve lessons
equivalent to those obtained by their FI classmates. These results complement the findings of other studies that
show that the use of computational scaffolding reduce individual differences in LA (López-Vargas, Hederich-
Martínez, & Camargo-Uribe, 2012; López-Vargas & Valencia-Vallejo, 2012; López-Vargas & Triana-Vera,
2013).
With respect to total CL, the results show that significant differences exist between FI and FD students, and
similarly, between FI and field intermediate students. No significant differences exist between FD and field
155
intermediate students. These results contradict the findings of Angeli (2013) and Angeli et al. (2009), who did
not find significant differences between students with different cognitive styles in the FDI dimension with
respect to CL. These contradictory results demonstrate the need for further research, especially when dealing
with self-reporting instruments in which students tend to provide socially accepted answers and possess a high
subjective component. Similarly, subject matter content and the type of software can have differential effects in
students.
However, the results of the present study are coherent with the findings of Jia, Zhang, and Li (2014), who
through contralateral delay activity, measure the brain’s electrical activity in visual working memory tasks in
subjects with different cognitive styles in the FDI dimension. The study found that FI subjects have a greater
capacity of isolating and filtering irrelevant elements in visual memory tasks in comparison to FD subjects. This
situation could indicate that FI students have greater selective attention insofar as they more effectively inhibit
the distractions present in computational scenarios and can probably process information in the working memory
more efficiently.
Consequently, total CL employed in learning task development in FI students is smaller in comparison to their
FD classmates, who are more prone to distractions and have a lower selective attention (Avolio, Alexander,
Barrett, & Sterns, 1981; Hasher, Zacks, & May, 1999). The results of the present research may correspond with
the efficient management of the working memory insofar as FI subjects are better at choosing relevant
information and inhibiting distractions during learning task development in computational scenarios, situation
that likely reduces CL. These results allow accepting the study’s second hypothesis.
In conclusion, studies suggest that the use of scaffolding may help reduce differences in LA in students with
differing cognitive styles in the FDI dimension (López-Vargas, Hederich-Martínez, & Camargo-Uribe, 2012;
López-Vargas & Valencia-Vallejo, 2012, López-Vargas & Triana-Vera, 2013) and favor CL reduction.
Consequently, it is necessary to continue developing studies that provide empirical evidence in order for CBLE
designers to develop more equitable and flexible computational scenarios, which favor subjects’ autonomy in
learning and their performance in different levels of schooling.
Limitations and forecasts
The study was not an experimental-type research, considering that the groups that participated in the experience
were previously constituted and were not randomly organized; therefore, the results cannot be generalized or
extended to all students in the secondary educational system.
Another limitation refers to the initial characterization of the students to provide them differentiated support
during the learning process based on their individual learning needs. In this sense, future research could consider
including in the scaffolding elements that adapt to subjects’ stylistic characteristics to determine their effect on
CL.
Considering that the instruments used so far to measure CL are based on self-reporting questionnaires, it is
necessary to develop other indicators that allow objectively evidencing students’ cognitive effort.
References
Alomyan, H. (2004). Individual differences: Implications for web-based learning design. International Education Journal,
4(4), 188-196.
Altun, A., & Cakan, M. (2006). Undergraduate students’ academic achievement, field dependent/independent cognitive styles
and attitude toward computers. Educational Technology & Society, 9(1), 289-297.
Andrade, J., Huang, D. W. H., & Bohn, D. M. (2014). Multimedia’s effect on college students’ quantitative mental effort
scores and qualitative extraneous cognitive load responses in a food science and human nutrition course. Journal of Food
Science Education, 13(3), 40- 46.
Andrade-Lotero, L. A. (2012). Teoría de la carga cognitiva, diseño multimedia y aprendizaje: un estado del arte [Cognitive
load theory, design and multimedia learning: A State of the art]. Revista Internacional de Investigación en Educación, 5(10),
75-92.
