Article

ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

ACAP3 belongs to ACAP family of GTPase-activating proteins (GAPs) for the small GTPase ADP-ribosylation factor (Arf). However, its specificity to Arf isoforms and physiological functions remain unclear. Here, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild type of ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild type, GTP- or GDP-locked mutant of Arf6. Thus, cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine nucleotide exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Facilitates Arf6 GTP/GDP cycles and actin remodeling necessary for Salmonella invasion [26] ACAP2 Arf GAP (partly) CDRs Inhibits CDR formation through GAP activity [35] Arf GAP Phagocytosis/phagocytic cups Regulates FcyR-or zymosan-induced phagocytosis by facilitating Arf6 GTP/GDP cycles under control of Rab35 GTP/GDP cycles [9,10] Ank Rab35 GTP-dependent recruitment to phagocytic cups Regulates FcγR-mediated phagocytosis under control of Rab35 GTP/GDP [10] Arf GAP Neurite outgrowth in PC12 cells [36,37] Ank Rab35 GTP-dependent recruitment to plasma membrane Neurite outgrowth in PC12 cells [37,38] ACAP3 Arf GAP Uni/bipolar morphology of migrating neurons Promotes neurite outgrowth by facilitating Arf6 GTP/GDP cycles in hippocampal neurons [39] Arf GAP N.D. Promotes neuron migration in developing cerebral cortex [40] ARAP1 PH3-PH4-Rho GAP-RA-PH5 (Arf GAP-independent) ...
... ACAP3 functions as an Arf6 GAP, measured by a pull-down assay, showed strong expression in the cortex, hippocampus and cerebellum and preferentially localized to the tip of the growth cone, suggesting a role in axonal outgrowth [39]. Different than ACAP2 that functions simply to inactivate Arf6, ACAP3 ensured the cycling of Arf6 between active and inactive forms to aid neuronal functions. ...
... Like ACAP3 knockdown, Arf6 knockdown or knockout inhibited neurite outgrowth. Interestingly, the ACAP3 knockdown phenotype can be rescued by the fast cycling mutant of Arf6 [117] but not the wild-type, DN or CA mutant of Arf6 [39]. This result parallels the involvement of Arf GAPs in Salmonella entry, wherein impaired pathogen entry due to Arf GAP depletion was rescued by fast cycling mutants of Arfs [26]. ...
Article
Full-text available
Arf•GTPase-activating proteins (Arf•GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf•GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf•GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf•GAPs. Arf•GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf•GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
... This protein is thought to be involved in the regulation of Arf6-dependent actin cytoskeleton remodeling, endocytosis (including autophagy), membrane trafficking events, cellular signaling pathway, cell adhesion, dendritic differentiation, and cell movement involving tyrosine kinase receptor [50][51][52][53]. ACAP3 is involved in neuronal migration in the cortical layer in the developing cerebral cortex, regulated morphogenesis of neurons, and neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons [54]. ...
... Returning to the possible mechanisms of pathogenesis of symptomatic and cryptogenic epilepsy, it is important to consider the fact that we found an association of short UPS29 alleles with structural changes in the brain, namely cortical atrophy, whereas the association with hydrocephalus and arachnoid cysts absented, although they are often associated with the development of epilepsy [102]. These data support the functional significance of UPS29 and the ACAP3 gene in neurogenesis (neuropathogenesis) since the role of ACAP3 in neuronal migration in the developing cerebral cortex has already been proven [54]. Other proposed ACAP3 functions are cellular signaling pathway and visual traffic [103,104], the disturbances of which may be responsible for deviations in synaptic plasticity and neuronal conduction. ...
Preprint
Full-text available
Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.
... The GTPase activating protein acap3 is specific to the small GTPase, arf6, and those arfGAPs can be activated by lipid kinase, phosphatidylinositol 4,5-bisphosphate, and phosphatidic acids [35]. However, acap3 has been mostly reported as a regulator of neuronal migration and growth [36,37]. Furthermore, agap3 has also been identified as an NMDAinteracting signalling protein that is important for regulating NMDA receptors [38]. ...
Article
Full-text available
An earlier study of ours investigating the effect of dietary lipid levels on the choline requirement of Atlantic salmon showed increasing severity of intestinal steatosis with increasing lipid levels. As choline is involved in epigenetic regulation by being the key methyl donor, pyloric caeca samples from the study were analysed for epigenetic effects of dietary lipid and choline levels. The diets varied in lipid levels between 16% and 28%, and choline levels between 1.9 and 2.3 g/kg. The diets were fed for 8 weeks to Atlantic salmon of 25 g of initial weight. Using reduced representation bisulfite sequencing (RRBS), this study revealed that increasing dietary lipid levels induced methylation differences in genes involved in membrane transport and signalling pathways, and in microRNAs important for the regulation of lipid homoeostasis. Increasing choline levels also affected genes involved in fatty acid biosynthesis and transport, lipolysis, and lipogenesis, as well as important immune genes. Our observations confirmed that choline is involved in epigenetic regulation in Atlantic salmon, as has been reported for higher vertebrates. This study showed the need for the inclusion of biomarkers of epigenetic processes in studies that must be conducted to define optimal choline levels in diets for Atlantic salmon.
... Some previous studies had illustrated the molecular functions and cellular processes of them. For instance, ACAP3, one of members of the ACAP family of GTPase-activating proteins for the small GTPase ADP-ribosylation factor [40], which are expressed in brain and associated with the endolysosomal pathway [41]. ATP8B3 (belongs to P4-ATPases) is a subfamily member of P-type ATPases Fig. 9 The Characterization of the TME, immunotherapeutic and chemotherapeutic response and in different risk group. ...
