ArticlePDF Available

Integrative taxonomy supports the existence of two distinct species within Hypsiboas crepitans (Anura: Hylidae)

Authors:

Abstract and Figures

The Neotropical treefrog Hypsiboas crepitans (Wied, 1824) has an intriguing disjunct geographic distribution encompassing two large patches: the Atlantic Forest in southeastern South America and from the Guiana Shield to Central America in the north, that are separated by more than 1500 km. This distribution pattern led us to review the available material and re-examine, under an integrative approach, the taxonomic status of these populations. We assessed data using three lines of evidence: morphology, morphometry, and mitochondrial DNA. All of them suggest that the populations from the two geographical ranges are not conspecific. Given that the type material of H. crepitans is from the State of Bahia, Brazil, and that specimens from this area cluster with the southeastern group, we resurrect Hypsiboas xerophyllus (Duméril & Bibron, 1841) for the populations of the northwestern group. Hyla levaillantii Duméril & Bibron, 1841, Hyla doumercii Duméril & Bibron, 1841, Hyla fuentei Goin & Goin, 1968, and Hypsiboas indris Cope, 1867 are synonymized with H. xerophyllus
Content may be subject to copyright.
99
Taxonomy of Hypsiboas crepitans
Available at http://www.salamandra-journal.com
© 2017 Deutsche Gesellscha für Herpetologie und Terrarienkunde e.V. (DGHT), Mannheim, Germany
SALAMANDRA 53(1) 99–113 15 February 2017 ISSN 0036–3375
Integrative taxonomy supports the existence of two distinct species
within Hypsiboas crepitans (Anura: Hylidae)
V G. D. O, I N,, C M, A F, A W. L,
M R-C, M L. L, D L, B V. S. P,
U C, M T. RC F. B. H
1) Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16.
CEP 45662-900 Ilhéus, BA, Brazil
2) Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados. Quinta da Boa Vista, São Cristóvão.
CEP 20940-040, Rio de Janeiro, RJ, Brazil
3) CNRS-Guyane, USR 3456 LEEISA – Laboratoire Ecologie, Evolution Interactions des Systèmes Amazoniens,
Centre de recherche de Montabo 275 route de Montabo, BP 70620. 97334, Cayenne cedex, French Guiana
4) Pontifícia Universidade Católica do Rio Grande do Sul, Faculdade de Biociências, Laboratório de Sistemática de Vertebrados.
Av. Ipiranga 6681. CEP 90619-900, Porto Alegre, RS, Brazil
5) Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Zoologia and Centro de Aquicultura da
UNESP – CAUNESP, campus Rio Claro, Av. 24A, N 1515. CEP 13506-900, Rio Claro, SP, Brazil
6) Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Vertebrados, Av. Itália Km 8, Carreiros.
CEP 96.203-900, Rio Grande, RS, Brazil
7) Bicho do Mato Meio Ambiente Ltda. / Bicho do Mato Instituto de Pesquisa. Rua Perdigão Malheiros 222. CEP 30380-234,
Belo Horizonte, MG, Brazil
8) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Caixa Postal 11.461.
CEP 05508-090, São Paulo, SP, Brazil
9) Present address: Universidade Estadual Paulista, Campus do Litoral Paulista, Instituto de Biociências,
Laboratório de Herpetologia. Praça Infante Dom Henrique, s/n, Parque Bitarú. CEP 11.330-900, São Vicente, SP, Brazil
Corresponding author: A F, e-mail: fouquet.antoine@gmail.com
Manuscript received: 10 February 2016
Accepted on 13 September 2016 by J K
Abstract. e Neotropical treefrog Hypsiboas crepitans (W, ) has an intriguing disjunct geographic distribution
encompassing two large patches: the Atlantic Forest in southeastern South America and from the Guiana Shield to Cen-
tral America in the north, that are separated by more than  km. is distribution pattern led us to review the avail-
able material and re-examine, under an integrative approach, the taxonomic status of these populations. We assessed data
using three lines of evidence: morphology, morphometry, and mitochondrial DNA. All of them suggest that the popula-
tions from the two geographical ranges are not conspecic. Given that the type material of H. crepitans is from the State of
Bahia, Brazil, and that specimens from this area cluster with the southeastern group, we resurrect Hypsiboas xerophyllus
(D  B, ) for the populations of the northwestern group. Hyla levaillantii D  B, , Hyla
doumercii D  B, , Hyla fuentei G  G, , and Hypsiboas indris C,  are synonymized
with H.xerophyllus.
Key words. Amphibia, Amazonia, Atlantic Forest, Hypsiboas faber species group, revalidation, South America, synonymy.
Introduction
e Hypsiboas faber species group was proposed by F-
 et al. () to accommodate a cluster of eight spe-
cies: H. albomarginatus (S, ), H. crepitans (W,
), H. exastis (C R, ), H.
faber (W, ), H. lundii (B, ), H.par-
dalis (S, ), H. pugnax (S, ) and H. rosen-
bergi (B, ). With the exception of H. albo-
marginatus (green, middle sized), all species are large,
territorial tree frogs with a lichenous colour pattern, and
rugose dorsal skin texture (F et al. , K
, L  S-M ).
One of the species of this group, Hypsiboas crepitans,
exhibits an extensive and intriguing disjunct geographical
distribution (Fig. ). A southeastern group (hereaer SG)
100
V G. D. O et al.
of populations occurs along the Atlantic Forest and ad-
jacent areas, including the State of Bahia in Brazil, from
where the species was originally described (W ).
e northwestern group (hereaer NG) of populations is
distributed over the Guiana Shield, Caribbean (Tobago),
Llanos, Andes, and Middle America (Panama), from sea
level up to  m a.s.l. (D , F ,
K , L , L S-M-
 ). ere is, thus, a > , km gap between the SG
and the NG. is unusual disjunct distribution has raised
doubts about the conspecicity of these groups of popu-
lations (C J , D , K
, L , L  S-M ).
F et al. () found that the pairwise distance
among S sequences of specimens from Alagoas, Brazil,
and French Guiana was high enough to suggest the pres-
ence of two distinct species. L () retrieved the
same result comparing S sequences of specimens from
Tobago and Brazil and suggested that the population stud-
ied by C  J () from the State of Bahia “may
represent a dierent, but currently undescribed, species”,
not realizing that it could be the other way around given
that this particular population is close to the type locality
of H.crepitans (see below).
However, previous works on tadpoles and calls in both
the NG and the SG provide only weak evidence support-
ing the distinction. Tadpoles of the NG present a spiracle
opening directed dorso-posteriorly, and antero-dorsal nos-
trils (see L , gure ), while tadpoles from the
SG present a spiracle directed backwards, and dorsal nos-
trils (C J , gure ). However, given the
high plasticity of anuran larvae (e.g., W ) we
remain skeptical that these slight dierences will be main-
tained in larger samples. e basic structure of the calls
of both groups is a periodic pulse train divided in one or
some notes. e number of notes from the SG (– notes:
C  J , M et al. ) overlaps with
the range of number of notes of NG from Panama (–
notes; F , D , K et al.
) and from Colombia (– notes; B et al. )
(Table ). e range of pulses per second from the SG (–
; C  J , M et al. ) is slightly
dierent from the value of NG recordings from Panamá
(≈; D ). e dominant frequency range of
SG recordings (.–. kHz; C  J , M-
 et al. ) do not dier from the values recovered
for the NG, although being individually lower than values
found for NG specimens from Panama (.–. kHz;
Figure 1. Map showing sampling localities of Hypsiboas crepitans (circles) and H. xerophyllus (triangles) specimens used in this study.
101
Taxonomy of Hypsiboas crepitans
F , D , K et al. ), and
higher than those found for Colombia (. kHz; B
et al. ). erefore, dierences between the advertise-
ment calls of specimens from the distinct groups are meag-
er. However, C J () used advertisement
call data (dominant frequency mainly) to corroborate the
hypothesis that more than one species is hidden under the
name Hypsiboas crepitans. erefore, although there is a
suspicion that the two groups may represent distinct spe-
cies, published data on advertisement calls and tadpoles
are inconclusive in this respect.
e two groups of populations are separated by the
Caatinga, Cerrado and Chaco biomes which are part of
the “Dry Diagonal” of the Neotropics (S  I
, W ), a group of “dry environments” pres-
ently separating Atlantic and Amazonian Forests and to
which some cladogenic events have been attributed (C-
 ). Successive uctuations over time of these con-
trasting habitats help to explain relationships and faunal
exchanges between Amazonian and Atlantic Forests (see
discussions in F et al. , ). Most of the doc-
umented dispersals of terrestrial anurans between these
two biomes are rather ancient (F et al. ) and
only a few examples of Atlantic Forest species like Rhinel-
la hoogmoedi and Hypsiboas semilineatus are nested with
relatively low genetic distances (– on S) within oth-
erwise Amazonian species ( S et al. , F-
 et al. ). However, no species of anuran restricted
to forest habitats is known to be distributed in both biomes
while it is the case in only a few open habitat species like
Adenomera hylae dactyla (F et al. ).
Nevertheless, although Hypsiboas crepitans is predomi-
nantly associated with forest and mesic habitats, many pop-
ulations are found in dry or xeric environments. L
 M () and O  J () reported
that populations from French Guiana and Suriname, re-
spectively, live in open environments such as in savannas
and inselbergs surrounded by forest. In fact, the type local-
ity of H. crepitans (Tamboril, Municipality of Condeúbas,
State of Bahia, Brazil, see B ) is situated in
a transitional area between the rocky meadows of Serra do
Espinhaço and the Caatinga where both open and forest
vegetation are present. erefore, the inuence of the dry
diagonal as a barrier for this species is not straightforward.
Given these rather wide habitat requirements, a dispersal
between Amazonia and the Atlantic Forest, recent enough
to support a conspecic status of the two groups, cannot
be excluded.
e goals of the present contribution are to review spec-
imens assigned to Hypsiboas crepitans from both distribu-
tion areas and perform analyses using an integrative ap-
proach combining molecular (mtDNA), morphology and
morphometry in order to evaluate the specic status of
these populations.
If the existence of more than one species is supported, a
number of synonyms are available for the NG and should
therefore be examined. Additionally, O J
() also reported H. fuentei (G  G ), a spe-
cies known only from three localities in northeast-central
Suriname (F ), that are nested within the range of
the NG. ey also stated that they would “not be surprised,
if H. fuentei proves to be a junior synonym of H. crepitans.
However, H () suggested that because of the
green colours of live specimens, H.fuentei seemed some-
how related to H. punctatus or H.cinera scens – both today
assigned to the H. punctatus species group. Neither H-
 () nor O J () compared
their specimens with the holotype of H.fuentei, solely with
the description of G G (). Although F-
 et al. () did not assign H.fuentei to any of their
species groups, they state “the angulate dentigerous proc-
ess of the vomer suggests that this species could be associ-
ated with certain Gladiator Frogs... [that] have this charac-
ter state. A study of the holotype … should clarify the mat-
ter”. Given the confusion surrounding H. fuentei and the
possible relation with H.crepitans, we include herein our
own observations of the H. fuentei holotype and evaluate
its taxonomic status.
Table 1. Advertisement call data for Hypsiboas crepitans distributional patches. See text for abbreviations.
OTU Call
duration
(s)
Intercall
interval
(s)
Number
of notes
per call
Number
of pulses/
second
Note
interval
(s)
Number of
pulses/note
Pulse
duration
(s)
Dominant
frequency
(kHz)
Reference
NG 2–5 2.55 F (1966)
NG 2.5–5 3.3–4.4 110 3–5 0.009 0.965–1.288 D (1970)
NG 2–5 2.15 K et al. (2000)
NG 0.21–0.31 1–2 0.35 B et al. (2004)
NG
Summary 0.21–5 ? 1–5 110 ? 3–5 0.009 0.965–2.55
SG 0.51 0.87 1–5 72–96 0.04 3–33 0.010–0.014 0.8 C  J (2008)
SG 0.46 0.52 2 68–77 0.049 4–27 0.014–0.013 0.53–1.30 M et al. (2009)
SG
Summary 0.46–0.51 0.52–0.87 1–5 68–96 0.04–0.049 3–27 0.01–0.014 0.53–1.30
102
V G. D. O et al.
Materials and methods
General procedures
We examined specimens in zoological collections trying to
assemble material from as many populations reported as
H. crepitans as possible. Institutional abbreviations can be
found in S P (), with the addition of AL-MN
(Adolpho Lutz Collection, housed at Museu Nacional, Rio
de Janeiro, Brazil) and MTR (M T. R eld
numbers). Institutional abbreviations apply to both mor-
phological and molecular (tissue) material. A number of
specimens, published sequences, and tissues available were
selected and gathered (see below). is material was either
considered as NG or SG, allowing us to test the above-cit-
ed hypothesis that the two distributional groups of popu-
lations would represent two taxa with allopatric distribu-
tion (C  J , D , K ,
L S-M ). Specimens from NG
are from Roraima state Brazil, Colombia, French Guiana
and Venezuela, while specimens from SG are from sev-
eral Brazilian localities (Supplementary document). Ad-
ditional species for comparisons were chosen based on
their availability according to the present taxonomy i.e.,
all the other species of the H.faber group, as dened by
F et al. (). To discuss the taxonomic status of
H.fuentei, we examined photos of the holotype and types
of relevant material (H. crepitans lectotype and photos of
the holo types of taxa currently considered synonyms).
Qualitative phenotypic data
We conducted the comparisons of adult specimens based
on observations of collection material (Supplementary
document ) and on literature information (see below).
Terminology of external morphology follows D
(). Standards for dorsal outline and prole of the snout
follow H et al. (). Fingers nomenclature follows
F A (). Webbing formula notation
follows S  H (), as modied by M
D  (). Types of vocal sac follow L (). Sex
was determined by the presence of vocal sac, vocal slits, and
developed projecting prepollex in adult males. Coloration
always refers to preserved specimens, except when stated.
Quantitative phenotypic data
Sixteen morphometric variables were used and are given in
millimeters throughout the text. Nine measurements fol-
low D (): SVL (snout–vent length), HL (head
length), HW (head width), ED (eye diameter), UEW (up-
per eyelid width), IOD (interorbital distance), IND (inter-
narial distance), TD (tympanum diameter), and TL (tib-
ia length). One measurement follows H et al. ():
THL (thigh length). Five measurements follow N
(): END (eye–nostril distance), NSD (nostril-tip of
snout distance), FL (foot length, including tarsus), FD
(fourth nger disk diameter; using nomenclature of F-
 A ()), and TD (fourth toe disk di-
ameter). We included an additional measurement: FHL
(forearm+hand length: straight line distance from elbow to
the tip of the third nger). SVL, HL, HW, FHL, THL, TL,
and FL were measured with a digital caliper to the nearest
. mm. All other measurements were taken with an ocu-
lar micrometer on a Zeiss stereomicroscope.
According to B C (), specimens
preserved at dierent times can produce an articial seg-
regation among each time class when measured for mor-
phometric analyses. e reason is the gradual modication
of specimens along the years in preservative (see a brief
historic account in D et al. ). Given that
the measured specimens were collected in several dier-
ent locations and times (see Supplementary document ),
the large amount of analyzed specimens and, the normal
distribution of each measurement, we expect to minimize
the possible problems regarding artefacts of preservation.
A total of  adult specimens were measured (NG: n=
 males and  females; SG: n =  males and  females).
Prior to analysis, all morphometric measures were log-
transformed to conform to requirements of normality and
homocedasticity (Z ).
