Article

Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHC). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the FCP complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macro-aggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Through the study of photosystem II (PSII) light-harvesting pigment protein complex (LHCII), it was demonstrated that PG binds relatively strongly to LHCII and the specific binding between PG and PSII was conducive to maintaining a reasonable three-dimensional structure of the protein [25]. In addition, PGs could alter the secondary structure of proteins in PSII, leading to an increase in the number of α-helices and β-sheets along with a decrease in random coil structures, possibly due to the effect of PGs on the conformation of tyrosine residues or the surrounding microenvironment [26]. Coincidentally, experimental results (Table S1) with a similar effect of PG on LPOR were observed in a recent in vitro study. ...
... dimensional structure of the protein [25]. In addition, PGs could alter the secondary structure of proteins in PSII, leading to an increase in the number of α-helices and βsheets along with a decrease in random coil structures, possibly due to the effect of PGs on the conformation of tyrosine residues or the surrounding microenvironment [26]. Coincidentally, experimental results (Table S1) with a similar effect of PG on LPOR were observed in a recent in vitro study. ...
Article
Full-text available
Light-dependent protochlorophyllide oxidoreductase (LPOR) is a chlorophyll synthetase that catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) with indispensable roles in regulating photosynthesis processes. A recent study confirmed that thylakoid lipids (TL) were able to allosterically enhance modulator-induced LPOR activation. However, the allosteric modulation mechanism of LPOR by these compounds remains unclear. Herein, we integrated multiple computational approaches to explore the potential cavities in the Arabidopsis thaliana LPOR and an allosteric site around the helix-G region where high affinity for phosphatidyl glycerol (PG) was identified. Adopting accelerated molecular dynamics simulation for different LPOR states, we rigorously analyzed binary LPOR/PG and ternary LPOR/NADPH/PG complexes in terms of their dynamics, energetics, and attainable allosteric regulation. Our findings clarify the experimental observation of increased NADPH binding affinity for LPOR with PGs. Moreover, the simulations indicated that allosteric regulators targeting LPOR favor a mechanism involving lid opening upon binding to an allosteric hinge pocket mechanism. This understanding paves the way for designing novel LPOR activators and expanding the applications of LPOR.
... Regarding the interaction of FCP with its microenvironment, as well as the resultant fluorescence quenching, the effect of FCP aggregation has been attracting much attention [8,26,27]. However, the influence of lipid medium on the conformation and energetics of an individual FCP complex has not been examined in detail. ...
... Based on these results it was proposed that in thylakoid membranes the spatial limitation caused by the high concentration of membrane proteins inhibits the formation of non-bilayer lipid phases. Additional studies demonstrated that MGDG stabilizes the oligomeric states of LHCII (Schaller et al., 2011), FCP complexes and the LHC of the Prasinophyceae M. squamata (Schaller-Laudel et al., 2017). Furthermore, MGDG increases the mechanical stability of the LHCII (Seiwert et al., 2017), thereby preventing the unfolding of trimeric LHCII. ...
Article
Full-text available
The xanthophyll cycles of higher plants and algae represent an important photoprotection mechanism. Two main xanthophyll cycles are known, the violaxanthin cycle of higher plants, green and brown algae and the diadinoxanthin cycle of Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. The forward reaction of the xanthophyll cycles consists of the enzymatic de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin or diadinoxanthin to diatoxanthin during periods of high light illumination. It is catalyzed by the enzymes violaxanthin or diadinoxanthin de-epoxidase. During low light or darkness the back reaction of the cycle, which is catalyzed by the enzymes zeaxanthin or diatoxanthin epoxidase, restores the epoxidized xanthophylls by a re-introduction of the epoxy groups. The de-epoxidation reaction takes place in the lipid phase of the thylakoid membrane and thus, depends on the nature, three dimensional structure and function of the thylakoid lipids. As the xanthophyll cycle pigments are usually associated with the photosynthetic light-harvesting proteins, structural re-arrangements of the proteins and changes in the protein-lipid interactions play an additional role for the operation of the xanthophyll cycles. In the present review we give an introduction to the lipid and fatty acid composition of thylakoid membranes of higher plants and algae. We introduce the readers to the reaction sequences, enzymes and function of the different xanthophyll cycles. The main focus of the review lies on the lipid dependence of xanthophyll cycling. We summarize the current knowledge about the role of lipids in the solubilization of xanthophyll cycle pigments. We address the importance of the three-dimensional lipid structures for the enzymatic xanthophyll conversion, with a special focus on non-bilayer lipid phases which are formed by the main thylakoid membrane lipid monogalactosyldiacylglycerol. We additionally describe how lipids and light-harvesting complexes interact in the thylakoid membrane and how these interactions can affect the structure of the thylakoids. In a dedicated chapter we offer a short overview of current membrane models, including the concept of membrane domains. We then use these concepts to present a model of the operative xanthophyll cycle as a transient thylakoid membrane domain which is formed during high light illumination of plants or algal cells.
Article
In the present study, low concentrations of the very mild detergent n-dodecyl-α-d-maltoside in conjunction with sucrose gradient ultracentrifugation were used to prepare fucoxanthin chlorophyll protein (FCP) complexes of the centric diatom Thalassiosira pseudonana. Two main FCP fractions were observed in the sucrose gradients, one in the upper part and one at high sucrose concentrations in the lower part of the gradient. The first fraction was dominated by the 18 kDa FCP protein band in SDS-gels. Since this fraction also contained other protein bands, it was designated as fraction enriched in FCP-A complex. The second fraction contained mainly the 21 kDa FCP band, which is typical for the FCP-B complex. Determination of the lipid composition showed that both FCP fractions contained monogalactosyl diacylglycerol as the main lipid followed by the second galactolipid of the thylakoid membrane, namely digalactosyl diacylglycerol. The negatively charged lipids sulfoquinovosyl diacylglycerol and phosphatidyl glycerol were also present in both fractions in pronounced concentrations. With respect to the pigment composition, the fraction enriched in FCP-A contained a higher amount of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt), whereas the FCP-B fraction was characterized by a lower ratio of xanthophyll cycle pigments to the light-harvesting pigment fucoxanthin. Protein analysis by mass spectrometry revealed that in both FCP fractions the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (DDE) was present. In addition, the analysis showed an enrichment of DDE in the fraction enriched in FCP-A but only a very low amount of DDE in the FCP-B fraction. In-vitro de-epoxidation assays, employing the isolated FCP complexes, were characterized by an inefficient conversion of DD to Dt. However, in line with the heterogeneous DDE distribution, the fraction enriched in FCP-A showed a more pronounced DD de-epoxidation compared with the FCP-B.