156
Angeli, C. (2013). Examining the effects of field dependence–independence on learners’ problem-solving performance and
interaction with a computer modeling tool: Implications for the design of joint cognitive systems. Computers & Education,
62, 221230.
Angeli, C., Valanides, N., & Kirschner, P. (2009). Field dependenceindependence and instructional design effects on
learners’ performance with a computer modeling tool. Computers in Human Behavior, 25, 13551366.
Artino, A. R. (2008). Cognitive load theory and the role of learner experience: An Abbreviated review for educational
practitioners. AACE Journal, 16(4), 425-439.
Avolio, B. J., Alexander, R. A., Barrett, G. V., & Sterns, H. L. (1981). Designing a measure of visual selective attention to
assess individual differences in information processing. Applied Psychological Measurement, 5, 2942.
Beserra, V., Nussbaum, M., Oteo, M., & Martin, R. (2014). Measuring cognitive load in practicing arithmetic using
educational video games on a shared display. Computers in Human Behavior, 41, 351356.
Calandra, B., & Barron, A. E. (2005). A Preliminary investigation of advance organizers for a complex educational website.
Journal of Educational Multimedia and Hypermedia, 14(1), 523.
Chen, C., & Wu, C. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and
learning performance. Computers & Education, 80, 108-121.
Chen, S. Y., & Macredie, R. D. (2002). Cognitive styles and hypermedia navigation: Development of a learning model.
Journal of the American Society for Information Science and Technology, 53(1), 3-15.
Cheon, J., Crooks, S., & Chung, S. (2014). Does segmenting principle counteract modality principle in instructional
animation? British Journal of Educational Technology, 45(1), 56-64. doi:10.1111/bjet.12021
Chong, T. S. (2005). Recent advances in cognitive load theory research: Implications for instructional designers. Malaysian
Online Journal of Instructional Technology, 2(3), 106-117.
Chou, H. W. (2001). Influences of cognitive style and training method on training effectiveness. Computers & Education, 37,
11-25.
Clark, R. C., & Mayer, R. E. (2008). E-Learning and the science of instruction: Proven guidelines for consumers and
designers of multimedia learning. San Francisco, CA: Pfeiffer.
Delen, E., Liew J., & Willson V. (2014). Effects of interactivity and instructional scaffolding on learning: Self- regulation in
online video-based environments. Computers & Education, 78, 312 -320.
Greene, J. A., Moos, D. C., Azevedo, R., & Winters, F. I. (2008). Exploring differences between gifted and grade-level
students’ use of self-regulatory learning processes with hypermedia. Computers & Education, 50, 1069 - 1083.
Hadwin, A., & Winne, P. (2001). CoNoteS2: A Software tool for promoting self- regulation. Educational Research and
Evaluation, 7, 313-334.
Handal, B., & Herrington, T. (2004). On being dependent and independent in computer based learning environments. e-
Journal of Instructional Science and Technology, 7(2). Retrieved from http://files.eric.ed.gov/fulltext/EJ850352.pdf
Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat
(Eds.), Attention and Performance XVII, Cognitive Regulation of Performance: Interaction of Theory and Application (pp.
653-675). Cambridge, MA: MIT Press.
Jia, S., Zhang, Q., & Li, S. (2014). Field dependenceindependence modulates the efficiency of filtering out irrelevant
information in a visual working memory task. Neuroscience, 278, 136143.
Kim, M. C., & Hannafin M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs):
Bridging research and theory with practice. Computers & Education 56, 403-417.
Lehmann, T., Häehnlein, I., & Ifenthaler, D. (2014). Cognitive, metacognitive and motivational perspectives on preflection in
self-regulated online learning. Computers in Human Behavior, 32, 313-323. doi:10.1016/j.chb.2013.07.051
Leppink, J., Paas, P., Van Gog, T., Van der Vleuten, C., & Van Merriënboer, J. (2014). Effects of pairs of problems and
examples on task performance and different types of cognitive load. Learning and Instruction 30, 32-42.