Article
Full-text available
Lung cancer is the leading cause of cancer-related death. Lysosomes are key degradative compartments that maintain protein homeostasis. In current study, we aimed to construct a lysosomes-related genes signature to predict the overall survival (OS) of patients with Lung Adenocarcinoma (LUAD). Differentially expressed lysosomes-related genes (DELYs) were analyzed using The Cancer Genome Atlas (TCGA-LUAD cohort) database. The prognostic risk signature was identified by Least Absolute Shrinkage and Selection Operator (LASSO)-penalized Cox proportional hazards regression and multivariate Cox analysis. The predictive performance of the signature was assessed by Kaplan–Meier curves and Time-dependent receiver operating characteristic (ROC) curves. Gene set variant analysis (GSVA) was performed to explore the potential molecular biological function and signaling pathways. ESTIMATE and single sample gene set enrichment analysis (ssGSEA) were applied to estimate the difference of tumor microenvironment (TME) between the different risk subtypes. An eight prognostic genes (ACAP3, ATP8B3, BTK, CAV2, CDK5R1, GRIA1, PCSK9, and PLA2G3) signature was identified and divided patients into high-risk and low-risk groups. The prognostic signature was an independent prognostic factor for OS (HR > 1, p < 0.001). The molecular function analysis suggested that the signature was significantly correlated with cancer-associated pathways, including angiogenesis, epithelial mesenchymal transition, mTOR signaling, myc-targets. The low-risk patients had higher immune cell infiltration levels than high-risk group. We also evaluated the response to chemotherapeutic, targeted therapy and immunotherapy in high- and low-risk patients with LUAD. Furthermore, we validated the expression of the eight gene expression in LUAD tissues and cell lines by qRT-PCR. LYSscore signature provide a new modality for the accurate diagnosis and targeted treatment of LUAD and will help expand researchers’ understanding of new prognostic models. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-023-03149-5.
... Major functions of ARF6 include cytoskeletal organization and actin remodeling, roles in endocytosis and vesicular trafficking, cell adhesion, and completion of mitotic cytokinesis in different cell types (D'Souza-Schorey and Chavrier, 2006;Donaldson, 2002;Hongu and Kanaho, 2014;Humphreys et al., 2013;Klein et al., 2006;Luton, 2005;Schafer et al., 2000;Schweitzer and D'Souza-Schorey, 2005). Accordingly, it promotes processes based on actin assembly and cytoskeletal organization, including migration, branching and outgrowth in neuronal cells, filopodia extension, platelet-mediated clot formation and thrombosis, or tumor angiogenesis and metastasis Choi et al., 2005;Gauthier-Campbell et al., 2004;Hiroi et al., 2006;Hongu et al., 2016;Miura et al., 2016;Torii et al., 2010;Urban et al., 2016). With NAV2729, a small molecule inhibitor with presumed specificity for ARF6 is available (Yamauchi et al., 2017;Yoo et al., 2016). ...
Article
The presumed ADP ribosylation factor (ARF) 6 inhibitor NAV2729 inhibits human prostate smooth muscle contraction and proliferation of stromal cells, which are driving factors of voiding symptoms in benign prostatic hyperplasia (BPH). However, its specificity and a confirmed role of ARF6 for smooth muscle contraction are still pending. Here, we generated monoclonal ARF6 knockouts in human prostate stromal cells (WPMY-1), and characterized phenotypes of contractility, growth-related functions, and susceptibility to NAV2729 in knockout and control clones. ARF6 knockout was verified by Western blot. Knockout clones showed impaired contraction and actin organization, reduced proliferation and viability, and increased apoptosis and cell death. In ARF6-expressing control clones, NAV2729 (5 mM) strongly inhibited contraction (67% inhibition across all three control clones), actin organization (72%), proliferation (97%), and viability (up to 82%), and increased apoptosis (5-fold) and cell death (6- fold). In ARF6 knockouts, effects of NAV2729 (5 mM) were widely reduced, including lacking or minor effects on contractions (0% inhibition across all three knockout clones), actin (18%) and proliferation (13%), and lacking increases of apoptosis and cell death. Viability was reduced by NAV2729 with an IC50 of 3.3 mM across all three ARF6 control clones, but of 4.5-8.2 mM in ARF6 knockouts. In conclusion, ARF6 promotes prostate smoothmuscle contraction and proliferation of stromal cells. Both are inhibited by NAV2729, which showed high specificity for ARF6 up to 5 mM and represents an attractive compound in the context of BPH. Considering the relevance of smooth muscle-based diseases, shared roles of ARF6 in other smooth muscle types merit further investigation. © 2021 by The American Society for Pharmacology and Experimental Therapeutics.
... Various Arf GEFs and GAPs have been described to play an important role in the nervous system. For instance, the Arf6 GAP, also known as ACAP3, has been shown to regulate neurite outgrowth in hippocampal neurons from mice [136]. Arf6 EFA6 GEF is involved in the arborization of dendrites and the formation of dendritic spines [137]. ...
Article
Full-text available
Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer's and Parkinson's diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
... Subsequently, it was shown that signaling through ARNO is also necessary for Schwann cell myelination (Torii et al., 2015). Furthermore, Arf6specific GAP (ACAP3) was shown to positively regulate neurite (axon and dendrites) growth in mouse hippocampal neurons (Miura et al., 2016). ...
Article
Full-text available
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
... Molecularly, ARL4 proteins, including ARL4C, can recruit the ARF-GEF cytohesins (CYTH1-4) to the plasma membrane, which, in turn, can bind and activate the small GTPase ARF6 (5,6). In the nervous system, ARF6 participates in dendrite and axon outgrowth and branching (7)(8)(9)(10), apical adhesion of neural progenitors (11), and cortical neuron migration (12). ...
Article
Full-text available
Significance In comparison to the neocortex, the molecular mechanisms that contribute to neuron migration, particularly pyramidal neuron migration, and localization in the hippocampus remain for the most part unknown. The present study characterizes the role of the E3 ubiquitin ligase CRL5 during hippocampal pyramidal neuron migration. CRL5 down-regulates the small GTPase ARL4C and its associated signaling effectors, in a posttranscriptional fashion, to localize pyramidal neurons in the hippocampus. CRL5-dependent regulation of ARL4C signaling is also required for the formation of a single, apically oriented dendrite in pyramidal neurons and for its full outgrowth to the superficial strata of the hippocampus. Therefore, this study uncovers CRL5 and ARL4C signaling as crucial molecular determinants for hippocampal morphogenesis.
... Interestingly, it was accompanied by increased Arf6 activation (Arf6-GTP) and partially counteracted by expression of the dominant-negative Arf6 variant (Arf6-T27N), testifying an involvement of Arf6 dysregulation in the pathogenesis of the TBC1D24-related diseases. The activation state of Arf6 is reported to be highly regulated in developing neurons by multiple GTP Exchange Factors (GEFs) and GAPs, although the precise mechanisms of Arf6 cycling at the axonal GC are still debated [19,20,34]. We therefore propose that the TBC1D24 role in axon formation is, at least in part, attributable to its effect on the Arf6 activation state, as previously described for neurite elongation and arborization [10]. ...
