Conference PaperPDF Available

On the role of the Engineering Geologist in the Construction Phase of Challenging Tunnel Projects

Authors:

Abstract and Figures

Independently, if hardrock or soil conditions, conventional or mechanized tunnelling - the role of the engineering geologist as an „interpreter“ of the naturally formed subsurface conditions is undergoing significant changes in the course of the planning and realization process of any tunnel project. Even with the most detailed and most competent site investigation risks for adverse subsurface conditions will still remain. The remaining uncertainties regarding ground behaviour and the interaction of ground and structure and the implied risks for the technical and contractual aspects of underground construction do indeed require further involvement of engineering geological expertise in the course of project realization. The presented paper is intended to analyse the roles and tasks for engineering geologists involved in a tunnelling project either as a representative of the builder / client, the authorities or the contractor.
Content may be subject to copyright.
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
1
1 INTRODUCTION
1.1 Ground Risks in Tunnel Construction
In tunnel construction, insufficiently recognized
or inadequately considered ground conditions
can lead to considerable construction time
prolongation, cost increases or even damage such
as collapses or damage to existing infrastructure.
According to an analysis of international
reinsurance companies, tunnel construction is
regarded as the only sector in the construction
industry, where possible damage can exceed the
costs of the construction project itself several
times (Lombardi, 2004; Wannick, 2007).
Challenging tunnel projects have therefore
always placed great demands on the ability of the
engineering geologist and geotechnical engineer
to properly explore, describe and predict the
geological circumstances and interactions
between the ground and the tunnelling method.
1.2 Project phases
From the view of the engineering geologist, the
following project phases may be distinguished
during the realization of a tunnel construction
project:
the preliminary site investigation phase(s), in
which the geologist is usually responsible for
the planning of the investigation measures and
the identification of relevant project risks,
the tender preparation phase for the main
construction works,
the project execution phase in which the
geologist(s) may have different roles
depending on their individual task and
affiliation,
as well as a post-project phase, where
experiences gained during the execution are
either processed for documentary background
or within the framework of ongoing litigation
procedures.
On the role of the Engineering Geologist
in the Construction Phase of Challenging Tunnel Projects
Ralf J. Plinninger
Dr. Plinninger Geotechnik, Bernried, Germany.
Peter Sommer & Gerhard Poscher
geo zt gmbh – consulting geologists, Hall in Tirol, Austria.
ABSTRACT: Independently, if hardrock or soil conditions, conventional or mechanized tunnelling -
the role of the engineering geologist as an „interpreter“ of the naturally formed subsurface conditions
is undergoing significant changes in the course of the planning and realization process of any tunnel
project. Even with the most detailed and most competent site investigation risks for adverse subsurface
conditions will still remain. The remaining uncertainties regarding ground behaviour and the
interaction of ground and structure and the implied risks for the technical and contractual aspects of
underground construction do indeed require further involvement of engineering geological expertise
in the course of project realization. The proposed paper is intended to analyse the roles and tasks for
engineering geologists involved in a tunnelling project either as a representative of the builder / client,
the authorities or the contractor.
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
2
1.3 Roles within the project
The role of the geologist is defined by his
position within the project group and the project
phase (Poscher, 2004). Usually it refers to one of
the following positions and functions:
Geologist, representing the client (transport
authority, energy supplier, etc.);
Geologist representing the contractor, taking
over tasks within the scope of the construction
company´s chances and risk management,
either during the tendering phase and / or in
the execution phase of the project;
Geologist, representing public authorities (for
example in the area of Health, Safety or
Environmental Protection).
In the following paragraphs the involvement
and usual core tasks of the engineering geologist
during the construction phase of larger tunnel
projects will be discussed.
2 DOCUMENTATION – THE “VIEW
BACK”
2.1 Objectives
A comprehensible and objective documentation
of the encountered geological and geotechnical
conditions during excavation is a basic element
for answering any ground-related question. Such
documentation on the one hand serves as a tool
for controlling the tunnelling works, i.e. adapting
excavation sequence and support to the actual
ground conditions (® Section 3.2) and on the
other hand serves as evidence for objective
discussions on contractual topics between client
and contractor.
Unquestionably, the preparation of such
documentation is one of the core tasks of the
involved engineer geologist(s), regardless of
their role and affiliation in the project. However,
for especially challenging or conflict-prone
projects, the implementation of the so-called
"two man rule" has proven as a valuable method
for enhancing objectivity and credibility of the
work. Such procedure includes the joint
inspection of tunnelling works, joint assessment
of relevant rock and rock mass parameters and
mutual acceptance of documents by geologists
acting on behalf of different parties in the project
(Figure 1).