López-Vargas, O., Hederich-Martínez, C., & Camargo-Uribe, A. (2012). Logro de aprendizaje en ambientes hipermediales:
andamiaje autorregulador y estilo cognitive [Academic achievement in hypermedia environments, scaffolding self-regulated
learning and cognitive style]. Revista Latinoamericana de Psicología, 44(2), 13-26.
López-Vargas, O., & Triana-Vera, S. (2013). Efecto de un activador computacional de autoeficacia sobre el logro de
aprendizaje en estudiantes de diferente estilo cognitive [Effect of a self-efficacy computational activator on the learning
achievement in students of different cognitive style]. Revista Colombiana de Educación, 64, 225-244.
157
López-Vargas, O., & Valencia-Vallejo, N. (2012). Diferencias individuales en el desarrollo de la autoeficacia y el logro
académico: el efecto de un andamiaje computacional [Individual differences in the development of self-efficacy and
academic achievement: The Effect of a computational structure]. Acta Colombiana de Psicología, 15(2), 29-41.
López-Vargas, O., Ibañez-Ibáñez, J., & Chiguasuque-Bello, E. (2014). El estilo cognitivo y la fijación de metas de
aprendizaje en ambientes computacionales [Cognitive style and learning goals setting in computational environments].
Pensamiento Psicológico, 12(1), 133-148. doi:10.11144/Javerianacali.PPSI12-1.ecfm
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia
learning (pp. 3148). Cambridge, UK: Cambridge University Press.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist,
38(1), 43-52.
McNamara, D. S., & Shapiro, A. M. (2005). Multimedia and hypermedia solutions for promoting metacognitive engagement,
coherence, and learning. Journal of Educational Computing Research, 33(1), 129.
Medula, C. T. (2012). Added cognitive burden or interest: Effect of enhancement in learning from slide lesson presentation in
authentic classroom setting. International Journal of Education, 3, 24-39.
Molenaar, I., Boxtel, C., & Sleegers, P. (2010). The Effects of scaffolding metacognitive activities in small groups.
Computers in Human Behavior, 26, 1227-1738.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational
psychologist, 38(1), 1-4.
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance
cognitive load theory. Educational Psychologist, 38, 6371.
Quintana, C., Zhang, M., & Krajcik, J. (2005). A Framework for supporting metacognitive aspects of online inquiry through
software-based scaffolding. Educational Psychologist, 40, 235-244.
Sawa, H. (1966). Bunseki shikó to sógó shikó [Analytic thinking and synthetic thinking]. Bulletin of Faculty of Education,
Nagasaki University, 13, 116.
Shapiro, A. (2008). Hypermedia design as learner scaffolding. Educational Technology Research and Development, 56, 29
44.
Sweller, J. (2006). Discussion of “Emerging topics in cognitive load research: Using learner and information characteristics
in the design of powerful learning environments.” Applied Cognitive Psychology, 20(3), 353-357.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychology
Review, 22, 123138.
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer. doi:10.1007/978-1-4419-8126-4
Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational
Psychology Review, 10(3), 251296.
Tuckman, B. W. (2007). The Effect of motivational scaffolding on procrastinators’ distance learning outcomes. Computers &
Education, 49, 414-422. doi:10.1016/j.compedu.2005.10.002
Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future
directions. Educational Psychology Review, 17(2), 147-177. doi:10.1007/s10648-005-3951-0
Witkin, H. A., & Goodenough, D. R. (1981). Cognitive style: Essence and origins. New York, NY: International Universities
Press.
Wood, D., Bruner, J., & Ross, G. (1976). The Role the tutoring in problem solving. Journal of Child Psychology and
Psychiatry, 17(2), 89-100.
Wu, H. L., & Pedersen, S. (2011). Integrating computer- and teacher-based scaffolds in science inquiry. Computers &
Education, 57, 2352-2363.
Zhang, M. (2013). Prompts-based scaffolding for online inquiry: Design intentions and classroom realities. Educational
Technology & Society, 16(3), 140151.