Article
Mutations in TBC1D24 are described in patients with a spectrum of neurological diseases, including mild and severe epilepsies and complex syndromic phenotypes such as Deafness, Onycodystrophy, Osteodystrophy, Mental Retardation and Seizure (DOORS) syndrome. The product of TBC1D24 is a multifunctional protein involved in neuronal development, regulation of synaptic vesicle trafficking, and protection from oxidative stress. Although pathogenic mutations in TBC1D24 span the entire coding sequence, no clear genotype/phenotype correlations have emerged. However most patients bearing predicted loss of function mutations exhibit a severe neurodevelopmental disorder. Aim of the study is to investigate the impact of TBC1D24 knockdown during the first stages of neuronal differentiation when axonal specification and outgrowth take place. In rat cortical primary neurons silenced for TBC1D24, we found defects in axonal specification, the maturation of axonal initial segment and action potential firing. The axonal phenotype was accompanied by an impairment of endocytosis at the growth cone and an altered activation of the TBC1D24 molecular partner ADP ribosylation factor 6. Accordingly, acute knockdown of TBC1D24 in cerebrocortical neurons in vivo analogously impairs callosal projections. The axonal defect was also investigated in human induced pluripotent stem cell-derived neurons from patients carrying TBC1D24 mutations. Reprogrammed neurons from a patient with severe developmental encephalopathy show significant axon formation defect that were absent from reprogrammed neurons of a patient with mild early onset epilepsy. Our data reveal that alterations of membrane trafficking at the growth cone induced by TBC1D24 loss of function cause axonal and excitability defects. The axonal phenotype correlates with the disease severity and highlight an important role for TBC1D24 in connectivity during brain development.
... For example, we recently demonstrated that expression of catalytically active or inactive Arf6 mutants in neuroblasts similarly disturbed neuronal migration of cortical progenitor cells during the cerebral cortical layer formation (Hara et al., 2016). Miura et al. (2016) demonstrated that total neurite length, but not total neurite number, was significantly decreased in cultured hippocampal neurons transfected with shRNA for Arf6 or prepared from Arf6 knockout mice. Therefore, the opposite effects of knockdown between pallidin and cytohesin-2 on total dendritic length can lead to the speculation that the interaction of pallidin with cytohesin-2 may negatively regulate the stimulatory effect of the cytohesin-2-Arf pathway on dendritic extension by suppressing the GEF activity of cytohesin-2 toward Arf6. ...
Article
Cytohesin‐2 is a member of the guanine nucleotide exchange factors for ADP ribosylation factor 1 (Arf1) and Arf6, which are small GTPases that regulate membrane traffic and actin dynamics. In this study, we first demonstrated that cytohesin‐2 localized to the plasma membrane and vesicles in various subcellular compartment in hippocampal neurons by immunoelectron microscopy. Next, to understand the molecular network of cytohesin‐2 in neurons, we conducted yeast two‐hybrid screening of brain cDNA libraries using cytohesin‐2 as bait and isolated pallidin, a component of the biogenesis of lysosome‐related organelles complex 1 (BLOC‐1) involved in endosomal trafficking. Pallidin interacted specifically with cytohesin‐2 among cytohesin family members. GST pull‐down and immunoprecipitation assays further confirmed the formation of a protein complex between cytohesin‐2 and pallidin. Immunofluorescence demonstrated that cytohesin‐2 and pallidin partially colocalized in various subsets of endosomes immunopositive for EEA1, syntaxin 12, and LAMP2 in hippocampal neurons. Knockdown of pallidin or cytohesin‐2 reduced cytoplasmic EEA1‐positive early endosomes. Furthermore, knockdown of pallidin increased the total dendritic length of cultured hippocampal neurons, which was rescued by co‐expression of wild‐type pallidin but not a mutant lacking the ability to interact with cytohesin‐2. In contrast, knockdown of cytohesin‐2 had the opposite effect on total dendritic length. The present results suggested that the interaction between pallidin and cytohesin‐2 may participate in various neuronal functions such as endosomal trafficking and dendritic formation in hippocampal neurons. This article is protected by copyright. All rights reserved.
... In mammalian cells, overexpression of ArfGAP1 produces more vesicles, rather than inhibiting transport [19]. The depletion of ACAP3, the ArfGAP for Arf6, resulted in the inhibition of neurite outgrowth [32]. Although Arf6•GTP levels increased by depletion of ACAP3, the shRNA of Arf6 also decreased neurite outgrowth. ...
... Among the hubs in this module, Actn1, Fkbp8 and Acap3 are involved in neurite extension. In particular, hippocampal neurons have shown abolished neurite outgrowth after Acap3 knockdown (Miura et al., 2016). Other hubs were Cacnb3, a voltage-activated calcium channel, and the immune-related genes Cnrip and Il16. ...
Article
Full-text available
Complex febrile seizures during infancy constitute an important risk factor for epilepsy development. However, little is known about the alterations induced by febrile seizures that may turn the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene co-expression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day 11 (P11) and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene co-expression network analysis was employed to characterize modules of co-expressed genes, as these modules may contain genes with similar functions. The transcriptome analysis pipeline consisted in building gene co-expression networks, identifying network modules and hubs, performing gene-trait correlations and examining module connectivity changes. Modules were functionally enriched to identify functions associated to HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, like Wnt, Hippo, Notch, JAK-STAT and MAPK. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as one day after HS. These results suggest that HS trigger transcriptional alterations that may lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, turning the brain prone to epileptic activity.