Figure 1. Executing the “two man rule” during geological
documentation: A close cooperation between geologists
of client and contractor contributes to an objective and
reliable geological documentation (Photo: Vigl).
2.2 Documentation for conventionally mined
tunnels
For conventional excavation, mapping of the
excavation face is still the main tool of geological
assessment. The favourable conditions for direct
examination of rock and rock mass properties
and the possibility to directly measure the
orientation of relevant discontinuities contribute
to a generally high level of quality for geological
and geotechnical documentation. Additionally,
usual advance rates of some meters to
dekametres per day provide a sufficient density
of observation. Figure 2 shows an example for
such full-face mapping of the crown section of a
road tunnel.
Figure 2. Example for geological face mapping in the
crown section of a road tunnel including generalized
information on lithological units and discontinuities.
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
3
2.3 Documentation for TBM tunnels
Under favourable conditions, for instance during
open gripper TBM operation, partial mapping of
the face might be supplemented by
documentation of even larger scale outcrops in
the perimeter of the tunnel.
Under unfavourable conditions, for instance
operation of a double shield TBM with precast
segmental lining and largely closed cutterhead
design, limited access to the rock mass, the
impossibility to take proper readings with a
magnetic compass and the usually high advance
rates achieved might significantly limit the
possibilities for proper direct documentation at
appropriate intervals. Under such circumstances,
it might even be useful to distinguish between a
"mapping" of the actually visible areas at the face
and a larger-scale "interpretation" of the
geological conditions in order to equally meet
both mentioned requirements of the
documentation, excavation control and filing of
evidence (Figure 3).
However, a continuous acquisition of relevant
machinery data and subsequent data back-
analysis might be used as a tool to overcome
some of these problems and to derive a
sufficiently detailed and sufficiently dense
interpretation of the encountered conditions. As
recently presented by Radoncic et al., 2014, daily
comparison of geological documentation,
observed rock mass behaviour and analysed
machinery data can provide interpretations on
relevant rock mass-TBM-interactions like:
steerability of TBM,
stability of rock mass at the face,
blockiness in the cutter head area,
general degree of fracturing of the rock mass,
overall intact rock strength,
or the state of the annular gap.
For the application of such methods (Figure
4), a close interdisciplinary cooperation of
geologists, geotechnical engineers, civil
engineers and surveyors is mandatory in order to
provide more or less real-time interpretation and
to allow adjustment of excavation and additional
measures to the actual geological and
geotechnical prognosis.
Figure 3. Example for TBM Face Mapping (middle
figure) and TBM Face Interpretation (lower figure) under
the limited possibilities of a more or less closed Æ 10 m
TBM cutterhead (upper figure).
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
4
Figure 4. Example for the comparison of geological data
and various machinery data sets for an alpine TBM tunnel
(from: Radoncic et al, 2014, Figure 6, page 574).
2.4 Visualization and Data Management
In order to provide data for computer-assisted
communication and analysis, database-supported
documentation software is increasingly used,
especially in large projects. In addition to the
mere distribution of rock units at the face,
additional data on the orientation of relevant
discontinuities, rock properties, rock mass
parameters and displacement measurements can
also be filed in such database systems.
Based on these raw data sets, such programs
allow computer-assisted visualization of the
conditions encountered (Figure 5) as well as easy
evaluations of the recorded parameters (for
instance comparisons between predicted vs.
encountered conditions).
Figure 5. Example for the three-dimensional visualization
of several face mappings in a conventional drill and blast
excavation by use of GIS-based software.
3 PROGNOSIS – THE “VIEW AHEAD”
3.1 Objectives
Ground exploration in front of the current
tunnelling station represents a highly relevant
and highly dynamic task, which is strongly
influenced by the further improvement and
development of technical possibilities. However,
the procedures outlined in the sections below are
only a selection of relevant methods. Usual
practice includes a combination of several
different methods, often applied according to a
predefined stage concept.
3.2 Improvement of the Geological Model
In the course of tunnel excavation, there are
generally far better possibilities for observing
rock and rock mass and for assessment of the
interactions between excavation and ground than
during any preliminary site investigation.
Therefore, the findings of the geological-
geotechnical documentation as described above
will usually allow further improvement and
detailing of the existing geological-geotechnical
model. The complementation of the geological
model and the combination of geological and
geotechnical observations is therefore an
essential component of any risk management in
tunnelling (Schubert, 2001).
