ArticlePDF Available

Factors Affecting the Radiosensitivity of Hexaploid Wheat to -Irradiation: Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)

PLOS
PLOS ONE
Authors:

Abstract and Figures

Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties.
Content may be subject to copyright.
RESEARCH ARTICLE
Factors Affecting the Radiosensitivity of
Hexaploid Wheat to γ-Irradiation:
Radiosensitivity of Hexaploid Wheat
(Triticum aestivum L.)
Bing Han
1,2
, Jiayu Gu
2
, Linshu Zhao
2
, Huijun Guo
2
, Yongdun Xie
2
, Shirong Zhao
2
,
Xiyun Song
1
, Longzhi Han
2
, Luxiang Liu
2
*
1Academy of Life Science, Qingdao Agricultural University, Qingdao, China, 2Institute of Crop Sciences,
Chinese Academy of Agricultural Sciences /National Key Facility for Crop Gene Resources and Genetic
Improvement /National Center of Space Mutagenesis for Crop Improvement, Beijing, China
These authors contributed equally to this work.
*liuluxiang@caas.cn
Abstract
Understanding the radiosensitivity of plants, an important factor in crop mutation breeding
programs, requires a thorough investigation of the factors that contribute to this trait. In this
study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411,
aγ-irradiation-insensitive control, which were screened from a natural population, to exam-
ine the factors affecting radiosensitivity, including free radical content and total antioxidant
capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as
measured by real-time PCR. We also investigated the alternative splicing of this gene in the
wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant
capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-
dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend,
but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation.
Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression
levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a
decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in
HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and
DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they
suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are
required to exploit these factors to improve radiosensitivity in other wheat varieties.
Introduction
The induced mutation technique, an important application of nuclear technology in agricul-
ture, has significantly contributed to crop germplasm enhancement and new mutant variety
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 1/15
a11111
OPEN ACCESS
Citation: Han B, Gu J, Zhao L, Guo H, Xie Y, Zhao S,
et al. (2016) Factors Affecting the Radiosensitivity of
Hexaploid Wheat to γ-Irradiation: Radiosensitivity of
Hexaploid Wheat (Triticum aestivum L.). PLoS ONE
11(8): e0161700. doi:10.1371/journal.pone.0161700
Editor: Arthur J. Lustig, Tulane University Health
Sciences Center, UNITED STATES
Received: April 3, 2016
Accepted: August 10, 2016
Published: August 23, 2016
Copyright: © 2016 Han et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.
Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
Funding: This work was supported by the National
973 Program: grant no. 2014CB138101, the National
Key Technology R&D Program of China: grant
no.2014BAA03B04, Core Research Budget of the
Non-profit Governmental Research Institutions (ICS,
CAAS), and the National Natural Science Foundation
Research Program: grant no. 11305261.
Competing Interests: The authors have declared
that no competing interests exist.
development. Studies investigating radiation sensitivity have played prominent roles in reveal-
ing the mechanism of induced mutations. Differences in the radiosensitivity of various crops
have been investigated [13]. However, the molecular mechanisms responsible for radiosensi-
tivity are currently unclear, making research in this area vital. Investigations in animals and
human have revealed a link between cell radiosensitivity and variations in free radicals, oxida-
tive stress, and DNA repair mechanisms [410]. Therefore, it is important to further explore
radiosensitivity and its molecular determinants. Such information would be useful for predict-
ing and modulating radiosensitivity.
Organisms exposed to irradiation are induced to produce reactive oxygen species (ROS),
which can give rise to DNA double-strand breaks (DSBs), which in turn can affect proteins.
However, some plants, during the long process of evolution, have developed the ability to with-
stand ionizing radiation (IR) stress. Under IR stress, such plants can activate ROS removal sys-
tems and DNA repair systems. The former includes enzyme and non-enzyme based systems.
The enzyme systems utilize amongst others, SOD, GPX and catalase to quickly remove ROS.
Non-enzymatic systems utilize, amongst others, the surfhydryl of glutathione (GSH), ascorbic
acid and the carotenoqesls to quench oxyradicals [1016]. Currently, it is widely accepted that
oxidative stress is involved in the pathogenesis of many diseases, including various cancers and
degenerative disorders in animals [17]. In our study, we assess the effects of ROS on hexaploid
wheat, as well as its total antioxidative capacity (T-AOC). DSBs caused by IR is disastrous to
both cells and organisms. It can trigger chromosomal rearrangements, aneuploidy and the loss
of segments of chromosomes. If not followed by rapid and successful repair, cell and whole
organism death can be infamous result [1821]. In eukaryotes, Non-homologous end-joining
(NHEJ) is the most important DSB repair pathway [2225]. ku70/ku80 heterodimers recognize
DSBs and bind to them, forming complexes. These recruit DNA-dependent protein kinase cat-
alytic subunits which initiate the NHEJ repair process [2629], Errors in or DNA mutations
involving this process can lead to failure of repair and so increase the sensitivity of the organ-
ism to ionizing radiation [30]. In our study, defects in the TaKu70 gene may be one reason for
the high sensitivity of our HY1 strain. Under normal circumstances, alternative splicing of pre-
mature RNA is an important process utilized by eukaryotes to produce all kinds of protein
forms from a single gene [3134]. This can enhance protein diversity and regulates some pro-
cess in plants [3537]. Some studies have suggested that the alternative splicing of single genes
can create small amounts of protein isoforms in plants. In rice, approximately 68.3% of genes
create only one isoform. However, among all splicing types, intron retention is common [38
40]. In wheat, investigations are ongoing. However, with regards mechanisms and function,
there seem to be few surprises [41]. Evidence suggests that weak splice sites, shorter introns
and lower density splicing enhancers intron retention [4243]. Therefore, their retention sug-
gests the occurrence of missplicing, caused by problems with the splicing machinery [44]. In
addition, alternative splicing regulates the expression of certain critical genes [4548].
Any defect of alternative splicing can cause severe problems to the organism as a result of
changes in their protein composition. Frame shifts are one consequence of miss-splicing [36].
In Arabidopsis 42% of fame shift events create a premature stop codon; in rice, the frequency is
36% [32]. In our study, intron retention was found in the TaKu70 gene. This may reflect splic-
ing errors in the pre-mRNA splicing process, prematurely stopping the expression of TaKu70.
Ultimately, defective TaKu70 protein might be produced.
Phenotype studies of ku70-defects in DNA repair mechanisms have been carried out in
fungi, yeasts and animals [49]. Disruption of Ku70 in mouse embryonic stem cells results in
markedly increased sensitivity to ionizing radiation [50]. Ku70-deficient mice are approxi-
mately half the size of control mice, and their fibroblasts are sensitive to ionizing radiation and
display premature senescence associated with the accumulation of nondividing cells [51]. In
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 2/15
Arabidopsis, ku mutants can be associated with telomere elongation [52]. In our study,
TaKu70 defective wheat was highly sensitivity to γradiation. This produced severe phenotypic
changes compared to the controls.
We previously cloned Ku70 and Ku80 in wheat, which were designated TaKu70 and
TaKu80, respectively [5355]. The functions of the two genes, as well as the encoded protein,
have been investigated [55]. We previously selected the hexaploid wheat variety HY1, which
exhibited the highest sensitivity to γ-irradiation among the 63 wheat genotypes examined,
whereas wheat variety J411 exhibited insensitivity to γ-irradiation[56]. In this study, the
increased radiosensitivity of this variety allowed us to analyze the combined effects of an exoge-
nous agent and IR on plants[14]. The results of this study may help shed light on the mecha-
nism underlying radiosensitivity in wheat.
Materials and Methods
γ-irradiation and free radical contents assay
The moisture content of the dry seeds of HY1 and J411 was balanced with glycerin and water
ratio of 1:1 to up to 13% and they were then irradiated by gamma rays at dosages of 100, 150
and 250 Gy (7 Gy/min; The Department of Radiation at Peking University, Beijing, China).