Article
Misregulation of neuronal macroautophagy/autophagy has been implicated in age-related neurodegenerative diseases. We compared autophagosome formation and maturation in primary murine neurons during development and through aging to elucidate how aging affects neuronal autophagy. We observed an age-related decrease in the rate of autophagosome formation leading to a significant decrease in the density of autophagosomes along the axon. Next, we identified a surprising increase in the maturation of autophagic vesicles in neurons from aged mice. While we did not detect notable changes in endolysosomal content in the distal axon during early aging, we did observe a significant loss of acidified vesicles in the distal axon during late aging. Interestingly, we found that autophagic vesicles were transported more efficiently in neurons from adult mice than in neurons from young mice. This efficient transport of autophagic vesicles in both the distal and proximal axon is maintained in neurons during early aging, but is lost during late aging. Our data indicate that early aging does not negatively impact autophagic vesicle transport nor the later stages of autophagy. However, alterations in autophagic vesicle transport efficiency during late aging reveal that aging differentially impacts distinct aspects of neuronal autophagy.Abbreviations: ACAP3: ArfGAP with coiled-coil, ankyrin repeat and PH domains 3; ARF6: ADP-ribosylation factor 6; ATG: autophagy related; AVs: autophagic vesicles; DCTN1/p150Glued: dynactin 1; DRG: dorsal root ganglia; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; LAMP2: lysosomal-associated protein 2; LysoT: LysoTracker; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK8IP1/JIP1: mitogen-activated protein kinase 8 interacting protein 1; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; mCh: mCherry; PE: phosphatidylethanolamine.
Article
The GTPase-activating protein (GAP) specific to the small GTPase Arf6, ACAP3, is known to regulate morphogenesis of neurons in vitro. However, physiological significance of ACAP3 in the brain development in vivo remains unclear. Here, we show that ACAP3 is involved in neuronal migration in the developing cerebral cortex of mice. Knockdown of ACAP3 in the developing cortical neurons of mice in utero significantly abrogated neuronal migration in the cortical layer, which was restored by ectopic expression of wild type of ACAP3, but not by its GAP-inactive mutant. Furthermore, morphological changes of neurons during migration in the cortical layer were impeded in ACAP3-knocked-down cortical neurons. These results provide evidence that ACAP3 plays a crucial role in migration of cortical neurons by regulating their morphological change during development of cerebral cortex.
Article
Full-text available
Autosomal dominant mutations that activate the leucine-rich repeat kinase-2 (LRRK2) cause inherited Parkinson's disease. Recent work has revealed that LRRK2 directly phosphorylates a conserved Thr/Ser residue in the effector-binding switch-II motif of a number of Rab GTPase proteins, including Rab10. Here we describe a facile and robust method to assess phosphorylation of endogenous Rab10 in mouse embryonic fibroblasts (MEFs), lung and spleen derived B Cells, based on the ability of the Phos-tag reagent to retard the electrophoretic mobility of LRRK2 phosphorylated Rab10. We exploit this assay to show that phosphorylation of Rab10 is ablated in kinase inactive LRRK2[D2017A] knock-in MEFs and mouse lung, demonstrating that LRRK2 is the major Rab10 kinase in these cells/tissue. We also establish that the Phos-tag assay can be deployed to monitor the impact that activating LRRK2 pathogenic (G2019S and R1441G) knock-in mutations have on stimulating Rab10 phosphorylation. We show that upon addition of LRRK2 inhibitors, Rab10 is dephosphorylated within 1-2 min, markedly more rapidly than the Ser935 and Ser1292 biomarker sites that require 40-80 min. Furthermore, we find that phosphorylation of Rab10 is suppressed in LRRK2[S910A, S935A] knock-in MEFs indicating that phosphorylation of Ser910 and Ser935 and potentially 14-3-3 binding play a role in facilitating the phosphorylation of Rab10 by LRRK2 in vivo. The Rab Phos-tag assay has the potential to significantly aide with evaluating the effect that inhibitors, mutations and other factors have on the LRRK2 signalling pathway.
Article
Full-text available
Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1 matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH2-terminal kinase interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin dynein and kinesin-1 activiiy in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6-JIP-MT1-MMP-dynein-dynactin-kinesin-1 axis promoting an invasive phenotype of breast cancer cells.
Article
Full-text available
Anti-angiogenic drugs targeting vascular endothelial cell growth factor receptor have provided modest clinical benefit, in part, owing to the actions of additional angiogenic factors that stimulate tumour neoangiogenesis in parallel. To overcome this redundancy, approaches targeting these other signalling pathways are required. Here we show, using endothelial cell-targeted mice, that the small GTPase Arf6 is required for hepatocyte growth factor (HGF)-induced tumour neoangiogenesis and growth. Arf6 deletion from endothelial cells abolishes HGF-stimulated β1 integrin recycling. Pharmacological inhibition of the Arf6 guanine nucleotide exchange factor (GEF) Grp1 efficiently suppresses tumour vascularization and growth. Grp1 as well as other Arf6 GEFs, such as GEP100, EFA6B and EFA6D, regulates HGF-stimulated β1 integrin recycling. These findings provide insight into the mechanism of HGF-induced tumour angiogenesis and offer the possibility that targeting the HGF-activated Arf6 signalling pathway may synergize with existing anti-angiogenic drugs to improve clinical outcomes.
Article
Full-text available
Significance The small G protein ADP-ribosylation factor 6 (Arf6) and the exchange factor for Arf6 (EFA6) are involved in endocytic vesicular transport, but their precise functions remain unclear. The Bin/Amphiphysin/Rvs (BAR) domain containing endophilin is known to couple fission to uncoating of the clathrin-coated vesicles. Here, we identified endophilin as a direct interactor of EFA6. We analyzed in vitro the effect of this interaction on EFA6 guanine nucleotide exchange factor activity, and on endophilin lipid binding and remodeling activities. We then studied in vivo the role of the two proteins in transferrin receptor endocytosis. Our results suggest a model in which EFA6 recruits endophilin on flat areas of endocytic zones of the plasma membrane, where endophilin cooperates with EFA6 to activate Arf6 and regulate clathrin-mediated endocytosis.
Article
Full-text available
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P‐) domain]. Actin filament organization in growth cones is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTP ases, kinases, phosphatases, cyclic nucleotides, and [Ca ⁺⁺ ] fluxes. These signals regulate actin‐binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues. image Actin filament organization in motile growth cone leading margin (peripheral (P‐) domain) is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments or cytoplasmic components, and produce mechanical forces. This Review outlines key aspects of growth cone actin dynamics, as well as the roles of adhesion‐mediating proteins, like integrins, which stabilize actin‐based protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target.