Chapter
Light harvesting and photochemistry is performed by photosystems coupled to specific antennae embedded in the thylakoid membrane, a common principle across diatoms, plants, and green algae. Still, unique features of diatoms within this common principle have been unraveled in recent decades, likely resulting from the complex evolutionary history of diatoms. These unique features are found in (1) the lipid composition of the thylakoid membrane, (2) the spatial organization of the light-harvesting complexes, and (3) their protein and pigment composition. This chapter summarizes current knowledge of these three specific features, with a focus on structural and functional properties.KeywordsDiatomsFCPLHCLight harvestingLipidsThylakoidsXanthophyll cycle
Article
Since the publication of the fluid-mosaic membrane theory by Singer and Nicolson in 1972 generations of scientists have adopted this fascinating concept for all biological membranes. Assuming the membrane as a fluid implies that the components embedded in the lipid bilayer can freely diffuse like swimmers in a water body. During the detailed biochemical analysis of the thylakoid protein components of chloroplasts from higher plants and algae, in the ‘80 s and ‘90 s it became clear that photosynthetic membranes are not homogeneous either in the vertical or the lateral directions. The lateral heterogeneity became obvious by the differentiation of grana and stroma thylakoids, but also the margins have been identified with a highly specific protein pattern. Further refinement of the fluid mosaic model was needed to take into account the presence of non-bilayer lipids, which are the most abundant lipids in all energy-converting membranes, and the polymorphism of lipid phases, which has also been documented in thylakoid membranes. These observations lead to the question, how mobile the components are in the lipid phase and how this ordering is made and maintained and how these features might be correlated with the non-bilayer propensity of the membrane lipids. Assuming instead of free diffusion, a “controlled neighborhood” replaced the model of fluidity by the model of a “mixed crystal structure”. In this review we describe why basic photosynthetic regulation mechanisms depend on arrays of crystal-like lipid-protein macro-assemblies. The mechanisms which define the ordering in macrodomains are still not completely clear, but some recent experiments give an idea how this fascinating order is produced, adopted and maintained. We use the operation of the xanthophyll cycle as a rather well understood model challenging and complementing the standard Singer-Nicolson model via assigning special roles to non-bilayer lipids and non-lamellar lipid phases in the structure and function of thylakoid membranes.
Preprint
Ostreococcus tauri is an ancient phototrophic microalgae that possesses favorable genetic and cellular characteristics for reductionist studies probing biosystem design and dynamics. Here multimodal bioimaging and multi-omics techniques were combined to interrogate O. tauri cellular changes in response to variations in bioavailable nitrogen and carbon ratios. Confocal microscopy, stimulated Raman scattering, and cryo-soft x-ray tomography revealed whole cell ultrastructural dynamics and composition while proteomic and lipidomic profiling captured changes at the molecular and macromolecular scale. Despite several energy dense long-chain triacylglycerol lipids showing more than 40-fold higher abundance under N deprivation, only a few proteins directly associated with lipid biogenesis showed significant expression changes. However, the entire pathway for starch granule biosynthesis was highly upregulated suggesting much of the cellular energy is preferentially directed towards starch over lipid accumulation. Additionally, three of the five most downregulated and five of the ten most upregulated proteins during severe nitrogen depletion were unnamed protein products that warrant additional biochemical analysis and functional annotation to control carbon transformation dynamics in this smallest eukaryote.
Article
Full-text available
The light reactions of photosynthesis, which include light-harvesting and charge separation, take place in the amphiphilic environment of the thylakoid membrane. The light-harvesting complex II (LHCII) is the main responsible for light absorption in plants and green algae, and is involved in photoprotective mechanisms that regulate the amount of excited states in the membrane. The dual function of LHCII has been extensively studied in detergent micelles, but recent results have indicated that the properties of this complex differ in a lipid environment. In this work, we checked these suggestions by studying LHCII in liposomes. By combining bulk and single molecule measurements, we monitored the fluorescence characteristics of liposomes containing single complexes up to densely packed proteoliposomes. We show that the natural lipid environment per se does alter the properties of LHCII, which for single complexes remain very similar to that in detergent. However, we show that LHCII has the strong tendency to cluster in the membrane and that protein interactions and the extent of crowding modulate the lifetimes of the excited state in the membrane. Finally, the presence of LHCII monomers at low concentrations of complexes per liposome is discussed.
Article
Full-text available
Spatial segregation of photosystems in the thylakoid membrane (lateral heterogeneity) observed in plants and in the green algae is usually considered to be absent in photoautotrophs possessing secondary plastids, such as diatoms. Contrary to this assumption, here we show that thylakoid membranes in the chloroplast of a marine diatom, Phaeodactylum tricornutum, contain large areas occupied exclusively by a supercomplex of photosystem I (PSI) and its associated Lhcr antenna. These membrane areas, hundreds of nanometers in size, comprise hundreds of tightly packed PSI-antenna complexes while lacking other components of the photosynthetic electron transport chain. Analyses of the spatial distribution of the PSI-Lhcr complexes have indicated elliptical particles, each 14 × 17 nm in diameter. On larger scales, the red-enhanced illumination exerts a significant effect on the ultrastructure of chloroplasts, creating superstacks of tens of thylakoid membranes.