The free radical contents under each dosage were immediately examined using electron spin
resonance apparatus (ESR, E-Scan, BRUKER, SC0340, Germany), and various parameters
were obtained, namely Food, Marker, g1-value, g2-value, Frequency. The seeds under each
dosage were randomly examined five times. The Food parameters values, which represent vari-
ations in free radicals, were normalized using the formula: Foodn = Food × 400000 / Marker.
Foodn values can take the place of relative free radical contents values.
Plant materials and cultivation
All wheat seeds were kindly provided by the Chinese Academy of Agricultural Sciences. Prior
to placing them on a hydroponics shelf for seedling growth, the dried seeds were immersed in
distilled water for germination for 16 hours with a rate of 50 seeds/15 mL water (using three
replicates per dosage). Germinated seeds were placed on a hydroponics shelf under controlled
conditions (16 h light/12 h dark, temperature: 25°C, relative humidity: 78%). Leaves were har-
vested on the day 5 for DNA and RNA extraction.
Total antioxidative capacity (T-AOC) assay
The irradiated seeds were soaked in distilled water for 16 h (using three replicates per dosage)
and transferred to the germination apparatus under constant conditions. Leaf samples (0.05 g)
were collected on day 5, instantly placed into 2 mL EP tubes containing 500 μL 0.9% normal
saline and ground into a powder using a tissue grinder apparatus (30 Hz/s, 60 s). The samples
were centrifuged for 300 s at 5,000 rpm, and 300 μL of supernatant was transferred to a fresh
1.5 mL centrifuge tube (on ice). The T-AOC assay was carried out using a T-AOC reagent kit,
and the OD value at 520 nm was measured following the manufacturers instructions using the
formulaT AOC = (ODu ODc) / 0.01 / 30 N / CProt.
DNA isolation, PCR amplification and sequencing
Genomic DNA was obtained from a pool of DNA extracted from ten HY1 and J411 leaves
using a Caliper workstation and a DNA Secure Plant Kit. To determine the source of the
retained fragment in the cDNA, specific primers were designed (25AER: 5GGCACTGCTG
CGTAAAGG 3, 25AEF: 5TCACCAGCAGATGGCACG 3) based on the A, B and D genome
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 3/15
sequences [55]. For amplification and sequencing of the 879 bp gene containing the 133 bp
retention fragment, primers were designed approximately 20 to 50 bp upstream and down-
stream of the coding region. For analysis of the region, the fragments of accessions were ampli-
fied using the proofreading polymerase Phusion (Finnzymes) and subjected to TA clone prior
to sequencing. The positive clones were directly used for sequencing.
RNA isolation, cDNA synthesis and real-time PCR
RNA was isolated with TRNzol
A+
solution. For each accession, three biological replicates were
performed, and 1 μg RNA was reversely transcribed using a Transcriptor High Fidelity First-
strand cDNA Synthesis Kit (Roche, Version 6, Germany). For the TaKu70 gene, 10 accessions
were selected for RT-PCR and TA cloning. For each accession, 72 positive clones were selected
for sequencing and analyses. Primary analyses revealed alternative splicing in the cDNA frag-
ment from the HY1 accessions, which was confirmed using a validation protocol. Data analy-
sis, sequence alignment and were performed with BioEdit version 7.05 for each accession, and
all variable sites were checked manually during the construction of a sequence contig. All
sequences were manually aligned to the reference sequence. RNA was reversely transcribed
and used at 1 μg per real-time-PCR run in a 10 μL reaction volume using SsoFastEvaGreen
Supermix and a C1000thermal cycler; each biological replicate included three technical repli-
cates. Expression was normalized to the Actin and 18s genes. The primer sequences are shown
in S1 Table. A CFx96Real-time System was used for analysis.
Data analysis
Statistical analysis was performed using SPSS 16.0, with one-way ANOVA performed to test
the significance of differences when more than two groups were involved. Values were consid-
ered significantly different if (P <0.05). Comprehensive data analysis was performed using
Heml1.0 software.
Results
Variation in free radical contents
To investigate the oxidative stress caused by gamma irradiation, we measured the free radical
contents in HY1 wheat and the control variety J411 in response to various dosages of IR (Fig
1). The relative free radical content increased significantly in a dose-dependent manner. At 250
Gy, the relative free radical levels were significant increased in these plants, reaching more than
3.0-fold control dosage levels (under 0 Gy treatment). The free radical contents were more
than 2.0-fold control levels under 100 Gy treatment and 2.5-fold control levels under 150 Gy
treatment. These levels were significantly higher in the treatment groups than in the control
dosage group (p <0.05). In the control variety J411, the relative free radical contents increased
in a dose-dependent manner, but the upward trend was slower. The basal levels of free radicals
in HY1 and J411 were similar.
Total antioxidant capacity (T-AOC)
To analyze the roles of enzymatic and non-enzymatic components in HY1 and the control
variety J411, namely, the T-AOC of these plants, we used a total antioxidant capacity kit to
measure OD values at 520 nm, which revealed T-AOC values under each dosage of IR (Fig 2).
In HY1, the T-AOC values increased significantly with increasing gamma irradiation dosage.
Under 250 Gy treatment, T-AOC reached more than two-times the levels measured under the
control dosage levels. At lower doses, however, increases in T-AOC values were drastically
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 4/15
lower, approaching the values of the control dosage group, The basal T-AOC was higher in the
control variety J411 than in HY1, whereas at 100 Gy and 150 Gy, these values were consistent
in the two varieties, and at 250 Gy, this value was lower in J411 than the HY1.
DNA repair-related gene expression
To investigate changes in the expression of the DNA repair-related genes TaKu70 and TaKu80
in response to gamma irradiation, we monitored the expression of these genes in IR-treated
Fig 1. Effect of gamma irradiation on free radical levels. The X-axis represents the treatment dosage, including 0 Gy, 100 Gy, 150 Gy and 250 Gy.
The Y-axis represents the free radical levels. Dark gray bars indicate free radical contents in HY1, light gray bars represent free radical contents in the
J411 variety. Significant differences between treatment groups and the control groups in the HY1and J411 variety were analyzed by spass 16.0
(P <0.05).
doi:10.1371/journal.pone.0161700.g001
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 5/15
HY1 and the control variety J411 (Fig 3E and 3F). In HY1, under high doses of gamma irradia-
tion, both genes were significantly induced, especially TaKu70; at 250 Gy, the expression level
of this gene was more than three-times that of the control(0Gy). However, under 100 Gy treat-
ment, both genes were only slightly induced. The phenotypes of HY-1 in response to 0, 100,
150, and 250 Gy gamma irradiation are shown in Fig 3B, Seedling height and root length signif-
icantly decreased with increasing gamma irradiation dosage. while in the control variety J411,
TaKu70 was significantly induced at dosages of 100 Gy and 150 Gy. At 100 Gy, the expression
level of this gene was more than two-times that of the control dose (0 Gy). Taku80 expression
Fig 2. Effect of gamma irradiation on T-AOC in HY1 and J411 wheat. The X-axis represents the treatment dosage, including 0 Gy, 100 Gy,
150 Gy and 250 Gy. The Y-axis represents T-AOC levels. Dark gray bars represent T-AOC values in HY1, and light gray bars represent those in
J411. Significant differences between treatment groups and the control groups in the HY1and J411 variety were analyzed by spass 16.0
(P <0.05).
doi:10.1371/journal.pone.0161700.g002
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 6/15
levels were consistent with the levels detected in HY1. The phenotypes of J411 in response to
IR are shown in Fig 3A. Seedling height and root length decreased slightly with increasing
gamma irradiation dosage. Histogram analysis of seedling height and root length in HY1 and
the control variety J411 is shown in Fig 3C and 3D. Seedling height decreased significantly with
Fig 3. Effect of gamma irradiation on DNA repair-related genes TaKu70 and TaKu80 and plant
phenotypes.(A, B) Photographs of HY1 and J411 plants under different dosages of γ-irradiation. Seedling
height and root length decreased significantly with increasing gamma irradiation dosage more quickly in HY1
than in J411. (C, D) Histogram analysis of variation rate of root length and seedling height in HY1 and J411.