3.3 Core Drilling ahead of the face
The execution of horizontal or flat inclined core
drilling methods for ground investigation ahead
of the face definitely represents the highest
quality possible to obtain information on the
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
5
lithology, the structure and the rock
characteristics of the ground ahead. Especially
for TBM application, conventional core drilling
with single or double coring tubes is practically
ruled out as a result of the required handling time
for rods and missing borehole support during
those roundtrips, so wireline systems are
frequently used there (Kogler & Krenn, 2014).
However, even for these systems the usually high
efforts for machinery setup, related downtimes
and costs do in fact conflict with the frequent
application of this high-level investigation
method (Figure 6).
Figure 6. Subhorizontal Core Drilling ahead of the TBM
advance from the upper deck of a Æ 10 m doubleshield
TBM using an Atlas Copco DIAMEC U6 Drill Rig.
3.4 Hammer drilling ahead of the face
Due to their usually good availability, relatively
low cost and high drilling performance, rotary-
percussive drilling methods (also referred to as
“hammer drillings”) without extraction of cores
can more easily be integrated into the working
cycle of both, conventional and TBM excavation.
Although only small drill cuttings can be used for
direct geological observation, a large number of
other relevant information on rock and rock mass
composition can be determined indirectly, with
corresponding recording of drilling data. This
allows relatively accurate predictions on the
occurrence of larger cataclastic fault zones, loose
soil, or zones with increased ground water
inflow.
Figures 7 and 8 show examples for the
evaluation and visualization of such drill data. In
the referring case, the data is derived from
standard blasthole drilling, with the data being
recorded using Atlas Copco´s MWD (“Measure
While Drilling”) system and being evaluated
with the referring "Underground Manager"
software.
Figure 7. Example for the interpretation of rotary percus-
sive blasthole drilling for a conventional tunnel drivage
using the Atlas-Copco MWD and Underground Manager.
Figure 8. Example for the interpretation of rotary percus-
sive blasthole drilling using Atlas-Copco´s MWD and
Underground Manager software.
3.5 Application of borehole video inspection
Dropping prices for miniaturized video systems
with cable lengths of 100 m have in the past
few years allowed an increasing use of optical
inspection systems for boreholes with a
minimum diameter of approx. Æ 40 mm. If
interpreted by a skilled geologist, such optical
inspection opens up a large number of
additionally relevant geological information, in
particular if used in combination with rotary
percussive drillings, where no core is available.
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
6
Figures 9 and 10 give a lucid example for the
images and interpretation.
Figure 9. Example for video image in a folded quartz
phyllite series in a Æ 75 mm drillhole used for ground
investigation ahead of a TBM.
Figure 10. Example for the interpretation and
documentation of a borehole video inspection using
project-specific classifications of geological observation.
3.6 Application of geophysical methods
In addition to direct investigation methods, as
described in the sections above, indirect
geophysical methods, e.g. seismic, geoelectric or
georadar methods can also be used from the
undergoing advance. A number of case studies
recently published (Brückl et al., 2008; Kaus &
Boening, 2008; Radinger et al., 2014) do on the
one hand summarize on a useful application of
these methods within the referring projects, but
on the other hand also give hints towards the still
existing uncertainties in the interpretation of
these data (see Figure 11).
Figure 11. Comparison of different stages in the evolution
of the geological model, from top to bottom: Prediction
from preliminary site investigation) Geophysical
Forecast (Tunnel Seismic While Drilling) Percussive
Drilling Encountered Geology (from: Radinger et al.,
2014, Fig. 7, page 574).
4 INTERDISCIPLINARY COOPERATION
ON SITE
As shown in the previous sections of this paper,
state-of-the art documentation and prognosis
includes a vast number of different data sets
gained from various sources. In order to
understand the interactions between ground and
tunnel and to provide optimum solutions, the
engineering geologist on site has to be
implemented into a competent team of
neighbouring expertise. Usually, the main
interactions exist with the following disciplines:
Civil engineers (planning, realization),
Geotechnical engineers,
Surveyors,
Geophysicists,
Hydrogeologists and engineering geologists
with other affiliation.
The following typical examples from the daily
on-site schedule of an engineering geologist give
!"#$%&'( )*+ ,-.
/0&1&2%3( 4*..
5"1#.( !%"&3%21%&( 6%21% 787974
:%#;%
2<7.7"3
!0=&"<> "1?