Article
Full-text available
Endocytic recycling is a process in which molecules have been internalized are recycled back to the plasma membrane, and although it is crucial for regulating various cellular events, the molecular nexus underlying this process remains poorly understood. Here we report a well-orchestrated molecular link between two gatekeepers for endocytic recycling, the molecular switch Rab35 and the molecular scissors EHD1, that is mediated by two distinct Rab35 effectors during neurite outgrowth of PC12 cells. Rab35 forms a tripartite complex with MICAL-L1 and centaurin-β2/ACAP2 and recruits them to perinuclear Arf6-positive endosomes in response to nerve growth factor stimulation. MICAL-L1 and centaurin-β2 then cooperatively recruit EHD1 to the same compartment by functioning as a scaffold for EHD1 and as an inactivator of Arf6, respectively. We propose that Rab35 regulates the formation of an EHD1-association site on Arf6-positive endosomes by integrating the functions of two distinct Rab35 effectors for successful neurite outgrowth.
Article
Full-text available
We have developed a new expression vector which allows efficient selection for transfectants that express foreign genes at high levels. The vector is composed of a ubiquitously strong promoter based on the β-actin promoter, a 69% Subregion of the bovine papilloma virus genome, and a mutant neomycin phosphotransferase II-encoding gene driven by a weak promoter, which confers only marginal resistance to G418. Thus, high concentrations of G418 (approx. 800 μg/ml) effectively select for transfectants containing a high vector copy number (> 300). We tested this system by producing human interleukin-2 (IL-2) in L cells and Chinese hamster ovary (CHO) cells, and the results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification. The vector sequences were found to have integrated into the host chromosome, and were stably maintained in the transfectants for several months.
Article
Full-text available
Phagosome formation and subsequent maturation are complex sequences of events that involve actin cytoskeleton remodeling and membrane trafficking. Here, we demonstrate that the Ras-related protein Rab35 is involved in the early stage of FcγR-mediated phagocytosis in macrophages. Live-cell image analysis revealed that Rab35 was markedly concentrated at the membrane where IgG-opsonized erythrocytes (IgG-Es) are bound. Rab35 silencing by RNA interference (RNAi) or the expression of GDP- or GTP-locked Rab35 mutant drastically reduced the rate of phagocytosis of IgG-Es. Actin-mediated pseudopod extension to form phagocytic cups was disturbed by the Rab35 silencing or the expression of GDP-Rab35, although initial actin assembly at the IgG-E binding sites was not inhibited. Furthermore, GTP-Rab35-dependent recruitment of ACAP2, an ARF6 GTPase-activating protein, was shown in the phagocytic cup formation. Concomitantly, overexpression of ACAP2 along with GTP-locked Rab35 showed a synergistic inhibitory effect on phagocytosis. It is likely that Rab35 regulates actin-dependent phagosome formation by recruiting ACAP2, which might control actin remodeling and membrane traffic through ARF6.
Article
Full-text available
Two small GTPases, Rab and Arf, are well-known molecular switches that function in diverse membrane-trafficking routes in a coordinated manner; however, very little is known about the direct crosstalk between Rab and Arf. Although Rab35 and Arf6 were independently reported to regulate the same cellular events, including endocytic recycling, phagocytosis, cytokinesis and neurite outgrowth, the molecular basis that links them remains largely unknown. Here we show that centaurin-β2 (also known as ACAP2) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. We found that Rab35 accumulates at Arf6-positive endosomes in response to nerve growth factor (NGF) stimulation and that centaurin-β2 is recruited to the same compartment in a Rab35-dependent manner. We further showed by knockdown and rescue experiments that after the Rab35-dependent recruitment of centaurin-β2, the Arf6-GAP activity of centaurin-β2 at the Arf6-positive endosomes was indispensable for NGF-induced neurite outgrowth. These findings suggest a novel mode of crosstalk between Rab and Arf: a Rab effector and Arf-GAP coupling mechanism, in which Arf-GAP is recruited to a specific membrane compartment by its Rab effector function.
Article
Full-text available
Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.
Article
Full-text available
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.
Article
Full-text available
The Par-3/Par-6/aPKC/Cdc42 complex regulates the conversion of primordial adherens junctions (AJs) into belt-like AJs and the formation of linear actin cables during epithelial polarization. However, the mechanisms by which this complex functions are not well elucidated. In the present study, we found that activation of Arf6 is spatiotemporally regulated as a downstream signaling pathway of the Par protein complex. When primordial AJs are formed, Par-3 recruits a scaffolding protein, termed the FERM domain containing 4A (FRMD4A). FRMD4A connects Par-3 and the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-1. We propose that the Par-3/FRMD4A/cytohesin-1 complex ensures accurate activation of Arf6, a central player in actin cytoskeleton dynamics and membrane trafficking, during junctional remodeling and epithelial polarization.
Article
Full-text available
Axonal targeting of trophic receptors is critical for neuronal responses to extracellular developmental cues, yet the underlying trafficking mechanisms remain unclear. Here, we report that tropomyosin-related kinase (Trk) receptors for target-derived neurotrophins are anterogradely trafficked to axons via transcytosis in sympathetic neurons. Using compartmentalized cultures, we show that mature receptors on neuronal soma surfaces are endocytosed and remobilized via Rab11-positive recycling endosomes into axons. Inhibition of dynamin-dependent endocytosis disrupted anterograde transport and localization of TrkA receptors in axons. Anterograde TrkA delivery and exocytosis into axon growth cones is enhanced by nerve growth factor (NGF), acting locally on distal axons. Perturbing endocytic recycling attenuated NGF-dependent signaling and axon growth while enhancing recycling conferred increased neuronal sensitivity to NGF. Our results reveal regulated transcytosis as an unexpected mode of Trk trafficking that serves to rapidly mobilize ready-synthesized receptors to growth cones, thus providing a positive feedback mechanism by which limiting concentrations of target-derived neurotrophins enhance neuronal sensitivity.
Article
Full-text available
The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and beta1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane.
Article
Full-text available
At the FASEB summer research conference on "Arf Family GTPases", held in Il Ciocco, Italy in June, 2007, it became evident to researchers that our understanding of the family of Arf GTPase activating proteins (ArfGAPs) has grown exponentially in recent years. A common nomenclature for these genes and proteins will facilitate discovery of biological functions and possible connections to pathogenesis. Nearly 100 researchers were contacted to generate a consensus nomenclature for human ArfGAPs. This article describes the resulting consensus nomenclature and provides a brief description of each of the 10 subfamilies of 31 human genes encoding proteins containing the ArfGAP domain.