Principal Component Analysis (PCA) was used to ex-
plore morphometric dierences between groups. Eigen-
vectors and associated eigenvalues were obtained from a
variance-covariance matrix. Scores of individuals were
then projected in the reduced space of the main compo-
nents of larger contributions (H et al. ). e
rst component (hereaer PC) captures the largest pos-
sible variation of the original data; the second component
(hereaer PC) is orthogonal to the rst (independent) and
provides the remaining of maximum variation (P-N-
  B ).
Molecular data procedures
Our survey of GenBank sequences (performed on the th
of July ) showed that, with small additions from our
own dataset, it was possible to assemble a nearly complete
matrix using sequences of the S mitochondrial gene
(hereaer S;  bp) and of the mitochondrial Cyto-
chrome c oxidase subunit  (hereaer COI;  bp) for all
species in the Hypsiboas faber group and for some close-
ly related species according to F et al. () to
serve as outgroups. is includes both geographical groups
of H. crepitans (see Supplementary document ), however
we were not able to gather sequences of both targeted gene
fragments for all terminals. In order to reduce missing en-
tries for outgroups, we used ve chimerical sequences (see
results). Chimerical sequences are solely of distinct indi-
viduals assigned to a same species, and no chimerical se-
quence was produced for ingroup terminals (Supplemen-
tary document ).
To amplify the S mtDNA, we used primers MVZ
(’–ATAGCACTGAAAAYGCTDAGATG–’; G
103
Taxonomy of Hypsiboas crepitans
) and S F-H (’–CTTGGCTCGTAGTTCCCT-
GGCG–’; G et al. ) following the procedures of
F et al. (). COI was amplied using primers
dgHCO- (’-TAAACTTCAGGGTGACCAAARAAY-
CA-’) and dgLCO- (’-GGTCAACAAATCATAAA-
GAYATYGG-’) described in M () following his
procedures. Fragments were sequenced in both directions
and sequencing was performed by Macrogen Inc. (Seoul,
South Korea). Data from complementary strands were
compared to generate a consensus sequence for each DNA
fragment using Sequencher . (Gene Code Corp, Ann Ar-
bor, USA).
Alignments were conducted in the online version of
MAFFT v (K et al. ), aligning each fragment
separately; both genes were aligned using MAFFT align-
ment strategy L-INS-i. e nal matrix comprises  ter-
minals. e missing data are two S sequences of H. fab-
er and  COI sequences of various representatives (two
H.crepitans) of the H. faber species group. We collated 
newly generated sequences of S and  of COI with  for
S and eight for COI from GenBank. e nal matrix can
be found at BOLDSYSTEMS.
Genetic (uncorrected pairwise) distances were calculat-
ed with MEGA . (T et al. ) considering transi-
tions and transversions. Pairwise distances were computed
for a total of  bp for S and  bp for COI. As a rst
approximation, we considered genetic distances high (i.e.,
possibly not conspecic) when ≥  for the S and ≥ 
for COI. A threshold of  for S is common between dis-
tinct amphibian species for which genetic distances were
studied (e.g., C-F et al. , K et
al. , R et al. ). On the other hand, divergence
values for COI have been studied for diverse animal groups
and although thresholds vary among clades (e.g., H
et al. ), a minimum value of  is commonly found
between amphibian species (e.g., V et al. ).
We used JModelTest .. (G G ,
P ) to select the best nucleotide substitution
models according to the Akaike Information Criterion
(AIC) for each of the four partitions we considered (S
and each codon position for COI). We used default settings
( substitution schemes, ML optimization, NNI search).
Selected models were GTR+I+G for S and TrNef+I, F,
and TrN+G for the rst, second and third positions of the
COI respectively.
e resulting models were employed in a Bayesian anal-
ysis (BA) with MrBayes . (R et al. ). Instead
of TrNef+I and TrN+G we used the closest models (GTR+I
and GTR+G respectively) for BA. Gaps were treated as nu-
cleotides of unknown origin in Bayesian inference analyses
due to program constrains. e BA consisted of a ×
generations run and four Markov chains (one cold) sam-
pled every , generations. A conservative burn-in ()
was determined by examining stationarity of the likelihood
scores (all parameters ESS were > ,) and convergence
between the two runs using the deviation of split frequen-
cies and mixing between chains. We considered relation-
ships to be strongly supported when posterior probabilities
were equal to or higher than .. Outgroup (root) was set
as H. cinerascens + H. punctatus according to F
et al. ().
Results
Morphology
Specimens from the two groups can be distinguished based
on adults colour patterns and general morphology. Howev-
er, the two groups share the following characteristics: head
in lateral view truncated, rounded, or acuminate; head in
dorsal view rounded, truncated, or sub-elliptical; feet web-
bing formulae I[] – []II III – IV – V. e usu-
al coloration of the body encompasses several patterns of
marbled background with or without small spots (melano-
phores) mostly resembling a bark-like pattern. e pattern
on the posterior surface of thighs is dierent between both
groups; specimens without blotches are found only in the
NG, although some specimens may present some dark lines
(Fig. C; D ). Furthermore, the presence of a
middorsal longitudinal stripe and the colour of the gular
region dier between groups (see the comparisons section).
Morphometric analyses
PCA results are congruent with the hypothesis that the
NG and the SG represent dierent species. Regarding the
males (n = ), PCA shows two major axes (PC . of
the total variation and PC .). e standardized co-
ecients and factor loadings of the Principal Component
axes are presented in Supplementary document . e two
axes show that the NG is completely separated from the
SG, and the separation of these two groups is mostly due to
both PC and PC (Fig. ). When we look at the axes indi-
vidually, PC is mostly inuenced by FL, HW, THL, SVL,
and IOD, in this order, and PC is mostly inuenced by
NSD, TD, END, FD, and TD, in this order (Supplemen-
tary document ).
Regarding the females (n = ), PCA also display two
major axes (PC accounted for . of the total variation
and PC for .). e standardized coecients and fac-
tor loadings of the Principal Component axes are present-
ed in Supplementary document . e two axes show that
the NG is completely separated from the SG, and the sepa-
ration of these two is mostly due to PC (Fig. ). When we
look to the axes individually, PC is mostly inuenced by
SVL, HW, HL, FD, and THL, in this order, and PC is
mostly inuenced by IOD, NSD, FL, FD, and UEW, in this
order (Supplementary document ).
Molecular analyses
e two groups of H. crepitans are reciprocally mono-
phyletic and retrieved as strongly supported sister clades
(Fig. ). Genetic distances between them are high:  in
104
V G. D. O et al.
S and  in COI (Table ). A phylogeographical struc-
ture is also apparent within each of these two clades. e
NG clade comprises two main lineages segregating east-
ern populations in French Guiana and Guyana (east of Es-
sequibo river) from western populations in Guyana (west
of Essequibo river) and Roraima State (Fig. ). However,
genetic distance between them is low as well as support
for the western lineage (< .). e SG also comprises two
main lineages segregating the northern part of the Atlantic
Forest (AL, PE, BA) from the central part of the Atlantic
Forest (BA, MG). Similarly, genetic distance between them
is low (Table ) as well as support for the central Atlantic
Forest lineage (< .).
Most of the nodes of the tree are strongly supported.
However, the Hypsiboas faber species group was not re-
trieved as monophyletic with the H. albopunctatus species
group (Hypsiboas lanciformis and H. multifasciatus) being
nested within it with uncertain relationship (Fig. ). e
basal divergence within the clade H. fa ber group + H.albo-
punctatus group separates H. albomarginatus from the
rest. However, this relationship is also poorly supported.
In fact, four major groups can be recognized in this clade,
the H.albopunctatus group (widespread in South Ameri-
ca) and three strongly supported clades formed by the spe-
cies of the Hypsiboas faber group. e rst holds the two
samples of H. albomarginatus (Atlantic Forest), the second
samples of H. exastis, H. faber, H. lundii, and H.pardalis
(hereaer the H. faber clade Atlantic Forest, Cerrado),
and the third H. crepitans, H. pugnax, and H. rosenbergi
(hereaer the H. crepitans clade – from the Guiana Shield
to Central America and the Atlantic Forest).
Observations on the holotype of Hyla fuentei
e holotype of Hyla fuentei (CM ; Fig. D) is a fe-
male in good condition of preservation. e abdomen has
a sagittal opening, possibly made for sex determination.
e specimen presents two dorsal cuts in the skin: one over
the frontoparietal fontanel and one from the right shoulder
blade to the le hip. Colours have faded and no clear pat-
tern can be seen.
Some specimens of the NG agree with the holotype of
H. fuentei. Many specimens of the NG are dark green in
Figure 2. (A) Living specimen of Hypsiboas crepitans in diurnal coloration (photo by M. S) from the UESC campus in Ilhéus, Bahia,
Brazil (specimen not collected). (B, C) igh patterns of two specimens of Hypsiboas crepitans (B = MNRJ32440 and C = MNRJ64374).
(D) Living specimen of Hypsiboas xerophyllus in diurnal coloration (photo by A. FOUQUET) from Pacaraima, Roraima, Brazil. (E,
F) igh patterns of two specimens of H. xerophyllus (E = MZUSP65854 and F = MZUSP68669). Scale bar = 1 cm.
105
Taxonomy of Hypsiboas crepitans
small melanophores on the dorsal surface, like the holo-
type of H. fuentei. e nostril shape, the reduced webbing,
and the absence of dermal ridges of the holotype conform
to what is observed in specimens of the NG.
Discussion
Taxonomic conclusions
Although previous authors have used larval morphology
and advertisement call data (C  J ) to sug-
gest that populations of Hypsiboas crepitans from the two
geographical groups could represent two distinct species,
published data on this subject remained ambiguous (see
Introduction). Numerical parameters of advertisement call
overlap (or nearly so, see Table ), and call descriptions,
especially for the populations of the NG, are too succinct
and do not address intraspecic variation and other fac-
tors known to inuence amphibian calls (e.g., the social
context; see W  G ). Larval morphology of
Hypsiboas species presents high levels of intraspecic vari-
ation and many closely related species have nearly indis-
tinguishable larvae (see K et al. , O et al.
). However, since important character states are some-
times overlooked in tadpole descriptions (see K et
al. ), we cannot exclude that the larvae of the two dis-
tributional groups are actually distinct. Additional studies
are needed for a comprehensive comparison of larval mor-
phology and bioacoustics of the two groups.
However, the molecular and morphological data pre-
sented herein are concordant with the recognition of the
populations from the two distributional groups as dis-
tinct species. e SG is restricted to eastern Brazil, from
the State of Paraíba to the northern State of Rio de Janeiro,
including the State of Minas Gerais. e type locality of
H.crepitans was originally designated as “Tamburil, Jiboya,
Arrayal da Conquista”, State of Bahia, Brazil (F ).
B () restricted it to “Tamburil, [Municipal-
ity of] Condeúbas, Bahia, Brazil”. Based on the aforemen-
tioned characteristics, type series data, and type locality,
the SG is considered to represent H. crepitans (Fig. ).
e NG occurrence area comprises a region where ve
taxon names are available. ree names were proposed
Figure 3. Plots of individual scores resulted from Principal Com-
ponent Analysis (PCA) of morphometric data from two groups
of adult males (A) and adult females (B) of Hypsiboas crepitans
(SG) and H. xerophyllus (NG) in the space of the rst with the
second canonical axes. Condence ellipses (95%) for the scores
of each group are shown.
Table 2. Mean intra (rst column) and inter-specic uncorrected pairwise distances among species of the Hypsiboas faber group. Above
the diagonal 12S (907 bp); below, COI (671 bp).
[COI/12S] 1 2 3 4 5 6 7 8 9
1H. crepitans [0.01/0] 0.04 0.07 0.06 0.07 0.09 0.07 0.08 0.09
2H. xerophyllus [0.01/0] 0.13 0.06 0.05 0.07 0.08 0.07 0.07 0.08
3H. rosenbergi [–/0.03] 0.07 0.08 0.09 0.09 0.09 0.1
4H. pugnax [–/0] 0.07 0.07 0.07 0.07 0.07
5H. faber [0.06/0.02] 0.18 0.17 0.06 0.05 0.05 0.08
6H. exastis [–/–] 0.17 0.2 0.16 0.03 0.05 0.08
7H. pardalis [0/0] 0.19 0.2 0.15 0.11 0.04 0.08
8H. lundii [0.01/0] 0.18 0.18 0.16 0.15 0.15 0.08
9H. albomarginatus [0.11/0.02] 0.17 0.17 0.18 0.17 0.18 0.18
life also, but specimens from a given population can ex-
hibit the dark green coloration while other present the pale
coloration. Moreover, many specimens of the NG present
106
V G. D. O et al.
by D B (): Hyla doumercii D
B, , from Suriname (holotype MNHN 
[Fig.A], SVL . mm, adult male, vocal slits present, sup-
plementary bone on Finger II =prepollical spine; A. O-
, pers. comm.); Hyla levaillantii D B,
, from Suriname (holotype MNHN  [Fig. B], SVL
. mm, adult male, vocal slits present, prepollical spine
on Finger II); Hyla xerophylla D B, ,
from “Cayenne, French Guiana (holotype MNHN 
[Fig. C], SVL . mm, probably an adult female, no male
sexual secondary character, at tubercle instead of prepol-
lical spine). Article of the International Code of Zoo-
logical Nomenclature (ICZN ) argues about the “Prec-
edence between simultaneously published names, spellings
or acts”. Following the rules of the Code, we cannot apply
the Section . about the “Determination by First Revis-
er” because this was already done (see D ,
K ).
Although we cannot establish precedence, Article  of
the Code still allows us to choose which of the names of
D  B () we will revalidate if applicable
to a natural population. us, any of the three names de-
scribed by D  B () are available and can
be applied to the NG. Herein, we decided to consider the
Figure 4. Phylogram (50% majority rule consensus with frequencies of all observed bipartitions) hypothesized from Bayesian analysis
using 1578 bp of 12S and COI. Numbers above nodes are posterior probabilities (* indicates pp ≥ 0.99; pp < 0.5 are not indicated). Sam-
ples are labeled according to collection numbers followed by origin (country in full or Brazilian state ocial acronym if from Brazil).
107
Taxonomy of Hypsiboas crepitans
Figure 5. Dorsal and ventral views of the holotypes of (A) Hyla
doumercii [SVL = 47.2 mm, male], (B) H. levaillantii [SVL =
48.1 mm, male], (C) H. xerophyllus [SVL = 44.9 mm, likely a
female], and (D)H. fuentei [SVL = 57.0 mm, female]. Figures
are not to scale.
NG as Hypsiboas xerophyllus, resurrecting the name Hyla
xerophylla D  B,  from the synonymy
of Hypsiboas crepitans (W, ) and transferring the
species to the genus Hypsiboas based on phylogenetic re-
lationships.
e two remaining names, Hypsiboas indris C, 
and Hyla fuentei G  G, , are more recent and
based on material from Suriname. Hyla fuentei holotype
from “Suriname, Suriname District Powakka” (CM 
[Fig. D], SVL . mm, adult female; G  G )
presents a colour pattern in accordance with what was stat-
ed by G  G (). e sagittal opening at the ab-
domen seems to be made for information on ovaries and
oocytes (see G G ). In fact, all our obser-
vations about the holotype agree well with G G
(). In addition, e holotype agreed with the NG pop-
ulations and they exhibit a dark green coloration, while
other present the pale coloration, a phenomenon proba-
bly not uncommon in Hypsiboas, as also revealed in An-
dean species of the H. pulchellus species group (K
et al. ). Aer the examination of the holotype of Hyla
fuentei we considered this species as belonging to the NG
and, thus, to be a junior synonym of the name applicable
to this group (H. xerophyllus). We have not examined the
holotype of Hypsiboas indris C, . However, the dis-
tribution of this taxa completely overlaps with the more in-
clusive distribution of the NG. In the light of the present
results – where the genetic diversity within each group is
low (Table ) it seems very unlikely that it represents a
dierent species from H. crepitans. erefore, we provi-
sionally transfer it from the synonymy of Hypsiboas crepi-
tans to the synonymy of Hypsiboas xerophyllus.