'%2<%7
@%&2<@A0BC
@&0DA0BC
2.7!0=&BC
E#1&211
>%B1%<
.211%B
G"&"BB%B
>H=2%;$C
I#%&>H=BC
>%B1%<
.211%B
=F#;2@
>H=2%;$C
I#%&>H=BC
8)+J
!"#"
8*+J
!$#"
miV r
84+J miV
!%#"
8-+J
!&#"
8,+J
!'#"
)J+J fiV
"(#"
)K+J siV
")#"
)L+J miV
"*#" miV
)M+J
msiV graphitischer Harnische
"+#"
fiV
)8+J
"!#" fgV
))+J
""#"
)*+J
"$#"
mriV
)4+J
N"&3@%3#<@7O<.%&'# <@%<9!%>0<P%&=%2 1%<(
2<1"'1% 7!0=&B0H=$"<P+7>%= &7$%<2@%7"'12 A%7:&%<<;BFH=%<
?#.%2>172< 1"'1%7!0=&B0H=$" <P+7$%<2@%7@%&2<@%7O#>3&QH= %7"<7:&%<<;BFH=%<
#<&%@%B. FD2@%7!0=&B0H=$"< P7.217@&RD%&%<7O#> 3&QH=%+7=0=%7:&%<<;BFH= %<P2H=1%+7!0=&B0H =7<"H=3&QH =2@
keine Anmerkungen
keine Anmerkungen
,-./.0 1234-56.789-: ;<;1.:5= 5><9-?<@-A<4 ?8:0
S
/!7S7T&(
/!7S
UF<@%(
S
61"120<(
S
5#&H=.%>>%&(
S
Wasserzutritt e tropf end von
oben, Verschiebung /
Deformation an Störung
(graphitisch)
V=&?%21(
S
S
Phyllit, wellig verfaltet / verfältelt, grau-dunkelgrau, grünlich, mit weißen Quarzlinsen/-lagen
W&2%<1C7"#;
!O
O<.%&'#<@%<797
!%>0<P%&=%21% <
O#> 3&QH= %7
U"2 3# <@
X">>%&
YF#;2@'%2 1
W&2%<1C7?#&7
!O
YF#;2@'%2 1
Ende der Kamerabefahrung bei 56,98 m
!0=&B0H=
:&%<<; BFH=%<7
Z[7976:797Y\
:&%<<; BFH=%<7
Z6]79766\
U21=0B0@2%
Proceedings of the World Tunnel Congress 2017 – Surface challenges Underground solutions. Bergen, Norway.
7
an idea of the required interdisciplinary
cooperation:
Documentation of drill cuttings during rotary
percussive drilling ahead of the face
(® Driller, Civil Engineer),
Evaluating and geological interpretation of
drilling data for hammer drilling (for instance
MWD) (® Civil Engineer),
Geological interpretation of TBM operational
parameters (® Civil Engineer, Geotechnical
Engineer),
Geological interpretation of deformation
monitoring (® Surveyor, Geotechnical
Engineer),
Geological interpretation of geophysical
investigations (® Geophysicist),
Actualization of ground water model
(® Hydrogeologist),
Adjusting support and excavation sequence to
the actual geological and geotechnical
prognosis (® Civil Engineers),
Judging technically on contractual impacts of
encountered ground conditions (® Civil
Engineers).
5 CONCLUSION
In challenging tunnel projects, the geological
model is inevitably undergoing a process of
increasing detailing and sharpening with an
increasing density and quality of observations
from the preliminary site investigation phase to
the actual excavation. This process also applies
to the understanding of the interactions between
tunnel advance and ground conditions.
While the involvement of the engineering
geologist in the preliminary site investigation
phase is hardly ever doubted, an intensive and
competent on-site support of the construction
works by engineering geologists is from the
authors point of view still not common standard.
However, actual experience shows, that the on-
site employment of engineering geologists as
part of an interdisciplinary team of skilled
experts can significantly contribute to the
reduction of remaining residual risks within the
project. This not only applies to an increased
health and safety aspect by adjusting support and
excavation sequence to an actualised prognosis
of the conditions ahead, but also contributes to
objective discussion of contractual impacts
between client and contractor.
State-of-the-art methods like detailed
geological documentation, hammer drillings
ahead of the face, borehole video inspections or
back-analysis of TBM machinery data are only
some of the core issues, where the engineering
geologist is able to provide specialist knowledge
for the project team.
Vice versa, the authors are convinced, that
neglecting the engineering geologist's expertise
in the project phase does indeed despise the
remaining residual ground risks and will
definitely reduce the possibilities to sharpen the
geological model and to fully understand the
complex interactions between tunnel excavation
and rock mass.
REFERENCES
Brückl, E., Chwatal, W., Mertl, S., Radinger, A. (2008):
Exploration Ahead of a Tunnel Face by TSWD Tunnel
Seismic While Drilling. Geomechanics and Tunnelling,
1, 5, p. 442449.