Article
Full-text available
Cofilin is a widely distributed actin-modulating protein that has the ability to bind along the side of F-actin and to depolymerize F-actin in a pH-dependent manner. We found that phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) inhibited both actions of cofilin in a dose-dependent manner, while inositol 1,4,5-triphosphate (IP3), 1-oleoyl-2-acetylglycerol (OAG), phosphatidylserine (PS), or phosphatidylcholine (PC) had little or no effect on them. Gel filtration analyses showed that PIP2 bound to cofilin and thereby inhibited the binding of cofilin to G-actin. Destrin is a mammalian, pH-independent actin-depolymerizing protein. The actin-depolymerizing activity of destrin was also inhibited by PI, PIP, and PIP2, but not by IP3, OAG, PS, or PC. In addition, we found further that an actin-depolymerizing activity of bovine pancreas deoxyribonuclease I, a G-actin-sequestering protein, was inhibited by PIP and PIP2, but not by PI, IP3, OAG, PS, or PC. These results together with previous findings (Lassing, I., and Lindberg, U. (1985) Nature 314, 472-474; Janmey, P. A., and Stossel, T. P. (1987) Nature 325, 362-364) suggest that the sensitivity to polyphosphoinositides may be a common feature in vitro among actin-binding proteins that can bind to G-actin and regulate the state of actin polymerization.
Article
Full-text available
A new technique for assaying infectivity of adenovirus 5 DNA has been developed. Viral DNA was diluted in isotonic saline containing phosphate at a low concentration, and calcium chloride was added, resulting in the formation of a calcium phosphate precipitate. DNA coprecipitated with the calcium phosphate and, when the resulting suspension was added to human KB cell monolayers, became adsorbed to the cells. Following adsorption, uptake of DNA into the cells occurred during an incubation in liquid medium at 37 ° in the continued presence of extra calcium chloride.For adenovirus 5 DNA the assay resulted in up to 100-fold more plaques than could be obtained using DEAE-dextran. Furthermore a reproducible relationship between amounts of DNA inoculated per culture and numbers of plaques produced was demonstrated. The assay was most efficient at high DNA concentrations (10–30 μg/ml); below this range the addition of carrier DNA was necessary for optimum results.In addition to adenovirus 5 DNA, the technique has been used successfully to assay infectivity of DNA from adenovirus 1 and simian virus 40.
Article
Full-text available
The ERM proteins, ezrin, radixin, and moesin, are involved in the actin filament/plasma membrane interaction as cross-linkers. CD44 has been identified as one of the major membrane binding partners for ERM proteins. To examine the CD44/ERM protein interaction in vitro, we produced mouse ezrin, radixin, moesin, and the glutathione-S-transferase (GST)/CD44 cytoplasmic domain fusion protein (GST-CD44cyt) by means of recombinant baculovirus infection, and constructed an in vitro assay for the binding between ERM proteins and the cytoplasmic domain of CD44. In this system, ERM proteins bound to GST-CD44cyt with high affinity (Kd of moesin was 9.3 +/- 1.6nM) at a low ionic strength, but with low affinity at a physiological ionic strength. However, in the presence of phosphoinositides (phosphatidylinositol [PI], phosphatidylinositol 4-monophosphate [4-PIP], and phosphatidylinositol 4.5-bisphosphate [4,5-PIP2]), ERM proteins bound with a relatively high affinity to GST-CD44cyt even at a physiological ionic strength: 4,5-PIP2 showed a marked effect (Kd of moesin in the presence of 4,5-PIP2 was 9.3 +/- 4.8 nM). Next, to examine the regulation mechanism of CD44/ERM interaction in vivo, we reexamined the immunoprecipitated CD44/ERM complex from BHK cells and found that it contains Rho-GDP dissociation inhibitor (GDI), a regulator of Rho GTPase. We then evaluated the involvement of Rho in the regulation of the CD44/ERM complex formation. When recombinant ERM proteins were added and incubated with lysates of cultured BHK cells followed by centrifugation, a portion of the recombinant ERM proteins was recovered in the insoluble fraction. This binding was enhanced by GTP gamma S and markedly suppressed by C3 toxin, a specific inhibitor of Rho, indicating that the GTP form of Rho in the lysate is required for this binding. A mAb specific for the cytoplasmic domain of CD44 also markedly suppressed this binding, identifying most of the binding partners for exogenous ERM proteins in the insoluble fraction as CD44. Consistent with this binding analysis, in living BHK cells treated with C3 toxin, most insoluble ERM proteins moved to soluble compartments in the cytoplasm, leaving CD44 free from ERM. These findings indicate that Rho regulates the CD44/ERM complex formation in vivo and that the phosphatidylinositol turnover may be involved in this regulation mechanism.
Article
Full-text available
The GTP-binding protein ADP-ribosylation factor 6 (Arf6) regulates endosomal membrane trafficking and the actin cytoskeleton in the cell periphery. GTPase-activating proteins (GAPs) are critical regulators of Arf function, controlling the return of Arf to the inactive GDP-bound state. Here, we report the identification and characterization of two Arf6 GAPs, ACAP1 and ACAP2. Together with two previously described Arf GAPs, ASAP1 and PAP, they can be grouped into a protein family defined by several common structural motifs including coiled coil, pleckstrin homology, Arf GAP, and three complete ankyrin-repeat domains. All contain phosphoinositide-dependent GAP activity. ACAP1 and ACAP2 are widely expressed and occur together in the various cultured cell lines we examined. Similar to ASAP1, ACAP1 and ACAP2 were recruited to and, when overexpressed, inhibited the formation of platelet-derived growth factor (PDGF)-induced dorsal membrane ruffles in NIH 3T3 fibroblasts. However, in contrast with ASAP1, ACAP1 and ACAP2 functioned as Arf6 GAPs. In vitro, ACAP1 and ACAP2 preferred Arf6 as a substrate, rather than Arf1 and Arf5, more so than did ASAP1. In HeLa cells, overexpression of either ACAP blocked the formation of Arf6-dependent protrusions. In addition, ACAP1 and ACAP2 were recruited to peripheral, tubular membranes, where activation of Arf6 occurs to allow membrane recycling back to the plasma membrane. ASAP1 did not inhibit Arf6-dependent protrusions and was not recruited by Arf6 to tubular membranes. The additional effects of ASAP1 on PDGF-induced ruffling in fibroblasts suggest that multiple Arf GAPs function coordinately in the cell periphery.
