ArticlePDF Available

Acacia saligna: an invasive species on the coast of Molise (southern Italy)

Authors:
  • Ministry of the Environment and Energy Security

Abstract and Figures

: Italy is one of the European countries most affected by biological invasions. In this study, we focused on the impact of Acacia saligna, an Australian invasive plant species, on the coastal ecosystem’s ecology and biodiversity along the sandy coasts of Molise (southern Italy). We analyzed data from 61 vegetation plots recorded in coastal pine forest and Mediterranean scrub habitats of Molise throughout the preparatory actions of the “LIFE Maestrale” project (NAT/IT/000262). In order to study the ecological impact of Acacia saligna comparing invaded and non-invaded areas, we first assigned the Ellenberg’s indicator values to each plant species, which were then used to relate the presence of Acacia saligna with ecological characteristics of sites through a generalized linear model (GLM). Our results showed a significant positive relationship between the presence of Acacia saligna and high levels of soil nutrients and, on the contrary, a negative relationship with the presence of mesophilic species, which are typical of the community interest habitats of pine forest (2270*). The use of ecological indicators is effective to pinpoint the ecological effects of biological invasions, as well as to evaluate habitat conservation state and to identify vulnerable native species.
Content may be subject to copyright.
Introduzione
Le invasioni biologiche da parte di specie non nati-
ve sono una delle cause più rilevanti di perdita di
biodiversità e alterazione degli ecosistemi su scala
globale (Sala et al. 2000, Ehrenfel 2003, Vilà et al.
2011). Le specie esotiche, quando assumono un com-
portamento di tipo invasivo, comportano una serie
di conseguenze negative sia sulla componente natu-
rale degli ecosistemi che sull’economia e sulla salute
umana (European Environment Agency 2013); basti
pensare che i problemi causati dalle specie invasive
vegetali comportano danni per oltre 3.7 miliardi di
euro ogni anno in Europa (Kettunen et al. 2009).
Tra gli ambienti più sensibili all’invasione di specie
non native ci sono sicuramente le dune costiere, do-
ve sono state censite numerose specie esotiche erba-
cee e legnose (Acosta et al. 2007, Celesti-Grapow et
al. 2010, Rejmánek et al. 2004) e sono state registrate
profonde alterazioni del suolo causate dall’accumulo
della loro lettiera (Isermann et al. 2007, Rodriguez-
Echeverria et al. 2011). Nello specifico, le dune co-
stiere in Italia sono particolarmente minacciate dalla
pressione antropica (Prisco et al. 2012, Acosta & Er-
cole 2015) e risentono fortemente del problema delle
specie esotiche invasive. Allo stesso tempo, molti
tratti della costa Italiana sono caratterizzati da un
elevato valore naturalistico e di biodiversità e, per
questo motivo, sono tutelati a livello nazionale ed in-
ternazionale attraverso la creazione di aree protette
incluse nella rete Natura 2000, istituita ai sensi della
direttiva Habitat (92/43/EEC - EEC 1992), che rappre-
senta uno degli strumenti Europei più efficaci in ma-
teria di tutela della biodiversità. Per questi motivi è
di fondamentale importanza studiare quali siano gli
effetti dell’invasione delle specie esotiche sulla biodi-
versità degli ambienti naturali, al fine di adottare
specifiche strategie di contenimento ed eradicazione
di quelle maggiormente invasive.
Forest@ 14: 28-33 (2017) 28
Copyright 2017 © by the Italian Society of Silviculture and Forest Ecology.
doi: 10.3832/efor2211-013
Acacia saligna: specie invasiva delle coste molisane
Valentina Calabrese*, Ludovico Frate, Francesco Iannotta, Irene Prisco, Angela Stanisci
EnviX-Lab, Dipartimento di Bioscienze e Territorio (DiBT), Università degli Studi del Molise, C.da Fonte Lappone, I-
86090 Pesche (IS) - *Corresponding Author: Valentina Calabrese (angiolettovale@gmail.com).
Abstract: Acacia saligna: an invasive species on the coast of Molise (southern Italy). Italy is one of the European
countries most affected by biological invasions. In this study, we focused on the impact of Acacia saligna, an
Australian invasive plant species, on the coastal ecosystem’s ecology and biodiversity along the sandy coasts
of Molise (southern Italy). We analyzed data from 61 vegetation plots recorded in coastal pine forest and
Mediterranean scrub habitats of Molise throughout the preparatory actions of the “LIFE Maestrale” project
(NAT/IT/000262). In order to study the ecological impact of Acacia saligna comparing invaded and non-inva-
ded areas, we first assigned the Ellenberg’s indicator values to each plant species, which were then used to
relate the presence of Acacia saligna with ecological characteristics of sites through a generalized linear model
(GLM). Our results showed a significant positive relationship between the presence of Acacia saligna and hi-
gh levels of soil nutrients and, on the contrary, a negative relationship with the presence of mesophilic spe-
cies, which are typical of the community interest habitats of pine forest (2270*). The use of ecological indica-
tors is effective to pinpoint the ecological effects of biological invasions, as well as to evaluate habitat conser-
vation state and to identify vulnerable native species.
Keywords: Alien Species, Acacia Saligna, EC Priority Habitat, Nitrophilous Species, Molise
Received: Aug 31, 2016; Accepted: Nov 30, 2016; Published online: Jan 31, 2017
Citation: Calabrese V, Frate L, Iannotta F, Prisco I, Stanisci A, 2017. Acacia saligna: specie invasiva delle coste molisane.
Forest@ 14: 28-33 [online 2017-01-31] URL: http://www.sisef.it/forest@/contents/?id=efor2211-013
Calabrese V et al. - Forest@ 14: 28-33
Lungo la costa molisana numerosi habitat di inte-
resse comunitario sono ancora abbastanza diffusi e
ben rappresentati, in particolare in tre Siti di Impor-
tanza Comunitaria (S.I.C.) all’interno della rete Natu-
ra 2000 (Stanisci et al. 2010). Tuttavia, gli habitat di
interesse comunitario presenti in queste aree sono
costantemente minacciati da progetti di sfruttamento
antropico del litorale e da processi invasivi di specie
esotiche (Acosta et al. 2007, Izzi et al. 2007, Stanisci et
al. 2010). Una delle specie esotiche che da tempo co-
lonizza gli ambienti naturali e semi-naturali del lito-
rale molisano è Acacia saligna (Del Vecchio et al.