Article
Full-text available
The organization of photosystem I (PS I) and photosystem II (PS II) as well as their light harvesting complexes (LHC) in the thylakoid membrane of Mantoniella squamata was characterized by measurements of fluorescence induction and picosecond fluorescence decay kinetics. This microalga possesses a homogeneous thylakoid membrane system for which no state transitions are known and in which the two photosystems are somehow mingled. Here we addressed the questions whether PS I and PS II are in such a close contact that PS I drains excitation energy from PS II as suggested by Trissl and Wilhelm (Trissl, H.-W. and Wilhelm, C. (1993) Trends Biochem. Sci. 18, 415–419) and whether the PS II units themselves are excitonically coupled (connected units) or organized as separated units. By quantitative analysis of fluorescence induction curves we determined the antenna size of PS II to be N ≈ 510 (all chlorophylls). From the ratio of maximal FmFo = 3.1 we conclude that the excitonic contact between PS II and PS I is weak. However, there is significant contact between PS II units as obvious from the sigmoidicity of the fluorescence induction curve. The fluorescence induction kinetics are well described by the connected units model (Lavergne, J. and Trissl, H.-W. (1995) Biophys. J. 65, 2474–2492) using only PS IIα-centers. These results indicate that essentially one population of PS II units (PS IIα) exists in the thylakoid membrane of Mantoniella and that the PS II units are in closer contact to each other than to PS I. This closer excitonic contact of PS II units is consistent with the idea of a PS II dimer organization.
Article
Full-text available
Recently, we reported the presence of the violaxanthin-antheraxanthin-zeaxanthin cycle in diatoms, and showed that violaxanthin is the putative precursor of both diadinoxanthin and fucoxanthin in the diatom Phaeodactylum tricornutum Bohlin (M. Lohr and C. Wilhelm, 1999, Proc. Natl. Acad. Sci. USA 96: 8784–8789). In the present study, two possible intermediates in the synthesis of violaxanthin from β-carotene were identified in P. tricornutum, namely β-cryptoxanthin and β-cryptoxanthin epoxide. In low light, the latter pigment prevails, but in high light β-cryptoxanthin accumulates, probably as the result of an increased activity of the xantophyll-cycle de-epoxidase. The apparent kinetics of several xanthophyll conversion steps were determined for P. tricornutum and Cyclotella meneghiniana Kützing. The experimentally determined conversion rates were used to evaluate the hypothetical pathway of xanthophyll synthesis in diatoms. For this purpose a mathematical model was developed which allows the calculation of theoretical rates of pigment conversion for microalgae under steady-state growth conditions. A comparison between measured and calculated conversion rates agreed well with the proposal of a sequential synthesis of fucoxanthin via violaxanthin and diadinoxanthin. The postulation of zeaxanthin as an obligatory intermediate in the synthesis of violaxanthin, however, resulted in large discrepancies between the measured and calculated rates of its epoxidation. Instead of zeaxanthin, β-cryptoxanthin epoxide may be involved in the biosynthesis of violaxanthin in diatoms.
Article
Full-text available
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.
Article
Full-text available
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.
Article
Full-text available
Membrane lipids and fatty acids of Ochromonas danica were analyzed. Of the two betaine lipids, the homoserine lipid DGTS mainly contains 14:0 and 18:2 fatty acids, while the alanine lipid DGTA is enriched in 18:0, 18:2 and 22:5 fatty acids. Of the polar moiety of DGTA, improved NMR data are presented. On incubation of cells with [3,4-14C]methionine, DGTS as well as DGTA were labelled. With [1-14C]methionine as a substrate, the label appeared in DGTS only. If double labelled [3H](glycerol)/[14C](polar part)DGTS was used as a precursor, radioactivity was incorporated specifically into DGTA in which the isotope ratio was unchanged compared to the precursor. Thus, the glyceryltrimethylhomoserine part of DGTS acts as the precursor of the polar group of DGTA. Labelling of cells with [1-14C]oleate in a pulse-chase manner and subsequent analysis of the label in the fatty acids and molecular species of different lipids including DGTS and DGTA, suggested a clearly different role of the two betaine lipids: DGTS acts as a i) primary acceptor for exogenous C 18 monoene acid, ii) substrate for the desaturation of 18:1 to 18:2 acid, and iii) donor of mainly 18:2 fatty acid to be distributed among PE and other membrane lipids. Into DGTA, in contrast, fatty acids are introduced only after elongation and desaturation. As a result, the biosynthesis of DGTA from DGTS involves a decarboxylation and recarboxylation of the polar part and a simultaneous deacylation and reacylation of the glycerol moiety.
Article
Full-text available
Green for Diatoms Diatoms account for 20% of global carbon fixation and, together with other chromalveolates (e.g., dinoflagellates and coccolithophorids), represent many thousands of eukaryote taxa in the world's oceans and on the tree of life. Moustafa et al. (p. 1724 ; see the Perspective by Dagan and Martin ) have discovered that the genomes of diatoms are highly chimeric, with about 10% of their nuclear genes being of foreign algal origin. Of this set of 1272 algal genes, 253 were, as expected, from a distant red algal secondary endosymbiont, but more than 1000 of the genes were derived from green algae and predated the red algal relationship. These protist taxa are important not only for genetic and genomic investigations but also for their potential in biofuel and nanotechnology applications and in global primary productivity in relation to climate change.
Article
Full-text available
An improved HPLC method is presented, which allows separation and quantification of a broad range of lipid classes of marine zooplankton with special regard to neutral lipids. Marine zooplankton species often produce high amounts of exceptional lipids, especially at high latitudes, in order to cope with the harsh environmental conditions and strong seasonality in food supply. Major neutral lipid classes are wax esters, triacylglycerols, diacylglycerol ethers, free fatty alcohols and sterols. Neutral and polar lipids were separated and identified on a monolithic silica column (Chromolith Performance-Si) using high performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). The method resolves a broad spectrum of lipids, varying in polarity from squalene to lysophosphatidylcholine in a single run. The total run time was 35 min including column re-equilibration. The calibration was made at levels of 0.1-60 microg lipid/injection, but a 10-15-fold greater amount can be injected if single lipid classes need to be separated, e.g. for further determination of individual fatty acids. The method was applied to representative Arctic zooplankton species (copepods, pteropods, euphausiids and ctenophores) that are known to biosynthesize in particular neutral lipids like diacylglycerol ethers and free fatty alcohols.