Article
Full-text available
Migration of epithelial cells is essential for tissue morphogenesis, wound healing, and metastasis of epithelial tumors. Here we show that ARNO, a guanine nucleotide exchange factor for ADP-ribosylation factor (ARF) GTPases, induces Madin-Darby canine kidney epithelial cells to develop broad lamellipodia, to separate from neighboring cells, and to exhibit a dramatic increase in migratory behavior. This transition requires ARNO catalytic activity, which we show leads to enhanced activation of endogenous ARF6, but not ARF1, using a novel pulldown assay. We further demonstrate that expression of ARNO leads to increased activation of endogenous Rac1, and that Rac activation is required for ARNO-induced cell motility. Finally, ARNO-induced activation of ARF6 also results in increased activation of phospholipase D (PLD), and inhibition of PLD activity also inhibits motility. However, inhibition of PLD does not prevent activation of Rac. Together, these data suggest that ARF6 activation stimulates two distinct signaling pathways, one leading to Rac activation, the other to changes in membrane phospholipid composition, and that both pathways are required for cell motility.
Article
Full-text available
Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCalpha at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase-dependent stimulation of Rac1, ARF6, and PKCalpha.
Article
Full-text available
The Eps15 homology (EH) domain-containing protein, EHD1, has recently been ascribed a role in the recycling of receptors internalized by clathrin-mediated endocytosis. A subset of plasma membrane proteins can undergo internalization by a clathrin-independent pathway regulated by the small GTP-binding protein ADP-ribosylation factor 6 (Arf6). Here, we report that endogenous EHD proteins, as well as transgenic tagged EHD1, are associated with long, membrane-bound tubules containing Arf6. EHD1 appears to induce tubule formation, which requires nucleotide cycling on Arf6 and intact microtubules. Mutations in the N-terminal P-loop domain or deletion of the C-terminal EH domain of EHD1 prevent association of EHD1 with tubules or induction of tubule formation. The EHD1 tubules contain internalized major histocompatibility complex class I (MHC-I) molecules that normally traffic through the Arf6 pathway. Recycling assays show that overexpression of EHD1 enhances MHC-I recycling. These observations suggest an additional function of EHD1 as a tubule-inducing factor in the Arf6 pathway for recycling of plasma membrane proteins internalized by clathrin-independent endocytosis.
Article
Full-text available
Studies of GTPase function often employ expression of dominant negative or constitutively active mutants. Dominant negative mutants cannot bind GTP and thus cannot be activated. Constitutively active mutants cannot hydrolyze GTP and therefore accumulate a large pool of GTP-bound GTPase. These mutations block the normal cycle of GTP binding, hydrolysis, and release. Therefore, although the GTPase-deficient mutants are in the active conformation, they do not fully imitate all the actions of the GTPase. This is particularly true for the ADP-ribosylation factors (ARFs), GTPases that regulate vesicular trafficking events. In Ras and Rho GTPases replacement of phenylalanine 28 with a leucine residue produces a "fast cycling" mutant that can undergo spontaneous GTP-GDP exchange and retains the ability to hydrolyze GTP. Unfortunately this phenylalanine residue is not conserved in the ARF family of GTPases. Here we report the design and characterization of a novel activated mutant of ARF6, ARF6 T157A. In vitro studies show that ARF6 T157A can spontaneously bind and release GTP more quickly than the wild-type protein suggesting that it is a fast cycling mutant. This mutant has enhanced activity in vivo and induces cortical actin rearrangements in HeLa cells and enhanced motility in Madin-Darby canine kidney cells.
Article
Full-text available
Neuronal polarity is, at least in part, mediated by the differential sorting of membrane proteins to distinct domains, such as axons and somata/dendrites. We investigated the pathways underlying the subcellular targeting of NgCAM, a cell adhesion molecule residing on the axonal plasma membrane. Following transport of NgCAM kinetically, surprisingly we observed a transient appearance of NgCAM on the somatodendritic plasma membrane. Down-regulation of endocytosis resulted in loss of axonal accumulation of NgCAM, indicating that the axonal localization of NgCAM was dependent on endocytosis. Our data suggest the existence of a dendrite-to-axon transcytotic pathway to achieve axonal accumulation. NgCAM mutants with a point mutation in a crucial cytoplasmic tail motif (YRSL) are unable to access the transcytotic route. Instead, they were found to travel to the axon on a direct route. Therefore, our results suggest that multiple distinct pathways operate in hippocampal neurons to achieve axonal accumulation of membrane proteins.
Article
Full-text available
The function of Arf6 has been investigated largely by using the T27N and the Q67L mutants, which are thought to be blocked in GDP- and GTP-bound states, respectively. However, these mutants have been poorly characterized biochemically. Here, we found that Arf6(T27N) is not an appropriate marker of the inactive GDP-bound form because it has a high tendency to lose its nucleotide in vitro and to denature. As a consequence, most of the protein is aggregated in vivo and localizes to detergent-insoluble structures. However, a small proportion of Arf6(T27N) is able to form a stable complex with its exchange factor EFA6 at the plasma membrane, accounting for its dominant-negative phenotype. To define the cellular localization of Arf6-GDP, we designed a new mutant, Arf6(T44N). In vitro, this mutant has a 30-fold decreased affinity for GTP. In vivo, it is mostly GDP bound and, in contrast to the wild type, does not switch to the active conformation when expressed with EFA6. This GDP-locked mutant is found at the plasma membrane, where it localizes with EFA6 and Ezrin in actin- and phosphatidylinositol (4,5)-bisphosphate-enriched domains. From these results, we conclude that the Arf6 GDP-GTP cycle takes place at the plasma membrane.
Article
Full-text available
ADP-ribosylation factor 6 (Arf6) is a small-GTPase that regulates the membrane trafficking between the plasma membrane and endosome. It is also involved in the reorganization of the actin cytoskeleton. GTPase-activating protein (GAP) is a critical regulator of Arf function as it inactivates Arf. Here, we identified a novel species of GAP denoted as SMAP1 that preferentially acts on Arf6. Although overexpression of SMAP1 did not alter the subcellular distribution of the actin cytoskeleton, it did block the endocytosis of transferrin receptors. Knock down of endogenous SMAP1 also abolished transferrin internalization, which confirms that SMAP1 is needed for this endocytic process. SMAP1 overexpression had no effect on clathrin-independent endocytosis, however. Intriguingly, SMAP1 binds directly to the clathrin heavy chain via its clathrin-box and mutation studies revealed that its GAP domain and clathrin-box both contribute to the role SMAP1 plays in clathrin-dependent endocytosis. These observations suggest that SMAP1 may be an Arf6GAP that specifically regulates one of the multiple functions of Arf6, namely, clathrin-dependent endocytosis, and that it does so by binding directly to clathrin.