Zhang, M., & Quintana, C. (2012). Scaffolding strategies for supporting middle school students’ online inquiry processes.
Computers & Education, 58, 181196. doi:10.1016/j.compedu.2011.07.016
... En este sentido el desarrollo de estrategias metacognitivas y de la conciencia metacognitiva en los estudiantes, mediante un proceso de intervención pedagógica y didáctica, a través del modelo addie de diseño instruccional, podía propiciar en los estudiantes el planteamiento de metas de aprendizaje, realizar, como se ha dicho un ordenamiento, secuencial, planeación de sus actividades de estudio y, lo más relevante: generar la posibilidad de gestionar y autorregular sus actividades de estudio de manera que se apropien de la posibilidad de ser más eficaces y eficientes en ese propósito. (Greene y Azevedo, 2007;López et al., 2017). La evaluación del propio desempeño ante determinada actividad académica es otro de los argumentos que también justifican los trabajos realizados. ...
Book
Full-text available
implementación de estrategias metacognitivas en entornos virtuales de aprendizaje para el desarrollo de la conciencia metacognitiva
... Additionally, we designate short-term recall as a dependent variable that will be examined in relation to vocabulary acquisition and cognitive style. Two broadly investigated cognitive styles in education research were chosen: field dependent (FD) and field independent (FI) (Chen, 2010;Frank & Keene, 1993;López-Vargas et al., 2017;Nezhad & Shokrpour, 2012). The reason for such a choice can be explained by the relationship between short-term recall and FD/FI styles (Davis & Cochran, 1990); this will be explained more in the discussion section. ...
Article
Full-text available
Learners with different cognitive styles (here, field dependence vs. field independence ) may learn second language vocabulary differently in different vocabulary learning settings. Although cognitive style has been widely studied in second language research, little is known about how field dependence/independence affects learners’ vocabulary acquisition in a mobile-assisted learning setting. One approach to solve this problem is to investigate the possible effect(s) of field dependence/independence on learners’ short-term vocabulary recall in a mobile-assisted vocabulary acquisition setting (here, Memrise ). To investigate such effect(s), this study adopted a pretest-posttest design involving 147 intermediate-level learners of English as a second language. Using the Group Embedded Figures Test, participants were divided into two groups: field dependent and field independent learners. For 4 weeks, both groups practiced and reinforced a set of English vocabulary, selected from the Vocabulary Level Test, through Memrise flashcards. Our findings reveal a post-intervention improvement among both field-dependent and field-independent learners, but with field-independent learners slightly outperforming their counterparts in the short-term recall of the vocabulary. Implications and recommendations for future research are discussed.
... Studies reveal that the use of PHET interactive simulations in optics education has positive effects of PHET simulations in improving students' conceptual understanding of optics (Yunzal & Casinillo, 2020). However, some studies report mixed results, highlighting the need to consider factors such as students' prior knowledge, technical difficulties, and curriculum integration (Liu et al., 2016). Conversely, literature on the use of simulations among pre-service science teachers shows positive outcomes, including enhanced understanding, improved practical skills, and knowledge development, are reported (Mrani et al., 2020). ...
Article
Full-text available
This phenomenological study explored the experiences of pre-service science teachers in using PHET interactive simulations to learn optics. It used a qualitative research approach and involved six participants enrolled in a science education program. Data were collected through observations and semi-structured interviews, and thematic analysis was used to analyze the data. The findings revealed that the participants had an enhanced understanding of optics concepts through PHET simulations and experienced high levels of engagement and interactivity. However, technical difficulties, challenges to internet connectivity, and gadget accessibility were identified. The study concluded that PHET simulations are beneficial in learning optics but need improvements in technical aspects. This implies key contributions to the existing literature on interactive simulations in science education, alignment with constructivist learning theory, and insights into cognitive load effects. In practice, the study suggests practical benefits for pre- service teachers and educators, such as fostering critical thinking skills and motivation in students. It recommends integrating PHET simulations in teaching, providing instructional support, addressing technical challenges, incorporating teacher training programs, and conducting further research to explore the effectiveness of the simulations in enhancing learning outcomes. The study cracks the PHET code in optics by highlighting its benefits and challenges and providing valuable insights for science education practice and research.