2013), leguminosa di origine australiana introdotta
intenzionalmente in passato per alcuni interventi di
rimboschimento lungo il litorale adriatico, in seguito
naturalizzata e divenuta poi invasiva negli habitat di
duna e retroduna.
In questo articolo si riportano i risultati di uno stu-
dio che ha valutato l’impatto della specie esotica
Acacia saligna sulla biodiversità e l’ecologia degli eco-
sistemi dunali del litorale molisano. Nello specifico
sono state valutate, attraverso il campionamento del-
la vegetazione, le caratteristiche ecologiche delle aree
invase e non invase. La nostra ipotesi preliminare è
che Acacia saligna sia in grado di modificare le condi-
zioni micro ambientali (in termini di disponibilità di
luce, nutrienti, umidità, ecc.) con conseguenze nega-
tive sulla flora autoctona. La ricerca è stata svolta
nell’ambito del progetto LIFE “Maestrale” (NAT/IT/
000262) che ha come obiettivo la conservazione degli
habitat dunali della costa molisana.
Materiali e metodi
L’area oggetto di analisi è compresa nei S.I.C. “Fo-
ce Trigno-Marina di Petacciato”, ”Foce Biferno-Lito-
rale di Campomarino” e “Foce-Saccione-Bonifica Ra-
mitelli” (Fig. 1). Sono presenti numerosi habitat di
interesse comunitario, tra i quali risultano essere di
interesse prioritario la macchia a ginepri (H2250* -
Dune costiere con Juniperus spp.) e la pineta litoranea
(H2270* - Dune con foreste di Pinus pinea e/o Pinus
pinaster), che coprono complessivamente 117.32 ha.
A contatto con questi habitat, 16.50 ha ettari risulta-
no occupati da boscaglie ad Acacia saligna.
Diversi studi hanno dimostrato che Acacia saligna,
leguminosa originaria dell’Australia dove è molto
comune sui terreni sabbiosi, è in grado di indurre
cambiamenti microclimatici, dei regimi di umidità e
del livello di nutrienti nel suolo (Marchante et al.
2003, 2008, Yelenik et al. 2004, Le Maitre et al. 2011).
Molti cambiamenti sono direttamente attribuibili alle
caratteristiche chiave della specie, come la produzio-
ne di un gran numero di semi che si accumulano nel
terreno e che possono germinare rapidamente dopo
incendi o pioggia, l’elevato tasso di crescita e la pro-
duzione di un’elevata biomassa (Whibley & Symon
1992), che le consentono di competere con le specie
legnose (Yelenik et al. 2007). Nel Mediterraneo, in
29 Forest@ 14: 28-33 (2017)
Fig. 1 - Localizzazione dell’area studio.
Acacia saligna: specie invasiva delle coste molisane
Nord Africa, in Medio Oriente, Sud Africa e Uru-
guay questa specie è stata utilizzata per contenere
l’erosione costiera e come frangivento grazie alla ca-
pacità delle sue radici di trattenere la sabbia (Orwa et
al. 2009). In Italia è stata introdotta nelle zone costie-
re a scopo di rimboschimento e per la stabilizzazione
delle dune, tuttavia la sua diffusione non è stata con-
trollata e attualmente risulta invasiva in molte regio-
ni: Liguria, Toscana, Campania, Basilicata, Calabria,
Puglia, Molise, Sicilia e Sardegna (Del Vecchio et al.
2013). È diffusa in particolare sulla costa adriatica
meridionale (centro e sud Italia), dove cresce tra la
macchia mediterranea e la foresta sempreverde delle
dune fisse (Izzi et al. 2007).
Campionamento della vegetazione
Per verificare l’impatto di Acacia saligna sulla biodi-
versità e l’ecologia degli ecosistemi dunali del Moli-
se, sono stati analizzati i dati relativi a 61 campiona-
menti floristico-vegetazionali degli ambienti di pine-
ta costiera e macchia mediterranea, effettuati nel-
l’ambito delle azioni preparatorie del progetto LIFE
“Maestrale” (Fig. 1). Si tratta di plot quadrati di 4 × 4
m, distribuiti in maniera casuale nelle aree invase da
Acacia saligna (34 plot) e nelle aree di pineta e mac-
chia non invase limitrofe (29 plot). In ciascun plot, è
stata registrata la lista delle specie di flora vascolare
presente e, a ciascuna specie è stata attribuita una sti-
ma visuale della copertura in percentuale. Il ricono-
scimento dei campioni è stato effettuato utilizzando
le chiavi dicotomiche presenti nella “Flora d’Italia”
(Pignatti 1982) mentre la nomenclatura segue quanto
riportato nella “Checklist della Flora Italiana” (Conti
et al. 2005).