Species account
Hypsiboas xerophyllus (D  B, ).
New combination, revalidation
Hyla levaillantii D  B,  – Erp. Gen. :. New
synonymy.
Hyla doumercii D  B,  – Erp. Gen. :. New
synonymy.
Hyla fuentei G  G,  – Copeia :. New synony-
my.
Hypsiboas indris C  – J. Acad. Nat. Sci. Philadelphia, Ser.
, : . New synonymy.
Holotype: MNHN , SVL . mm, probably female (no
male secondary characters), “Cayenne” [= French Guiana]
(Fig. C).
Diagnosis: Hypsiboas xerophyllus is a member of the H. fa-
ber species group (sensu F et al. ), character-
ized by: SVL .–. mm in adult males, .–. mm
in adult females; in dorsal view, head nearly rounded with
rounded, truncated, or sub-elliptical snout; single, well de-
veloped projecting prepollex in adult males; tympanum
108
V G. D. O et al.
and tympanic annulus visible externally and in contact
with the posterior margin of eye; well-developed supra-
tympanic fold covering the upper edge of the tympanum;
lower edge of the tympanum close to the mouth (at jaw
articulation level); males with vocal slits under the tongue
and parallel to the lower lip, vocal sac median, subgular
(sensu L ); presence of two groups of vomerine teeth
between choanae; dermal ridges (mbriae) absent or ru-
dimentary along arms and feet; skin smooth dorsally and
granular ventrally; colour of gular region similar to belly
colour in preserved males and females (cream); cloacal re-
gion composed by a subcloacal fold, white tubercles around
the cloacal opening, and a well-developed ap (horizontal,
above vent); anks usually show parallel transverse thin
bars; well-developed tubercles on the ventral surface of
thighs; dorsal surface of thighs usually with parallel bars,
if present, spaced and wider dorsally, thinner and lighter
posteriorly; colour on dorsum ranging from pale gray to
brown in preservative, with a X-shaped mark sometimes
over the suprascapula.
Comparisons with other species: Hypsiboas xerophyllus is
easily dierentiated from H. crepitans, its sister taxon and
morphologically most similar species, by the absence of a
mid-dorsal longitudinal dark brown stripe (present, of dif-
ferent widths, sometimes incomplete i.e., not connect-
ing snout and vent in H. crepitans); immaculate cream
gular region in both sexes (brown in males of H. crepi-
tans); absence of, or barely visible, bifurcated vertical dark
brown bars on ventroposterior surfaces of thighs (present
in H.crepitans; Fig. ).
From other species of the H. faber group, H. xerophyllus
diers by having a smooth texture of skin on dorsal sur-
faces, and low development of ulnar and outer tarsal der-
mal ridges (skin texture lumpy, and well developed dermal
ridges in H. pardalis, H. exastis, H. rosenbergi, and H. lun-
dii). e absence of well-developed calcars distinguishes
H. xerophyllus from H. pardalis, and H. exastis. e ab-
sence of extensive hand webbing distinguishes H. xero-
phyllus from H. pardalis, H. exastis, and H. lundii. e su-
pratympanic fold of H. albomarginatus is white (or whitish
green in live specimens) while in H. xerophyllus it presents
the same lichenous colour as the dorsum. e gular region
is immaculate cream in H. xerophyllus while it has brown
ecks in H. pugnax. In life, the iris coloration is whitish
around the pupil and yellow-green on he outer edge in
H.xerophyllus while it is golden yellow in H. pugnax.
Figure 6. Lectotype of Hypsiboas crepitans, AMNH 785, adult female, SVL ca. 69 mm, from Vitória da Conquista, State of Bahia, Brazil.
Table 3. Mean pairwise distances within species of the Hypsiboas
faber group and within other groups (gr.) of Hypsiboas. 12S se-
quences have 907 bp; COI, 671 bp.
12S COI
H. albomarginatus 0.02 0.11
H. albopunctatus gr. 0.04 0.13
H. crepitans 0.00 0.01
H. exastis
H. faber 0.02 0.06
H. lundii 0.00 0.01
H. pardalis 0.00 0.00
H. pellucens gr. 0.01 0.11
H. pugnax 0.00
H. pulchellus gr. 0.08
H. punctatus gr. 0.09
H. rosenbergi 0.03
H. xerophyllus 0.00 0.01
109
Taxonomy of Hypsiboas crepitans
Colour in preservative: Dorsal background light brown to
cream with dark brown blotches; an interocular stripe and
a X-shaped mark on the dorsum can be present. Flanks
with well-dened dark brown transverse stripes. Chest and
gular region beige, edge of lips green. Belly and ventral sur-
faces green, sometimes orange. Fingers beige, dark green,
or orange. Iris grey with green outer border.
Variation: Hypsiboas xerophyllus presents some variation
in size, with females usually larger than males (Table ).
Adult males have hypertrophied forearms, enlarged and
projecting prepollices, and vocal slits, all characteristics
that are absent in females. In dorsal view, shape of head
ranges from rounded to oval, and in lateral view from
rounded to truncated. Specimens usually lack any colour
pattern at inguinal region and posterior surface of thighs.
In living specimens, the dorsal pattern can vary in colour
(white, green, or brown), oen depending on light inten-
sity, and dorsal blotches can be present or absent.
Distribution: Eastern Panama, through northern Co-
lombia, Venezuela, the Guiana Shield, including adjacent
northwestern Brazil, below , m a.s.l. e species seems
absent from most French Guiana, only occurring around
inselbergs at isolated localities in the south and in dis-
turbed forest along the lower course of the Maroni River
(Apatou, Saint Laurent). e species has not been recorded
in the states of Amapá (AF pers. obs., D-L )
and Pará, north of the Amazon River (Á-P et al.
). However, it occurs throughout most Guyana (C
et al. ) and northern Suriname (O J
), although apparently absent from Kaieteur National
Park (K  K ).
Natural history: According to D (; as
H. crepi tans), specimens from Panama do not exhibit
the habit to build clay nests. However, L R-
 () reported this behavior as usual in Colombian
populations, and L () conrms this behav-
ior for Trinidad populations. One of us (AF) observed
building of clay nests in the state of Roraima in Brazil and
in Suriname. erefore, nest building behavior is likely
facultative as already observed by C () in
other species of Hypsiboas. Males have been observed
calling at night in small streams, ponds, and even asks
during the rainy and the dry season. e species seems
to inhabit ecotonal forest and is oen found in disturbed
habitat.
Hypsiboas crepitans (D  B, )
Lectotype: AMNH , SVL ca.  mm, adult female,
from Tamburil, [Municipality of] Condeúba, Bahia, Bra-
zil (Fig.).
Diagnosis: Hypsiboas crepitans is a member of the H. faber
species group (sensu F et al. ), characterized
by: SVL .–. mm in males and .–. mm in fe-
males; interdigital membranae poorly developed; mbrias
absent in arms and tibia; Dorsal coloration brown, usually
with an X-shape above the scapular region or a fragmented
mid-dorsal line; dorsal skin smooth; ank and thigh with
conspicuous transversal bars; absence of calcar ap or ap-
pendage; presence of subcloacal dermal fold, surrounded
by granules; upper cloacal ap poorly developed; absence
of lichenous subcloacal plate.
Table 4. Descriptive statistics (in millimeters) for measurements of Hypsiboas crepitans and H. xerophyllus. e results are presented
as mean ± standard deviation (range).
Measures Hypsiboas crepitans H. xerophyllus
Males (n=95) Females (n=70) Males (n=98) Females (n=13)
SVL 58.1±7.6 (33.2–71.8) 55.4±4.59 (51.0–64.7) 50.6±3.86 (42.9–63.8) 57.7±7.91 (40.9–71.8)
HL 19.2±2.2 (11.4–22.8) 18.4±2.23 (14.7–21.6) 16.6±1.5 (13.7–19.9) 19.1±2.21 (13.8–22.8)
HW 20.3±2.5 (12.0–24.1) 18.9±1.32 (17.1–21.3) 17.7±1.25 (15.4–21.7) 20.0±2.51 (14.5–24.1)
ED 6.1±0.7 (3.2–7.3) 2.2±0.15 (1.9–2.5) 5.4±0.54 (4.1–6.9) 3.7±0.43 (2.9–4.7)
END 5.6±0.7 (3.5–6.8) 3.6±0.39 (2.8–4.3) 5.5±0.72 (4.3–9.8) 1.9±0.28 (1.3–2.6)
TD 4.4±0.6 (2.1–5.5) 4.6±0.47 (4.0–5.5) 4.4±0.39 (3.4–5.3) 4.4±0.69 (2.7–6.3)
UEW 4.6±0.7 (2.7–6.3) 5.6±0.47 (4.7–6.5) 4.4±0.63 (2.2–6.0) 6.0±0.67 (4.2–7.3)
IOD 10.8±1.2 (7.0–12.8) 5.7±0.50 (5.0–6.6) 5.4±0.63 (4.0–7.0) 10.7±1.21 (7.7–12.8)
IND 3.8±0.5 (1.7–4.8) 5.6±0.44 (5.0–6.1) 3.3±0.66 (1.8–4.6) 5.5±0.69 (4.2–6.8)
NSD 1.9±0.3 (1.1–2.6) 4.5±0.50 (3.7–5.3) 2.5±0.63 (1.6–3.9) 4.4±0.63 (2.1–5.5)
FAL 27.7±3.6 (15.4–34.4) 25.7±3.46 (16.8–30.3) 23.9±2.1 (12.0–29.6) 27.4±3.55 (19.2–34.4)
4FD 2.6±0.4 (1.5–3.4) 2.7±0.38 (2.1–3.2) 2.4±0.25 (1.8–3.3) 2.6±0.38 (1.8–3.4)
THL 32.4±4.2 (18.3–40.0) 30.6±1.91 (27.7–34.1) 28.3±1.92 (23.1–34.8) 31.9±4.19 (23.2–40.0)
TL 31.7±4.1 (18.0–39.3) 30.4±1.85 (27.8–33.8) 28.0±1.99 (23.0–35.0) 31.5±4.13 (23.3–39.3)
FL 40.8±5.2 (22.5–51.9) 38.6±2.40 (34.5–42.4) 35.5±2.61 (28.8–44.3) 40.4±5.14 (30.2–51.9)
4TD 2.3±0.3 (1.2–3.0) 2.4±0.32 (2.0–3.0) 2.1±0.25 (1.5–2.9) 2.2±0.33 (1.6–2.9)
110
V G. D. O et al.
Distribution: Central to eastern Brazil, from the Atlan-
tic coast of the states of Rio de Janeiro to Paraíba (present
study).
Phylogenetic relationships and biogeography
e Hypsiboas faber species group, as dened by F-
 et al. (), has not been recovered as monophylet-
ic in our results the weak relationship between H. albo-
marginatus and the remaining species of the group has
been already reported by previous authors (K et
al. , W et al. ), and the nested position of
the H. albo punctatus group within the H. faber group is
strongly supported. However, we refrain to take any for-
mal action regarding this matter as our molecular anal-
yses were simply aimed at exploring genetic divergence
within H.crepitans.
F et al. () listed the H. faber group as an
example of a clade having an Atlantic Forest (or at least
an eastern Brazilian) origin with subsequent radiations
into neighbouring regions. At that time the authors had
only Atlantic Forest dwellers in their dataset (their sam-
ple of H. crepitans was from State of Alagoas, Brazil) and
probably assumed that H. albomarginatus would be sister
to the remaining species of the group based on its unique
colour. Our results suggest a more complex history of suc-
cessive dispersals between Amazonia, Cerrados and the
Atlantic Forest. However, the lack of support at the base
of the clade prevents any further biogeographic analyses,
and additional data are needed. Nevertheless, the H. faber
clade is endemic to eastern Brazil while the H. crepitans
clade is restricted to northern South America and Panama
with the exception of H. crepitans. Such a pattern suggests
that H. crepitans originates from a dispersal event from
Amazonia to the Atlantic Forest probably via a northern
route (C ). Given the genetic distances between
H. crepitans and H. xerophyllus we hypothesize that this
dispersal occurred before the Pleistocene and was probably
favored by forest connection due to more humid climate.
Such a route is supported by biogeographical analyses of
dierent groups of organisms, as well as by climatic and
oristic evidence (B-F et al. , C et
al. , C , M S et al. , W et
al., ).
Hypsiboas pardalis and H. lundii were long consid-
ered synonyms (C N ) due to
their morphological similarity. Although the relationship
of H.exastis with H. pardalis and H. lundii was not unex-
pected (see C  R ), we – unex-
pectedly – found that H. lundii is instead sister to a clade
composed of H. exastis + H. pardalis. C  R-
 () related H. exastis to H. pardalis and H. lun-
dii due to their similar skin texture and colour pattern; the
lichenous aspect similar to tree bark were evidence that
these species were more closely related to each other than
to all other members of the Hyla boans species group, as
dened at that time.
e IUCN distribution for Hypsiboas crepitans (L
M et al. ) and H. xerophyllus needs to be re-eval-
uated. Although F () stated that the species oc-
curs in the south of the Atlantic Forest, from São Paulo
to Santa Catarina states, we were unable to nd a speci-
mens from this region (Fig. ). We propose that the south-
ern part of the IUCN distribution is based on misidenti-
ed H. lundii or H. pardalis specimens and that the dis-
tribution of H. crepitans (as re-dened here) is restricted
to an area north of o southern latitude. Despite the fact
that the respective ranges are now conned to a smaller
portion of the formerly supposed range of H. crepitans,
both species are still widespread and, given their habitat
requirements, are likely relatively tolerant to human dis-
turbance. erefore, we suggest considering them as Least
Concern (LC).
Acknowledgements
We are grateful toward S. R, P. J. R. K and an anonymous
reviewer for valuable comments on a previous version. For their
invaluable help and company in the eld and for the gi of tis-
sue samples, we thank P. G, M. B, J. C,
C. M. C, F. C, M. D, A. C, R. D-
, D. P, R. R, M. S, S. M. S, M.
T J., V. V, H.  N, and D. F.  M-
 J. Pictures of the holotype of Hypsiboas fuentei were
kindly provided by S. R and J. M. P. VGDO thanks
Sao Paulo Research Foundation (FAPESP; grants /-
, /-, BIOTA /-) and ANPCyT PICT
/ for nancial support and C. S. C for support
and comments on a previous versions of this manuscript. AF
beneted from an “Investissement d’Avenir” grant managed
by Agence Nationale de la Recherche (CEBA, ref.ANR--LA-
BX--), France. IN thanks Fundação Carlos Chagas Filho
de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
and Conselho Nacional de Desenvolvimento Cientíco e Tec-
nológico (CNPq) for support and fellowship, respectively. CM
thanks Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) for fellowship. UC thank CNPq for nan-
cial support. MLL thanks FAPESP (/-) and CNPq
(/-; /-) for fellowship and nancial
support. CFBH and MTR thank FAPESP (Grant /-
) and CNPq for nancial support. is study was co-funded
by NSF (DEB ) and NASA. is research was supported
by the Núcleo de Computação Cientíca (NCC/GridUNESP)
from the Universidade Estadual Paulista ‘‘Júlio de Mesquita Fil-
ho’’ (UNESP). e Centro de Estudos de Insetos Sociais (CEIS),
UNESP, Rio Claro, Brazil, allowed the utilization of the facilities
for molecular analyses.