The X-axis represents the treatment dosage, including 0 Gy, 100 Gy, 150 Gy and 250 Gy. The Y-axis
represents the variation rate of root length and seedling in HY1 and J411. Significant differences were
analyzed by spass 16.0 (P <0.05) (E, F)The X-axis represents the treatment dosage, including 0 Gy, 100 Gy,
150 Gy and 250 Gy. The Y-axis represents Taku70 gene expression level. Dark gray bars indicate Taku70
and Taku80 gene expression values in HY1, and light gray bars indicate those in J411. Significant differences
between treatment groups and the control groups in the HY1and J411 variety were analyzed by spass 16.0
(P <0.05).
doi:10.1371/journal.pone.0161700.g003
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 7/15
increasing gamma irradiation dosage in both HY1 and J411, but the reduction was slower in
J411 than in HY1 (Fig 3C and 3D)
Intron retention in TaKu70
To explore the transcriptional regulation of TaKu70, which affects the radiosensitivity of HY1
and the control variety J411, we cloned TaKu70 cDNA sequences (S2 Fig) from both varieties
and subjected the mRNA sequences to alignment (Fig 4A). In HY1, cDNA sequence alignment
(S2 Fig) showed that a 133 bp fragment located between 601 bp and 733 bp was retained in
its mRNA sequence. A comparison between HY1 TaKu70 cDNA and the wild-type TaKu70
sequence (S1 Fig) showed that the retained 133 bp fragment was derived from the sixth intron
(67 bp) located between 2,544 bp and 2,610 bp and the seventh intron (66 bp) located between
Fig 4. Analysis of the alternative splicing, namely, intron retention. (A) The first region highlighted in gray represents the sixth exon., and the second
represents the eighth exon. Ku70-cDNA and the ku70 A sequence were obtained from the Chinese spring variety cloned by our team as the standard
comparison sequence. (B) J411-1, J411-14, J411-24 s equence, and so on represent 19 clone replicates from J411.
doi:10.1371/journal.pone.0161700.g004
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 8/15
2,750 bp and 2,815 bp in the A genome (Fig 4A). In J411, 19 clone replicates were carried out,
and is no retention was detected in its mRNA (Fig 4B,S4 Fig).
Amino acid analysis of encoded TaKu70 protein
As shown in Fig 5, normal TaKu70 mRNA encodes a functional protein, TaKu70, containing
626 amino acid residues. However, TaKu70 exhibiting intron retention encodes a non-func-
tional TaKu70 protein of only 200 amino acid residues (S3 Fig). Whether this protein is actu-
ally produced and functional remains unclear.
Integrated analysis of all data
Heml1.0 software was used to construct a heat map of all of the data. As shown in Fig 6, the
clustering results suggest that the phenotypic variation is related to TaKu70 expression and
T-AOC levels. Phenotypic variation is a standard measure of radiosensitivity. In the J411 vari-
ety, the A-TOC levels, TaKu70 expression levels, phenotypes and radicals levels were clustered
together then TaKu80 expression levels. On the Y-axis, 100 Gy and 150 Gy were clustered
together (Fig 6A). In the HY1 variety, TaKu70 and TaKu80 expression levels, T-AOC and radi-
cals levels were clustered together, which ultimately influence the phenotype. On the Y-axis, 0
Gy and 100 Gy were clustered then150 Gy (Fig 6B).
Discussion
The molecular mechanisms responsible for radiosensitivity are currently unclear, making this
topic a vital area of research. In the current study, we explored the molecular determinants of
radiosensitivity. We chose the hexaploid wheat variety HY1 and the variety J411 as a control:
the former was previously found to be the most susceptible variety to gamma irradiation and
the latter is not radiosensitive to gamma irradiation among the 63 wheat genotypes examined
[5556]. To date, several studies examining the effects of gamma irradiation have been carried
out in terrestrial organisms and some aquatic vertebrates [5759]. Some studies suggest that
Fig 5. The effect of intron retention on the encoded protein. TaKu70 encodes a 626 amino acid protein. Gray
highlighting represents the protein encoded by the mRNA harboring intron retention in HY1.
doi:10.1371/journal.pone.0161700.g005
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 9/15
different levels of susceptibility to radiation between organisms are likely due to differences in
DNA content, repair processes, and cell cycle kinetics [60]. In the current study, we found that
the high radiosensitivity of HY1 may be linked to the DNA repair process and A-TOC levels
(Fig 6). However, the underlying mechanisms that function in organisms upon gamma irradia-
tion have not been investigated in detail.
Free radicals play an important role in radiosensitivity. We therefore assessed the free radi-
cals levels of the control variety J411 and HY1, finding that both of these levels increased upon
exposure to radiation, but the increase was more rapid in HY1 than in J411 (Fig 1). This result
suggests that under the same γ-irradiation conditions, J411 may produce fewer free radicals
than HY1. The accumulation of free radicals can lead to DSBs and a variety of molecular effects,
including preventing cell division, aging and apoptosis [61]. Organisms utilize enzymatic and
non-enzymatic systems to counteract the effects of free radicals in an attempt to maintain cellu-
lar homeostasis [62]. We therefore examined the T-AOC of enzymatic and non-enzymatic anti-
oxidants using a total antioxidant capacity kit. HY1 had lower basal A-TOC levels than J411.
The HY1 cells exhibited lower T-AOC under lower doses of gamma irradiation (100 Gy and
150 Gy), but quickly increased at high doses (250 Gy). While in J411, the basal T-AOC level was
Fig 6. Heat map analysis of all data. The abscissa represents free radical levels, A-TOC levels, seedling
height, root length, TaKu70 and TaKu80 expression levels. The ordinate represents different dosages of γ-
irradiation. The primary data were LOG
2
transformed using Heml1.0 software. The color variation represents
different values.
doi:10.1371/journal.pone.0161700.g006
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 10 / 15
higher than that of HY1, and the T-AOC levels decreased with increasing irradiation (Fig 2).
The cause of this difference is currently unclear. Perhaps the high dose of γ-irradiation induced
some enzymatic activities, and the primordial T-AOC substance can remove the induced
T-AOC substance in the J411 variety. These results all suggest that enzymatic and non-enzy-
matic antioxidants play main role in resisting irradiation stress in the two varieties. Additionally,
the enzymatic and non-enzymatic system comprises several components, such as SOD, GSH,
CAT, GR, GST, GPX, and so on [63]. The total antioxidant enzyme activities displayed in Fig 2
may not represent the effect of each individual enzyme. However, interestingly, the expression
of the DNA repair-related gene TaKu70 (Fig 3E) dramatically increased under 100 Gy gamma
irradiation and then began to decline in J411. In addition, the TaKu70 mRNA sequence lacked a
retention segment (Fig 4B), suggesting that J411 TaKu70 mRNA encodes the normal protein
and has completed the DNA repair progress, which may be an important cause of the low radio-
sensitivity of this variety. In HY1, TaKu70 was significantly upregulated at 150 Gy and 250 Gy.