Analisi dei dati
Al fine di caratterizzare le aree invase e non invase
dal punto di vista ecologico, a ciascuna specie di
pianta vascolare censita è stato associato il suo valore
ecologico indicativo secondo Ellenberg (1974) e adat-
tato alla flora italiana da Pignatti (2005). Tali valori
di bioindicazione consentono di classificare le specie
in base alle loro preferenze ecologiche in termini di
tipo di suolo, di nutrienti, di umidità, temperatura e
altro e rappresentano uno strumento efficace per la
descrizione dei gradienti e delle condizioni ambien-
tali (Diekman 2003, Carranza et al. 2012). Gli indici
di Ellenberg sono espressi in un range di valori che
va da 1 a 9 oppure da 1 a 12 a seconda dell’indice
utilizzato (Pignatti 2005). In questo lavoro sono stati
considerati i seguenti indici di Ellenberg: luminosità
(L), umidità (U), nutrienti (N), temperatura (T) e con-
tinentalità (C). Per caratterizzare in maniera efficace
le aree invase e non invase, per ogni plot è stato rica-
vato un valore sintetico di ciascun indice di Ellen-
berg, utilizzando la presenza delle specie di flora va-
scolare come segue. Data pij la presenza della specie i
nel plot j e Xik il valore dell’indice k di Ellenberg as-
segnato alla specie i, il valore di Ellenberg per quel
plot viene calcolato come segue (eqn. 1):
Gli Indici di Ellenberg per i plot invasi e non invasi
così ottenuti, sono stati utilizzati come variabili
esplicative (indipendenti) nella costruzione di un
modello in grado di predire la probabilità di presen-
za di Acacia saligna in funzione delle caratteristiche
ecologiche dei plot. Per tale scopo è stato usato un
modello lineare generalizzato (GLM) di tipo bino-
miale che segue la seguente formula (eqn. 2):
La variabile di risposta (Y) rappresenta la probabi-
lità di presenza dell’Acacia saligna nei plot e può va-
riare tra 0 (assenza) e 1 (presenza); β0 è l’intercetta,
mentre β1, β2, β3, β4 β5 rappresentano rispettivamente
le pendenze delle rette in funzione dei valori di umi-
dità (U), nutrienti (N), luminosità (L), temperatura
(T) e continentalità (C). Il modello è stato inizialmen-
te parametrizzato utilizzando tutte le variabili indi-
pendenti e, attraverso una procedura di selezione ba-
sata sull’AIC (Akaike’s Information Criterion), è stato
selezionato il modello ottimale, ovvero quello che
contiene solo le variabili indipendenti più significati-
ve. Tale procedura calcola vari modelli con diversa
combinazione di variabili e seleziona il modello con
il valore di AIC più basso (ovvero il modello meno
complesso che presenta il miglior adattamento ai da-
ti osservati).
Successivamente, per identificare quali specie con-
tribuiscono maggiormente nel determinare le diffe-
renze in termini di composizione ed ecologia dei
plot invasi e non invasi, è stata effettuata l’analisi
SIMPER (similarity percentages - Clarke 1993).
Risultati
Nelle aree analizzate sono stati censiti 89 taxa (spe-
cie e sottospecie). La procedura di selezione delle va-
riabili ha restituito un modello finale che comprende
gli indici di umidità, temperatura e nutrienti. Il mo-
Forest@ 14: 28-33 (2017) 30
Ek=
i=1
n
(Xik
pij)
i=1
n
pij
Y=
β
0+
β
1U+
β
2N+
β
3L+
β
4T+
β
5C+
ε
i
Calabrese V et al. - Forest@ 14: 28-33
dello GLM risulta essere adeguato, riuscendo a spie-
gare il 20% della devianza (D2 = 0.20). Il modello ha
messo in evidenza che la probabilità di presenza di
Acacia saligna è spiegata significativamente dai valori
di Ellenberg di umidità (U), temperatura (T) e di nu-
trienti (N). Nello specifico la probabilità di presenza
è associata positivamente ad alti valori di nutrienti
nel suolo (z = 2.975, p = 0.002), mentre è negativa-
mente correlata a valori medio-alti di umidità (z =
-2.876, p = 0.004) e di temperatura (z = -2.023, p =
0.043 - Fig. 2).
Dall’analisi SIMPER emerge che 17 delle 89 specie
vegetali contribuiscono per il 50% alle differenze os-
servate tra i plot invasi e non invasi (Tab. 1).
Discussioni e conclusioni
Dalle analisi condotte emerge che Acacia saligna si
associa con maggiore probabilità a specie nitrofile e
che non si consocia alle specie mesofile di pineta e
macchia mediterranea. Tale comportamento è in li-
nea con quanto recentemente osservato da Del Vec-
chio et al. (2013), che evidenziavano l’aumento di
specie ruderali (per lo più nitrofile) nelle aree invase
da Acacia saligna.
31 Forest@ 14: 28-33 (2017)
Fig. 2 - Probabilità di presenza di Acacia saligna in funzione dei valori di Ellenberg di nutrienti (a), di umidità
(b) e temperatura (c).
Tab. 1 - Contributo delle specie (in % e cumulato) nel determinare le differenze in termini di composizione
specifica tra i plot invasi e i plot non invasi. La dissimilarità media indica la differenza tra i gruppi di plot
(invasi e non invasi) calcolata sulla base dell’indice di Bray-Curtis. I simboli “+” e “-” indicano associazione
positiva e negativa ai plot invasi. (U): indice di Ellenberg di umidità; (N): indice di Ellenberg di nutrienti;
(T): indice di Ellenberg di temperatura.
Specie Dissimilarità
media
Contributo
%
Cumulativo
%Associazione U N T
Asparagus acutifolius 3.11 4.05 4.05 + 2 5 9
Lotus cytisoides 3.09 4.03 8.08 + 1 1 10
Pinus halepensis 2.86 3.73 11.81 + 2 2 10
Rosmarinus officinalis 2.52 3.28 15.09 - 2 1 8
Lagurus ovatus 2.48 3.24 18.33 + 3 2 9
Sonchus bulbosus 2.48 3.26 21.56 + 3 3 8
Phillyrea angustifolia 2.46 3.21 24.78 - 1 2 10
Cistus incanus 2.45 3.15 27.93 - 2 2 9
Silene vulgaris 2.37 3.09 31.02 + 4 2 -
Oryzopsis miliacea 2.36 3.08 34.10 + 4 5 7
Smilax aspera 2.33 3.03 37.13 - 2 3 10
Pistacia lentiscus 2.29 2.98 40.11 - 2 2 10
Rhamnus alaternus 2.20 2.86 42.98 + 2 4 9
Geranium purpureum 2.07 2.69 45.67 + 3 3 8
Vulpia fasciculata 2.01 2.62 48.29 - 1 1 10
Cerastium semidecandrum 1.97 2.59 50.88 + 4 0 7
Acacia saligna: specie invasiva delle coste molisane
Probabilmente l’aumento del livello di nitrati nel
suolo nelle aree invase (Cronk & Fuller 1995) è da
imputare sia al fatto che le radici di A. saligna sono in
simbiosi con batteri capaci di fissare l’azoto, che alle
caratteristiche biochimiche della lettiera di questi po-
polamenti.