References
Á-P, T. C. S., M. S. H  W. A. D. R ():
Notes on the vertebrates of northern Pará, Brazil: a forgotten
part of the Guianan Region, I. Herpetofauna. – Boletim do
Museu Paraense Emílio Goeldi de Ciências Naturais,: –.
B-F, H., J. F, P.-H. F C. Y. M
(): Connections between the Atlantic and the Amazonian
forest avifaunas represent distinct historical events. – Journal
of Ornithology, : –.
111
Taxonomy of Hypsiboas crepitans
B, M. H.  J. A. C (): An essay on precision
in morphometric measurements in anurans: inter-individual,
intra-individual and temporal comparisons. – Zootaxa, :
–.
B, M. H., D. P. M  C. A. P (): Estudio
de la vocalización de trece especies de anuros del municipio de
Ibagué, Colombia. – Revista de la Academia Colombiana de
Ciencias Exactas, Fisicas y Naturales, : –.
B, W. C. A. (): Lista anotada das localidades tipo
de anfíbios brasileiros. Serviço de Documentação, Reitoria
da Universidade de São Paulo: São Paulo.
B, G. A. (): An account of the reptiles and batra-
chians collected by Mr. W. F. H. Rosenberg in western Ecua-
dor. – Proceedings of the Zoological Society of London, :
–.
B, C. H. C. (): Erläuterungen zur Fauna Brasili-
ens, enthaltend Abbildungen und ausführliche Beschreibun-
gen neuer oder ungenügend bekannter ier-Arten. – G. Rei-
mer: Berlin.
C, G. S., F. M. ’H, E. H. S, F. R. S 
C. Y. M (): Nuclear and mitochondrial phylogeo-
graphy of the Atlantic forest endemic Xiphorhynchus fuscus
(Aves: Dendrocolaptidae): biogeography and systematics
implications. – Molecular Phylogenetics and Evolution, :
–.
C, J. (): Diversity of reproductive modes in anurans:
facultative nest construction on gladiator frogs – pp. –. In:
H, W. C. (ed.): Reproductive biology of South Ameri-
can vertebrates. Springer, New York, USA.
C, U.  M. F. N (): Nomenclatural status of
the synonyms of Hyla pardalis Spix, , and taxonomic po-
sition of Hyla biobeba Bokermann and Sazima,  (Anura:
Hylidae). – Journal of Herpetology, : –.
C, U. M. T. R (): A new large tree-
frog species, genus Hyla Laurenti, , from southern Bahia,
Brazil (Amphibia, Anura, Hylidae). – Arquivos do Museu Na-
cional, : –.
C, F. C.  F. A. J (): Girino e canto de anúncio de
Hypsiboas crepitans (Amphibia: Anura: Hylidae) do Estado da
Bahia, Brasil, e considerações taxonômicas. – Boletim do Mu-
seu Paraense Emílio Goeldi de Ciências Naturais,: –.
C-F, S., P. E. P-P, J. M. P  J. M.
G (): A second species of the family Allophry-
nidae (Amphibia: Anura). American Museum Novitates,
: –.
C, C. J., C. R. T, R. P. R, R. D. MC-
  A. L (): Amphibians and reptiles of Guy-
ana, South America: illustrated keys, annotated species ac-
counts, and a biogeographic synopsis. Proceedings of the
Bio logical Society of Washington, : –.
C, E. D. (): On the families of the raniform Anura.
Journal of the Academy of Natural Sciences of Philadelphia,
: –.
C, L. P. (): e historical bridge between the Ama-
zon and the Atlantic Forest of Brazil: a study of molecular
phylogeo graphy with small mammals. – Journal of Biogeo-
graphy, : –.
D, J. L., J. B  G. B. W (): An-
uran artifacts on preservation:  years later. – Phyllomedusa,
: –.
D L, J. (): A herpetofauna do Parque Nacional Mon-
tanhas do Tumucumaque, Amapá, Brasil, Expedições I a
V pp. –. in: B, E. (ed.): Inventários Biológicos
Rápidos no Parque Nacional Montanhas do Tumucumaque,
Amapá, Brasil. RAP Bulletin of Biological Assessment ,
Conservation International, Arlington, USA.
D, W. E. (): Hylid frogs of Middle America. – Mon-
ographs of the Museum of Natural History, University of Kan-
sas, /: –.
D, W. E. (): Amphibians of La Escalera Region,
southeastern Venezuela: taxonomy, ecology, and biogeogra-
phy. – Scientic Papers, Natural History Museum University
of Kansas,: –.
D, A. M. C.  G. B (): Erpétologie genérale ou
Histoire naturelle complète des reptiles. – Librarie Enclyclope-
dique de Roret, Paris.
F, M. P. A (): e carpal elements of an-
urans. – Herpetologica, :–.
F, J., C. F. B. H, P. C. A. G, D. R. F,
J. A. C W. C. W (): Systematic review
of the frog family Hylidae, with special reference to Hylinae:
phylogenetic analysis and taxonomic revision. Bulletin of
the American Museum of Natural History, : –.
F, A., A. G, M. V, C. M, M. B  N.
J. G (): Underestimation of species richness in
Neo tropical frogs revealed by mtDNA analyses. – PLoS ONE,
: e.
F, A., D. L, S. C-F, J. M. P-
, V. G. D. O, M. L. L, I. J. R, P. J. R. K, C.
F. B. H  M. T. R (): From Amazonia to
the Atlantic forest: molecular phylogeny of Phyzelaphryninae
frogs reveals unexpected diversity and a striking biogeograph-
ic pattern emphasizing conservation challenges. Molecular
Phylogenetics and Evolution, : –.
F, A., C. S. C, C. F. B. H, N. P M. T.
R (): Species delimitation, patterns of diversi-
cation and historical biogeography of the Neotropical frog
genus Adenomera (Anura, Leptodactylidae). Journal of
Biogeo graphy, : –.
F, A., Q. M, L. Z, E. A. C, P. G-
, M. B, J. D L, S. M S, M. T. R-
  P. J. R. K (): Cryptic diversity in the Hypsi-
boas semilineatus species group (Amphibia, Anura) with the
description of a new species from the eastern Guiana Shield.
– Zootaxa, : –.
F, M. J. (): Some hylid frogs of the canal zone with
special reference to cell structure. – Caribbean Journal of Sci-
ence,: –.
F, D. R. (): Amphibian Species of the World: An Online
Reference. Version . ( February ). Eletronic database
accessible at http://research.amnh.org/herpetology/amphibia/
index.html. American Museum of Natural History: New York,
USA.
G, A. M., J. M. D  M. E. A (): PCR primers
and amplication methods for S ribosomal DNA, the con-
trol region, cytochrome oxidase , and cytochrome b in bufo-
nids and other frogs, and an overview of PCR primers which
have amplied DNA in amphibians successfully. – Molecular
Phylogenetics and Evolution, : –.
112
V G. D. O et al.
G, C. J.  O. B. G (): A new green tree frog from Suri-
name. – Copeia, : –.
G, A. (): Phylogenetic relationships of bufonid frogs
and tests of alternate macroevolutionary hypotheses charac-
terizing their radiation. Zoological Journal of the Linnean
Society, : –.
G, S. O. G (): A simple, fast, and accurate
algorithm to estimate large phylogenies by Maximum Likeli-
hood. – Systematic Biology, : –.
H, P. D. N., A. C, S. L. B J. R. W
(): Biological identications through DNA barcodes.
Proceedings of the Royal Society of London. Series B: Biologi-
cal Sciences, : –.
H, W. R., A. S. R, C. A. G. C, O. L. P  C. E.
N (): Frogs of Boracéia. – Arquivos de Zoologia, :
–.
H, M. S. (): Resurrection of Hyla ornatissima Noble
(Amphibia, Hylidae) and remarks on related species of green
tree frogs from the Guiana area. Notes on the herpetofauna of
Surinam VI. – Zoologische Verhandelingen, : –.
H, J. M., F. L. B, B. C, G. R. S,
R. L. E  S. G. P (): Multivariate discrimination
by shape in relation to size. – Systematic Zoology, : –.
ICZN – International Commission on Zoological Nomenclature
(): International Code of Zoological Nomenclature. – In-
ternational Trust of Zoological Nomenclature: London.
IUCN Standards and Petitions Subcommittee (): Guide-
lines for using the IUCN red list categories and criteria. Ver-
sion . Prepared by the Standards and Petitions Subcommit-
tee. Available from: http://www.iucnredlist.org/documents/
RedListGuidelines.pdf (accessed  February ).
K, K., K. M, K.-I. K T. M (): MA-
FFT – a novel method for rapid multiple sequence alignment
based on fast Fourier transform. – Nucleic Acids Research, :
–.
K, P. J. R.  M. K (): Introduction to the tax-
onomy of the amphibians of Kaieteur National Park, Guyana.
– ABC Taxa, : –.
K, F., K.-J. S, R. G  J. P ():
On the genetic diversity in the mitochondrial S rRNA
gene of Platymantis frogs from western New Guinea (Anura:
Cerato batrachidae). – Journal of Zoological Systematics and
Evolutionary Research, : –.
K, J., D. K, J. M. P, J. C. C, P.
H, S. C. L  I. D  R (): System-
atics of Andean gladiator frogs of the Hypsiboas pulchellus spe-
cies group (Anura, Hylidae). – Zoologica Scripta, : –.
K, F., C. B, L. A, D. B, D. C 
J. F (): Comparative larval morphology of eight
species of Hypsiboas Wagler (Amphibia, Anura, Hylidae) from
Argentina and Uruguay, with a review of the larvae of this ge-
nus. – Zootaxa, : –.
K, N. M., W. R. T  M. J. R (): e transmis-
sion of advertisement calls in Central American frogs. –Be-
havioral Ecology, : –.
K, A. G. (): e gladiator frogs of Middle America and
Colombia – A reevaluation of their systematics (Anura: Hyli-
dae). – Occasional Papers of the Museum of Zoology, Univer-
sity of Michigan, : –.
L M, E., C. A-R, S. S, F. S, R.
I, C. J, Q. F J. H ():
Hypsiboas crepitans. e IUCN Red List of reatened Species
: e.TA. http://dx.doi.org/./IUCN.
UK.-.RLTS.TA.en. Downloaded on  De-
cember .
L, J.  C. M (): Atlas des amphibiens de Guyane.
– Patrimoines Naturels, : –.
L, R. M. (): Conrmation of nest building in a pop-
ulation of the gladiator frog Hypsiboas crepitans (Anura, Hyli-
dae) from the island of Tobago (West Indies). – Herpetology
Notes, : –.
L, C. C. (): Types of vocal sac in the Salientia. – Proceedings
of the Boston Society of Natural History, : –.
L, J. D. (): e tadpoles of frogs and toads found in the
lowlands of northen Colombia. – Revista de la Academia Co-
lombiana de Ciencias Exactas, Físicas y Naturales, : –.
L, J. D.  M. A. V. R (): Lista preliminar de an-
uros del Departamento del Guainía, Colômbia. Revista de
la Academia Colombiana de Ciencias Exactas, Físicas y Natu-
rales, : –.
L, J. D.  A. M. S-M (): e distributions of
the gladiator frogs (Hyla boans group) in Colombia, with com-
ments on size variation and sympatry. – Caldasia, : –.
M, L. B., W. R. S A. A. G (): Distribu-
tion and calls of two South American frogs (Anura). – Sala-
mandra, : –.
M S, A. M. M., D. R. C, J. M. C.  S
 M. T (): Biogeographical relationships among
tropical forests in north-eastern Brazil. Journal of Biogeo-
graphy, : –.
M, C. (): Molecular systematics of cowries (Gastropoda:
Cypraeidae) and diversication patterns in the tropics. – Bio-
logical Journal of the Linnean Society, : –.
M, C. W.  W. E. D (): A new species of Hyla
from Cerro Colorado, and other tree frog records and geo-
graphical notes from western Panama. – American Museum
Novitates, : –.
N, M. F. (): A new species allied to Hyla circumdata
(Anura: Hylidae) from Serra da Mantiqueira, southeastern
Brazil. – Herpetologica, : –.
O, V. G. D., M. M. M  A. M. P. T. C--S-
(): e tadpole of Hypsiboas latistriatus (Caramaschi
& Cruz, ), a species of the Hypsiboas polytaenius (Cope,
) clade (Amphibia, Anura, Hylidae). – Zootaxa,: –.
O, P. E.  R. J (): Amphibians of Surinam.
Koninklijke Brill, Leiden, Netherlands.
P-N, P. R.  C. R. S. F. B (): e jackkning
of multivariate allometric coecient (Jolicoeur, ): a case
study on allometry and morphometric variation in Corydoras
barbatus (Quoy & Gaimard, ) (Siluriformes, Callichthyi-
dae). – Arquivos de Biologia e Tecnologia, : –.
P, D. (): jModelTest: phylogenetic model averaging. –
Molecular Biology and Evolution, : –.
R, S. R., P. J. V, E. T, M. R, D. A. O  A.
L. M (): Systematics of the Osteocephalus buckleyi
species complex (Anura, Hylidae) from Ecuador and Peru.
Zookeys, : –.
113
Taxonomy of Hypsiboas crepitans
R, F., M. T, P. V. D. M, D. A, A. D-
, S. H, B. L, L. L, M. A. S J. P.
H (): MrBayes .: ecient Bayesian phyloge-
netic inference and model choice across a large model space.
– Systematic Biology, : –.
S P, M. H. (): Standard symbolic codes for institu-
tional resource collections in herpetology and ichthyology: an
online reference. Version . ( November ). – Available
at: http://www.asih.org/, American Society of Ichthyologists
and Herpetologists, Washington, D.C. Accessed on  Novem-
ber .
D S, S. P., R. I  S. R. R (): Systematics of
the Rhinella margaritifera complex (Anura, Bufonidae) from
western Ecuador and Panama with insights in the biogeogra-
phy of Rhinella alata. – ZooKeys, : –.
S, J. M.  W. R. H (): Variation and distribution
in the tree-frog genus Phyllomedusa in Costa Rica, Central
America. – Beitrage zur Neotropischen Fauna,: –.
S, K. P.  R. F. I (): Amphibians and reptiles of
the Hopkins-Branner expedition to Brazil. – Fieldiana Zool-
ogy new series, : –.
S, J. B. (): Animalia nova, species novae testudinum et
ranarum quas in itinere per Brasiliam annis – jussu
et auspiciis Maximilian Josephi I. Bavaria Regius. – Hübsch-
mann: München.
T, K., D. P, N. P, G. S, M. N
 S. K (): MEGA: Molecular evolutionary genetics
analysis using Maximum Likelihood, Evolutionary Distance,
and Maximum Parsimony methods. – Molecular Biology and
Evolution, : –.