However, segment retention occurred in the mRNA of HY1, which may encode a nonfunctional
protein (Fig 4A). This segment retentionb may be an important cause of the radiosensitivity of
HY1. These results suggest that the DNA repair system may greatly contribute to the varied
radiosensitivity of J411 and HY1. The different A-TOC levels in the two varieties likely contrib-
utes to this difference as well. Comprehensive heat map analysis of all of the data (Fig 6A and
6B) helped confirm the above-mentioned results. Some researchers have proposed that gene
transcription levels are a reliable early signal for detecting physiological changes under environ-
mental stress [6465]. Elucidating the expression patterns of specific genes would be helpful for
better understanding the underlying molecular mechanisms of radiosensitivity upon γ-irradia-
tion. Ku70 and Ku80 are induced by γ-irradiation in a dose-dependent manner in the marine
copepod Paracyclopina nana [63]. In human, Ku70, and Ku80 are key components of the DSBs
repair process, as they ligate the broken ends of DNA in the absence of homologous templates
[66]. Thus, the increased expression of TaKu70 and TaKu80 in gamma-irradiated HY1 and
J411 implies that these genes are closely related to the enhanced DNA repair process that func-
tions to recover oxidative stress-induced cellular damage in these plants.
RNA sequencing confirmed that intron retention occurred in TaKu70 mRNA (Fig 4A)in
HY1, which may also help explain the increased radiosensitivity of this genotype. The 133 bp
fragment retained in the mRNA would lead to the production of a 200 amino acid, non-func-
tional TaKu70 protein (Fig 5). Thus, DNA repair of DSBs would be weakened or inhibited,
which may contribute to the high radiosensitivity of the HY1 variety. Disruption of Ku70 in
mouse embryonic stem cells results in severely increased sensitivity to ionizing radiation [50].
The aborted DNA repair process might cause the phenotypic variation observed in HY1 (Fig
3A), Ku70-deficient mice are approximately 50% the size of the control [51], the phenotypic
effects of different doses of radiation were reconfirm in our experiments (Fig 3A and 3B). How-
ever, our knowledge of the physiological relevance of this important post-transcriptional regu-
latory mechanism in plants is quite limited. The current study provides functional evidence
that alternative splicing plays a important role in plant responses to environmental stress [41].
Our data open up the possibility for further study of a probable link between alternative splic-
ing and hypersensitivity to γ-ionizing radiation in plants,
In summary, our results suggest that there is a correlation between radiosensitivity and
intron retention, as well as activation of the antioxidant and DNA repair systems, in HY1. No
previous studies have investigated the radiosensitivity mechanism in other plants. In this
study, we found that the antioxidant and DNA repair systems were induced by gamma irradia-
tion to mitigate damage from free radicals. Additionally, alternative splicing, namely intron
retention, might contribute to the radiosensitivity of HY1. Further evidence is needed to con-
firm the correlation between radiosensitivity and intron retention in hexaploid wheat.
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 11 / 15
Supporting Information
S1 Fig. The comparison of HY1 TaKu70 cDNA, Ku70-A and TaKu70 cDNA. Ku70-A
genome and Taku70cDNA was cloned from the Chinese spring. HY1Taku70 cDNA was
cloned from HY1.
(PDF)
S2 Fig. The comparsion of HY1 TaKu70 cDNA and TaKu70 cDNA. 133 bp fragment located
between 601 bp and 733 bp was retained in the mRNA sequence in HY1.
(PDF)
S3 Fig. Amino acid analysis of encoded TaKu70 protein. Taku70 encodes a 626 amino acid
residues protein. The detained mRNA encoded 200 amino acid residues protein.
(PDF)
S4 Fig. The original sequences of the 19 clone repeats of Taku70 gene mRNA from J411
variety.
(PDF)
S1 Table. primer Squence used in the Quantitative Real-time PCR.
(PDF)
Acknowledgments
We would like to thank all the members who involved in the experiment in this study, The
authors deeply appreciate all the technicians for their assitance in experiments. We particularly
thank the reviewers to give us the constructive suggestions about the manuscript.
Author Contributions
Conceptualization: LL XS BH JG LH.
Data curation: LL BH.
Formal analysis: BH.
Funding acquisition: LL JG.
Investigation: BH JG.
Methodology: BH JG HG.
Project administration: BH LZ.
Resources: LL LZ HG YX SZ.
Software: JG.
Supervision: LL XS YX SZ LH.
Validation: LL XS.
Visualization: BH JG.
Writing original draft: BH.
Writing review & editing: YS BH.
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 12 / 15
References
1. Soriano JD. The response of several rice varieties to fast neutrons. Radiation Botany.1971; 11(5):341
346.
2. Inoue M, Ito R, Tabata T, Hasegawa H. Varietal difference in the repair of gamma irradiation induced
Lesions in barley. Environmental and Experimental Botany.1980; 20(2):161168.
3. Baldik R, Aytekin H, Erer M. Radioactivity measurements and radiation dose assessments due to natu-
ral radiation in Karabük (Turkey). Journal of Radioanalytical and Nuclear Chemistry. 2011; 289(2):
297302.
4. Rhee JS, Kim BM, Kang CM, Lee YM, Lee JS. Gamma irradiation-induced oxidative stress and devel-
opmental impairment in the hermaphroditic fish, Kryptolebias marmoratus embryo. Environ Toxicol
Chem. 2012; 31(8):174553. doi: 10.1002/etc.1873 PMID: 22553164
5. Aquino KAS. Gamma radiation:Sterilization by gamma irradiation.p171. Croatia: In-Tech Press,2012
6. Grygoryev D, Moskalenko O, Hinton TG, Zimbrick JD. DNA damage caused by chronic transgenera-
tional exposure to low dose gamma irradiation in Medaka fish(Oryzias latipes). Radiation Research.
2013; 180(3):23546. doi: 10.1667/RR3190.1 PMID: 23919310
7. Mothersill C, Smith R, Lariviere D, Seymour C. Chronic exposure by ingestion of environmentally rele-
vant doses of (226)Ra leads to transient growth perturbations in fathead minnow(Pimephales prome-
las, Rafinesque,1820). Int J Radiat Biol. 2013; 89(11):95064. doi: 10.3109/09553002.2013.809817
PMID: 23724911
8. Smith RW, Seymour CB, Moccia RD, Hinton TG, Mothersill CE. The induction of a radiation-induced
bystander effect in fish transcends taxonomic group and trophic level. Int J Radiat Biol. 2013; 89
(4):22533. doi: 10.3109/09553002.2013.754558 PMID: 23206292
9. Sundarraj S, Thangam R, Sujitha MV, Kannan S. Ligand-conjugated mesoporous silica nanorattles
based on enzyme targeted prodrug delivery system for effective lung cancer therapy. Toxicol Appl
Pharmacol. 2014; 275(3):232. doi: 10.1016/j.taap.2014.01.012 PMID: 24467950
10. Jayakumar S, Kunwar A, Sandur SK, Pandey BN, Chaubey RC. Differential response of DU145 and
PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radio-
sensitivity. Biochim Biophys Acta.2014; 1840(1):48594. doi: 10.1016/j.bbagen.2013.10.006 PMID:
24121106
11. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev.1994; 74
(1):139162. PMID: 8295932
12. Krogh BO, Symington LS. Recombination proteins in yeast. Annu Rev Genet.2004; 38: 233271.
PMID: 15568977
13. Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast.1998; 14
(16):151127. PMID: 9885153
14. Kim JK, Park J, Ryu TH, Nili M. Effect of N-acetyl-l-cysteine on Saccharomyces cerevisiae irradiated
with gamma-rays.Chemosphere.2013; 92(5):5126. doi: 10.1016/j.chemosphere.2013.02.035 PMID:
23623538
15. Esnault M, Legue F, Chenal C. Ionizing radiation: advances in plant response. Environmental and
Experimental Botany. 2010; 68(3): 231237
16. Winston DW, Di Giulio RT. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxi-
col.1991; 19:137161.