Inoltre è stata osservata una diminuzione delle spe-
cie mesofile nelle aree invase da A. saligna, eviden-
ziando la sua capacità di inaridire i suoli e di esclu-
dere molte specie focali, tipiche degli habitat di inte-
resse comunitario di pineta e macchia. La presenza
di A. saligna è correlata ad un aumento di specie ru-
derali nelle dune costiere come Geranium purpureum
e Oryzopsis miliacea (Biondi et al. 2009), a scapito del-
le specie focali tipiche dell’habitat *2270 e dell’habi-
tat *2250 quali Smilax aspera e Pistacia lentiscus. Pro-
babilmente anche la presenza di sostanze allelopati-
che contenute nella corteccia, nei fiori e nelle foglie
di A. saligna e riversate nella lettiera possono avere
un ruolo importante nel limitare la germinazione di
molte specie native, come descritto da Alhammadi
(2008). La maggior parte degli effetti negativi causati
dalle piante esotiche è dovuta infatti alla presenza di
sostanze allelopatiche che provocano interferenze
con i processi fisiologici e biochimici nella vegetazio-
ne autoctona.
L’uso dei valori di biondicazione della flora vasco-
lare ha consentito quindi di evidenziare un’alterazio-
ne della struttura e dell’ecologia degli habitat priori-
tari di interesse comunitario H2270* e H2250* in pre-
senza di popolamenti invasivi di A. saligna lungo le
coste molisane. L’applicazione dei valori ecologici
indicativi risulta pertanto efficace per individuare i
macro effetti ecologici dei processi invasivi di specie
esotiche vegetali e può essere utilizzata anche in altri
contesti interessati da questi fenomeni, ad esempio
per valutare lo stato di conservazione degli habitat di
interesse comunitario e contribuire ad individuare le
specie native vulnerabili e quelle invece idonee a
contrastare la capacità invasiva delle specie esotiche.
Bibliografia
Acosta ATR, Carranza ML, Ciaschetti G, Conti F, Di Marti-
no L, Orazio G, Frattaroli A, Izzi CF, Pirone G, Stanisci A
(2007). Specie vegetali esotiche negli ambienti costieri
sabbiosi di alcune regioni dell’Italia Centrale. Webbia 62
(1): 77-84. - doi: 10.1080/00837792.2007.10670817
Acosta ATR, Ercole S (2015). Gli habitat delle coste sabbio-
se italiane: ecologia e problematiche di conservazione.
ISPRA, Serie Rapporti, 215/2015. [online] URL: http://
www.isprambiente.gov.it/it/pubblicazioni/rapporti/gli-
habitat-delle-coste-sabbiose-italiane-ecologia-e-problema-
tiche-di-conservazione
Alhammadi ASA (2008). Allelopathic effect of Tagetes mi-
nuta L. water extracts on seeds germination and seedling
root growth of Acacia asak. Ass. Univ. Bull. Environ. Res.
11: 17-24.
Biondi E, Blasi C, Burrascano S, Casavecchia S, Copiz R,
Del Vico E, Venanzoni R (2009). Italian interpretation ma-
nual of the 92/43/EEC Directive Habitats. Ministero
dell’Ambiente e della Tutela del Territorio e del Mare,
web site. [online] URL: http://vnr.unipg.it/habitat/index.j-
sp
Carranza ML, Frate L, Paura B (2012). Structure, ecology
and plant richness pattern in fragmented beech forests.
Plant Ecology and Diversity 5 (4): 541-551. - doi: 10.1080/
17550874.2012.740509
Celesti-Grapow L, Alessandrini A, Arrigoni PV, Assini S,
Banfi E, Barni E, Bovio M, Brundu G, Cagiotti MR, Ca-
marda I, Carli E, Conti F, Del Guacchio E, Domina G, Fa-
scetti S, Galasso G, Gubellini L, Lucchese F, Medagli P,
Passalacqua NG, Peccenini S, Poldini L, Pretto F, Prosser
F, Vidali M, Viegi L, Villani MC, Wilhalm T, Blasi C
(2010). Non-native flora of Italy: species distribution and
threats. Plant Biosystems 144 (1): 12-28. - doi: 10.1080/
11263500903431870
Clarke KL (1993). Non-parametric multivariate analyses of
changes in community structure. Australian Journal of
Ecology 18: 117-143. - doi: 10.1111/j.1442-9993.1993.tb0043
8.x
Conti F, Abbate G, Alessandrini A, Blasi C (2005). An an-
notated checklist of the Italian vascular flora. Palombi,
Roma, pp. 248-254.
Cronk QCB, Fuller JL (1995). Plant invaders: the threat to
natural ecosystems. Chapman and Hall, London, UK, pp.
241.
Del Vecchio S, Acosta A, Stanisci A (2013). The impact of
Acacia saligna invasion on Italian coastal dune EC habita-
ts. Comptes Rendus Biologies 336 (7): 364-369. - doi:
10.1016/j.crvi.2013.06.004
Diekman M (2003). Species indicator values as an impor-
tant tool in applied plant ecology - a review. Basic and
Applied Ecology 4 (6): 493-506. - doi: 10.1078/1439-1791-
00185
EEC (1992). Council Directive 92/43/EEC of 21 May 1992
on the conservation of natural habitats and of wild fauna
and flora. Official Journal L 206, 22/07/1992, 7-50 and its
amending acts.
Ehrenfel JG (2003). Effects of exotic plant invasions on soil
nutrient cycling processes. Ecosystems 6 (6): 503-523. -
doi: 10.1007/s10021-002-0151-3
Ellenberg H (1974). Indicator values of vascular plants in
central Europe. Scripta geobotanica 9.
European Environment Agency (2013). Invasive alien spe-
Forest@ 14: 28-33 (2017) 32
Calabrese V et al. - Forest@ 14: 28-33
cies: a growing problem for environment. Copenhagen,
Denmark, pp. 7. [online] URL: http://www.eea.europa.eu/
highlights/invasive-alien-species-a-growing
Isermann M, Diekmann M, Heemann S (2007). Effects of
the expansion by Hippophae rhamnoides on plant species
richness in coastal dunes. Applied Vegetation Science 10
(1): 33-42. - doi: 10.1111/j.1654-109X.2007.tb00501.x
Izzi CF, Acosta A, Carranza ML, Ciaschetti G, Conti F, Di
Martino L, Stanisci A (2007). Il censimento della flora va-
scolare degli ambienti dunali costieri dell’Italia centrale.