... To overcome student or facilitator perceived shortcomings of online CBL (increased time spent on online learning, digital competency, and emotional demand), which leads to increased extraneous load through superfluous Donkin et al. BMC Medical Education (2023) 23:564 processes [58,59] metacognitive support is required for both facilitators and students. Examples include the purposeful design of cases with clear learning and outcome objectives, recordings with accessibility captions, interactivity of online resources to promote engagement, timely and constructive feedback, facilitator flexibility, adaptability in an online environment, emotional support for digital literacy, and above all facilitators and students who are resilient, motivated and have a positive attitude to learn online [60]. ...
Article
Full-text available
Background Case-Based Learning (CBL) in medical education is a teaching approach that engages students as learners through active learning in small, collaborative groups to solve cases from clinical patients. Due to the challenges afforded by the COVID-19 pandemic, small group learning such as CBL, transitioned quickly to include technology-enhanced learning to enable distance delivery, with little information on how to apply pedagogical frameworks and use learning theories to design and deliver online content. Methods To extend understanding of online CBL a scoping review protocol following the PRISMA-ScR framework explored the literature that describes the use of online CBL application in medical education and the outcomes, perceptions, and learning theories. A literature search was conducted in January 2022 followed by a subsequent review in October 2022. After peer review using the PRESS guidelines, the CASP appraisal tool was used to assess the rigor of each study design. Results The scoping review identified literature published between 2010 and 2022 (n = 13 articles), on online CBL in the field of medical education with 11 observational studies describing student and facilitator perceptions and two randomized controlled studies. Positive perceptions of online learning included a flexible work-life balance, connection with learners, and improved accessibility. Negative experiences of online CBL included poor internet access, a distracting learning environment, and loss of communication. In the studies that collected student performance data, results showed equivalent or improved outcomes compared to the control. The CASP appraisal tool highlighted the deficiencies in most study designs, lack of framework or learning theory, and poor reproducibility of the methods to answer the research questions. Conclusion This scoping review identified literature to describe the academic outcomes, and student and facilitator perceptions of online CBL in medical education. However, the CASP tool uncovered deficiencies in study descriptions and design leading to poor quality evidence in this area. The authors provide recommendations for frameworks and learning theories for the future implementation of online CBL.
Article
Full-text available
Penelitian ini bertujuan untuk mendeskripsikan profil kemampuan pemahaman konsep matematis siswa dalam penyelesaian masalah yang berkaitan dengan materi nilai mutlak pada pembelajaran e-learning di masa pandemi covid-19 ditinjau dari gaya kognitif. Jenis penelitian ini adalah penelitian deskriptif kualitatif. Penelitian ini dilaksanakan di SMA Mardisiswa Semarang tahun ajaran 2020/2021. Subjek penelitian ini adalah siswa kelas X MIPA 1 dengan rincian 2 siswa dengan gaya kognitif field independent dan 2 siswa dengan gaya kognitif field dependent. Teknik pengumpulan data yang digunakan yaitu observasi langsung pada saat pengerjaan tes GEFT, tes pemahaman konsep dan wawancara. Keabsahan data menggunakan triangulasi metode yaitu membandingkan hasil tes pemahaman konsep dengan hasil wawancara. Berdasarkan hasil penelitian, diperoleh bahwa (1) subjek dengan gaya kognitif field independent mampu memenuhi seluruh indikator pemahaman konsep matematis pada sub materi persamaan nilai mutlak linear satu variabel, (2) subjek dengan gaya kognitif field independent mampu memenuhi seluruh indikator pemahaman konsep matematis pada sub materi pertidaksamaan nilai mutlak linear satu variabel, (3) subjek dengan gaya kognitif field dependent mampu memenuhi empat dari lima indikator pemahaman konsep matematis pada sub materi persamaan nilai mutlak linear satu variabel, (4) subjek dengan gaya kognitif field dependent mampu memenuhi tiga dari lima indikator pemahaman konsep matematis pada sub materi pertidaksamaan nilai mutlak linear satu variabel.