17. Bai H, Liu R, Chen HL, Zhang W, Wang X, Zhang X D, et al. Enhanced antioxidant effect of caffeic acid
phenethyl ester and Trolox in combination against radiation induced-oxidative stress. Chem Biol Inter-
act.2014; 207:715. doi: 10.1016/j.cbi.2013.10.022 PMID: 24211618
18. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat
Gene.2001; 27(3):24754.
19. Postow L, Ghenoiu C, Woo EM, Krutchinsky AN, Chait BT, Funabiki H. Ku80 removal from DNA
through double strand break-induced ubiquitylation. J Cell Biol. 2008; 182(3):46779. doi: 10.1083/jcb.
200802146 PMID: 18678709
20. Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW, John HJ, et al. De novo CNV formation in
mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining.
PLoSGenet. 2012; 8(9):e1002981.
21. Li H, Vogel H, Holcomb VB, Gu Y, Hasty P. Deletion of Ku70,Ku80, or both causes early aging without
substantially increased cancer. Mol cell Biol. 2007; 27(23):820514. PMID: 17875923
22. Gullo C, Au M, Feng G, Teoh G. The biology of Ku and its potential oncogenic role in cancer. Biochim
Biophys Acta,2006; 1765(2):22334. PMID: 16480833
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 13 / 15
23. Yan CT, Boboila C, Souza EK, Franco S, Hicknell TR, Murphy M, et al. IgH class switching and translo-
cations use a robust non-classical end-joining pathway. Nature. 2007; 449(7161): 47882. PMID:
17713479
24. Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end
joining and its role in V(D)J recombination.DNA repair(Amst).2004; 3(89):81726.
25. Lin IT, Chao JL, Yao MC. An essential role for the DNA breakage-repair protein Ku80 in programmed
DNA rearrangements in Tetrahymena thermophila. Mol Biol Cell.2012; 23(11):221325. doi: 10.1091/
mbc.E11-11-0952 PMID: 22513090
26. Muller C, Rodrigo G, Calsou P, Salles B. DNA-dependent protein kinase: a major protein involved in the
cellular response to ionizing radiation]. Bull cancer.1999; 86(12):97783. PMID: 10660692
27. Takahashi T, Masuda T, Koyama Y. Enhanced gene targeting frequency in ku70 and ku80 disruption
mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics. 2006; 275(5):46070.
PMID: 16470383
28. Korabiowska M, Konig F, Schlott T. Uantitative analysis of Ku70 and Ku80 mRNA gene expressionin
melanoma brain metastases. Correlation with immunohisto chemistry and in situ hybridization. Cancer
Genomics Proteomics.2004; 1:225230
29. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications
for double-strand break repair. Nature. 2001; 412(6847):60714. PMID: 11493912
30. Kurimasa A, Ouyang H, Dong LJ, Wang S, Li X, Cordon-Cardo C, et al. Catalytic subunit of DNA-
dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Sci U S
A.1999; 96(4):14038.
31. Venables JP. Aberrant and alternative splicing in cancer. Cancer Res. 2004; 64(21):764754. PMID:
15520162
32. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery.
Nat Rev Genet. 2007; 8(10):74961. PMID: 17726481
33. Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and geno-
mics approaches. Nat Rev Mol Cell Biol. 2009; 10(11):74154 doi: 10.1038/nrm2777 PMID: 19773805
34. NunoL BM, Irimia M, Pan Q, Xiong HY, Gueroussov S, et al. The Evolutionary Land scape of Alternative
Splicing in Vertebrate Species. Science.2012; 338:15871593. doi: 10.1126/science.1230612 PMID:
23258890
35. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol
Cell Biol.2005; 6(5):38698. PMID: 15956978
36. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and func-
tion. Nat Rev Genet.2010; 11(5):34555. doi: 10.1038/nrg2776 PMID: 20376054
37. Zhang C, Yang H, Yang H. Evolutionary character of alternative Splicing in plants. Bioinform Biol
Insights. 2016; 9(S1) 4752.
38. Kim E, Goren A, Ast G. Alternative splicing: current perspectives. Bioessays.2008; 30(1):3847. PMID:
18081010
39. May GE, Olson S, McManus CJ, Graveley BR. Competing RNA secondary structures are required for
mutually exclusive splicing of the Dscam exon 6 cluster. RNA. 2011; 17(2):2229. doi: 10.1261/rna.
2521311 PMID: 21159795
40. Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR. Comprehensive analysis of alternative
splicing in rice and comparative analyses with Arabidopsis BMC Genomics.2006; 7: 327. PMID:
17194304
41. Filichkin S, Priest HD, Megraw M, Mockler TC. Alternative splicing in plants: directing traffic at the
crossroads of adaptation and environmental stress. Curr Opin Plant Biol,2015; 24:12535. doi: 10.
1016/j.pbi.2015.02.008 PMID: 25835141
42. Sakabe NJ, de Souza SJ. Sequence features responsible for intron retention in human. BMC geno-
mics. 2007; 8:59. PMID: 17324281
43. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and func-
tion. Nature reviews Genetics.2010; 11(5):34555 doi: 10.1038/nrg2776 PMID: 20376054
44. Ast G. How did alternative splicing evolve? Nat Rev Genet.2004; 5(10):77382. PMID: 15510168
45. Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. Biochimica et Biophyssica Acta1, 2009;
792: 1426
46. Pillmann H, Hatije K, Odronitz F, Hammesfahr B, Kollmar M. Predicting mutually exclusive spliced
exons based on exon length, splice site and reading frame conservation, and exon sequence homol-
ogy. BMC Bioinformatics.2011; 12:270. doi: 10.1186/1471-2105-12-270 PMID: 21718515
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 14 / 15
47. Yeoh LM, Goodman CD, Hall NE, Van Dooren GG, Mc Fadden GI, Ralph SA. A serinearginine-rich
(SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii.
Nucleic Acids Res. 2015; 43(9): 46614675. doi: 10.1093/nar/gkv311 PMID: 25870410
48. Li X, Huang L, Zhang Y, Ouyang Z, Hong Y, Zhang H, et al. Tomato SR/CAMTA transcription factors
SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates
drought stress tolerance. BMC Plant Bio. 2014; l14:286.
49. Caceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human
disease. Trends Genet. 2002; 18(4):18693. PMID: 11932019
50. Koh CM, Liu Y, Moehninsi, Du M, Ji L. Moehninsi Molecular characterization of KU70 and KU80 homo-
logues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodos-
poridium toruloides.BMC Microbiol. 2014; 27; 14:50. doi: 10.1186/1471-2180-14-50 PMID: 25188820
51. Rodriguez-Suarez C, Atienza SG, Piston F. Allelic variation, alternative splicing and expression analy-
sis of Psy1 gene in Hordeum chilense Roem.et Schult. PloS One.2011; 6(5):e19885. doi: 10.1371/
journal.pone.0019885 PMID: 21603624
52. Pillmann H, Hatje K, Odronitz F, Hammesfahr B, Kollmar M. Predicting mutually exclusive spliced
exons based on exon length, splice site and reading frame conservation, and exon sequence homol-
ogy. BMC bioinformatics.2011; 12:270 doi: 10.1186/1471-2105-12-270 PMID: 21718515
53. Zhu CX, Gu JY, Guo HJ, Zhao LS, Liu LX. Cloning and analysis of TaKu70 and TaKu80 inwheat. Jour-
nal of Nuclear Agricultural Sciences.2009; 23: 917922
54. Hiyama A, Nohara C, Kinjo S, Taira W, Gima S, Tanahara A, et al. The biological impacts of the
Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep.2012; 2:570. doi: 10.1038/
srep00570 PMID: 22880161
55. Gu JY, Wang Q, Cui M. Han B, Zhao LS, Liu LX, et al. Cloning and characterization of Ku70and Ku80
homologues involved in DNA repair process in wheat. Plant Genetic Resources.2014; 12:S99S103.