Article
Full-text available
In many biological membranes, the major lipids are “non-bilayer lipids,” which in purified form cannot be arranged in a lamellar structure. The structural and functional roles of these lipids are poorly understood. This work demonstrates that the in vitro association of the two main components of a membrane, the non-bilayer lipid monogalactosyldiacylglycerol (MGDG) and the chlorophyll-a/b light-harvesting antenna protein of photosystem II (LHCII) of pea thylakoids, leads to the formation of large, ordered lamellar structures: (i) thin-section electron microscopy and circular dichroism spectroscopy reveal that the addition of MGDG induces the transformation of isolated, disordered macroaggregates of LHCII into stacked lamellar aggregates with a long-range chiral order of the complexes; (ii) small-angle x-ray scattering discloses that LHCII perturbs the structure of the pure lipid and destroys the inverted hexagonal phase; and (iii) an analysis of electron micrographs of negatively stained 2D crystals indicates that in MGDG-LHCII the complexes are found in an ordered macroarray. It is proposed that, by limiting the space available for MGDG in the macroaggregate, LHCII inhibits formation of the inverted hexagonal phase of lipids; in thylakoids, a spatial limitation is likely to be imposed by the high concentration of membrane-associated proteins.
Article
Full-text available
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.
Article
Full-text available
A positively charged amino acid sequence, located on the NH2 terminus of the polypeptides of the chlorophyll a/b light harvesting complex, stabilizes thylakoid membrane adhesion. Threonine residues in this segment are the site of light-induced, reversible phosphorylation; this covalent modification results in changes in excitation-energy distribution in chloroplast membranes. Removal of the positively charged peptide by treatment with trypsin or chemical modification of amino acids in the sequence disrupts thylakoid adhesion and inhibits regulation of excitation-energy distribution. Purified preparations of the chlorophyll a/b light harvesting complex consist of 2 major polypeptides of 27 and 26 kDa and 2 minor polypeptides of 29 and 25 kDa (based upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Trypsin treatment of the isolated chlorophyll proteins decreases the apparent molecular mass of the 27- and 26-kDa polypeptides by 1-1.5 kDa and releases 3 peptides; [Lys, Arg], Ser-Ala-Thr-Thr-Lys-Lys, and Ser-Ala-Thr-Thr-Lys. These peptides probably form the overlap sequence, [Lys, Arg]-Ser-Ala-Thr-Thr-Lys-Lys. The polypeptides of the chlorophyll a/b light-harvesting complex were separated by isoelectric focusing into 5 chlorophyll protein fractions which had isoelectric points between 4.0 and 4.55. The 27-kDa polypeptides had an isoelectric point of 4.3, and bound 11 chlorophyll molecules/polypeptide.
Article
The study investigated the influence of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt) on the spectroscopic characteristics, structure and protein composition of isolated fucoxanthin chlorophyll protein (FCP) complexes of the pennate diatom Phaeodactylum tricornutum. 77 K fluorescence emission spectra revealed that Dt-containing FCP complexes showed a characteristic long wavelength fluorescence emission at 700 nm at a pH-value of 5 whereas DD-enriched FCPs retained the typical 680 nm fluorescence emission maximum of isolated FCPs. The 700 nm emission in Dt-containing FCPs indicates an aggregation of antenna complexes and is a typical feature of the quenching site Q1 in recent models for non-photochemical fluorescence quenching (NPQ). A comparable long-wavelength fluorescence emission was found in FCP complexes prepared with either triton X-100 or n-dodecyl β-D-maltoside as detergent. A treatment of the FCP complexes at low pH-values in the presence of a high concentration of Mg(2+) ions showed that the extent of FCP aggregation which leads to the 700 nm fluorescence emission is different from the macro-aggregation of antenna complexes in higher plants. Protein analyses by mass spectrometry showed that the protein composition of the DD- and Dt-enriched FCP complexes was comparable. However, the Lhcf6 and Lhcr1 polypeptides were only found in Dt-enriched FCPs isolated with dodecyl maltoside whereas the Lhcf17 protein was only detected in DD-enriched FCPs prepared with triton. With respect to low pH-induced antenna aggregation it is important that the Lhcx1 protein was found in both DD- and Dt-enriched FCPs, albeit with only two peptides with confident scores.
Article
The process of primary electric charge separation in photosynthesis takes place in the reaction centers but photosynthesis can operate efficiently and fluently due to the activity of several pigment-protein complexes called antenna, which absorb light quanta and transfer electronic excitations towards the reaction centers. LHCII is the major photosynthetic pigment-protein antenna complex of plants and appears in the trimeric form. Several recent reports point to trimeric organization of LHCII as a key factor responsible for the chloroplast architecture via stabilization of granal organization of the thylakoid membranes. In the present work we address the question: whether such an organization could also directly influence the antenna properties of this pigment-protein complex? Chlorophyll fluorescence analysis reveals that excitation energy transfer in LHCII is substantially more efficient in trimers and dissipative energy losses are higher in monomers. It could be concluded that trimers are exceptionally well suited to perform the antenna function. Possibility of fine regulation of the photosynthetic antenna function via the LHCII trimer-monomer transition is also discussed, based on the fluorescence lifetime analysis in a single chloroplast.
Article
Photosynthetic eukaryotes exhibit very different light-harvesting proteins, but all contain membrane-intrinsic light-harvesting complexes (Lhcs), either as additional or sole antennae. Lhcs non-covalently bind chlorophyll a and in most cases another chlorophyll, as well as very different carotenoids, depending on the taxon. The proteins fall into two major groups: The well-defined Lhca/b group of proteins binds typically chlorophyll b and lutein, and the group is present in the ‘green lineage’. The other group consists of Lhcr/Lhcf, Lhcz and Lhcx/LhcSR proteins. The former are found in the so-called Chromalveolates, where they mostly bind chlorophyll c and carotenoids very efficient in excitation energy transfer, and in their red algae ancestors. Lhcx/LhcSR are present in most Chromalveolates and in some members of the green lineage as well. Lhcs function in light harvesting, but also in photoprotection, and they influence the organisation of the thylakoid membrane. The different functions of the Lhc subfamilies are discussed in the light of their evolution.