Fitosociologia 44 (1): 129-137.
Kettunen M, Genovesi P, Gollasch S, Pagad S, Starfinger U,
Brink P, Shine C (2009). Technical support to EU strategy
on invasive alien species (IAS) - Assessment of the impac-
ts of IAS in Europe and the EU. Institute for European En-
vironmental Policy. [online] URL: http://www.ieep.eu
Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes
PM, Pauchard A, Richardson DM (2011). Impacts of inva-
sive Australian acacias: implications for management and
restoration. Diversity and Distributions 17 (5): 1015-1029.
- doi: 10.1111/j.1472-4642.2011.00816.x
Marchante E, Kjoller A, Struwe S, Freitas H (2008). Invasi-
ve Acacia longifolia induce changes in the microbial cata-
bolic diversity of sand dunes. Soil Biology and Biochemi-
stry 40 (10): 2563-2568. - doi: 10.1016/j.soilbio.2008.06.017
Marchante H, Marchante E, Freitas H (2003). Invasion of
the Portuguese dune ecosystems by the exotic species
Acacia longifolia (Andrews) Willd: effects at the communi-
ty level. In “Plant invasions: ecological threats and mana-
gement solutions”. Backhuys, Leiden, The Netherlands,
pp. 75-85.
Orwa CA, Mutua Kindt R, Jamnadass R (2009). Agrofore-
stree Database: a tree reference and selection guide ver-
sion 4 0: 1-5.
Pignatti S (1982). Flora d’Italia. Edagricole, Bologna.
Pignatti S (2005). Valori di bioindicazione delle piante va-
scolari della flora d’Italia. Braun-Blanquetia 39: 1-97.
Prisco I, Acosta ATR, Ercole S (2012). An overview of Ita-
lian coastal dune EU habitats. Annali di Botanica 2: 39-48.
Rejmánek M, Richardson DM, Pysek P (2004). Plant inva-
sion and invasibility of plant communities. In: “Vegeta-
tion Ecology (2nd edn)” (van der Maarel E ed). John Wiley
and Sons Ltd, Oxford, UK, pp. 332-355.
Rodriguez-EcheverriÌa S, Le Roux JJ, Crisostomo JA, Ndlo-
vu J (2011). Jack-of-all-trades and master of many? How
does associated rhizobial diversity influence the coloniza-
tion success of Australian Acacia species? Diversity and
Distributions 17 (5): 946-957. - doi: 10.1111/j.1472-4642.20
11.00787.x
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J,
Dirzo R, Leemans R (2000). Global biodiversity scenarios
for the year 2100. Science 287 (5459): 1770-1774. - doi:
10.1126/science.287.5459.1770
Stanisci A, Acosta ATR, Di Iorio A, Vergalito M (2010).
Leaf and root trait variability of alien and native species
along Adriatic coastal dunes (Italy). Plant Biosystems 144
(1): 47-52. - doi: 10.1080/11263500903454252
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron
JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011). Ecological
impacts of invasive alien plants: a meta-analysis of their
effects on species, communities and ecosystems. Ecology
Letters 14: 702-708. - doi: 10.1111/j.1461-0248.2011.01628.x
Whibley DJE, Symon DE (1992). Acacias of South Austra-
lia. Govt Printer, Adelaide, Australia, pp. 148.
Yelenik SG, Stock WD, Richardson DM (2004). Ecosystem
level impacts of invasive Acacia saligna in the South Afri-
can fynbos. Restoration Ecology 12 (1): 44-51. - doi: 10.111
1/j.1061-2971.2004.00289.x
Yelenik SG, Stock WD, Richardson DM (2007). Functional
group identity does not predict invader impacts: differen-
tial effects of nitrogen-fixing exotic plants on ecosystem
function. Biological Invasions 9 (2): 117-125. - doi: 10.1007
/s10530-006-0008-3
33 Forest@ 14: 28-33 (2017)
... Several hazards threaten these coasts, urbanization (Malavasi et al. 2013), touristic pressure (Carranza et al. 2018), erosion (Aucelli et al. 2018), IAS invasions (Del Vecchio, Acosta, andStanisci 2013;Calabrese et al. 2017;Marzialetti et al. 2019) and litter accumulation (de Francesco et al. 2019) being the most significant ones. ...
... Similar results were observed in other plant communities invaded by A. saligna (Manor, Cohen, and Saltz Odat et al. 2011;Del Vecchio, Acosta, and Stanisci 2013;Abd El-Gawad and El-Amier 2015;Calabrese et al. 2017;Cohen and Bar (Kutiel) 2017; Mostert et al. 2017) and such variations have been attributed to the highly competitive ability of A. saligna, its capacity to increase nitrogen soil content (Hellmann et al. 2011), its long persistence in the form of local seed banks (Richardson and Kluge 2008) and its vigorous gamic and agamic resprouting after disturbance (Gibson et al. 2011). Moreover, A. saligna forms a thick litter layer (Lorenzo et al. 2010;Le Maitre et al. 2011;González-Muñoz, Costa-Tenorio, and Espigares 2012) with allelopathic substances (El Ayeb, Jannet, and Harzallah-Skhiri 2013; Abd El-Gawad and El-Amier 2015) that inhibit the germination and establishment of other plants (Le Maitre et al. 2011;Marchante, Freitas, and Hoffmann 2011), outcompetes native plants (Morris et al. 2011) and hinders the growth of the evergreen Mediterranean shrubs, which have conservative traits, such as slow growth and high sclerophyll (Sardans and Peñuelas 2013). ...
... italicum. An increase in ruderal species cover was also observed in A. saligna-invaded stands of coastal Pinus wood (EU habitat 2270*), by Del Vecchio, Acosta, and Stanisci (2013) and Calabrese et al. (2017), and in South African Fynbos, where Yelenik, Stock, and Richardson (2004) noticed that the greater availability of nitrogen in acacia soils leads to higher growth rates of a weedy grass species. ...