V, M., M. T, R. M. B  D. R. V ():
Deciphering amphibian diversity through DNA barcoding:
chances and challenges. – Philosophical Transactions of the
Royal Society B-Biological Sciences, : –.
W, X., A. S. A, R. L. E, H. C, P. S. C-
, P. L. S, D. A. R C.-C. S (): Wet
periods in northeastern Brazil over the past  kyr linked to
distant climate anomalies. – Nature, : –
W, K. M. (): Eects of hatching age on develop-
ment and hatchling morphology in the red-eyed tree frog,
Agalychnis callidryas. – Biological Journal of the Linnean So-
ciety, : –.
W, K. D.  B. J. G (): Vocal responses to conspecif-
ic calls in a Neotropical hylid frog, Hyla ebraccata. – Copeia,
: –.
W, F. P. (): e diversication of eastern South Amer-
ican open vegetation biomes: historical biogeography and per-
spectives. – Quaternary Science Reviews, : –.
W, M. P  (): Reise nach Brasilien in den Jahren 
bis . – Heinrich Ludwig Brönner, Franfurt.
W, M. P  (): Abbildungen zur Naturgeschichte
Brasiliens. He . – Landes-Industrie-Comptoir, Weimar.
W, J. J., C. H. G, D. S. M, S. A. S  T. W.
R (): Evolutionary and ecological causes of the lati-
tudinal diversity gradient in hylid frogs: treefrog trees unearth
the roots of high tropical diversity. – e American Naturalist,
: –.
Z, J. H. (): Biostatistical Analysis. – Prentice Hall: New
Jersey.
Supplementary material
Supplementary document . Examined specimens
Supplementary document 2. Voucher information, localities,
and GenBank accession numbers for the specimens analyzed
for this study.
Supplementary document 3. Standardized coecients and factor
loadings (r) from a Principal Component Analysis.
I
Online Supplementary data – Taxonomy of Hypsiboas crepitans
Supplementary document 1. Examined specimens
Hypsiboas albomarginatus
Brazil: Estado de Alagoas: MNRJ  Fazenda Santa Justina, Pas-
so de Camaragibe; MNRJ – Murici; MNRJ , ,
– São Miguel dos Campos; MNRJ – Rio
Largo.
Brazil: Estado da Bahia: MNRJ  Reserva Particular do
Patrimônio Natural Cachoeira da Água Branca, Valença; MNRJ
 Mata da Cara Branca, Santa Cruz Cabrália; MNRJ  Fei-
ra de Santana; MNRJ  Reserva Particular do Patrimônio Nat-
ural Capitão, Itacaré; MNRJ – Fazenda Tiririca, Conde;
MNRJ  Entre Rios; MNRJ  Fazenda São José, Mascote;
MNRJ – Fazenda Pedra Branca, Itagibá; MNRJ 
Reserva Particular do Patrimônio Natural Estação de Vera Cruz,
Porto Seguro; MNRJ  Serra do Timorante, Valentim, Boa
Nova; MNRJ  Reserva Particular do Patrimônio Natural Ser-
ra do Teimoso, Jussari.
Brazil: Estado do Espírito Santo: MNRJ  Santa Teresa;
MNRJ , – Praia das Neves, Presidente Kennedy;
MNRJ  Costa Bela, Serra; MNRJ – Parque Es-
tadual Fonte Grande, Vitória; MNRJ –, , ,
 Reserva Biológica de Duas Bocas, Cariacica; MNRJ –
 Barra do Riacho, Aracruz; MNRJ – Pedra do
Garrafão, Mimoso do Sul; MNRJ – Guarapari; MNRJ
, , – Reserva Biológica de Santa Lúcia,
Santa Teresa; MNRJ – Mimoso do Sul; MNRJ 
Setiba, Guarapari; MNRJ  Pedra Azul, Domingos Martins;
MNRJ – Ponte da Chinchinha, Povoação, Linhares.
Brazil: Estado de Minas Gerais: MNRJ – Chia-
dor; MNRJ  Faria Lemos; MNRJ , – Além
Paraíba; MNRJ – Pádua; MNRJ – Faria
Lemos.
Brazil: Estado do Paraná: MNRJ  RPPN Salto Mor-
ato, Guaraqueçaba; MNRJ – Estação II, Instituto
Agronômico do Paraná, Morretes.
Brazil: Estado de Pernambuco: MNRJ –, –
 Refúgio Ecológico Charles Darwin, Igarassu.
Brazil: Estado de Rio de Janeiro: MNRJ  Jacarepaguá, Rio
de Janeiro; MNRJ , – Pedra de Guaratiba, Rio
de Janeiro; –, –, – Ilha de Ma-
rambaia, Mangaratiba; MNRJ – Vila Dois Rios, Ilha
Grande, Angra dos Reis; MNRJ , , – Horto
Florestal de Santa Cruz, Itaguaí; MNRJ , , –,
– Duque de Caxias; MNRJ  Restinga Maricá,
Maricá; MNRJ  Manguinhos, Rio de Janeiro; MNRJ 
Araruama; MNRJ ,  Fazenda Cachoeira, Morro Azul,
Engenheiro Paulo de Frontin; MNRJ – Ilha Grande,
Angra dos Reis; MNRJ  Vale das Pedrinhas, Magé; MNRJ
 Lídice, Rio Claro; MNRJ  Grussaí, Campos dos Goyt-
acazes; MNRJ  Ponta Negra, Maricá; MNRJ , ,
–, – Tanguá; MNRJ –, –
 Espraiado, Maricá; MNRJ  Peró, Cabo Frio; MNRJ
–,  Reserva Ecológica de Guapiaçu, Cachoeiras
de Macacu; MNRJ  Centro Marista São José das Paineiras,
Mendes; MNRJ – Estrada Além Paraíba Carmo,
Carmo; MNRJ  Restinga Massambaba, Arraial do Cabo;
MNRJ  Itaperuna; MNRJ  Itapebussus, Rio das Os-
tras; MNRJ  Silva Jardim; MNRJ ,  São Francis-
co de Itabapoana; MNRJ  Núcleo Experimental de Iguaba
Grande–UFF, Iguaba Grande; MNRJ – Pontal do Ata-
laia, Arraial do Cabo; MNRJ , –,  São João
da Barra; MNRJ –, – Área da PCH Santa Fé,
Três Rios; MNRJ – Ponte Preta, Magé; MNRJ 
Paracambi; MNRJ , – Saquarema; MNRJ –
 Reserva Biológica União, Casimiro de Abreu; MNRJ –
 Tinguá, Nova Iguaçu; MNRJ  Parque Natural Mu-
nicipal da Atalaia, Macaé; MNRJ – Itaperuna; MNRJ
– Parque Natural Municipal da Prainha, Grumari, Rio
de Janeiro; MNRJ  Tarituba, Paraty; MNRJ  Bom Jesus
de Itabapoana; MNRJ  Parque Nacional Restinga de Jurubat-
iba, Macaé; MNRJ – Parque Natural Municipal Bosque
da Barra, Rio de Janeiro; MNRJ  Parque Natural Municipal
da Prainha, Rio de Janeiro.
Brazil: Estado de Santa Catarina: MNRJ – Palhoça.
Brazil: Estado de São Paulo: MNRJ –,  Praia de
Itaguaí, Ubatuba; MNRJ  Picinguaba, Ubatuba; MNRJ –
 Pedro de Toledo; MNRJ – Praia de Barequeçaba,
São Sebastião; MNRJ  Eldorado Paulista; MNRJ  Fa-
zenda Jamapa, Jacupiranga; MNRJ  Guarujá; MNRJ 
Parque Estadual Intervales, Ribeirão Grande; MNRJ  Barra do
Quilombo, Sete Barras; MNRJ –Estação Ecológica da
Juréia, Iguape; MNRJ , – Pariquera-Açu.
Brazil: Estado de Sergipe: MNRJ ,  Fazenda Cruzei-
ro, Cristinápolis; MNRJ  São Cristóvão; MNRJ , –
 Santa Luzia do Itanhy; MNRJ –, – Fa-
zenda CICP, Itaporanga d’Ajuda.
Hypsiboas crepitans
Brazil: Estado de Alagoas: MZUSP  UHE Xingó, Vila Resi-
dencial, Piranhas; MZUSP ,  Rio Largo, Fazenda Canoas;
MZUSP  UHE Xingó; MNRJ  Fazenda São Bento, Água
Branca; MNRJ –, – São Miguel dos Campos;
MNRJ – Fazenda do Prata, São José dos Campos; MNRJ
 Maceió.
Brazil: Estado da Bahia: MNRJ , – km , Ro-
dovia Jequié–Salvador, Salvador; MNRJ  Salvador; MNRJ
– Fazenda Tiririca, Conde; MNRJ , ,
, , , , , , , , , ,
–, –, –, UFBA  Fazenda Pe-
dra Branca, Itagibá; MNRJ  Parque Municipal da Lagoa Azul,
São Desidério; MNRJ , , , , , ,
, , , –, –, , ,
, – Maracás; MNRJ , , , ,
 Parque Estadual Serra do Conduru - Setor Norte, Itacaré;
MNRJ , – Boa Nova; MNRJ  Mata da Cara
Branca, Santa Cruz Cabrália; MNRJ  Fazenda Pedra Formo-
sa, Ibirapitanga; MNRJ –, , –, ,
UFBA , , , , , , , , , ,
  Caetité; MNRJ , – Trancoso, Porto
Seguro; MNRJ , , –, –, –
 Jequié; MNRJ – Fazenda Orion, Arataca; MNRJ
,  CEPLAC, Ilhéus; MNRJ – Fazenda Vista
Bela, Guaratinga; MNRJ , – Januária; MNRJ 
Uruçuca; MNRJ  Calumbi, Macaúbas; MNRJ , UFBA
,  Barreiras; MNRJ  Alagoinhas; MNRJ –
RPPN Serra do Teimoso, Jussari; MNRJ , , ,
 Salvador; UFBA , ,  Pratigi; UFBA , 
Mucugê; UFBA  Bom Jesus da Lapa; UFBA ,  En-
cruzilhada; UFBA ,  Serra do Ramalho; MNRJ  no
locality provided.
Brazil: Estado do Espírito Santo: MBML ,  Sítio do Am-
arildo, Marechal Floriano; MNRJ  Alto Nova Almeida, Mare-
chal Floriano; MBML , , MZUSP , , ,
, ,  Colatina; MBML , ,  Aparecid-
inha, Santa Teresa; MBML  Entorno da ESFA, Santa Teresa;
MBML  Bairro Vila Nova, Santa Teresa; MBML  Fazenda
Recanto da Mata, Muniz Freire; MNRJ  São Simão, Muniz
II
Online Supplementary data – V G. D. O et al.
Freire; MBML , ,  Três Barras, Fundão; MBML  Goi-
apaba-Açu, Fundão; MBML  Barra de São Francisco; MBML
 Cabeceira do Rio Mutum, São Roque do Canaã; MBML 
Anutiba, Pedra da Severina, Alegre; MZUSP  Samarco, An-
chieta; MZUSP , MNRJ ,  Baixo Guandu; MZUSP
, ,  sem maiores procedências.
Brazil: Estado de Goiás: MNRJ – Mambaí; MNRJ
,  Ilha, Rio Paranã; MZUSP , , , ,
, , ,  PCH Santa Edwiges; MZUSP ,
,  Monte Alegre de Goiás, Rio Raiz; MNRJ  Cat-
alão; MNRJ ,  Flores de Goiás.
Brazil: Estado de Minas Gerais: MNRJ –, ,
–, –, – Mocambinho, Manga;
MNRJ ,  Fazenda Curral Velho, Cristália; MNRJ –
, , –, , – Peixe Cru, Turma-
lina; MNRJ –, , ,  Berilo; MNRJ 
Veredas, Botumirim; MNRJ – Córrego Santa Rita,
Paraíso, Espera Feliz; MNRJ , – Serra do Cipó,
Santana do Riacho; MNRJ – Fazenda Cachoeira Ale-
gre, Abre Campo; MNRJ  Fazenda Todos os Santos, Faria
Lemos; MNRJ ,  Capitão Andrade; MNRJ –
RPPN Santuário do Caraça, Catas Altas; MNRJ –,
– Fazenda do Engenho, Serra do Caraça, Catas Altas;
MNRJ  Paula Cândido; MNRJ – Estrada Gov-
ernador Valadares–Mantena, km ; MNRJ  Minas Novas;
MNRJ  Grão Mogol.
Brazil: Estado da Paraíba: MZUSP – Fazenda Salga-
do, Gurinhém; MNRJ , , ,  Boqueirão.
Brazil: Estado de Pernambuco: MZUSP – Bom
Conselho; MZUSP – Serra dos Cavalos, São Caetano;
MZUSP – Engenho Sacramento; MZUSP ,
–, MNRJ – Caruaru; MNRJ  Rio Bran-
co; MNRJ  Serra da Borborema.
Brazil: Estado de Sergipe: MNRJ  Riachuelo; MNRJ –
 Fazenda Sabão, Indiaroba; MNRJ  Fazenda Cruzeiro,
Cristinápolis.
Hypsiboas exastis
Brazil: Estado de Alagoas: ZUFRJ , , ,  Que-
brangulo.
Brazil: Estado da Bahia: UFBA  Amargosa; UFBA  Elí-
sio Medrado; MNRJ  (parátipo) Estação Ecológica Estadual
Nova Esperança, Wenceslau Guimarães; MNRJ  (parátipo),
MZUSP  (parátipo),  (holótipo), – (paráti-
pos) Fazenda Unacau, São José; MNRJ – Fazenda
Capitão, Itacaré; MNRJ  Fazenda Serra Verde, Jussari; MNRJ
 Rio Vermelho, Três Braços, Teolândia; MNRJ  Amar-
gosa.
Hypsiboas faber
Brazil: Estado da Bahia: MNRJ  Fazenda Serrinha, Itagibá;
MNRJ , Torrão, Prado; MNRJ ,  Maracás; MNRJ
 Trancoso, Porto Seguro; MNRJ  Itabuna; MNRJ 
Jussari; MNRJ – Teolândia; MNRJ  Porto Seguro.
Brazil: Estado do Espírito Santo: MNRJ  Sítio do Popota,
São Lourenço, Santa Teresa; MNRJ  Parque Estadual do For-
no Grande, Castelo; MNRJ  Pedra do Garrafão, Mimoso do
Sul; MNRJ – Floresta Nacional do Rio Preto, Con-
ceição da Barra; MNRJ – Domingos Martins.
Brazil: Estado da Paraíba: MNRJ  Reserva Biológica
Guaribas, Mamanguape.
Brazil: Estado do Paraná: MNRJ  APA SEMA, Guar-
aqueçaba.
Brazil: Estado do Rio de Janeiro: MNRJ  Saquarema;
MNRJ  Pendotiba, Niterói; MNRJ ,  APA Pau
Brazil, Búzios; MNRJ  Fazenda Brasiléia, Natividade; MNRJ
 Quitandinha, Petrópolis; MNRJ  Capela, Petrópolis;
MNRJ  Ponta Negra, Maricá; MNRJ  Lídice, Rio Claro;
MNRJ  Pedreira Quatro Irmãos, Santo Antônio de Pádua;
MNRJ  Fazenda Vargem Alegre, Porciúncula; MNRJ 
Trajano de Moraes; MNRJ  Ilha Grande, Angra dos Reis.
Brazil: Estado do Rio Grande do Sul: MNRJ  Farroupilha.
Brazil: Estado de Santa Catarina: MNRJ – Porto
Belo; MNRJ – Santo Amaro da Imperatriz.