Article
In their natural environment plants and algae are exposed to rapidly changing light conditions and light intensities. Illumination with high light intensities has the potential to overexcite the photosynthetic pigments and the electron transport chain and thus induce the production of toxic reactive oxygen species (ROS). To prevent damage by the action of ROS, plants and algae have developed a multitude of photoprotection mechanisms. One of the most important protection mechanisms is the dissipation of excessive excitation energy as heat in the light-harvesting complexes of the photosystems. This process requires a structural change of the photosynthetic antenna complexes that are normally optimized with regard to efficient light-harvesting. Enhanced heat dissipation in the antenna systems is accompanied by a strong quenching of the chlorophyll a fluorescence and has thus been termed non-photochemical quenching of chlorophyll a fluorescence, NPQ. The general importance of NPQ for the photoprotection of plants and algae is documented by its wide distribution in the plant kingdom. In the present review we will summarize the present day knowledge about NPQ in higher plants and different algal groups with a special focus on the molecular mechanisms that lead to the structural rearrangements of the antenna complexes and enhanced heat dissipation. We will present the newest models for NPQ in higher plants and diatoms and will compare the features of NPQ in different algae with those of NPQ in higher plants. In addition, we will briefly address evolutionary aspects of NPQ, i.e. how the requirements of NPQ have changed during the transition of plants from the aquatic habitat to the land environment. We will conclude with a presentation of open questions regarding the mechanistic basis of NPQ and suggestions for future experiments that may serve to obtain this missing information.
Article
The primary structure of the Chla/b/c-binding protein from Mantoniella squamata is determined. This is the first report that protein sequencing reveals one modified amino acid resulting in a LHCP-specific TFA-cleavage site. The comparison of the sequence of Mantoniella with other Chla/b-and Chla/c-binding proteins shows that the modified amino acid is located in a region which is highly conserved in all these proteins. The alignment also reveals that the LHCP of Mantoniella is related to the Chla/b-binding proteins. Finally, possible Chl-binding regions are discussed.
Article
In the present study, the influence of Mg(2+) ions and low pH values on the aggregation state of the diatom FCP and the LHCII of vascular plants was studied. In addition, the concentration of thylakoid membrane lipids associated with the complexes was determined. The results demonstrate that the FCP, which contained a significantly higher concentration of the negatively charged lipids SQDG and PG, was less sensitive to Mg(2+) and low pH values than the LHCII which was characterized by lower amounts of SQDG and a higher concentration of MGDG. High MgCl2 concentrations and pH values below pH 6 induced significant changes of the absorption and 77K fluorescence emission spectra of the LHCII, indicating a strong aggregation of the light-harvesting complex. This aggregation was also visible as a pellet after centrifugation on a sucrose cushion. Although the FCP responded with changes of the absorption and fluorescence spectra to low pH and Mg(2+) incubation, these spectral changes were less pronounced than those observed for the LHCII. In addition, the FCP complexes did not show a visible pellet after incubation with either low pH values or high Mg(2+) concentrations. Only the combined action of Mg(2+) and pH 5 led to FCP aggregates of a size that could be pelleted by centrifugation. The decreased sensitivity of FCP aggregation to Mg(2+) and low pH is discussed with respect to the differences in the concentration of the lipids surrounding the FCP and LHCII and the different thylakoid membrane organizations of diatoms and vascular plants.
Article
Fucoxanthin chlorophyll a/c-binding protein (FCP) is a unique light-harvesting apparatus in diatoms. Several biochemical characteristics of FCP oligomer and trimer from different diatom species have been reported previously. However, the integration of information about molecular organizations and polypeptides of FCP through a comparison among diatoms has not been published. In this study, we used two-dimensional clear-native/SDS-PAGE to compare the oligomeric states and polypeptide compositions of FCP complexes from four diatoms: Chaetoceros gracilis, Thalassiosira pseudonana, Cyclotella meneghiniana, and Phaeodactylum tricornutum. FCP oligomer was found in C. gracilis, T. pseudonana, and C. meneghiniana, but not in P. tricornutum. The oligomerization varied among the three diatoms, although a predominant subunit having similar molecular weight was recovered in each FCP oligomer. These results suggest that the predominant subunit is involved in the formation of high FCP oligomerization in each diatom. In contrast, FCP trimer was found in all the diatoms. The trimerizations were quite similar, whereas the polypeptide compositions were markedly different. On the basis of this information and that from mass spectrometric analyses, the gene products in each FCP complex were identified in T. pseudonana and P. tricornutum. Based on these results, we discuss the role of FCP oligomer and trimer from the four diatoms.
Article
Lipids which do not form bilayers exist in most biological membranes but not as profusely as in the chloroplast thylakoids of oxygen-evolving photosynthetic organisms. Almost half the polar lipid content of this membrane is monogalactosyldiacylglycerol which does not form bilayers. The function of this unusual lipid with its lack of electrical charge and high degree of unsaturation is to provide a fluid environment in which the diffusional processes of photosynthetic electron transfer can occur and, maybe, to facilitate the optimal packing of large intrinsic proteins within the naturally occurring bilayer structure.
Article
These pages describe relatively simple and reliable methods for the culture of marine phytoplankton species useful for feeding marine invertebrates. The methods suffice for the most fastidious algae now routinely cultivable, and simplifications indicated for less demanding species are easily made; for example, omission of silicate for plants other than diatoms. Certain modifications of techniques, ancillary methods, and precautions will be treated briefly because questions often arise concerning them, but documentation will be minimal and hopefully restricted to publications readily available.
Article
The light-harvesting complexes (LHC) were isolated from the unicellular alga Mantoniella squamata (Prasinophyceae) by sucrose-density centrifugation. Beside the major LHC (II), a photosystem I complex was obtained that could be dissociated into a photosystem I core complex and an associated LHC I. In contrast to other chlorophyll b-containing antennae, both LHC II as well as LHC I were observed to be identical with respect to the following features: the molecular weights, the isoelectric points and the retention behavior on anion-exchange chromatography of the apoproteins, the pigment content and the absorption and fluorescence spectra. We conclude from these results that Mantoniella contains only one homogenous population of LHC, which cooperate with both photosystems not on the basis of specific recognition but on the simple basis of statistical interaction. This is the first report of a chlorophyll b-containing light-harvesting system without any subpopulations: therefore, it is suggested that it arises from a most primitive type of chlorophyll b-containing chloroplast.
Article
We separated chlorophylls c1 c2, and c3 of marine phytoplankton together with other pigments by a modification of the commonly applied reversed-phase-C18-high-performance liquid chromatography (RP-C18-HPLC) method. However, the chlorophyll c-like pigment 2,4, Mg-divinylpheoporphyrin as monomethyl ester, co-eluted with chlorophyll c1. The method involves optimization of the mobile phase by using a very high ion strength solvent in combination with a high carbon loaded RP-C18 column. Fingerprints of the various taxonomic groups of algae can thus be developed in a single run, including separation of the carotenoids lutein and zeaxanthin.