Article
We evaluated the ecological impacts of the invasive alien species (IAS) Acacia saligna on the vegetation composition and structure of two coastal dunes woody habitats of Union concern (2250*: coastal dunes with Juniperus spp. and 2260: dunes with sclerophyllous vegetation consisting of Cisto-Lavanduletalia). We sampled 20 paired plots per habitat type under invaded (A. saligna cover > 70%) and non-invaded conditions, following a stratified random protocol. We tested the differences between invaded and non-invaded plots in terms of species composition of the entire species pool and of different ecological guilds and growth forms. Our findings showed that the invaded maquis (habitat 2260) had a significant decline in median richness (5 vs 2) and median cover (24.50 vs 8.00) of focal species and a significant increase in median cover of ruderal species (2.00 vs 5.50). The invaded juniper shrubs (EU habitat 2250*) preserved the typical species composition, but with significant variations in vegetation structure. The approach adopted in this study, accompanied by the results obtained, contribute towards fulfilling EU Regulation 1143/2014 on IAS. Key policy insights • Results reveal worrying levels of biodiversity loss on coastal dunes due to the invasion of the invasive alien species (IAS) Acacia saligna. • We detected remarkable changes in the physiognomy of the Mediterranean maquis coastal dunes – a landscape that is losing its biological uniqueness. • The spread of A. saligna is having negative ecological effects upon the conservation status of two habitats of Union concern (codes 2250* and 2260). • Urgent preventive measures, effective control strategies and eradication of A. saligna must be implemented across the Mediterranean Nature 2000 Coastal Protected Areas Network. • The approach adopted and results obtained contribute to fulfilling EU Regulation 1143/2014 on IAS.
... The clonal and sexual reproduction, high rate of growth, short juvenile period and high tolerance to environmental stress (Del Vecchio et al. 2013, Milton and Hall 1981, Witkowski 1994) are all traits that allow its expansion in a wide variety of ecosystems. Furthermore, the production of a huge number of long-lived seeds and the secretion of allelopathic substances ensure the persistence of the species in the soil seed bank and its chance to sprout over long periods (Mehta 2000, Abd El-Gawad and El-Amier, 2015, Strydom et al. 2012. A. saligna forms dense monospecific stands in which several native species are excluded (Yelenik et al. 2004), leading to a simplification of the structure and diversity of native plant communities (Calabrese et al. 2017, Cohen and Bar Kutiel 2017, Del Vecchio et al. 2013, Hadjikyriakou and Hadjisterkotis 2002. It also alters the soil properties as its invasion promotes changes in microclimatic conditions (Mehta 2000, Calabrese et al. 2017 and to hydrological and nutrient cycles (Witkowski 1991, Yelenik et al. 2004), in particular the N-cycle (Yelenik et al. 2004;Le Maitre et al. 2011) ...
... Furthermore, the production of a huge number of long-lived seeds and the secretion of allelopathic substances ensure the persistence of the species in the soil seed bank and its chance to sprout over long periods (Mehta 2000, Abd El-Gawad and El-Amier, 2015, Strydom et al. 2012. A. saligna forms dense monospecific stands in which several native species are excluded (Yelenik et al. 2004), leading to a simplification of the structure and diversity of native plant communities (Calabrese et al. 2017, Cohen and Bar Kutiel 2017, Del Vecchio et al. 2013, Hadjikyriakou and Hadjisterkotis 2002. It also alters the soil properties as its invasion promotes changes in microclimatic conditions (Mehta 2000, Calabrese et al. 2017 and to hydrological and nutrient cycles (Witkowski 1991, Yelenik et al. 2004), in particular the N-cycle (Yelenik et al. 2004;Le Maitre et al. 2011) ...
... The intense and rapid land use change and the introduction of exotic species are amongst the main threats affecting native communities of Adriatic coastal ecosystems (Romano and Zullo 2014, Calabrese et al. 2017, Malavasi et al. 2018. Nonetheless, the coastal dunes of Molise still host many ecosystems of conservation concern in Europe (the so-called EU habitat types according to the European Directive 92/43/EEC; Stanisci et al. 2014). ...
... The clonal and sexual reproduction, high rate of growth, short juvenile period and high tolerance to environmental stress (Del Vecchio et al. 2013, Milton and Hall 1981, Witkowski 1994) are all traits that allow its expansion in a wide variety of ecosystems. Furthermore, the production of a huge number of long-lived seeds and the secretion of allelopathic substances ensure the persistence of the species in the soil seed bank and its chance to sprout over long periods (Mehta 2000, Abd El-Gawad and El-Amier, 2015, Strydom et al. 2012. A. saligna forms dense monospecific stands in which several native species are excluded (Yelenik et al. 2004), leading to a simplification of the structure and diversity of native plant communities (Calabrese et al. 2017, Cohen and Bar Kutiel 2017, Del Vecchio et al. 2013, Hadjikyriakou and Hadjisterkotis 2002. It also alters the soil properties as its invasion promotes changes in microclimatic conditions (Mehta 2000, Calabrese et al. 2017 and to hydrological and nutrient cycles (Witkowski 1991, Yelenik et al. 2004), in particular the N-cycle (Yelenik et al. 2004;Le Maitre et al. 2011) ...
... Furthermore, the production of a huge number of long-lived seeds and the secretion of allelopathic substances ensure the persistence of the species in the soil seed bank and its chance to sprout over long periods (Mehta 2000, Abd El-Gawad and El-Amier, 2015, Strydom et al. 2012. A. saligna forms dense monospecific stands in which several native species are excluded (Yelenik et al. 2004), leading to a simplification of the structure and diversity of native plant communities (Calabrese et al. 2017, Cohen and Bar Kutiel 2017, Del Vecchio et al. 2013, Hadjikyriakou and Hadjisterkotis 2002. It also alters the soil properties as its invasion promotes changes in microclimatic conditions (Mehta 2000, Calabrese et al. 2017 and to hydrological and nutrient cycles (Witkowski 1991, Yelenik et al. 2004), in particular the N-cycle (Yelenik et al. 2004;Le Maitre et al. 2011) ...