Brazil: Estado de Sergipe: MNRJ  Mata do Castro, Santa
Luzia do Itanhy.
Brazil: Estado de São Paulo: MNRJ  Lageado, Botucatu.
Hypsiboas lundii
Brazil: Estado de São Paulo: MNRJ –, –,
–, –, –, –, –
,  Lageado, Botucatu; MNRJ – Chácara
Furlan, Botucatu; MNRJ  Rubião Júnior, Botucatu; MZUSP
 Corumbataí; MZUSP  Garça; MZUSP  Usina
Ester, Engenho Coelho; MZUSP  PCH Eleutério, Espírito
Santo do Pinhal.
Brazil: Estado de Minas Gerais: MNRJ , – Es-
tação Biológica Vereda Grande, Presidente Olegário; MNRJ –
 Fazenda Cascata (sede), Patos de Minas; MNRJ –,
, , –, – Fazenda Gameleira, João
Pinheiro; MNRJ  Fazenda Rio Verde, João Pinheiro; MNRJ
– Capão da Água Limpa, João Pinheiro; MNRJ –
 Uberlândia; MNRJ  Alegre, Grão Mogol; MNRJ
– Fazenda Cabral, Cristália; MNRJ  Córrego do
Gigante, Turmalina; MNRJ  Peixe-Cru, Turmalina; MNRJ
 AHE Queimado; MNRJ  Usina Hidrelétrica de Mi-
randa, Indianópolis; MNRJ Ribeirão das Moendas, Pains;
MNRJ – Fazenda Índia, Brumadinho; MNRJ 
Ibituruna; MNRJ – Sete Lagoas; MZUSP  Lagoa
Santa (topótipo); MZUSP  Belo Horizonte.
Brazil: Estado de Goiás: MNRJ  Catalão; MNRJ –
, – EFLEX (Estação Florestal Experimental), Sil-
vânia; MNRJ – Santo Antônio do Descoberto; MNRJ
, MZUSP –,  Chapada dos Veadeiros;
MZUSP , –, , – Luziânia;
MZUSP – PCH Santa Edwiges I, Mambaí; MZUSP
, , , – PCH Santa Edwiges II,
Buritinópolis; MNRJ – Unaí (MG) e Formoso (GO);
MZUSP , –, , ,  Serra da Mesa;
MZUSP –, –, , , , ,
,  UHE Corumbá, Caldas Novas.
Brazil: Estado de Mato Grosso: MZUSP , , –
 Alto Araguaia.
Brazil: Distrito Federal: MNRJ  Mata do Gedige, Brasília.
Brazil: Estado de Tocantins: MZUSP  Paranã.
Hypsiboas pardalis
Brazil: Estado da Bahia: MNRJ  Guaratinga.
Brazil: Estado do Espírito Santo: MNRJ , , –
, MBML , , MZUSP , – Santa Ter-
esa; MBML , , , , ,  Nova Lombardia,
Santa Teresa; MNRJ , MBML , , , ,  Es-
tação Biológica de Santa Lúcia, Santa Teresa; MBML  Bairro do
Eco, Santa Teresa; MBML , ,  Alto Rio Saltinho, Santa
Teresa; MBML  Sítio Pousada Canaã, Santa Teresa; MBML
 Vila Nova, Santa Teresa; MBML  Associação do Banestes,
Santa Teresa; MNRJ , MBML , , , , ,
 Reserva Biológica de Duas Bocas, Cariacica; MBML ,
, , , , , ,  Alto, Reserva Biológica
de Duas Bocas, Cariacica; MBML  Cariacica; MNRJ ,
III
Online Supplementary data – Taxonomy of Hypsiboas crepitans
, , MBML  Parque Estadual do Forno Grande,
Castelo; MBML ,  Castelo; MNRJ  FLONA Goytacaz-
es, Linhares; MNRJ  Fazenda Oliveira, Guaçuí; MNRJ 
Fazenda dos Japoneses, Vargem Alta; MNRJ , MBML ,
 Parque Municipal Goiapaba-açu, Fundão; MNRJ  Alto
Nova Almeida, Marechal Floriano; MBML , , , 
Sítio Amarildo, Marechal Floriano; MNRJ  Afonso Claudio;
MNRJ –,  Domingos Martins; MBML  Pedra
Azul, Domingos Martins; MBML , , , RPPN
Oiutrem, Matilde, Alfredo Chaves; MBML  Povoação de Bau-
nilha, Córrego Santinho, Colatina; MBML  Crubixá-Mirim,
Santa Leopoldina; MBML  Pousada Vila Suíça, Santa Leopol-
dina; MZUSP , ,  Rio Doce; MZUSP  Sooretama.
Brazil: Estado de Goiás: MNRJ  “Goyaz”.
Brazil: Estado de Minas Gerais: MNRJ –, MZUSP
,  Fazenda Montes Claros, Reserva Ecológica de Carat-
inga, Caratinga; MNRJ ,  Sítio , Chiador; MNRJ 
Sítio , Chiador; MNRJ – Mata dos Pena, Eugenópolis;
MNRJ  Paula Cândido; MNRJ  Sítio , Além Paraíba;
MNRJ  Sítio , Além Paraíba; MNRJ  Sítio , Além
Paraíba; MNRJ – Fazenda Cachoeirão, Além Paraíba;
MNRJ  Além Paraíba; MNRJ  UHE Guilman-Amorim,
Antônio Dias; MZUSP  PCH Cachoeira Grande, Antônio
Dias; MZUSP – PCH Cocais Grande, Antônio Dias;
MNRJ  Estação Biológica Mata do Sossego, Simonésia;
MNRJ , ,  Fazenda Olinda, São José, Belmiro Bra-
ga; MNRJ  Água Limpa, Juiz de Fora; MNRJ  Torrões,
Juiz de Fora; MNRJ  Lagoa do Maximus, próximo a Santa
Rita de Ouro Preto, Ouro Preto; MNRJ , , , 
Viçosa; MNRJ  Muriaé; MNRJ  Reserva Biológica de
Mar de Espanha, Mar de Espanha; MNRJ  Fazenda da Prata,
Sapucaia; MNRJ  Mata de Gruta, Santana do Deserto; MNRJ
,  Eugenópolis; MNRJ – Fazenda Cachoeira
Alegre, Abre Campo; MZUSP –,  PARNA do
Caparaó; MZUSP , – UHE Fumaça, Mariana.
Brazil: Estado do Rio de Janeiro: MNRJ  Paracambi;
MNRJ  Teresópolis; MNRJ – Reserva Ecológica
de Guapiaçu, Cachoeiras de Macacu; MNRJ , , ,
 Morro Azul, Engenheiro Paulo de Frontin; MNRJ –
 Tinguá, Nova Iguaçu; MNRJ , –, –
 Taquara, Duque de Caxias; MNRJ , , ,
 Visconde de Mauá, Resende; MNRJ – Fazenda
Marimbondo, Resende; MNRJ – Fazenda Barreto,
Nova Friburgo; MNRJ – eodoro de Oliveira, Nova
Friburgo; MNRJ – Fazenda João Fernando, RJ ,
Valença; MNRJ  Capela, Petrópolis; MNRJ , 
CEDEA, Rocio, Petrópolis; MNRJ ,  Petrópolis; MNRJ
 k  UTM , Sapucaia, Três Rios ou Mar de
Espanha; MNRJ – Fazenda Santa Bárbara, P.E. Três
Picos, Cachoeiras de Macacu; MNRJ –,  Duas
Barras; MNRJ ,  Volta Redonda; MNRJ –
Vale da Revolta, Teresópolis; MNRJ , MZUSP –
Teresópolis; MNRJ  PNM Fazenda Atalaia, Macaé; MNRJ
, ,  Comendador Levy Gasparian; MNRJ 
Rialto, Barra Mansa; MNRJ  Floriano, entrada do km ,
Via Dutra, Barra Mansa; MNRJ  Patronato, Três Rios; MNRJ
 Acampamento Batista Carioca, Areal, Três Rios; MNRJ
 Área da PCH Santa Fé, Três Rios; MNRJ – Fa-
zenda Canaã, Três Rios; MNRJ  Lídice, Rio Claro; MNRJ
 Itaperuna; MNRJ  Trajano de Moraes; MNRJ –
 Paraty; MNRJ  Fazenda Barra da Água Limpa, Bom
Jesus do Itabapoana, MZUSP – Itatiaia; MZUSP 
Miguel Pereira.
Brazil: Estado de São Paulo: MNRJ  Aparecida; MZUSP
– Parque das Neblinas, Bertioga; MZUSP –
 Praia de Boracéia, Bertioga; MZUSP , –
Juquitiba; MZUSP – Parque Estadual de Carlos Bo-
telho, São Miguel Arcanjo; MZUSP  São Miguel Arcanjo;
MZUSP , ,  Boracéia, Salesópolis; MZUSP 
Boracéia; MZUSP  E.E. de Bananal; MZUSP , 
Piedade; MZUSP , , , – Campo Grande
da Serra; MZUSP  Fazenda Intervales; MZUSP  Serra
da Bocaina; MZUSP  Ferraz de Vasconcelos; MZUSP ,
 Ribeirão Grande.
Hypsiboas pugnax
Venezuela: ZUEC  Mantecal; MZUSP – Guárico
El Corozo Ranch, km N de Calabozo; MZUSP –
Guárico Espino.
Colombia: MZUSP – Meta: Villavicencio; MHUA
, , ,  Antioquia, Gomez Plata, Hacienda Vegas de
La Clara U de A; MHUA  Córdoba, Ayapel, Vinícolas ICA;
MHUA  Antioquia, Maceo, Hacienda Santa Barbara.
Trinidad: MZUSP  Saint Benedict NR Saint Joseph
Northern Range.
Hypsiboas rosenbergi
Ecuador: Bulin: AL –.
Ecuador: Província de Esmeraldas: MZUSP  San Javier;
MZUSP  Cachavi; MZUSP – Cachavi.
Ecuador: Província de Pichincha: MZUSP – Centro
Cientíco Rio Palenque.
Panama: Província do Panamá: MZUSP —Canal Zone
 mi N Miraores.
Hypsiboas xerophyllus
Brazil: Roraima: MNRJ –, –, –,
–, MZUSP , ,  Pacaraima; MZUSP
 Serra da Saracura; MZUSP , , , ,
,  Ilha de Maracá; MZUSP  Marco de Fronteira
BV, Uiramutã; MZUSP , , , , , ,
 Mucajaí; MZUSP , ,  Tepequem, Amajari;
MZUSP  Fazenda Salvamento; MZUSP , , ,
, , , MPEG , ,  Caracaraí; MZUSP
, MPEG , , , , ,  Boa Vista; MZUSP
 Bonm; MZUSP  Uranduíque; MZUSP  Fa-
zenda São Marcos; MZUSP , , , , 
Serra do Tepequem; INPA , , , , , ,
, ,  PARNA do Viruá; MPEG , ,  Rio
Ajarani, BR , Iracema.
Colombia: Meta: MZUSP , ,  Villavicencio;
AL-MN  “Palomina” (Possibly Palomino, Colombia); MZUSP
 Magdalena, Cañaveral, Parque Nacional Tayrona; MHUA–
A ,  Santander, Carmen de Chuqurí, Vereda La Bode-
ga; MHUA-A  Antioquia, Puerto Berrio, Hacienda la Suiza;
MHUA-A , , , ,  Antioquia, Maceo, Vere-
da Las Brisas; MHUA-A  Caldas, Norcasia, Hacienda El Val-
le; MHUA-A  Antioquia, San Roque, Vereda La Providencia;
MHUA-A  Antioquia, Nariño, Vereda Puente Linda; MHUA-
A  Antioquia, San Francisco, Vereda La Lora; MHUA-A 
Tolima, Falan, Vereda La Roca; MHUA-A  Caldas, Pensilva-
nia, Vereda La Esperanza; MHUA-A – Antioquia, Nariño,
Vereda Puente Linda.
Panama: AL-MN  San Pablo.
Trinidad: MZUSP  Saint Joseph.
Venezuela: Guárico: MZUSP  Calabozo; MZUSP 
Espino; Sucre: MZUSP  Playa Colorada; Tabay: MZUSP
 Mérida; Aragua: AL-MN  Maracay; ZUEC  Santa
Bárbara; Táchira: ZUEC  Uribante; ZUEC –,  No
further locality.
IV
Online Supplementary data – V G. D. O et al.
Supplementary document 2. Voucher information, localities, and GenBank accession numbers for the specimens analyzed for this
study. [a] Voucher information for 12S ; [b] Voucher information for COI.