Chapter
Lipids from algae, lichens and mosses are highly diverse and differ from prokaryotic cyanobacteria and vascular plants in many aspects. Although in lower eukaryotes most of the lipids have functions similar to those in vascular plants, the chain length and the desaturation degree can be significantly higher than that observed in vascular plants. This is due primarily to the fact that these organisms are exposed to extreme environments with respect to drought and temperature. Algae, lichens and mosses may contain exotic lipids like betaine lipids, n-alkanes or halogenated lipids, which will be of industrial interest in the near future. In the present chapter, the lipid composition of algae, lichens and mosses will be presented with a special focus on lipids that are found exclusively in these groups. New data on the function of membrane lipids in algae, lichens and mosses will be discussed, and the effect of environmental changes on the lipid composition in the lower eukaryotes will be outlined briefly.
Article
iserum against two polypeptides of the major fucoxanthin-chlorophylla/c light-harvesting complex of the diatomPhaeodactylum tricornutum and heterologous antiserum against purified photosystem I particles of maize were used to localize these two complexes on the thylakoid membranes ofP. tricornutum. As in many chromophyte algae, the thylakoids are loosely appressed and organized into extended bands of three, giving a ratio of 21 for appressed versus non-appressed membranes. Immunoelectron microscopy demonstrated that the fucoxanthin-chlorophylla/c light-harvesting complex, which is believed to be associated with photosystem II, was equally distributed on the appressed and non-appressed thylakoid membranes. Photosystem I was also found on both types of membranes, but was slightly more concentrated on the two outer non-appressed membranes of each band. Similarly, photosystem I activity, as measured by the photooxidation of 3,3-diaminobenzidine, was higher in the outer thylakoids than in the central thylakoid of each band. We conclude that the thylakoids of diatoms differ from those of green algae and higher plants in their macromolecular organization as well as in their morphological arrangement.
Article
The prasinophycean alga Mantoniella squamata uses in vivo an incomplete violaxanthin cycle. Although the violaxanthin cycle in Mantoniella is capable of converting violaxanthin to zeaxanthin, in intact cells only antheraxanthin accumulates during periods of strong illumination. Antheraxanthin enhances non-photochemical quenching of chlorophyll fluorescence. Inhibition of antheraxanthin synthesis by the de-epoxidase inhibitor dithiothreitol abolishes increased thermal energy dissipation. Antheraxanthin-dependent non-photochemical quenching, like zeaxanthin-mediated non-photochemical quenching in higher plants, is uncoupler-sensitive. Mantoniella squamata cells cultivated at high light intensities contain higher amounts of violaxanthin than cells grown at low light. The increased violaxanthin-cycle pool size in high-light-grown Mantoniella cells is accompanied by higher de-epoxidation rates in the light and by a greater capacity to quench chlorophyll fluorescence non-photochemically. Antheraxanthin-dependent amplification of non-photochemical quenching is discussed in the light of recent models developed for zeaxanthin- and diatoxanthin-mediated enhanced heat dissipation.
Article
Spectroscopy was used to investigate the fluorescence quenching mechanism in light-harvesting complex 2 (LHC2). The 77 K fluorescence excitation spectroscopy was performed for detection of aggregation state of LHC2 treated with different concentrations of octylphenol poly(ethyleneglycol ether)10 (TX-100). Resonance Raman (RR) spectra excited with 488, 496, and 514 nm provided molecular configuration of neoxanthin, lutein 1, and lutein 2, respectively. At increased concentration of TX-100, the RR signals of xanthophylls were enhanced in the four frequency regions, which was accompanied with increase of fluorescence of chlorophyll (Chl) a. Thus the absorption of the three xanthophyll molecules was inclined to excitation wavelength, which proved that functional configurations of xanthophyll molecules in LHC2 were vital for fast transfer of excitation energy to Chl a molecules. Changes in the v4 region (C-H out-of-plane bending modes, at ∼960 cm−1 in RR spectra) demonstrated that the twist feature of neoxanthin, lutein 1, and lutein 2 molecules existed in LHC2 trimers, however, it was lost in the LHC2 macro-aggregates. In the second derivative absorption spectra of LHC2, neoxanthin absorption was not detected in LHC2 macro-aggregates, while evident absorption was found in LHC2 trimers and this absorption decreased obviously when TX-100 concentration was higher than 1 mM. Hence the neoxanthin molecule had a structural role in formation of LHC2 trimers. The RR and absorption spectra also implied that carotenoid molecules constructed the functional LHC2 trimers via their intrinsic configuration features, which enabled energy transfer to Chl a efficiently and led to lower fluorescence quenching efficiency. In contrast, these intrinsic twist configurations were lost in LHC2 macro-aggregates and led to lower energy transfer efficiency and higher fluorescence quenching efficiency.
Article
In vivo the prasinophyceaen alga Mantoniella squamata Manton et Parke uses an incomplete violaxanthin (Vx) cycle, leading to a strong accumulation of antheraxanthin (Ax) under conditions of high light. Here, we show that this zeaxanthin (Zx)-depleted Vx/Ax cycle is caused by an extremely slow second de-epoxidation step from Ax to Zx, and a fast epoxidation from Ax back to Vx in the light. The rate constant of Ax epoxidation is 5 to 6 times higher than the rate constant of Zx formation, implying that Ax is efficiently converted back to Vx before it can be de-epoxidated to Zx. It is, however, only half the rate constant of the first de-epoxidation step from Vx to Ax, thus explaining the observed net accumulation of Ax during periods of strong illumination. When comparing the rate constant of the second de-epoxidation step in M. squamata with Zx formation in spinach (Spinacia oleracea L.) thylakoids, we find a 20-fold reduction in the reaction kinetics of the former. This extremely slow Ax de-epoxidation, which is also exhibited by the isolated Mantoniella violaxanthin de-epoxidase (VDE), is due to a reduced substrate affinity of M. squamata VDE for Ax compared with the VDE of higher plants. Mantoniella VDE, which has a similar K m value for Vx, shows a substantially increased K m for the substrate Ax in comparison with spinach VDE. Our results furthermore explain why Zx formation in Mantoniella cells can only be found at low pH values that represent the pH optimum of VDE. A pH of 5 blocks the epoxidation reaction and, consequently, leads to a slow but appreciable accumulation of Zx.