... The intense and rapid land use change and the introduction of exotic species are amongst the main threats affecting native communities of Adriatic coastal ecosystems (Romano and Zullo 2014, Calabrese et al. 2017, Malavasi et al. 2018. Nonetheless, the coastal dunes of Molise still host many ecosystems of conservation concern in Europe (the so-called EU habitat types according to the European Directive 92/43/EEC; Stanisci et al. 2014). ...
Article
Full-text available
Invasive Alien Species (IAS) pose a major threat to biodiversity and ecosystem services worldwide. Even if preventing biological invasions should be the most cost-effective way to minimise the impact of IAS on biodiversity, new efforts are necessary to identify early signs of invasion and to assess invasion risk. In this context, the implementation of invasive Species Distribution Models (iSDMs) could represent a sound instrument that merits further research. Acacia saligna is an Australian vascular plant introduced into Europe during the last half century and is one of the most aggressive IAS in the Mediterranean basin. In this work, we model the occurrence of A. saligna in the coastal landscapes of central Italy (Adriatic coast) while accounting for the simultaneous effect of multiple factors (propagule pressure, abiotic, biotic factors). The iSDM for A. saligna was implemented on a representative tract of the Adriatic coast in central Italy (Molise region), largely included in two Long-Term Ecological Research (LTER) sites which actively contribute to the description of the considered ecosystem status and possible future trends. By using a Generalised Linear Model (GLM) with a binomial distribution of errors based on field and cartographic geo-referenced data, we examined the statistical relationship between the occurrence of A. saligna and a comprehensive set of environmental factors. The iSDM effectively captured the role of the different vari-A peer-reviewed open-access journal Flavio Marzialetti et al. / Nature Conservation 34: 127-144 (2019) 128 ables in determining the occurrence of A. saligna in the coastal dunes. Its occurrence is primarily related to Wooded dunes with Pinus pinea and/or P. pinaster (EU Habitat 2270) and distance from the sea and, to a lesser extent, with distance from roads and rivers. This research provides a first exploratory analysis of the environmental characteristics that promote the rapid growth and development of A. saligna in Italian dune ecosystems, identifying the habitats that are mainly affected by the invasive process in coastal areas and, by doing so, contributing to filling the gap between theory and practice in conservation decision-making. Finally, the LTER network benefitted from this research, confirming its relevance in providing useful information for modelling and monitoring invasion processes.
... On the contrary, in MBS the NH 4 + -N content had not recovered and N tot was slightly (not significantly) lower than in control, in the meantime nitrate N content, as well as N mineralization and nitrification, increased suggesting that MBS soil was losing N. The N loss probably did not occur in MBSA due to intense post-fire colonization by A. saligna, which can naturally fix N, so reducing the loss by leaching and could N-enrich the soil thanks to its symbiotic N-fixing bacteria (Slingsby et al., 2017;Yelenik et al., 2007). However, it has to be underlined that this apparent positive effect on soil N conservation by the invasive A. saligna could favor the establishment of nitro-ruderal species potentially leading to negative effects on native species, as recently found in similar habitat by Calabrese et al. (2017) and Lazzaro et al. (2020). The fire passage and subsequent vegetation colonization can change the intensity of seasonal fluctuations in soil climate conditions which are the main factor influencing microbial activity related to the nitrogen cycle in the Mediterranean area (Rutigliano et al., 2009). ...
Article
Full-text available
Wildfire frequency and severity have greatly increased in Mediterranean areas in recent decades affecting ecosystems functioning due to alteration in the above- and below-ground process. This study aimed to investigate how wildfire severity, in the medium-term (2–5 years), impacts soil properties within a Pinus halepensis woodland located in the Special Area of Conservation (SAC) of the Natura 2000 network (IT9130006 - Pinewoods of the Ionian Arch). In 2021, four years after a large wildfire in 2017, the woodland still exhibited fire effects with evidence of low, medium or high burn severity in different sites (named LBS, MBS, HBS, respectively). In addition, we observed an area burnt at medium severity that was invaded by Acacia saligna (MBSA site), a fast-growing, highly invasive, drought-tolerant nitrogen-fixing plant, thus we also examined the combined effect of wildfire and A. saligna on the soil. We compared soil properties across burnt sites with a nearby unburnt site (control). Thickness, weight and organic carbon of litter (L) and fermentation (F) layers were measured, alongside physical, chemical and biological properties in the underlying mineral soil (0–10 cm). Our results show that wildfire destroyed the organic layers and these had not recovered four years after the wildfire (except for L-layer within LBS) with a consequent loss (∼2 t C ha−1) of this carbon pool. In mineral soil we identified fourfold increases in N mineralization and nitrification rates across all burnt sites, regardless of the burn severity and A. saligna presence, suggesting an alteration of N-cycle processes. On the contrary, total microbial biomass and soil respiration as well as most of the physical and chemical properties of the soil were comparable between the burnt and control soils. Principal Component Analysis (PCA) highlighted that burn severity affected soil variables with lower changes in LBS than in other burnt soils. Also, the HBS soil did not show greater negative impacts compared to MBS sites. This is probably due to the increased post-fire colonization by herbaceous plants in HBS, favoured by the complete destruction of trees. In this case, waiting for natural vegetation recovery can be a valid management option, but periodic monitoring of fire-soil-vegetation interaction mainly to avoid invasive species widespread is advocated.
... pycnantha: Lazzaro et al., 2015). Likewise, the impacts of A. saligna on coastal dune N2000 habitats (Del Vecchio et al., 2013;Bonari et al., 2017;Calabrese et al., 2017). ...