Kaus, A. & Boening, W. (2008): BEAM Geoelectrical
Ahead Monitoring of TBM-Drives. Geomechanics and
Tunnelling, 1, 5, p. 460465.
Kogler, K. & Krenn, H. (2014): Drilling processes to
explore the rock mass and groundwater conditions in
correlation with TBM-tunnelling. Geomechanics &
Tunnelling, 7, 5: p. 528-539 (Wiley).
Lombardi, G. (2004): Kosten im Tunnelbau Vom
Voranschlag zum Endpreis, Vortrag an der
Generalversammlung der FGU in Zürich vom 14.Mai
2004, FGU Fachgruppe für Untertagbau, U.Ref.:
102.1-R-157 / 7.47 A
Poscher, G. (2004): Die Rolle des Geologen bei der
Vertragsabwicklung, in: Leitner, W. & Wais, A. (eds.,
2004): Aktuelle Fragen der Vertragsgestaltung im Tief-
und Tunnelbau, Proceedings of the International
Consulting and Construction Workshop, ICC 5,
Innsbruck/Austria.
Radinger, A., Fasching, F. Pack, G., Kreutzer, I. & Kostial,
D. (2014): Consistent exploration by probe drilling and
TSWD through the example of the Koralm Tunnel.
Geomechanics & Tunnelling, 7, 5: p. 540-550 (Wiley).
Radoncic, N., Hein, M., Moritz, B. (2014): · Determination
of the system behaviour based on data analysis of a
hard rock shield TBM. Geomechanics & Tunnelling, 7,
5: p. 565-576 (Wiley).
Schubert, W. (2001): Optimierungsmöglichkeiten beim
Tunnelbau durch geologisch-geotechnische Begleitung
/ Überwachung und laufende Besserung des
Baugrundmodells. 24. NDK Short Course „Geology in
Tunnelling“, Technische Universität Graz & 3G
Gruppe Geotechnik Graz ZT GmbH, Graz/Austria.
Wannick, P. (2007): „Tunnel Code of Practice“ als
Grundlage für die Versicherung von Tunnelprojekten,
Tunnel, 8, p. 23-28 (Bauverlag BV GmbH)
... Aufgabenstellung war neben der (rückblickenden) Doku- mentation der angetroffenen geologischen Verhältnisse auch die kontinuierliche Weiterentwicklung und Schär- fung des Baugrundmodells, mit dem Ziel einer optimierten geologischen und geotechnischen Prognose und eines da- rauf abgestimmten, möglichst effizienten und sicheren Vortriebs (siehe auch Plinninger et al. 2017). ...
Conference Paper
Full-text available
Zusammenfassung Der 2014/2015 aufgefahrene Tunnel Darmsheim stellt das Kernstück der in Realisierung befindlichen Nordumfahrung Darms-heim der L1182 (Landkreis Böblingen) dar. Das Tunnelbauwerk besteht aus einer 460 m langen Hauptröhre und einem in der Westhälfte parallel dazu verlaufenden Rettungsstollen, der mittig in den Hauptstollen einmündet. Der bergmännische Vortrieb verläuft dabei innerhalb der Nodosus-Schichten, einer grundsätzlich verkarstungsfähigen Kalk-Mergel-Wechselfolge aus dem oberen Muschelkalk. Auf Basis der Erkenntnisse aus dem Vortrieb des vorlaufenden Rettungstollens konnte für den Vortrieb der Hauptröhre ein detailliertes Baugrundmodell inklusive Verkarstungsprognose erstellt und ein darauf abgestimmtes, baustellenpraktisches Vorauserkundungskonzept für Karstphänomene entwickelt werden. Mit Hilfe turnusmäßiger Vorausbohrungen, detaillierter geologischer Bohrdokumentationen und fallweiser Kamerabefahrungen mit einer kleinkalibrigen Bohr-lochkamera konnte so Karstphänomene vor dem Anfahren bewertet und ein wirtschaftlicher und sicherer Vortriebsablauf sichergestellt werden.