56. Han B, Gu JY, Zhao LS, Guo HJ, Xie YD, Liu LX, et al. Molecular characterization of radiation Sensitiv-
ity of different wheat enotypes irradiated by γrays. Journal of Plant Genetic Resources.2014; 15 (6):
13421347.
57. Garnier-Laplace J, Beaugelin-Seiller K, Hinton TG. Fukushima wildlife dose reconstruction signals eco-
logical consequences. Environ Sci Technolo.2011; 45(12):50778.
58. Hiyama A, Nohara C, Taira W, Kinjo S, Iwata M, Otaki JM. The Fukushima nuclear accident and the
pale grass blue butterfly: evaluating biological effects of long-term low-dose exposures. BMC Evol Biol.
2013; 13:168. doi: 10.1186/1471-2148-13-168 PMID: 23937355
59. Kryshev II, Kryshev AI, Sazykina TG. Dynamics of radiation exposure to marine biota in the area of the
Fukushima NPP in March-May. J Enviro Radioact.2011: 114:15761.
60. Cassidy CL, Lemon JA, Boreham DR. Impacts of low-dose gamma-radiation on genotoxic risk in
aquatic ecosystems. Dose Response.2007; 5(4):32332. doi: 10.2203/dose-response.07-026.Cassidy
PMID: 18648569
61. Lehnert BE, Iyer R. Exposure to low-level chemicals and ionizing radiation: reactive oxygen species
and cellular pathways. Hum Exp Toxicol.2002; 21(2):659. PMID: 12102498
62. Sun J, Chen Y, Li M, Ge Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic
Biol Med.1998; 24(4):58693. PMID: 9559871
63. Won EJ, Lee JS. Gamma irradiation induces growth retardation, impaired egg production, and oxidative
stress in the marine copepod Paracyclopina nana. Aquat Toxicol. 2014; 150:1726. doi: 10.1016/j.
aquatox.2014.02.010 PMID: 24632311
64. Depledge MH. The ecotoxicological significance of genotoxicity in marine invertebrates. Mutat
Res.1998; 399(1):10922. PMID: 9635493
65. Morgan MB, Vogelien DL, Snell TW. Assessing coral stress responses using molecular biomarkers of
gene transcription. Environ Toxicol Chem 2001; 20(3):53743. PMID: 11349854
66. Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks
by non-homologous end-joining. Biochem J.2009; 417(3):63950. doi: 10.1042/BJ20080413 PMID:
19133841
Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
PLOS ONE | DOI:10.1371/journal.pone.0161700 August 23, 2016 15 / 15
... Interploidy hybridization is often exploited in hexaploid wheat breeding programs to introduce genomic fragments from tetraploid into hexaploid genotypes to improve the grain quality potential and biotic/abiotic stress resistance of the progeny (Martin et al., 2011;Martin et al., 2013;Han et al., 2014;Kalous et al., 2015;Han et al., 2016). To efficiently obtain fertile F 1 progeny from interploidy crosses, breeders have widely employed maternal-excess hybridization (in which the female parent is of higher ploidy) because paternalexcess crosses often result in poor seed set, seed germination, and seedling establishment (Kihara, 1982;Sharma and Gill, 1983). ...
... Pentaploid hybrid wheat, derived from interploidy crosses between hexaploids and tetraploids, has great potential for improving agronomic traits in wheat breeding programs, such as grain quality and abiotic and biotic stress tolerance (Martin et al., 2011;Martin et al., 2013;Han et al., 2014;Kalous et al., 2015;Han et al., 2016). Experienced breeders often perform interploidy crosses using hexaploid wheat as the maternal parent to obtain fertile F 1 progeny, because the reciprocal cross usually leads to poor seed set and low rates of seed germination (Kihara, 1982;Sharma and Gill, 1983). ...
Article
Full-text available
Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution, and is commonly employed in wheat breeding programs. Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination, but the underlying mechanism is poorly understood. Here, we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid (Triticum durum, AABB) and hexaploid wheat (Triticum aestivum, AABBDD). In the paternal‐ versus the maternal‐excess cross, the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed, causing reduced germination percentage. The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types. Furthermore, expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses, leading to increased number of imprinted genes. The endosperm‐specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele‐specific DNA methylation. Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019, leading to reduced storage protein and starch accumulation during endosperm development in paternal‐excess cross, as confirmed by interploidy crosses between tetraploid wild‐type and clustered regularly interspaced palindromic repeats (CRISPR) – CRISPR‐associated protein 9 generated hexaploid mutants. These findings reveal a contribution of genomic imprinting to paternal‐excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal‐excess interploidy crosses in wheat breeding programs.
... This is also seen from the decrease in the number of cells in the proper phases for the study. However, there were seen no critical values (which, as noted earlier, already lead to a decrease in the observed general rate of aberrations due to increased elimination of mitotic cells as mitotic index) (Han et al., 2016;Bezie et al., 2020). ...
... Thehe number of complex aberrations (i.e., cells with two or more chromosomal abnormalities) significantly increases depending on concentration, whereas no such aberrations were in the control (Han et al., 2016;Nazarenko & Izhboldin, 2017) had also previously noted. The varieties were characterized by a normal level of spontaneous aberrations, slightly higher due to the lower modern plant genome stability, which has been repeatedly noted for modern cultivated plants (Caplin & Willey, 2018;Oney-Birol & Balkan, 2019). ...
Article
Full-text available
The analysis of cytogenetic activity is a key component in determining prospects of future hereditary variability after, subject to a certain mutagenic factor, primarily identifying the significance of the genotype-mutagenic interaction, the correctness of the selected concentrations for more thorough screening of some development parameters. Winter wheat seeds of eight varieties (Balaton, Borovytsia, Zeleny Gai, Zoloto Ukrainy, Kalancha, Niva Odeska, Polyanka, Pochayna) were subjected to ЕМS (ethylmethansulfonate) at the concentrations of 0.025%, 0.05%, 0.10% The exposure lasted for 24 hours. Cytogenetic analysis was carried out for pollen fertility; we also examined the rates and spectras of chromosomal rebuildings in proper cell devision phases in relation to plant gcnotype and concentration of the mutagen. The experiment was aimed at identification of interrection between geotype, concentration of mutagen and mutagen nature, determining genome response to mutagen action. Such indicators of cytogenetic activity as the total rate of chromosomal abnormalities, fragments and double fragments, single and double bridges, micronucleus and lagging chromosomes were studied. The selected concentrations of the mutagen significantly influenced all the analyzed parameters, they can be attributed to the optimal and high range of concentrations according to the nature of the impact on bread wheat. We determined that in the case of the mutagenic action, the genotype had a significantly lesser effect on the nature and rate of individual aberrations than an increase in the concentration, while having a significant effect on the rate of increase in pollen sterility. The mutagen was characterized by a significantly lower site-specificity at the cellular level than other chemical supermutagens, manifesting only in the correlation between individual types of aberrations, but not in the character of the increase in their number. The key parameter to identify the activity of this agent was the frequency of fragments and double fragments, their ratio with bridges.