Article
In the class, most of the teacher use a single teaching strategy to students who have different cognitive styles when teaching narrative essays in the class. Therefore, it is necessary to improve teaching strategies in the teaching and learning process. The teaching strategies that fit with the cognitive style of students in order that the learning objective is improved. This paper investigates the effect of learning strategy and cognitive style on student’s narrative writing ability. This study was conducted on the VII grade students at Madrasah Tsanawiyah Ibnu Taimiyah Bogor, West Java. Treatment by level design and two-factorial ANOVA analysis with α = 0.05 were applied in this experimental study. The sample was 40 students grouped into experiment classes and 40 students was grouped into control classes. There was a different ability in narrative writing in Bahasa Indonesia between students having field independent cognitive style (A1) and students having field dependent cognitive style (A2). Results of two-way interrow analysis of variance showed that Fcalculated (4.123) was higher than Ftable (3.97) at a significant level of α = 0.05. The findings showed the ability to write a narrative writing in Bahasa Indonesia of students having a field independent cognitive style was higher than that of students having a field dependent cognitive style.
Article
Full-text available
La presente investigacion contrasta el efecto de la presencia o ausencia de un modulo de autoeficacia en un hipermedia sobre el logro de aprendizaje de resolucion de problemas con numeros fraccionarios. Se examino la interaccion entre la variable logro de aprendizaje, eficacia personal y estilo cognitivo de estudiantes en la dimension de dependencia–independencia de campo. Participaron cincuenta estudiantes de dos cursos previamente conformados del grado quinto de primaria de una institucion publica de Soacha (Cundinamarca, Colombia). Para el tratamiento de los datos se realizo un analisis Ancova, el cual mostro efectos significativos y positivos sobre el logro de aprendizaje por la presencia del modulo de autoeficacia. Ademas, se evidencio que las diferencias de logro entre los estudiantes de distinto estilos cognitivo desaparecen.
Article
Full-text available
Explorar la influencia que ejerce el estilo cognitivo en la dimensión dependencia - independencia de campo sobre la fijación, ajuste y precisión de metas de aprendizaje. De igual manera, explorar dicha influencia en el logro de aprendizaje esperado en estudiantes de secundaria, durante su interacción en la resolución de problemas de triángulos rectángulos a través de un ambiente hipermedial denominado “Softri”. Método. En la investigación participaron 85 estudiantes del grado décimo de un colegio oficial de Bogotá. Se utilizó el EFT para medir el estilo cognitivo. El logro académico se obtuvo a través de evaluaciones realizadas en el escenario computacional. De igual forma, las metas seleccionadas por los sujetos eran registradas por el software ”Softri”. Para el tratamiento de los datos se realizó un análisis Anova, el cual permite establecer la existencia de diferencias significativas en cuanto a las medias del logro de aprendizaje y la formulación de metas entre los diferentes grupos de estudiantes de acuerdo con su estilo cognitivo. Resultados. Se mostró que los estudiantes independientes de campo se fijan metas más altas, siendo más precisos con respecto al logro de aprendizajes esperados. Conclusión. Es posible establecer que los estudiantes independientes de campo poseen altas creencias de control sobre su propio proceso de aprendizaje. Probablemente, poseen un locus de control interno alto. También es viable pensar que estos sujetos, poseen altos niveles de autoeficacia académica atendiendo a que se formulan metas más exigentes. Estas conductas pueden estar asociadas a una mayor capacidad de autorregulación del aprendizaje.