Sample ID Locality Voucher 12S COI
H. crepitans Grão Mogol, Minas Gerais, Brazil CFBH 10243 KX697938 KX697985
H. crepitans “Bahia”, Brazil CFBH 13275 KX697941 KX697988
H. crepitans Campo Alegre, Alagoas, Brazil CFBH 16361 KX697945 KX697992
H. crepitans Aurelino Leal, Bahia, Brazil CFBH 18728 KX697950 KX697997
H. crepitans Caetité, Bahia, Brazil CFBH 21073 KX697948 KX697995
H. crepitans Dom Basílio, Bahia, Brazil CFBH 21090 KX697949 KX697996
H. crepitans Jaboticatubas, Minas Gerais, Brazil CFBH 24368 KX697953 KX698000
H. crepitans Camamu, Bahia, Brazil CFBH 27826 KX697959 KX698006
H. crepitans Itabuna, Bahia, Brazil CFBH 2885 KX697939 KX697986
H. crepitans Piranhas, Alagoas, Brazil CFBH 2966 AY843621
H. crepitans Mucugê, Bahia, Brazil JC 1273 KX697967 KX698013
H. crepitans Jussari, Bahia, Brazil MRT 5785 KX697969 KX698015
H. crepitans Januária, Minas Gerais, Brazil MTJ 384 KX697971 KX698017
H. crepitans Buíque, Pernambuco, Brazil MTR 15366 KX697972 KX698018
H. crepitans Miguel Calmon, Bahia, Brazil MTR 20070 KX697976 KX698022
H. “xerophyllus Haute Wanapi, French Guiana, France 552PG KX697932 KX697979
H. “xerophyllus Boa Vista, Roraima, Brazil CFBH 29144 KX697961 KX698008
H. “xerophyllus Mont Saint Marcel, French Guiana, France isolate BM095 KX697962 KX698011
H. “xerophyllus E.E.Maracá, Roraima, Brazil MTR 20407 KX697977 KX698023
H. “xerophyllus Pacaraima, Roraima, Brazil MTR 20730 KX697978 KX698024
H. “xerophyllus Kurupukari, Guyana ROM 20560 JN970517 JN970772
H. “xerophyllus Paramakatoi, Guyana ROM 28436 JN970518 JN970773
H. “xerophyllus Parish_Hill, Guyana ROM 44089 JN970519 JN970774
H. “xerophyllus “Igarapé Cocal”, Brazil USNM 302400 DQ380354
H. albomarginatus Ilhéus, Bahia, Brazil MTR 16695 KX697975 KX698021
H. albomarginatus_q [a] Caruaru, Pernambuco, Brazil;
[b] Juiz de Fora, Minas Gerais, Brazil
[a]USNM 284519; [b]CF-
BHT13378
AY549316 KX698009
H. cinerascens [a] Iwokrama, Guyana;
[b] Unknown
[a]AMNH A-164105; [b] JF
isolate 2371
AY549336 KX698010
H. ericae [a;b] Alto Paraiso de Goiás, Goiás, Brazil [a]CFBH 3599; [b]CFBH 6764 AY549332 KX698012
H. exastis Arataca, Bahia, Brazil MTR 16289 KX697973 KX698019
H. faber Uruçuca, Bahia, Brazil CFBH 13030 KX697980
H. faber São Carlos, São Paulo, Brazil isolate 118 JQ627303
H. faber San Vicente, Guarani, Argentina MACN 36999 AY549333
H. faber San Vicente, Guarani, Argentina MACN 37000 AY549334
H. faber Varzedo, Bahia, Brazil MTR 16691 KX697974 KX698020
H. faber Salesópolis, São Paulo, Brazil USNM 303034 DQ380356
H. lanciformis [a] Alpahuayo, Loreto, Peru;
[b] Shaime, Zamora-Chincipe, Ecuador
[a] MJH 564; [b] isolate 18237 AY843636 JN970768
H. lundii Assis, São Paulo, Brazil CFBH 20059 KX697944 KX697991
H. lundii Brasília, Distrito Federal, Brazil CFBH 22795 KX697956 KX698003
H. lundii Belo Horizonte, Minas Gerais, Brazil CFBH 22814 KX697957 KX698004
H. lundii Campo Limpo de Goiás, Goiás, Brazil CFBH 23593 KX697951 KX697998
H. lundii Lagoa Santa, Minas Gerais, Brazil CFBH 24355 KX697952 KX697999
H. lundii São Carlos, São Paulo, Brazil CFBH 26853 KX697954 KX698001
H. lundii Rio Claro, São Paulo, Brazil CFBH 4000 AY843639
H. lundii Costa Rica, Mato Grosso do Sul, Brazil CFBH 7280 KX697934
H. lundii São Roque de Minas, Minas Gerais, Brazil CFBH 9154* KX697936 KX697983
H. lundii Alto Paraíso, Goiás, Brazil CFBH 9324 KX697937 KX697984
V
Online Supplementary data – Taxonomy of Hypsiboas crepitans
Sample ID Locality Voucher 12S COI
H. lundii Paranã, Tocantins, Brazil MRT 4332 KX697968 KX698014
H. lundii Petrolina de Goiás, Goiás, Brazil MRT 8417 KX697970 KX698016
H. multifasciatus Demerara, Guyana AMNH A-141040 AY843648 AY843648
H. pardalis Domingos Martins, Espírito Santo, Brazil CFBH 11334 KX697940 KX697987
H. pardalis Petrópolis, Rio de Janeiro, Brazil CFBH 13962 KX697942 KX697989
H. pardalis São Luis do Paraitinga, São Paulo, Brazil CFBH 16020 KX697935 KX697982
H. pardalis Maringá, Rio de Janeiro, Brazil CFBH 17542 KX697946 KX697993
H. pardalis Santa Leopoldina, Espírito Santo, Brazil CFBH 18002 KX697947 KX697994
H. pardalis Teresópolis, Rio de Janeiro, Brazil CFBH 22027 KX697955 KX698002
H. pardalis Mimoso do Sul, Espírito Santo, Brazil CFBH 25503 KX697958 KX698005
H. pardalis Cachoeiras de Macacu, Rio de Janeiro, Brazil CFBH 27405 KX697960 KX698007
H. pardalis São Luis do Paraitinga, São Paulo, Brazil CFBH 6499 KX697933 KX697981
H. pardalis Itatiaia, Rio de Janeiro, Brazil CFBHT4595 KX697943 KX697990
H. pardalis Salesópolis, São Paulo, Brazil USNM 303046 AY843651
H. pellucens San Juan, Pichincha, Ecuador WED 53621 AY326058 AY326058
H. pugnax Ayapel, Córdoba, Colombia MRC 510 KX697963
H. pugnax Gómez Plata, Antioquia, Colombia MRC 513 KX697964
H. pugnax Norcasia, Caldas, Colombia MRC 514 KX697965
H. pulchellus Buenos Aires, Buenos Aires, Argentina MACN 37788 AY549352
H. punctatus Resistencia, Chaco, Argentina MACN 37792 AY549353
H. rosenbergi E Pedernales, Manabi, Ecuador KU 217629 AY819438
H. rosenbergi Maceo, Antioquia, Colombia MRC 508 KX697966
H. rutelus [a;b] El Cope, Cocle, Panama [a] KRL 798; [b] USNM 572699 AY843662 FJ766740
Supplementary document 3. Standardized coecients and factor loadings (r) from a Principal Component Analysis (CDA; Fig.3)
for 16 morphometric characters of two Operational Taxonomic Units (OTUs) of Hypsiboas crepitans. Cum. Prop. = cumulative
proportion of eigenvalues.
Measurements Males Females
PC1 PC2 r (PC1) r(PC2) PC1 PC2 r (PC1) r(PC2)
SVL -0.051259 -0.019337 -0.903869 -0.340971 -0.056931 0.001937 -0.975977 0.033204
HL -0.049143 -0.017838 -0.871643 -0.316396 -0.049324 0.002171 -0.946597 0.041662
HW -0.049520 -0.017450 -0.910738 -0.320932 -0.052074 -0.002213 -0.967214 -0.041107
NSD 0.033115 -0.092269 0.312513 -0.870765 -0.032079 0.042403 -0.470261 0.621610
IND -0.055426 0.017232 -0.625668 0.194523 -0.037001 0.002607 -0.738501 0.052041
UEW -0.034914 -0.040303 -0.494884 -0.571283 -0.047864 0.019396 -0.718680 0.291226
ED -0.043462 -0.020399 -0.777362 -0.364856 -0.043967 -0.003470 -0.891364 -0.070353
IOD -0.142854 0.058591 -0.896194 0.367574 -0.057721 -0.092086 -0.522806 -0.834058
END -0.032284 -0.022338 -0.586094 -0.405529 -0.046775 0.006113 -0.882090 0.115281
TD -0.027915 -0.031178 -0.513080 -0.573040 -0.054854 0.010522 -0.835374 0.160242
FHL -0.052215 -0.018928 -0.855917 -0.310264 -0.054793 -0.003064 -0.919238 -0.051396
4FD -0.041548 -0.029878 -0.693932 -0.499026 -0.053960 0.018977 -0.835099 0.293686
4TD -0.039945 -0.031080 -0.648998 -0.504972 -0.052089 0.000047 -0.946296 0.000861
THL -0.050017 -0.015955 -0.907767 -0.289567 -0.051758 0.000801 -0.943330 0.014607
CL -0.047836 -0.015795 -0.891682 -0.294418 -0.050472 -0.000944 -0.946317 -0.017696
FL -0.050864 -0.014523 -0.911669 -0.260300 -0.048540 0.026065 -0.758781 0.407444
Eigenvalue 0.050425 0.019683 0.039746 0.011885
Cum. Prop 57.2663 79.6201 63.0218 81.8662
... Until recently Boana exastis was tentatively included in the B. faber group based only on morphological data, due to its rugose dorsal skin texture and lichenous color pattern shared with B. lundii and B. pardalis (Caramaschi & Rodrigues 2003). Only recently, a genetic sample of this species from the population next to its type locality, in the state of Bahia, was included in molecular phylogenetic analyses, which were focused on the relationships of other species and/or species groups (Orrico et al. 2017;Escalona et al. 2021;Faivovich et al. 2021). In fact, although under-explored in the studies mentioned above, B. exastis was recovered in a clade along with B. lundii and B. pardalis, corroborating their morphological similarity. ...
... As previously proposed, based on morphological, acoustic, and behavioral data (Caramaschi & Rodrigues 2003;Loebmann et al. 2008), B. exastis has been recovered as being closely related to B. lundii and B. pardalis in recent phylogenetic hypotheses based on molecular data (Orrico et al. 2017;Faivovich et al. 2021;Escalona et al. 2021;this work). Congruent to what larval skeleton data shows, B. exastis seems more closely related to B. pardalis than to B. lundii. ...
... Congruent to what larval skeleton data shows, B. exastis seems more closely related to B. pardalis than to B. lundii. This same result has been recovered in topologies using different mitochondrial (12S and 16S) and nuclear (COI) markers, and even in analyses with concatenated genes (Orrico et al. 2017;Faivovich et al. 2021;Escalona et al. 2021;this work). Despite presenting a widely disjunct distribution in the northeastern Atlantic Forest, where populations are separated by one of the main biogeographic barriers in the regionthe São Francisco River (Coutinho-Abreu et al. 2008;Lanna et al. 2020), the populations of B. exastis show a low genetic divergence in the 16S rRNA gene (2%), indicating that they are the same nominal taxon. ...
Article
The treefrog Boana exastis was tentatively included in B. faber group based on its morphological similarity to B. lundii and B. pardalis. This species was only recently included in a molecular phylogeny, confirming its placement in this group; however, its phylogenetic relationships have been poorly explored. Herein, we describe the larval external morphology, buccopharyngeal cavity, and skeleton of B. exastis, and assess its phylogenetic placement and genetic similarity between disjunct populations. Additionally, we describe the larval skeleton of the two closely related species, B. lundii and B. pardalis. The larval morphology of B. exastis is congruent with the other Boana species, reinforcing a high larval similarity across species of the B. faber group. The three species showed differences in color and in rows of marginal papillae. Comparing the chondrocranium of the three species, we found that B. exastis is more similar to B. pardalis than to B. lundii, contrary to what has been previously proposed, based on acoustic data. Phylogenetically, B. exastis was found to be more related to B. pardalis than to B. lundii. Despite presenting a disjunct distribution, the populations of Boana exastis show a very low mitochon-drial genetic divergence, indicating that they are the same taxon
... Studies of cariology, morphology, vocalizations, and molecular characters have revealed cryptic species, new species, and changes in the classification of Boana groups Ron 2014, 2020;Duellman et al. 2016;Fouquet et al. 2016Fouquet et al. , 2021Orrico et al. 2017;Ferro et al. 2018;Peloso et al. 2018;Pinheiro et al. 2019a;Lyra et al. 2020;Faivovich et al. 2021). ...
... Despite the short sequence observed in the FGBI7-based analysis, this is a versatile gene that can be used to address a variety of phylogenetic and taxonomic questions. The elucidation of taxa thought to be geographically widespread that are in fact cryptic species, such as Boana (Estupiñán et al. 2016;Fouquet et al. 2016;Caminer et al. 2017;Orrico et al. 2017;Cryer et al. 2019), and the agreement with previously proposed phylogenetic hypotheses supported by the informative sites for parsimony demonstrate the high performance of FGBI7. ...
Article
Full-text available
Boana , the third largest genus of Hylinae, has cryptic morphological species. The potential applicability of b-fibrinogen intron 7 – FGBI7 is explored to propose a robust phylogeny of Boana . The phylogenetic potential of FGBI7 was evaluated using maximum parsimony, MrBayes, and maximum likelihood analysis. Comparison of polymorphic sites and topologies obtained with concatenated analysis of FGBI7 and other nuclear genes ( CXCR4 , CXCR4 , RHO , SIAH1 , TYR , and 28S ) allowed evaluation of the phylogenetic signal of FGBI7 . Mean evolutionary rates were calculated using the sequences of the mitochondrial genes ND1 and CYTB available for Boana in GenBank. Dating of Boana and some of its groups was performed using the RelTime method with secondary calibration. FGBI7 analysis revealed high values at informative sites for parsimony. The absolute values of the mean evolutionary rate were higher for mitochondrial genes than for FGBI7 . Dating of congruent Boana groups for ND1 , CYTB , and FGBI7 revealed closer values between mitochondrial genes and slightly different values from those of FGBI7 . Divergence times of basal groups tended to be overestimated when mtDNA was used and were more accurate when nDNA was used. Although there is evidence of phylogenetic potential arising from concatenation of specific genes, FGBI7 provides well-resolved independent gene trees. These results lead to a paradigm for linking data in phylogenomics that focuses on the uniqueness of species histories and ignores the multiplicities of individual gene histories.
... Las estrategias de comunicación acústica en Boana platanera (Escalona et al. 2021), poco se conocen. Además, esta especie ha tenido cambios en su nomenclatura y taxonomía (Orrico et al. 2017;Dubois 2017) desde que se denominase Hypsiboas crepitans (Wied-Neuwied 1824) o Boana xerophylla (Duméril & Bibron 1841). Actualmente, se considera que las poblaciones de ranas ubicadas al norte del río Orinoco cambian su denominación a Boana platanera, y es una especie "hermana" de B. xerophylla (Escalona et al. 2021), como es el caso de los individuos evaluados en nuestro trabajo, los cuales se ubican en el nororiente de Colombia. ...
... Esta especie se ha reportado hasta los 2450 msnm, en una extensa variedad de hábitats, como bosques húmedos tropicales, montanobajos, ambientes semiáridos y urbanos (La Marca et al. 2010;Escalona et al. 2019a). B. platanera, es una especie común y de amplia distribución en Colombia (Ruiz et al. 1996), de hábitos nocturnos (Lynch et al. 1997) y está categorizada por la IUCN como especie de preocupación menor (La Marca et al. 2010;Orrico et al. 2017). Es una rana de la flora arbustiva asociada al ecotono pastizal-bosque y al interior del bosque, donde es simpátrica con Hypsiboas boans (Acosta et al. 2006), y B. crepitans (Escalona et al. 2019a) y críptica con B. xerophylla (Escalona et al. 2021 repeticiones cortas y 2. Un llamado con cuatro repeticiones cortas. ...
Article
Full-text available
Sexual selection is an evolutionary mechanism, physiological and morphological where the differential behavior between the sexes has a large variation in reproductive success. In frogs, the male strategy is to use their calls to attract females. In this study, we have performed call selection experiments by the females, using recordings of male calls. Varying the repetition and frequency. We were found that the intensity and short acoustic signals repetitions are preferred by females of Boana platanera, although other relevant factors that influence sexual selection should be subject to further study in the colombian north-eastern.
... Boana platanera (Escalona et al. 2021), poco se conocen. Además, esta especie ha tenido cambios en su nomenclatura y taxonomía (Orrico et al. 2017 (Escalona et al. 2019a;Escalona et al. 2021). Los anteriores trabajos, ponen de relieve un interés creciente en la comprensión de la comunicación, taxonomía y ecología del género Boana, como un enfoque que permita generar información relevante para establecer estrategias de conservación en este grupo de an bios. ...
... Se corroboró que los llamados grabados de los machos coincidieran con un llamado de referencia para la especie, disponible aquí: https://amphibiaweb. Notas Cientí cas amplia distribución en Colombia (Ruiz et al. 1996), de hábitos nocturnos (Lynch et al. 1997) y está categorizada por la IUCN como especie de preocupación menor (La Marca et al. 2010;Orrico et al. 2017). Es una rana de la ora arbustiva asociada al ecotono pastizal-bosque y al interior del bosque, donde es simpátrica con Hypsiboas boans (Acosta et al. 2006), y B. crepitans (Escalona et al. 2019a) y críptica con B. xerophylla (Escalona et al. 2021). ...