... Abbreviations: CEZ, Chornobyl Exclusion Zone; Cont., contamination; EURT, East Ural Radioactive Trace; FEZ, Fukushima Exclusion Zone; Gen., generation. The following studies are cited: Antonova et al., 2015;Antonova et al., 2022;Arkhipov et al., 1994;Babina et al., 2020;Blaser et al., 2018;Bodnar and Cheban, 2023;Çelik et al., 2014;Choi et al., 2021;Fedotov et al., 2006;Feng et al., 2023;Geras'kin et al., 2007;Geras'kin et al., 2011;Geras'kin et al., 2017;Goh et al., 2014;Han et al., 2016;Hase et al., 2018;Hase et al., 2020;Hong et al., 2018;Hong et al., 2022;Huang et al., 2022;Hussein, 2022;Hwang et al., 2014;Im et al., 2017;Im et al., 2018;Ishii et al., 2016;Kazakova et al., 2024;Kiani et al., 2022;Kim et al., 2014;Kovalchuk et al., 2007;Kryvokhyzha et al., 2019;Kuglik et al., 1990;Kukarskih et al., 2021;Maity et al., 2005;Moussa, 2008;Nobre et al., 2022;Oprica et al., 2020;Pishenin et al., 2021;Podlutskii et al., 2022;Qin et al., 2007;Rakwal et al., 2008;Rakwal et al., 2009;Ren et al., 2023;Saghirzadeh et al., 2008;Sarduie-Nasab et al., 2010;Tilaki et al., 2015; used for setting up higher safety limits for the biota (UNSCEAR, 2008). In recent years, more sensitive molecular analyses started to reveal that chronically exposed organisms, even at low doses, do show stress response profiles. ...
Article
Full-text available
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
... Використання хімічних мутагенезу для індукції генетичного різноманіття призводить переважно до депресійних наслідків, хоча, на відміну від фізичних мутагенів, сублетальні ефекти майже відсутні [4,5]. ...
... Ці чинники проявляють суттєву сайт-специфічність, спорідненість до окремих ділянок спадкової речовини, що призводить до переважної індукції лише окремих типів ознак. Це може бути як бажаним (якщо ці ознаки відносяться до корисних), так і негативним [1,3]. ...
Article
Використання та дослідження нових супермутагенів з метою індукції спадкових змін у злакових культур є актуальним для підвищення стабільності агроценозів колосових культур за продуктивністю та якістю. Мета. Метою було показати вірогідні депресивні наслідки при дії мутагену азиду натрію для першої генерації сортів рослин пшениці озимої м’якої по показниках схожості, виживання, стерильності, параметрів структури врожайності для встановлення задовільного протоколу дії окремих концентрацій мутагену для отримання необхідної кількості рослинного матеріалу. Методи: Насіння 8 сортів пшениці озимої Балатон, Боровиця, Зелений Гай, Золото України, Каланча, Нива Одеська, Полянка, Почайна обробляли розчином хімічного мутагену азиду натрію у концентраціях 0,01%, 0,025%, 0,05%, 0,1%. У поколінні M1 була оцінена схожість, виживання, фертильність зерен пилку, проводили аналіз ознак структури врожайності. Результати. Встановлено, що дія азиду натрію суттєво сильніша с точку зору прояву мутагенної депресії ніж у раніше досліджених хімічних мутагенів. Як правило, зі зростанням концентрації мутагену показники онтогенезу та структури врожайності лінійно знижуються, але можливі варіанти для деяких сортів при дії концентрації азиду натрію 0,01%. Також використання азиду натрію навіть в помірних концентраціях призводить до суттєвої затримки настання окремих фенофаз, без залежності від вихідної форми в характері дії. Азид натрію у концентрації 0,01% був визначений за дією як напівлетальний. Особливості протікання онтогенезу під впливом даного чиннику здатні мати генотип-специфічний характер. Серед параметрів структури за відтворенням мутагенної депресії виділилися як найбільш достовірні висота рослини, МТЗ, вага зерна з головного колосу. Ознаки вага зерно з рослини в цілому варіює у відповідності з підвищенням концентрацій в цілому, але іноді її реакція відрізняється в межах окремого генотипу. Висновки. Азид натрію як мутаген показав доволі високу для хімічного супермутагена ушкоджувальну здатність за проявом депресії по моніторинговим показникам. Надійними параметрами для встановлення факту мутагенної депресії в залежності від концентрації та генотипу є схожість та виживання, зростання стерильність пилку, висота рослини, вага зерна з головного колосу, маса тисячі зерен. Генотип-мутагенна взаємодія в плані прояву депресії визначається в двох ефектах – підвищення загибелі після періоду перезимівлі у деяких сортів та більш низької варіативності у показника ваги зерна з рослини. Фактори генотип та концентрація мутагену при дії даного супермутагену завжди статистично вагомі для модельних показників.
... Free radicals, such as ROS and reactive nitrogen species (RNS), are extremely reactive chemical compounds that potentially cause oxidative stress by damaging cell structures, including lipids, proteins, and DNA [46,47]. Free radicals play crucial roles in radiation sensitivity [48]. Previous studies have shown that high gamma radiation dose rates severely damage plants and induce the formation of more free radicals [49][50][51]. ...
Article
Full-text available
Gamma rays as a type of ionizing radiation constitute a physical mutagen that induces mutations and could be effectively used in plant breeding. To compare the effects of gamma and ionizing irradiation according to exposure time in common wheat (Keumgang, IT 213100), seeds were exposed to 60Co gamma rays at different dose rates. To evaluate the amount of free radical content, we used electron spin resonance spectroscopy. Significantly more free radicals were generated in the case of long-term compared with short-term gamma-ray exposure at the same dose of radiation. Under short-term exposure, shoot and root lengths were slightly reduced compared with those of the controls, whereas long-term exposure caused severe growth inhibition. The expression of antioxidant-related and DNA-repair-related genes was significantly decreased under long-term gamma-ray exposure. Long-term exposure caused higher radiosensitivity than short-term exposure. The results of this study could help plant breeders select an effective mutagenic induction dose rate in wheat.
Article
Full-text available
Sorgum (Sorghum bicolor L.) merupakan tanaman serealia yang dapat beradaptasi di lahan kering sehingga cukup potensial untuk dikembangkan di Indonesia. Sorgum memiliki banyak manfaat yaitu sebagai bahan pangan, pakan dan industri. Salah satu kandungan dalam sorgum yang dapat dimanfaatkan untuk bahan industri adalah lignin yang dapat digunakan dalam pembuatan particle board dan briket. Pada penelitian sebelumnya telah dilakukan seleksi kandungan lignin terhadap 30 genotipe sorgum dan diperoleh genotipe dengan kandungan lignin tertinggi yaitu KS (Konawe Selatan). Namun genotipe KS memiliki biomassa yang masih rendah, sehingga perlu dilakukan perbaikan untuk meningkatkan biomassa. Mutasi merupakan salah satu cara untuk meningkatkan keragaman genetik. Tujuan penelitian ini adalah untuk mendapatkan galur mutan sorgum yang memiliki karakter yang berhubungan dengan biomassa seperti tinggi tanaman, diameter batang dan bobot batang lebih baik dibanding kontrol. Penelitian dilaksanakan pada bulan Juli – November 2019 di Kebun Percobaan Citayam. Materi genetik yang digunakan adalah galur mutan M2 dari radiasi sinar gamma 300, 400 dan 500 Gy dan tanaman kontrol 0 Gy. Sebanyak 50 malai setiap gray ditanam satu baris per malai dan diamati karakter agronominya. Pengamatan agronomi pada galur mutan M2 menunjukkan bahwa populasi galur mutan 300 Gy memiliki nilai kisaran yang lebih luas dibanding populasi 400 dan 500 Gy serta kontrol. Populasi mutan 300 Gy juga memiliki nilai rataan yang lebih tinggi dibanding populasi mutan 400 dan 500 Gy serta kontrol pada karakter tinggi tanaman 309.18 cm (kontrol 305.33 cm), diameter batang 24.09 mm (kontrol 19.37 mm) , bobot batang 860.73 g (kontrol 507.10 g) , panjang malai 42.55 cm (kontrol 39.95 cm) dan bobot malai 95.52 g (kontrol 64.50 g). Mutasi dengan radiasi sinar gamma dapat meningkatkan keragaman genetik dan seleksi pada galur mutan M2 diperoleh galur-galur yang memiliki tinggi, diameter batang dan bobot batang lebih baik dari kontrol yang menunjukkan adanya peningkatan biomassa.