Conference Paper
Full-text available
Die im Oktober 2022 von der Österreichischen Gesellschaft für Geomechanik e.V. (ÖGG) veröffentlichte „Empfehlung für die baugeologische Dokumentation bei der Ausführung von Untertagebauwerken“ wurde in den Jahren 2018 - 2022 von einer Arbeitsgruppe erarbeitet, der Geologen und Ingenieure öffentlicher und privater Auftraggeber, Behörden, Ingenieurbüros und bauausführenden Firmen angehörten, die mit der täglichen Planung und Ausführung untertägiger Hohlraumbauwerke befasst sind. Neben Mitgliedern aus Österreich wirkten bei der Erstellung auch sechs Vertreter aus Deutschland mit, zu denen auch die Autoren des hier vorgeschlagenen Beitrags zählen. Der Beitrag stellt die grundlegende Motivation der ÖGG-Empfehlung und die Kernpunkte der empfohlenen Methoden vor. Dabei wird unter anderem auf die Rolle des Ingenieurgeologen in verschiedenen Aufgabenfeldern der Projektabwicklung, Grundlagen der Zusammenarbeit auf der Baustelle, Dokumentationsmethoden bei verschiedenen Vortriebsverfahren sowie Fragen der baubegleitenden Probenahme und Untersuchung von Boden, Fels und Bergwasser eingegangen. Der Beitrag stellt abschließend aus Sicht der Verfasser dar, welche Punkte der Empfehlung sich sinnvoll und problemlos auf die Bauabwicklung vergleichbarer Projekte in Deutschland übertragen lassen, bzw. in welchen Punkten aufgrund unterschiedlicher Normen- und Vertragslage eine Übertragung nicht, bzw. nur nach entsprechender Anpassung möglich erscheint.
Conference Paper
Full-text available
Im Tunnel- und Stollenbau stellt die baubegleitende geologisch-geotechnische Dokumentation ein wesentliches Werkzeug zur Erfassung der angetroffenen Gesteins- und Gebirgseigenschaften dar. Ziel ist die möglichst objektive und nachvollziehbare Erfassung der angetroffenen Baugrundverhältnisse für Bau- und Betriebsphase sowie die Schärfung der Baugrundprognose mit dem Ziel einer angepassten Bauausführung. Die Darstellung der Ergebnisse muss auch auf den jeweiligen Zweck und Empfänger abgestimmt werden. Während im konventionellen Tunnel- und Stollenbau die Dokumentation der Tunnelortsbrust in Form regelmäßiger Ortsbrustaufnahme den "Standardfall" für die geologische Dokumentation darstellt, erfordern insbesondere maschinelle Tunnelvortriebe je nach Bauart der eingesetzten Vortriebsmaschine und Sicherungskonzept individuelle Dokumentationslösungen. Im vorliegenden Beitrag werden die Erfahrungen aus einem aktuell in Ausführung befindlichen, rd. 8,6 km langen Überleitungsstollen für ein Wasserkraftprojekt in alpinen Schichtfolgen in Tirol/Österreich zusammengefasst. Die Rahmenumstände eines relativ geringem Stollendurchmessers (rd. 3,5 m), einer offenen Gripper-Hartgesteins-TBM und günstiger Stabilitätsverhältnisse führten hier dazu, dass die Stollenlaibung über weite Strecken (bauzeitlich) unverkleidet ausgeführt werden konnte. Für die ingenieurgeologische Dokumentation ergaben sich hieraus ungewöhnlich gute und über einen längeren Zeitraum zugängliche Aufschlussverhältnisse, für die - auch bedingt durch die verschiedenen Aufgabenstellungen - durch die auf Auftraggeber-und Auftragnehmer-Seite tätigen Geologenteams methodisch unterschiedliche Dokumentationsansätze gewählt wurden. Der vorliegende Beitrag stellt die drei am Projekt eingesetzten Dokumentationsmethoden vor und diskutiert sie hinsichtlich ihrer spezifischen, fachlichen und wirtschaftlichen Vor-und Nachteile.
Article
Deep Alpine tunnels are characterised by great lengths and deep overburden and are mostly bored by TBMs. The exploration of rock mass conditions plays an essential role with regard to the technical feasibility, the estimation of advance rates and the safety and cost‐effectiveness of a project. Investigation drilling from the surface is often not possible due to the topographical conditions and the very high cost considering the great depths involved. Most TBMs are therefore designed to permit the exploration of the ground in parallel to continued tunnelling. This paper offers an overview of currently available drilling processes, with hammer drilling with logging of drill data, core drilling with the use of preventers and directional drilling methods. Special attention is paid to the restricted space available at the cutterhead of a TBM and the practicalities of installing machinery. The quality of exploration results under the conditions of TBM operation, which is mainly intended to optimise advance rate, is also considered. Tiefliegende Alpentunnel sind gekennzeichnet von großen Vortriebslängen und hohen Überlagerungen und werden vorwiegend mit TVM's aufgefahren. Die Erkundung der Gebirgsverhältnisse spielt dabei eine wesentliche Rolle im Hinblick auf die technische Machbarkeit, die Einschätzung von Vortriebsleistungen sowie die Sicherheit und die Wirtschaftlichkeit eines Projekts. Erkundungsbohrungen von der Geländeoberfläche sind wegen der topographischen Verhältnisse, aber auch wegen der sehr hohen Kosten aufgrund der großen Überlagerungshöhen oft nicht machbar. Daher werden die meisten TVM‐Vortriebe mit einer parallel zum Vortrieb laufenden Untergrunderkundung konzipiert. Dieser Beitrag gibt einen Überblick über die aktuellen Bohrverfahren von Hammerschlagbohrungen mit Bohrdatenaufzeichnung über Kernbohrungen mit dem Einsatz von Bohrpreventern bis hin zu gesteuerten Bohrmethoden. Dabei wird speziell auf die Anforderungen der engen Platzverhältnissen im Bereich des Bohrkopfs einer TVM und deren gerätetechnischen Möglichkeiten eingegangen. Darüber hinaus erfolgt eine Betrachtung der Qualität der Erkundungsergebnisse unter den Zwängen eines TVM‐Vortriebs, der in erster Linie auf Vortriebsleistung ausgelegt ist.