Article
The ultrastructure and the supramolecular organization of the thylakoids of the small green flagellate,Mantoniella squamata, were examined in thin sections and freeze-fracture preparations. The whole chloroplast is tightly packed with thylakoids, which show a pattern of meandering, branching and/or anastomosing membranes. In freeze-fracture preparations only two fracture-faces can be distinguished: the PF- and the EF-face. The PF-face has a much higher particle density than the EF-face (PF: 4086 particles/m2; EF: 865 particles/m2). The EF-face is not as uniform as the PF-face. The areas which are packed with particles probably correspond to closely appressed thylakoid regions or adhesive patches, noticed in thin sections in some areas. The mean particle size on both faces is also different (EF: 10.5 nm; PF: 8.6 nm), but no information about the classification of the particles to special protein complexes is available at this time.
Article
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-β,d-maltoside, n-octyl-β,d-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer–trimer contacts, has significant impact on the pigment interactions in the complexes.
Article
Wavelength-selective photo-excitation of samples containing a detergent and LHCII (the main light-harvesting complex pertaining to photosystem II of green plants) is used for recording time-resolved triplet-minus-singlet (TmS) difference spectra, with a view to probing interactions between chlorophyll a (Chla) and chlorophyll b (Chlb), and between Chla and lutein (Lut). Once the detergent concentration (CD) exceeds a threshold, C©, the TmS spectrum becomes sensitive to λ⊗, the wavelength of excitation, and to t, the delay between excitation and observation. Each increment in CD brings about a diminution in the efficiency of a†→x† transfer (triplet–triplet transfer from Chla to Lut) and a rise in both the triplet formation yield and the fluorescence yield of Chla. What is more, b*→a* transfer (singlet–singlet transfer from Chlb to Chla) slackens to such an extent that Chlb*→Chlb† intersystem crossing, negligible when CD is below C©, begins to vie with transfer, for the deactivation of Chlb* (in the foregoing an asterisk/dagger denotes singlet/triplet excitation). The reduction in the efficiencies of the two transfers is easily understood by: (i) invoking the Kühlbrandt–Wang–Fujiyoshi model of LHCII, which posits each Chlb in contact with a Chla and each Chla in contact with a Lut, and (ii) assuming that the detergent severs contact between adjacent chromophores. That a growth in the triplet yield of Chla* accompanies the detergent-induced decrease in the efficiency of a†→x† transfer becomes intelligible if one assumes, further, that internal conversion in * is faster than that in , where under or over lining betokens the presence or absence of a carotenoid neighbour. When CD is close to C©, most Chla molecules are adjacent to a Lut, internal conversion dominates, and the overall triplet yield is low. As CD is gradually raised the transformation sets in, causing concomitant drops in the efficiencies of a†→x† transfer and internal conversion, and a consequent rise in the overall yields of Chla fluorescence and formation of Chla triplets.
Article
In order to obtain information on the organization of the pigment molecules in chlorophyll (Chl) a/b/c-containing organisms, we have carried out circular dichroism (CD), linear dichroism (LD) and absorption spectroscopic measurements on intact cells, isolated thylakoids and purified light-harvesting complexes (LHCs) of the prasinophycean alga Mantoniella squamata. The CD spectra of the intact cells and isolated thylakoids were predominated by the excitonic bands of the Chl a/b/c LHC. However, some anomalous bands indicated the existence of chiral macrodomains, which could be correlated with the multilayered membrane system in the intact cells. In the red, the thylakoid membranes and the LHC exhibited a well-discernible CD band originating from Chl c, but otherwise the CD spectra were similar to that of non-aggregated LHC II, the main Chl a/b LHC in higher plants. In the Soret region, however, an unusually intense (+) 441 nm band was observed, which was accompanied by negative bands between 465 and 510 nm. It is proposed that these bands originate from intense excitonic interactions between Chl a and carotenoid molecules. LD measurements revealed that the QY dipoles of Chl a in Mantoniella thylakoids are preferentially oriented in the plane of the membrane, with orientation angles tilting out more at shorter than at longer wavelengths (9° at 677 nm, 20° at 670 nm and 26° at 662 nm); the QY dipole of Chl c was found to be oriented at 29° with respect to the membrane plane. These data and the LD spectrum of the LHC, apart from the presence of Chl c, suggest an orientation pattern of dipoles similar to those of higher plant thylakoids and LHC II. However, the tendency of the QY dipoles of Chl b to lie preferentially in the plane of the membrane (23° at 653 nm and 30° at 646 nm) is markedly different from the orientation pattern in higher plant membranes and LHC II. Hence, our CD and LD data show that the molecular organization of the Chl a/b/c LHC, despite evident similarities, differs significantly from that of LHC II.
Article
Fucoxanthin-chlorophyll complexes (FCP) from the centric diatom Cyclotella meneghiniana were isolated and the trimeric FCPa complex was reconstituted into liposomes at different lipid to Chl a ratios. The fluorescence yield of the complexes in different environments was calculated from room temperature fluorescence emission spectra and compared to the aggregated state of FCPa. FCPa surrounded by high amounts of lipids resembled detergent solubilised complexes and with decreasing lipid levels, i.e. in a situation where protein contacts were increasingly favoured, the fluorescence yield of FCPa gradually decreased. In addition, the yield displayed a strong pH-dependency in case of lower lipid contents. The further reduction in fluorescence yield brought about by the conversion of diadinoxanthin to diatoxanthin was pH independent and only depended on the amount of diatoxanthin synthesised. The implications of these data for non-photochemical quenching in centric diatoms are discussed.