Article
Full-text available
With easy access to and exponential growth of online resources in the last decade, the Web has become the primary information source to middle school students for their school work. Yet, prior research has shown that students have difficulty evaluating, reading, and taking notes from online resources. This study analyzed the effectiveness of a digital notepad, which used prompts to scaffold middle school students in learning with online scientific resources. Data were collected from 8 sixth grade students who were engaged in a two-week online inquiry for a science project. Data analysis showed a gap between design intentions and classroom realities. Despite the prompts intended to promote students’ critical evaluation of websites, their evaluation was still quick and dichotomous. In addition, students demonstrated different patterns in responding to the reading and note-taking prompts. However, prompts that aimed to promote deep thinking were generally answered with superficial responses. Implications for instruction and research involving use of online resources are discussed.
Article
Cognitive Load Theory John Sweller, Paul Ayres, Slava Kalyuga Effective instructional design depends on the close study of human cognitive architecture—the processes and structures that allow people to acquire and use knowledge. Without this background, we might recognize that a teaching strategy is successful, but have no understanding as to why it works, or how it might be improved. Cognitive Load Theory offers a novel, evolutionary-based perspective on the cognitive architecture that informs instructional design. By conceptualizing biological evolution as an information processing system and relating it to human cognitive processes, cognitive load theory bypasses many core assumptions of traditional learning theories. Its focus on the aspects of human cognitive architecture that are relevant to learning and instruction (particularly regarding the functions of long-term and working memory) puts the emphasis on domain-specific rather than general learning, resulting in a clearer understanding of educational design and a basis for more effective instructional methods. Coverage includes: • The analogy between evolution by natural selection and human cognition. • Categories of cognitive load and their interactions in learning. • Strategies for measuring cognitive load. • Cognitive load effects and how they lead to educational innovation. • Instructional design principles resulting from cognitive load theory. Academics, researchers, instructional designers, cognitive and educational psychologists, and students of cognition and education, especially those concerned with education technology, will look to Cognitive Load Theory as a vital addition to their libraries.
Article
Multimedia technology is providing educators great potentials to improve teaching and learning. For the past decade or so, the use of slide lesson presentation, which is a form of multimedia, of various self-motivated designs has significantly increased in almost every local authentic classroom setting without significant scholarly examination of their real effects on student learning. The purpose of this empirical study is to look at the tangible impact of added enhancements in the form of interesting yet conceptually unrelated clip arts and sound effects on student learning as well as in terms of overall instructional efficiency. One hundred thirty five Nonscience major university students enrolled in three introductory physics classes served as the subjects of the study. Relevant data were collected through online standardized materials and researcher made paper and pencil tests. Retention and transfer tests were used to quantify student learning. Learning performance and mental effort as a measure of cognitive load during instruction were utilized to assess overall instructional efficiency. Findings revealed that the use of enhancements could lead to better retention and transfer but exceedingly comparable overall instructional efficiency. This suggests that in commonplace classroom settings, interest may mitigate, if not eliminate, the negative effects of remarkable although conceptually irrelevant multimedia elements. Keywords - Multimedia, Enhancement, Coherence Principle, Dual Coding Theory, Instructional Efficiency, Slide Presentation
Article
The benefits of introducing educational video games in the classroom are many. Due to the widely available number and sizes of screens, and the learning outcomes shown by the Interpersonal Computer make this an emerging technology that should be considered for the classroom, technology that shares display characteristics with tabletops. An important factor to consider in this sort of technology is the position and amount of information displayed. The purpose of this research is to study the effect of the position on the screen of displayed information and the amount of information received by each of the students who share the workspace with respect to the acquired knowledge. We learned that students that worked with more objects and had more neighbors improved significantly less in their learning, a result that can be explained through the Cognitive Load Theory.