Article
On contract KAT2 at the 33 km long Koralm Tunnel, two hard rock double shield TBMs are currently boring a total distance of about 17 km each through the Koralm crystalline. Due to the forecast ground conditions, particularly localised fault zones and aquiferous areas, systematic exploration is being undertaken to provide continuous prediction of ground conditions. The intention is only ever to bore through already explored rock through the consistent application of the standardised method adapted to suit the tunnelling. The exploration system being used is mainly based on probe drilling (rotary hammer and core drilling) and the seismic method. With the assistance of the geophysical exploration system TSWD disturbed areas of the rock mass can be detected up to a distance of about 150 m ahead of the machine. Thereby the source of the seismic waves, which propagate into the rock mass, is the cutting process of the TBM cutterhead. The supplementary and targeted use of hammer and core drilling, which can be drilled up to about 100 m ahead, enables the direct exploration of any fault zones and aquiferous regions and the evaluation of their characteristics and the effect to be expected on tunnelling. In order to evaluate the behaviour of the system and to verify the predictions, the geologists and geotechnicians on site perform continuous analyses of the machine data [1] and the geological documentation. This has led so far to good and reliable prediction results. Beim Baulos KAT2 des 33 km langen Koralmtunnels sind derzeit zwei Hartgesteins‐Doppelschild‐Tunnelvortriebsmaschinen, die das Koralmkristallin auf einer Gesamtlänge von je ca. 17 km durchörtern, im Einsatz. Aufgrund der prognostizierten Gebirgsverhältnisse, insbesondere der lokal auftretenden Störungszonen und bergwasserführenden Bereiche, wird ein systematisches Vorauserkundungssystem zur laufenden Prognose der Baugrundverhältnisse eingesetzt. In jedem Fall wird angestrebt, durch eine konsequente Anwendung standardisierter und auf den Vortrieb abgestimmter Methoden nur in erkundetem Gebirge vorzutreiben. Das zum Einsatz kommende Vorauserkundungssystem stützt sich im Wesentlichen auf Bohrungen (Drehschlagbohrungen und Kernbohrungen) und seismische Verfahren. Mithilfe des geophysikalischen Vorauserkundungssystems TSWD, das den Fräsvorgang des TBM‐Bohrkopfs und die dabei in das Gebirge übertragenen Wellen als seismische Quelle nutzt, können gestörte Gebirgsbereiche bis zu 150 m voraus prognostiziert werden. Der ergänzende und gezielte Einsatz von Drehschlag‐ und Kernbohrungen, die bis zu 100 m vorauseilend abgeteuft werden, ermöglicht eine direkte Erkundung allfälliger Störungszonen und wasserführender Bereiche und somit eine Bewertung hinsichtlich deren Ausprägung und deren erwartete Auswirkung auf das Vortriebsgeschehen. Zur Beurteilung des Systemverhaltens und zur Verifikation der Prognose erfolgen durch die Geologen und Geotechniker vor Ort laufend Analysen der TBM‐Maschinendaten [1] bzw. der baugeologischen Dokumentation. Dies hat bis dato zu guten und verlässlichen Prognoseergebnissen geführt.