Book
Full-text available
Un nuevo año llegó bajo la nueva normalidad de la pandemia de COVID-19, haciendo que nos adaptemos a constantes desafíos sociales y económicos. En estos momentos es donde cada uno de nosotros pensamos y valoramos la importancia de las diferentes instituciones académicas, sus estamentos y personas. La Universidad del Valle, y en especial el Postgrado en Ciencias-Biología con sus programas académicos de maestría y doctorado, en muchas ocasiones representan mucho más que un lugar de trabajo, un salón de clases o un laboratorio que se reduce a la entrega de un documento final. Por esta razón, esta edición del Boletín queremos dedicarla a cada persona que se encuentra involucrada dentro del Posgrado en Ciencias-Biología, porque es gracias a cada uno de ustedes será posible la adaptación y superación de la nueva normalidad. La Maestría y el Doctorado en Ciencias-Biología han sido reconocidos como de alta calidad o triple AAA, valoración máxima alcanzable por los programas de posgrado en Colombia, según el ranking POST-Sapiens 2021-1. Con orgullo, en la sección “En diálogo con la comunidad del Postgrado” presentamos a las nuevas integrantes del Boletín: Ana Lucía Rengifo Gallego y Danna Alejandra Velasco como estudiantes del PCB, y Sayra Yady Mina Mejía como egresada de la Maestría en Ciencias-Biología, las cuales comparten una pasión por continuar la divulgación y visibilidad de la excelencia en el PCB. También, abrimos la puerta a los estudiantes del postgrado para socializar y visibilizar sus experiencias comenzando con la entrevista al nuevo estudiante Juan Sebastián Moreno. Para analizar, exaltamos el homenaje realizado a la labor de uno de los profesores más queridos: Phillip Silverstone-Sopkin. De esta forma, el mensaje es que los reconocimientos para el PCB son producto de un esfuerzo conjunto, en el día a día de cada profesor, estudiante y funcionario en el cumplimiento de sus metas de vida. Lastimosamente, nuestro colega David Mauricio Tróchez (Lulito) dejó este mundo, marcando un vacío entre sus conocidos, amigos, familiares, y en toda la comunidad del postgrado. Una sorpresa para todos, el saber que en la edición anterior de este boletín reconocimos la mención meritoria de su trabajo de doctorado en el área de genética humana titulado “Identificación de mutaciones en genes de alta-moderada penetrancia y ancestría genética en pacientes colombianas con cáncer de mama familiar” bajo la dirección del profesor Guillermo Barreto. Para honrar su memoria, un homenaje fue realizado el pasado 15 de abril, recordando al humano y científico que fue David, como también reconociendo el legado que nos deja su entrega. Que está perdida nos recuerde lo frágil que es la vida que estudiamos, además de la importancia de valorar cada persona en nuestras vidas, para que la vida sea un homenaje constante. Finalmente, en nuestra sección de divulgación académica tenemos recuentos de las conferencias magistrales de la Dra. Paola Olaya Arenas y el Dr. Oleg Gorfinke, además de aportes en foros de cambio climático de la Universidad de Cundinamarca. La primera conferencia abordó la distribución de la mariposa monarca, desde su contexto geográfico e histórico, junto con el papel de las amenazas químicas (ej. Pesticidas) y biológicas (ej. Parasitoides de pupas) en paisajes agrícolas. La segunda conferencia abordó la autorregulación emocional afectiva con Mindfulness, la importancia de considerar la influencia de la mente en el sufrimiento de las personas. Por último, la profesora Inge Armbrecht participó en el “II Foro de cambio climático: Perspectivas de investigación en sistemas de producción agrícola sostenible para mitigar el cambio climático”. En la sección de egresados presentamos a Cristian Javier Fong Reales, quien fue estudiante del profesor Guillermo Barreto. En el componente científico contamos con dos notas breves, una sobre la respuesta acústica de hembras de Boana platanera (Hylidae) que concluye una preferencia para la emisión de llamados cortos, con baja intensidad por parte de los machos, y no la emisión de llamados con duración larga. La nota sobre variabilidad genética en SARS-COV-2 que resalta la importancia de la biología molecular en el estudio de este virus y su contribución en el desarrollo de una vacuna. En nombre del equipo editorial, esperamos que disfruten y reflexionen en este espacio divulgativo del PCB, y los invitamos a participar en la construcción de los próximos volúmenes, contando su experiencia en el postgrado o divulgando su trabajo, que al final es nuestro legado.
... There has long been consideration of the need for taxonomic revision of the widely distributed hylid Hypsiboas (= Boana) crepitans. Orrico et al. (2017) changed the name to Boana xerophylla, followed by Escalona et al. (2021) describing the Andean populations (including Trinidad and Tobago) of frogs as a new species, Boana platanera. ...
Chapter
An expansive and detailed review of the biology of Caribbean amphibians, considering their threats, conservation and outlook in a changing world. Amphibians are the group of vertebrates undergoing the fastest rate of extinction; it is urgent that we understand the causes of this and find means of protecting them. This landmark illustrated volume brings together the leading experts in the field. As well as offering an overview of the region as a whole, individual chapters are devoted to each island or island-group and the measures used to protect their amphibians through legislation or nature reserves. The biological background of insular biogeography, including its methods, analysis and results, is reviewed and applied specifically to the problems of Caribbean amphibians – this includes a re-examination of patterns and general ideas about the status of amphibians in the Anthropocene. The Conservation and Biogeography of Amphibians in the Caribbean offers an important baseline against which future amphibian conservation can be measured in the face of climate change, rising sea level and a burgeoning human population.
... First, the 5'-3' direction of the sequences was confirmed by comparison to sequences that were previously determined to be in the correct direction ( Orrico et al. 2017). The truncation was carried out using Geneious v.9.0.5, following the positioning of the aforementioned primers. ...
Article
Full-text available
We evaluated the extent of intraspecific and interspecific genetic distances and the effectiveness of predefined threshold values using the main genes for estimates of biodiversity and specimens' identification in anurans. Partial sequences of the mitochondrial genes for small (12S) and large (16S) ribosomal subunits, cytochrome c oxidase subunit I (COI) and Cytochrome b (Cytb) of the family Hylidae were downloaded from GenBank and curated for length, coverage, and potential contaminations. We performed analyses for all sequences of each gene and the same species present in these datasets by distance and tree (monophyly)-based evaluations. We also evaluated the ability to identify specimens using these datasets applying "nearest neighbor" (NN), "best close match" (BCM) and "BOLD ID" tests. Genetic distance thresholds were generated by the function 'threshVal' and "localMinima" from SPIDER package and traditional threshold values (1%, 3%, 6% and 10%) were also evaluated. Coding genes, especially COI, had a better identification capacity than non-coding genes on barcoding gap and monophyly analysis and NN, BCM, BOLD ID tests. Considering the multiple factors involved in global DNA barcoding evaluations, we present a critical assessment of the use of these genes for biodiversity estimation and specimens' identification in anurans (e.g. hylids).
... Vol. 1, N.º 3, enero -abril 2022 ISSN: 2810-8019 (en línea) se han identificado nuevas especies de anfibios en localidades remotas (Venegas et al., 2021). Asimismo, los anfibios marsupiales tienden a presentar una morfología conservada, por lo que estudios morfométricos han permitido revelar la divergencia de especies (Borzée et al., 2013;Huang et al., 2016;Orrico et al., 2017;Ortega-Andrade et al., 2015;Padial y De la Riva, 2009;Priti et al., 2016;Rojas et al., 2016;Vacher et al., 2017). ...
Article
Full-text available
Amphibians tend to have a conserved morphology, so morphometric studies have revealed the divergence of species. In Peru, controversy has arisen over the identity of some species of marsupial frogs of the genus Gastrotheca. Therefore, in the present work, it was established as an objective to review the taxonomic status of the Peruvian marsupial frog Gastrotheca (Boulenger 1900) using morphometric evidence. The results of this evidence support the hypothesis that Gastrotheca peruana sensu lato represents two lineages at the specific level based on the mitochondrial 16S rRNA gene. Also, MANOVA and Hotelling’s T2 statistical tests presented two morphologically different groups (p-value < 0.05); furthermore, the first two principal components (PCA) show substantial overlap of two candidate species. However, from a morphometric approach, it was observed that Gastrotheca dissimilis with its positive and negative values of PCA1 and PCA2 tends to be distributed separately from Gastrotheca peruana sensu stricto; and the discriminant analysis showed 84.5 % of the cases correctly classified. Finally, it was found that G. peruana sensu stricto is restricted to the populations of the departments of Ancash, Lima, Pasco and Junín, and G. dissimilis, to the populations of La Libertad and Cajamarca.
Article
Advertisement calls are emitted by anuran males to attract females or repel competitors. Call frequencies are coupled with the vocal apparatus and, thus, likely with body size due to allometric constraints. Physical properties of the habitat might affect the evolution of advertisement calls through natural selection, with high- and low-frequency calls expected in lotic and lentic environments, respectively. Conversely, call frequencies may be influenced by sexual selection because low-frequency sounds are predicted to be perceived as more intimidating in intrasexual competition and more attractive in female choice. In addition, although the evolution of dominant frequencies has been investigated in anurans, little is known about fundamental frequencies. Here we investigated whether body size, habitat, and sexual selection are associated with the evolution of dominant and fundamental frequencies of the vocalizations in the Neotropical hylid tribe Cophomantini, using phylogenetic comparative methods. We found that body size and habitat predict dominant frequency across the phylogeny, whereas only body size is correlated with fundamental frequency. Reproduction in lotic environments is plesiomorphic for the tribe, with changes to lentic environments concentrated in some Boana clades. Intensity of sexual selection is negatively correlated with dominant frequency in Bokermannohyla, in which low-frequency calls are expected under strong sexual selection. Our results illustrate how the interplay between body size, habitat, and sexual selection may affect the evolution of spectral traits.
Article
Knowledge of tadpole morphology and natural history is essential to understand and protect anuran diversity. We provide a regional taxonomic catalog of the tadpoles that occur in the Iron Quadrangle (IQ, Quadrilátero Ferrífero), a hotspot of amphibian diversity and highly threatened region in southeastern Brazil. Using a standardized methodology, free-living larvae of 67 species belonging to 25 genera and 11 families are described and illustrated, including photographs of most species in life, natural history notes, and taxonomic comments. Larvae of seven species and/or candidate species (viz., Fritziana aff. fissilis, Bokermannohyla gr. circumdata, Bokermannohyla aff. nanuzae, Pithecopus aff. rohdei, Scinax aff. machadoi, Scinax aff. perereca, and Scinax rogerioi) are described for the first time and compared to congeners. Most tadpoles of candidate species exhibited remarkable differences in morphology compared to closely related congeners, which could provide diagnostic characters for further formal descriptions. The observed material of many of the previously known tadpoles deviated from published descriptions, which might be useful in future taxonomic studies (e.g., providing characters for the taxonomic delimitation of either small-range species or widespread cryptic species complexes). Illustrated dichotomous and multiaccess identification keys are presented, allowing most species to be readily identified using reliable characters. Considering the high-level threat and huge impacts on IQ’s biodiversity and ecosystem services, particularly from mining, the results presented here provide an important foundation for research and conservation of anuran in this region. Finally, we stress that IQ harbors one of the most ecomorphologically diverse Brazilian tadpole assemblages.
Article
Full-text available
O girino e a vocalização de anúncio de Hypsiboas crepitans são descritos da Serra São José, Bahia, Brasil. O canto de anúncio é formado por três notas multipulsionadas, apresenta duração aproximada de 0,51 s e freqüência dominante de aproximadamente 0,80 kHz. Comparado com os cantos de anúncio de H. crepitans de outras localidades da Colômbia e do Panamá, o canto dos machos da população do estado da Bahia apresenta diferenças na freqüência dominante: mais alta que da população da Colômbia e muito mais baixa que do Panamá. Estas diferenças corroboram a hipótese de que na região amazônica ocorra outra espécie, ou mesmo, um complexo de espécies atualmente sob o nome Hypsiboas crepitans.
Article
Full-text available
Morphometric comparisons among specimens continue being an important tool for biological and taxonomical studies and are indispensable for the description of new species. However, there are few works that have been done to compare the precision of the measurements that different investigators take in live or preserved animals with different body sizes and time of preservation. Herein we evaluate statistically this information. The results indicate that there are significant differences among the measurements taken by different people (inter-individual comparisons), but not within each of them (intra-individual comparisons). Also, there are temporal differences in the morphometric measurements among living animals, freshly preserved specimens and specimens after five months of preservation. These results demonstrate that morphometric measurements must be made by just one person and that for any morphometric analysis it is important to keep in mind the preservation time differences of the animals in the museums.
Article
Full-text available
The available information on the identity of the embryonic and adult cartilaginous elements in the anuran carpus is limited, often confusing, and sometimes even contradictory. Based on a comparative study of complete ontogenetic series of seven anuran species (representing three families), we map some of the diversity encountered in the ontogeny of the anuran carpus and propose an updated general scheme of homologies. Elements are identified by observation of the spatial patterns of early chondrogenetic condensations. We report the presence of an element that differentiates in association with the ulnare and propose it to be homologous to the intermedium of tetrapods. An unusual preaxial element that forms in the vicinity of the radiale is described. The absence of centralia in the anuran carpus is confirmed. Based on our analysis, we propose an unified nomenclature for the skeletal elements of the anuran carpus.
Article
Full-text available
The Rhinella margaritifera species group consists of 17 species of toads distributed in tropical and subtropical South America and eastern Central America. The identity of some of its species is poorly understood and there are numerous undescribed cryptic species. Among them, the status of Rhinella margaritifera is one of the most problematic. Its range includes lowland rainforests separated by the Andes, the Chocoan rainforest to the west and the Amazonian rainforest to the east. This distribution is puzzling because the Andes are an old and formidable barrier to gene flow and therefore should generate vicariant speciation between disjunct lowland populations. Herein we clarify the taxonomy of populations of the Rhinella margaritifera complex from Central America and the Chocó region of South America. The morphological and genetic variation of Rhinella margaritifera was examined from 39 populations from Chocó, 24 from the upper Amazon region of Ecuador, and 37 from Panama, including the holotype of the Panamanian Rhinella alata. Phylogenetic analyses were performed based on mitochondrial genes 12S rRNA, 16S rRNA, and cytochrome c oxidase I (COI) and the nuclear gene Tyrosinase (Tyr). The genetic and morphological data show that Panamanian and Chocoan populations are conspecific. In the phylogeny, populations from Chocó and Panama form a well-supported clade. The morphology of the holotype of Rhinella alata falls within the variation range of Panamanian and Chocoan populations. Based on all this evidence, we assign the populations from western Ecuador and Panama to Rhinella alata and demonstrate that the unusual distribution pattern of “Rhinella margaritifera” on both sides of the Andes was an artifact of incorrectly defined species boundaries.
Article
Full-text available
The anuran fauna of Serra do Cipó (Minas Gerais state, Brazil) is relatively well known and is currently represented by 43 species. Herein we report on two new records of frog species to this locality, Barycholos ternetzi and Hypsiboas crepitans; their advertisement calls are also described. In a divergence from the literature, we found two types of notes in the advertisement calls of B. ternetzi and extended its distribution about 350 km to the east. Our data on the call of H. crepitans, which is the closer to the type locality, reinforce published discussions regarding populations of Middle America and northern South America as representing different species from those south of the Amazon Basin.
Chapter
Ten families of anurans comprising at least 1000 species are known from South America. The diversity of reproductive modes among these amphibians is higher than in any other group of vertebrates. Duellman (1985) defined reproductive mode as a composite of factors, including oviposition site, ovum and clutch characteristics, rate and duration of development, stage and size of hatchling, and type of parental care. Of the 29 modes he recognized, 21 are found in the Neotropics, and, of these, eight are unique to that area.