Article
An improvement of current methods is needed for simple, rapid, and precise quantification of cellular lipids, including rare species of biologically active cellular lipids, such as phosphatidic acid (PA) and diradylglycerol (DG). In addition, further analysis of hydrolyzed acyl chains from these species by methods such as gas chromatography requires complete separations. Methods have been developed for the quantification of neutral lipids and several phospholipids extracted from mammalian cells and sera. Lipid masses were determined for the major classes of the neutral, nonpolar lipids, and of the phospholipids. The lipid classes were separated by a multistep thin-layer chromatography (TLC) procedure in different solvent systems, a method which we have designated as multi-one-dimensional thin-layer chromatography (MOD-TLC). Resolved lipid bands were visualized by the lipophilic dye primulin (direct yellow 59) and scanned by an automated laser-fluorescence detector. The mass of each band was determined by comparing band intensities of unknown samples to dilution curves of authentic standards. With modifications in solvent mixtures and length of separation times, the majority of biological lipids could be resolved and quantified with MOD-TLC methods. Since the detection method is nondestructive, purified lipids could then be recovered by scraping the visualized bands and extracting the lipids from the silica. The structural identities of the recovered lipids were confirmed by fast-atom bombardment and electrospray mass spectrometry. Extracted lipids were also hydrolyzed to release acyl chains and acyl chain species were determined in comparison to authentic standards by gas chromatography. PA and DG levels in ECV.304 cells were found to be 4. 6 and 3.3%, respectively, of PC levels, with a PA/DG ratio of 1.4, which is in accord with published experience using other methods and different cell types. PA in human serum was detected at 0.6% of PC, indicating the sensitivity of the technique. In contrast to two-dimensional thin-layer chromatography, which allows for good resolution of some lipid species, but cannot be used to analyze more than a single experimental point per plate, MOD-TLC allows for direct comparative analysis of multiple samples on a single TLC plate, while still providing good resolution for the quantification of most major classes of lipid species.
Article
We studied the role of added thylakoid lipids in the light-induced reversible structural changes in isolated macroaggregates of the main light-harvesting chlorophyll a/b complex of photosystem II (LHCII). Loosely stacked lamellar macroaggregates were earlier shown to undergo light-induced reversible structural changes and changes in the photophysical pathways, which resembled those in thylakoid membranes exposed to excess light [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. This structural flexibility of LHCII depends critically on the lipid content of the preparations [Simidjiev, I., et al. (1997) Anal. Biochem. 250, 169-175]. It is now reported that lamellar aggregates of LHCII are capable of incorporating substantial amounts of different thylakoid lipids. The long-range order of the chromophores is retained, while the ultrastructure of the lipid-protein macroaggregates can be modified significantly. Addition of thylakoid lipids to the preparations significantly enhances the ability of the LHCII macroaggregates to undergo light-induced structural changes. The lipid environment of the LHCII complexes therefore plays a significant role in determining the structural flexibility of the macroaggregates. As concerns the mechanism of these changes, it is proposed that the absorption of light and the dissipation of its energy in the macrodomains induces thermal fluctuations which bring about changes in the shape or in the stacking interactions of the membranes, this in turn affecting the long-range order of the embedded chromophores. In thylakoids, a similar mechanism is likely to explain the light-induced structural changes which are largely independent of the photochemical activity of the membranes.
Article
During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is addressed on the level of the organization and regulation of light-harvesting proteins, the dissipation of excessively absorbed light energy by the process of non-photochemical quenching, and the lipid composition of diatom thylakoid membranes. Finally, a working hypothesis of the domain formation of the diatom thylakoid membrane is presented to highlight the most prominent differences of heterokontic thylakoids in comparison to vascular plants and green algae during the acclimation to low and high light conditions.
Article
In the present study the influence of the lipid environment on the organization of the main light-harvesting complex of photosystem II (LHCII) was investigated by 77K fluorescence spectroscopy. Measurements were carried out with a lipid-depleted and highly aggregated LHCII which was supplemented with the different thylakoid membrane lipids. The results show that the thylakoid lipids are able to modulate the spectroscopic properties of the LHCII aggregates and that the extent of the lipid effect depends on both the lipid species and the lipid concentration. Addition of the neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) seems to induce a modification of the disorganized structures of the lipid-depleted LHCII and to support the aggregated state of the complex. In contrast, we found that the anionic lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) exert a strong disaggregating effect on the isolated LHCII. LHCII disaggregation was partly suppressed under a high proton concentration and in the presence of cations. The strongest suppression was visible at the lowest pH value (pH 5) and the highest Mg(2+) concentration (40 mM) used in the present study. This suggests that the negative charge of the anionic lipids in conjunction with negatively charged domains of the LHCII proteins is responsible for the disaggregation. Additional measurements by photon correlation spectroscopy and sucrose gradient centrifugation, which were used to gain information about the size and molecular mass of the LHCII aggregates, confirmed the results of the fluorescence spectroscopy. LHCII treated with MGDG and DGDG formed an increased number of aggregates with large particle sizes in the micromm-range, whereas the incubation with anionic lipids led to much smaller LHCII particles (around 40 nm in the case of PG) with a homogeneous distribution.
Article
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.
Article
The present study shows that thylakoid membranes of the diatom Cyclotella meneghiniana contain much higher amounts of negatively charged lipids than higher plant or green algal thylakoids. Based on these findings, we examined the influence of SQDG on the de-epoxidation reaction of the diadinoxanthin cycle and compared it with results from the second negatively charged thylakoid lipid PG. SQDG and PG exhibited a lower capacity for the solubilization of the hydrophobic xanthophyll cycle pigment diadinoxanthin than the main membrane lipid MGDG. Although complete pigment solubilization took place at higher concentrations of the negatively charged lipids, SQDG and PG strongly suppressed the de-epoxidation of diadinoxanthin in artificial membrane systems. In in vitro assays employing the isolated diadinoxanthin cycle enzyme diadinoxanthin de-epoxidase, no or only a very weak de-epoxidation reaction was observed in the presence of SQDG or PG, respectively. In binary mixtures of the inverted hexagonal phase forming lipid MGDG with the negatively charged bilayer lipids, comparable suppression took place. This is in contrast to binary mixtures of MGDG with the neutral bilayer lipids DGDG and PC, where rapid and efficient de-epoxidation was observed. In complex lipid mixtures resembling the lipid composition of the native diatom thylakoid membrane, we again found strong suppression of diadinoxanthin de-epoxidation due to the presence of SQDG or PG. We conclude that, in the native thylakoids of diatoms, a strict separation of the MGDG and SQDG domains must occur; otherwise, the rapid diadinoxanthin de-epoxidation observed in intact cells upon illumination would not be possible.
Article
Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.