Article
Geological and geophysical investigations, as well as drilling have brought the quality of geotechnical prognosis for tunnels to a high standard. However, the remaining risk during tunnel construction is still considerable, especially in case of construction by a tunnel boring machine (TBM). Seismic imaging of faults and other geological features affecting the construction ahead of a tunnel face can supply valuable information to reduce this risk. These methods are based on Vertical Seismic Profiling (VSP) locating sources and receivers in the tunnel and generating seismic waves by small blasts or mechanical devices. A fundamental problem in the application of this method is that reflectors (fault zones, petrologic boundaries, or similar) are imaged at their intersection with the tunnel axis only in case they are orthogonal to this axis. Reflectors oriented obliquely to the tunnel axis may be imaged perfectly. However, they must be extrapolated to their intersection with the tunnel axis, thus imposing major uncertainties on prediction. Therefore it was decided to concentrate on Tunnel Seismic While Drilling (TSWD), an alternative method, which uses the vibrations produced by the cutting head of the TBM as seismic source. Continuous monitoring is possible by this method and the above mentioned problem may be overcome. Conventional seismic traces are extracted from the recordings by the use of a pilot signal recorded near the cutting head of the TBM. First results from a pilot study accompanying the construction of a gallery in the Gesäuse mountain range, Styria, Austria are presented. The bandwidth of the seismic signals is >200 Hz, a high signal to noise ratio is achieved, and excellent conventional seismic traces are extracted. Thus the most important component of the whole method has been realised successfully. Additional aspects of the method are discussed and an outlook to the continuation of the pilot study is given.
Article
BEAM is a non-intrusive focused-electrical induced polarisation ground prediction technique, permanently operating while TBM tunnelling. Main components of the survey system are the measuring unit placed in the TBM operator cabin and special adapted excavation tools which are used as electrodes. The unit is connected to the guidance system and receives the boring signal which allows fully automatic data acquisition and visualisation in real-time on an integrated monitor. Communication facilities transfer the forecast results to every accredited computer world wide simultaneously. Based on the measuring data the percentage frequency effect PFE and the resistivity R, an advanced evaluation software is established for geoelectrical-geological/hydrogeological classification and interpretation. Selected case studies from international TBM projects are outlined with prediction results of different kinds of exploration targets and geological situations. Since 2000 the geophysical probing system is fulfilling the practical demands under the rough and various conditions of TBM tunnelling work by indicating reliable results in hard rock as well as in soft ground.
Vortrag an der Generalversammlung der FGU in Zürich vom 14
  • G Lombardi
  • U Fgu Fachgruppe Für Untertagbau
  • G Ref
Lombardi, G. (2004): Kosten im Tunnelbau – Vom Voranschlag zum Endpreis, Vortrag an der Generalversammlung der FGU in Zürich vom 14.Mai 2004, FGU Fachgruppe für Untertagbau, U.Ref.: 102.1-R-157 / 7.47 A Poscher, G. (2004): Die Rolle des Geologen bei der Vertragsabwicklung, in: Leitner, W. & Wais, A. (eds., 2004): Aktuelle Fragen der Vertragsgestaltung im Tiefund Tunnelbau, Proceedings of the International Consulting and Construction Workshop, ICC 5, Innsbruck/Austria.
· Determination of the system behaviour based on data analysis of a hard rock shield TBM
  • N Radoncic
  • M Hein
  • B Moritz
Radoncic, N., Hein, M., Moritz, B. (2014): · Determination of the system behaviour based on data analysis of a hard rock shield TBM. Geomechanics & Tunnelling, 7, 5: p. 565-576 (Wiley).
  • W Schubert
Schubert, W. (2001): Optimierungsmöglichkeiten beim Tunnelbau durch geologisch-geotechnische Begleitung / Überwachung und laufende Besserung des Baugrundmodells. 24. NDK Short Course "Geology in Tunnelling", Technische Universität Graz & 3G
Tunnel Code of Practice" als Grundlage für die Versicherung von Tunnelprojekten, Tunnel, 8
  • P Wannick
Wannick, P. (2007): "Tunnel Code of Practice" als Grundlage für die Versicherung von Tunnelprojekten, Tunnel, 8, p. 23-28 (Bauverlag BV GmbH)
Vortrag an der Generalversammlung der FGU in Zürich vom 14.Mai
  • G Lombardi
  • G Poscher
Lombardi, G. (2004): Kosten im Tunnelbau -Vom Voranschlag zum Endpreis, Vortrag an der Generalversammlung der FGU in Zürich vom 14.Mai 2004, FGU Fachgruppe für Untertagbau, U.Ref.: 102.1-R-157 / 7.47 A Poscher, G. (2004): Die Rolle des Geologen bei der Vertragsabwicklung, in: Leitner, W. & Wais, A. (eds., 2004): Aktuelle Fragen der Vertragsgestaltung im Tiefund Tunnelbau, Proceedings of the International Consulting and Construction Workshop, ICC 5, Innsbruck/Austria.