Conference Paper
Drought tolerance of sorghum varieties is expected can increase the utility and productivity of dry land areas in Indonesia. This study aimed to find out the growth and yield response of several varieties of sorghum and determine the tolerance of each variety to drought stress. The research was conducted at the Center of the Application of Isotopes and Radiation, National Nuclear Energy Agency (CIRA-NNEA) from January - April 2019. This study used a Randomized Split Plot design consisting of threewatering treatments as main plots and six sorghum varieties as subplots. The result showed that drought stress conditions in the vegetative and generative phase induced higher root weight and reduced panicle weight. It also caused narrowing leaf area, decreasing chlorophyll content, and decreasing sorghum biomass production. The Bioguma 1 variety had the highest value for plant height character, leaf area, and plant weight on the normal condition. Screening for drought stress tolerance of sorghum varieties based on STI (Stress Tolerance Index) found that Bioguma 1 and Numbu has higher STI values than others varieties. It indicated that Bioguma 1 and Numbu varieties were more tolerant to drought condition.
Article
Full-text available
Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable.
Article
Full-text available
Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine-rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Article
Full-text available
Background The SR/CAMTA proteins represent a small family of transcription activators that play important roles in plant responses to biotic and abiotic stresses. Seven SlSR/CAMTA genes were identified in tomato as tomato counterparts of SR/CAMTA; however, the involvement of SlSRs/CAMTAs in biotic and abiotic stress responses is not clear. In this study, we performed functional analysis of the SlSR/CAMTA family for their possible functions in defense response against pathogens and tolerance to drought stress.ResultsExpression of SlSRs was induced with distinct patterns by Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Virus-induced gene silencing (VIGS)-based knockdown of either SlSR1 or SlSR3L in tomato resulted in enhanced resistance to B. cinerea and Pst DC3000 and led to constitutive accumulation of H2O2, elevated expression of defense genes, marker genes for pathogen-associated molecular pattern-triggered immunity, and regulatory genes involved in the salicylic acid- and ethylene-mediated signaling pathways. Furthermore, the expression of SlSR1L and SlSR2L in detached leaves and whole plants was significantly induced by drought stress. Silencing of SlSR1L led to decreased drought stress tolerance, accelerated water loss in leaves, reduced root biomass and attenuated expression of drought stress responsive genes in tomato. The SlSR1 and SlSR3L proteins were localized in the nucleus of plant cells when transiently expressed in Nicotiana benthamiana and had transcriptional activation activity in yeast.ConclusionsVIGS-based functional analyses demonstrate that both SlSR1 and SlSR3L in the tomato SlSR/CAMTA family are negative regulators of defense response against B. cinerea and Pst DC3000 while SlSR1L is a positive regulator of drought stress tolerance in tomato.
Article
Full-text available
Error-prone repair of radiation-induced DNA double-strand breaks (DSBs) results in DNA mutation that is essential for mutation breeding. Non-homologous end joining might be the principal DSB repair mechanism in eukaryotes, which is mediated and activated by Ku protein, a heterodimer of 70 and 80 kDa subunits. In this study, on the basis of complementary DNA (cDNA), the genomic sequences of TaKu70 and TaKu80 genes in all the three genomes of wheat were characterized. Only single-nucleotide substitutions and no insertions or deletions were detected in the exons of TaKu70 and TaKu80 genes. The size of the introns exhibited a slight variation between the sequences. Yeast two-hybrid analysis demonstrated that TaKu70 and TaKu80 formed a heterodimer, and electrophoretic mobility shift assays revealed that this heterodimer bound to double-stranded DNA, but not to single-stranded DNA. The quantitative polymerase chain reaction analysis revealed that the expression of TaKu70 and TaKu80 genes was up-regulated under g-ray irradiation in a dose-dependent manner in the seedlings of wheat. These results suggest that TaKu70 and TaKu80 form a functional heterodimer and are associated with the repair of the induced DSBs in wheat.
Article
Full-text available
Background: Rhodosporidium toruloides is a β-carotenoid accumulating, oleaginous yeast that has great biotechnological potential. The lack of reliable and efficient genetic manipulation tools have been a major hurdle blocking its adoption as a biotechnology platform. Results: We report for the first time the development of a highly efficient targeted gene deletion method in R. toruloides ATCC 10657 via Agrobacterium tumefaciens-mediated transformation. To further improve targeting frequency, the KU70 and KU80 homologs in R. toruloides were isolated and characterized in detail. A KU70-deficient mutant (∆ku70e) generated with the hygromycin selection cassette removed by the Cre-loxP recombination system showed a dramatically improved targeted gene deletion frequency, with over 90% of the transformants being true knockouts when homology sequence length of at least 1 kb was used. Successful gene targeting could be made with homologous flanking sequences as short as 100 bp in the ∆ku70e strain. KU70 deficiency did not perturb cell growth although an elevated sensitivity to DNA mutagenic agents was observed. Compared to the other well-known oleaginous yeast, Yarrowia lipolytica, R. toruloides KU70/KU80 genes contain much higher density of introns and are the most GC-rich KU70/KU80 genes reported. Conclusions: The KU70-deficient mutant generated herein was effective in improving gene deletion frequency and allowed shorter homology sequences to be used for gene targeting. It retained the key oleaginous and fast growing features of R. toruloides. The strain should facilitate both fundamental and applied studies in this important yeast, with the approaches taken here likely to be applicable in other species in subphylum Pucciniomycotina.
Article
All aerobically growing organisms suffer exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components against ROS. This review concentrates on the oxidant defence systems of the budding yeast Saccharomyces cerevisiae , which appears to have a number of inducible adaptive stress responses to oxidants, such as H2 O2 , superoxide anion and lipid peroxidation products. The oxidative stress responses appear to be regulated, at least in part, at the level of transcription and there is considerable overlap between them and many diverse stress responses, allowing the yeast cell to integrate its response towards environmental stress. © 1998 John Wiley & Sons, Ltd.
Article
Background: Altered expression and prognostic significance of DNA double-strand repair genes Ku70 and Ku80 has been shown by our research group for malignant melanomas. High genomic instability known for melanoma brain metastases stimulated us to analyze Ku70 and Ku80 expression in melanoma brain metastases. Materials and methods: Quantitative evaluation of mRNA Ku70 and Ku80 expression was performed in 13 melanoma brain metastases. Immunohistochemistry and in situ hybridization for Ku70 and Ku80 were applied to 34 metastatic tumours. Results: Quantitative analysis of Ku70 mRNA expression demonstrated values between 0.01 and 0.33. Ku80 mRNA expression ranged between 0.001 and 0.54. Immunohistochemistry demonstrated Ku70 and Ku80 expression in 34 and in 25 metastatic tumours, respectively. In situ hybridization detected Ku70 expression in 19/34 and Ku80 expression in 13/34 metastatic tumours. Correlation between Ku70 and Ku80 expression in melanoma brain metastases was lost. Conclusion: Ku70 and especially Ku80 expression is altered in melanoma brain metastases and corresponds with the high genomic instability of these lesions.
Article
In recent years, high-throughput sequencing-based analysis of plant transcriptomes has suggested that up to ∼60% of plant gene loci encode alternatively spliced mature transcripts. These studies have also revealed that alternative splicing in plants can be regulated by cell type, developmental stage, the environment, and the circadian clock. Alternative splicing is coupled to RNA surveillance and processing mechanisms, including nonsense mediated decay. Recently, non-protein-coding transcripts have also been shown to undergo alternative splicing. These discoveries collectively describe a robust system of post-transcriptional regulatory feedback loops which influence RNA abundance. In this review, we summarize recent studies describing the specific roles alternative splicing and RNA surveillance play in plant adaptation to environmental stresses and the regulation of the circadian clock. Copyright © 2015 Elsevier Ltd. All rights reserved.