Article
Invasive alien plants are a major threat to biodiversity and they contribute to the unfavourable conservation status of habitats of interest to the European Community. In order to favour implementation of European Union Regulation no. 1143/2014 on invasive alien species, the Italian Society of Vegetation Science carried out a large survey led by a task force of 49 contributors with expertise in vegetation across all the Italian administrative regions. The survey summed up the knowledge on impact mechanisms of invasive alien plants in Italy and their outcomes on plant communities and the EU habitats of Community Interest, in accordance with Directive no. 92/43/EEC. The survey covered 241 alien plant species reported as having deleterious ecological impacts. The data collected illustrate the current state of the art, highlight the main gaps in knowledge, and suggest topics to be further investigated. In particular, the survey underlined competition as being the main mechanism of ecological impact on plant communities and Natura 2000 habitats. Of the 241 species, only Ailanthus altissima was found to exert an ecological impact on plant communities and Natura 2000 habitats in all Italian regions; while a further 20 species impact up to ten out of the 20 Italian administrative regions. Our data indicate that 84 out of 132 Natura 2000 Habitats (64%) are subjected to some degree of impact by invasive alien plants. Freshwater habitats and natural and semi-natural grassland formations were impacted by the highest number of alien species, followed by coastal sand dunes and inland dunes, and forests. Although not exhaustive, this research is the first example of nationwide evaluation of the ecological impacts of invasive alien plants on plant communities and Natura 2000 Habitats.
Article
The present study aimed to investigate the role of propagule pressure (P), abiotic (A), and biotic (B) factors (collectively indicated as PAB) on the suitability of the Mediterranean island of Sardinia (Italy) to be invaded by the tree Acacia saligna, recently included in the list of invasive alien species of European Union concern. To this aim, a binomial Generalized Linear Model was applied for disentangling the relationship between 432 A. saligna occurrence records and 10 thematic layers, at high-resolution (10 x10 m), used as proxies for the 3 categories of PAB variables. The 432 occurrence records of A. saligna were periodically monitored (period 2000–2018) to check the persistence of the populations and their invasive status. The predictive power of the model was evaluated by computing the mean of the AUC scores, through cross-fold validation. The model adequately described how the PAB factors influence the presence of A. saligna which is mainly shaped by abiotic factors such as topography, and biotic factors such as the presence of woody dune vegetation, and to a lesser extent by other predictors. The projection of the model to the whole island clearly shows that suitability varies at the landscape level due to the variation of the PAB across the territory. The probability of A. saligna occurrence near the coast is higher in sand dunes. In the internal areas of the island it occurs close to the roads and urban areas. This study and the tested methodology could represent a suitable tool to prioritize areas for the monitoring of A. saligna to meet the requirements of the Regulation (EU) No. 1143/2014 on Invasive Alien Species (the IAS Regulation).
Book
Full-text available
This volume is the outcome of a collaboration between the ISPRA Nature Protection Department and the Science Department of the Roma 3 University. The volume provides a synthesis of current knowledge on the Italian sand dune habitats and of the plant species typical of these environments, with the aim of providing a useful tool for the protection and management of these highly threatened ecosystems at a national and European scale. The study summarizes the ecological and geomorphological features of coastal dunes (chapter 1) and describes in the form of descriptive sheets both the Italian dune habitats of community interest (Directive 92/43/CEE) (chapter 2) and the main psammophilous plant species (chapter 3). The habitat/species sheets report: nomenclature, classification, ecology, distribution, chorology, specific pressures, conservation status and trends, with photographs and original iconography. Lastly habitat and species monitoring are considered including also major threats and conservation actions (chapter 4).
Article
Full-text available
Gli effetti dell'antropizzazione diretta delle spiagge e delle dune costiere hanno portato non solo alla diminuzione ed estinzione locale di specie, ma anche alla diffusione di elementi esotici. Il presente lavoro espone i risultati preliminari sulla presenza di specie vegetali esotiche nei sistemi dunali olocenici dell'Italia centrale (Lazio, Abruzzo e Molise). Il censimento della flora vascolare esotica è stato effettuato seguendo il protocollo della cartografia floristica europea. E' emersa la presenza di una notevole diversità di entità esotiche distribuita nei diversi habitat della zonazione costiera psammofila. La maggior parte delle esotiche è di origine americana, anche se alcune differenze emergono dal confronto fra i due litorali considerati: su quello tirrenico si rinvengono con maggior frequenza le specie di origine tropicale mentre su quello adriatico le specie aliene sono prevalentemente di origine extra-tropicale. Delle numerose specie rinvenute ed esaminate la maggior parte sono probabilmente esotiche casuali e poche si possono considerare con una certa sicurezza invasive negli ecosistemi sabbiosi costieri.
Article
Full-text available
This chapter covers plant invasions and invasibility of plant communities, with sections on definitions and major patterns, habitat compatibility, propagule pressure and residence time, attributes of successful invaders, and the impact of invasive plants and the justification and prospects of eradication projects.
Article
Full-text available
In this paper, we provide an overview of the distribution and invasive status of non-native species in the Italian flora across its administrative regions, biogeographic regions and main land use types, and a synthesis of current knowledge on the threats they pose within the country. The information on non-native plant species collected during the project “A survey of the non-native Italian flora” was used to compile comprehensive regional and national databases. The number of non-native species within a given administrative region increases in proportion to its size, resident population density and latitude, reaching the highest values in the intensively cultivated, heavily industrialized and urbanized Po Plain in northern Italy. The number of casual species is positively correlated with the number of yearly visitors in each region and negatively correlated with the proportion of mountainous terrain within the region. If compared with the Continental and Mediterranean biogeographic regions, the Alpine region yields the lowest number of non-native species and lowest proportion of casual species. The number and density of introduced species is highest in artificial land use types, particularly in urban areas. A negative impact is reported to be exerted by 203 species, most of which are agricultural weeds.
Article
Alien species can represent a threat to several ecosystems because they can alter species relationships and ecosystem function. In Italy, Acacia saligna is a major invader and it forms dense stands in coastal environments. We analyze the impact of A. saligna in Italian Mediterranean dune systems. We randomly sampled coastal dune vegetation and investigated its floristic composition with ordination techniques. We compared species richness in invaded and non-invaded plots with rarefaction curves and analyzed the frequency of focal and ruderal species. A. saligna invaded Mediterranean scrub (habitats 2250* and 2260) and coastal Pinus dune wood (habitat 2270*) and it is particularly prevalent in sunny areas of habitat 2270*. We observed an increase in ruderal species and a decrease in focal species in the invaded plots of habitat 2270*. We suggest that more open and disturbed areas are more prone to A. saligna invasion.