Article
Although online courseware often includes multimedia materials, exactly how different video lecture types impact student performance has seldom been studied. Therefore, this study explores how three commonly used video lectures styles affect the sustained attention, emotion, cognitive load, and learning performance of verbalizers and visualizers in an autonomous online learning scenario by using a two-factor experimental design, brainwave detection, emotion-sensing equipment, cognitive load scale, and learning performance test sheet. Analysis results indicate that, while the three video lecture types enhance learning performance, learning performance with lecture capture and picture-in-picture types is superior to that associated with the voice-over type. Verbalizers and visualizers achieve the same learning performance with the three video types. Additionally, sustained attention induced by the voice-over type is markedly higher than that with the picture-in-picture type. Sustained attention of verbalizers is also significantly higher than that of visualizers when learning with the three video lectures. Moreover, the positive and negative emotions induced by the three video lectures do not appear to significantly differ from each other. Also, cognitive load related to the voice-over type is significantly higher than that with by the lecture capture and picture-in-picture types. Furthermore, the cognitive load for visualizers markedly exceeds that of verbalizers who are presented with the voice-over type. Results of this study significantly contribute to efforts to design of video lectures and also provide a valuable reference when selecting video lecture types for online learning.
Book
In recent years, multimedia learning, or learning from words and images, has developed into a coherent discipline with a significant research base. The Cambridge Handbook of Multimedia Learning is unique in offering a comprehensive, up-to-date analysis of research and theory in the field, with a focus on computer-based learning. Since the first edition appeared in 2005, it has shaped the field and become the primary reference work for multimedia learning. Multimedia environments, including online presentations, e-courses, interactive lessons, simulation games, slideshows, and even textbooks, play a crucial role in education. This revised second edition incorporates the latest developments in multimedia learning and contains new chapters on topics such as drawing, video, feedback, working memory, learner control, and intelligent tutoring systems. It examines research-based principles to determine the most effective methods of multimedia instruction and considers research findings in the context of cognitive theory to explain how these methods work.
Article
Past research has demonstrated that field dependence-independence (FDI) can affect academic performance, selective attention, and working memory. However, the underlying mechanism of how FDI modulates selective attention and working memory is still unclear. Using event-related potential (ERP) techniques, specifically with the contralateral delay activity (CDA), the present study found that the correct response rates and CDA amplitudes in the 2-item and 2-item-2-distractor conditions were comparable for field independent (FI) participants. Field dependent (FD) participants performed worse, and the CDA amplitude was enhanced when distractors appeared. These results indicated that FI participants can filter out task-irrelevant information more efficiently than FD participants. The main difference between FD and FI individuals is their inhibition function.
Article
Effective use of multimedia (MM) in instructional design is critical for student learning, especially for large lecture introductory courses. This study used a mixed‐method approach to explore the effect of food science supporting course materials that utilized different MM formats, designed with Cognitive Theory of Multimedia Learning (CTML) methods, on cognitive load as explained by perceived mental effort (PME) scores combined with students’ perceptions. College students ( n = 182) were randomized into 1 of 3 MM groups: audio + text + graphics (Group 1‐ATG); text + graphics (Group 2‐TG); or video + audio + text + graphics (Group 3‐VATG). Participants answered a demographic survey and prior knowledge questionnaire before viewing 3 food science supporting course materials (that is, food laws, quality assurance, and sensory tests) and completed the PME instrument and open‐ended questions online in a noncontrolled setting. For quantitative data, PME scores were compared among MM groups and content types using analysis of variance (ANOVA). For qualitative data, content analysis was applied to identify extraneous cognitive load (ECL)‐related descriptors from students’ open‐ended question responses, which were used to explain quantitative survey findings. Overall, students in Group 2‐TG had lower PME scores than Groups 1‐ATG and 3‐VATG ( P < 0.05) and participants in Group 2‐TG provided less ECL‐related comments than those in the other 2 groups. Across MM groups, students showed higher PME scores after reviewing the quality assurance course material ( P < 0.05). Additionally, despite higher PME scores, students from Groups 1‐ATG and 3‐VATG would take another course with these MM formats. Practical Implications This study investigated the appropriate use of CTML methods when designing supporting course materials with various MM formats for asynchronous learning. The findings showed that instructors should consider different effects of MM formats when designing online course materials. In addition, instructors should apply mixed‐method approach to evaluate effects of MM design on students’ perceived cognitive load levels that cannot be fully understood with only quantitative survey data.