Article
Full-text available
The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.
Article
Full-text available
The ADP-ribosylation factors (Arfs) are six proteins within the larger Arf family and Ras superfamily that regulate membrane traffic. Arfs all share numerous biochemical activities and have very similar specific activities. The use of dominant mutants and brefeldin A has been important to the discovery of the cellular functions of Arfs but lack specificity between Arf isoforms. We developed small interference RNA constructs capable of specific depletion of each of the cytoplasmic human Arfs to examine the specificity of Arfs in live cells. No single Arf was required for any step of membrane traffic examined in HeLa cells. However, every combination of the double knockdowns of Arf1, Arf3, Arf4, and Arf5 yielded a distinct pattern of defects in secretory and endocytic traffic, demonstrating clear specificity for Arfs at multiple steps. These results suggest that the cooperation of two Arfs at the same site may be a general feature of Arf signaling and provide candidates at several cellular locations that when paired with data on the localization of the many different Arf guanine nucleotide exchange factors, Arf GTPase activating proteins, and effectors will aid in the description of the mechanisms of specificity in this highly conserved and primordial family of regulatory GTPases.
Article
Full-text available
Growth cone advance depends on coordinated membrane protrusion and adhesion to the extracellular matrix. Although many studies have addressed the mechanisms responsible for membrane protrusion, the assembly of integrin-dependent adhesion sites known as point contacts remains poorly understood in growth cones. We show balanced Rac1 activity controls both leading edge protrusion and point contact dynamics during neurite outgrowth. Immunocytochemistry and live imaging of paxillin-green fluorescent protein (GFP) showed that inhibiting Rac1 blocked point contact formation, whereas Rac1 overactivation produced small, unstable point contacts. Both inhibition and overactivation of Rac1 reduced the persistence of lamellar protrusions and neurite outgrowth. Inhibition of ROCK (Rho kinase), a RhoA effector, perturbed protrusion and point contact dynamics similar to Rac1 overactivation. Moreover, the repulsive guidance cue Semaphorin 3A, which signals through Rac1, destabilizes point contacts. Together, our data suggest that coordinated Rho GTPase activities regulate neurite outgrowth through point contact formation and stabilization of membrane protrusion.
Article
Full-text available
The mammalian small GTPase ADP-ribosylation factor 6 (ARF6) plays important roles in a wide variety of cellular events, including endocytosis, actin cytoskeletal reorganization, and phosphoinositide metabolism. However, physiological functions for ARF6 have not previously been examined. Here, we described the consequence of ARF6 ablation in mice, which manifests most obviously in the context of liver development. Livers from ARF6-/- embryos are smaller and exhibit hypocellularity, due to the onset of midgestational liver cell apoptosis. Preceding the apoptosis, however, defective hepatic cord formation is observed; the liver cells migrate abnormally upon exiting the primordial hepatic epithelial sheet and clump rather than becoming dispersed. Consistent with this observation, the ability of hepatocyte growth factor/scatter factor (HGF) to induce hepatic cord-like structures from ARF6-/- fetal hepatocytes cultured in vitro in collagen gel matrix is impaired. Finally, we show that endogenous ARF6 in wild-type fetal hepatocytes is activated in response to HGF stimulation. These results provide evidence that ARF6 is an essential component in the signaling pathway coupling HGF signaling to hepatic cord formation.
Article
Full-text available
Whether coat proteins play a widespread role in endocytic recycling remains unclear. We find that ACAP1, a GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF) 6, is part of a novel clathrin coat complex that is regulated by ARF6 for endocytic recycling in two key physiological settings, stimulation-dependent recycling of integrin that is critical for cell migration and insulin-stimulated recycling of glucose transporter type 4 (Glut4), which is required for glucose homeostasis. These findings not only advance a basic understanding of an early mechanistic step in endocytic recycling but also shed key mechanistic insights into major physiological events for which this transport plays a critical role.
Article
NEDD9 is an established marker of invasive and metastatic cancers. NEDD9 downregulation has been shown to dramatically reduce cell invasion and metastasis in multiple tumors. The mechanisms by which NEDD9 regulates invasion are largely unknown. In the current study, we have found that NEDD9 is required for matrix metalloproteinase 14 (MMP14) enzymatic recovery/recycling through the late endosomes to enable disengagement of tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and tumor invasion. Depletion of NEDD9 decreases targeting of the MMP14/TIMP2 complex to late endosomes and increases trafficking of MMP14 from early/sorting endosomes back to the surface in a small GTPase ADP ribosylation factor-6 (Arf6)-dependent manner. NEDD9 directly binds to Arf6-GTPase-activating protein, ARAP3 and Arf6-effector GGA3, thereby facilitating the Arf6 inactivation required for MMP14/TIMP2 targeting to late endosomes. Re-expression of NEDD9 or a decrease in Arf6 activity is sufficient to restore MMP14 activity and the invasive properties of tumor cells. Importantly, NEDD9 inhibition by Vivo-Morpholinos, an antisense therapy, decreases primary tumor growth and metastasis in xenograft models of breast cancer. Collectively, our findings uncover a novel mechanism to control tumor-cell dissemination through NEDD9/Arf6-dependent regulation of MMP14/TIMP2 trafficking, and validate NEDD9 as a clinically relevant therapeutic target to treat metastatic cancer.Oncogene advance online publication, 22 September 2014; doi:10.1038/onc.2014.297.
Article
Fc receptors play a pivotal role linking the cellular and humoral arms of the immune system [1–3]. Our previous studies have shown that the human high-affinity immunoglobulin G receptor FcγRI couples to a novel intracellular signaling pathway requiring phospholipase D activation [4]. The mechanisms that regulate receptor coupling to phospholipase D in intact cells are poorly understood but involve small molecular weight GTPases and protein kinase C [5–7]. Here, we show that immune complex aggregation of FcγRI stimulates the association of phospholipase D1 with ARF6 and protein kinase Cα. Surprisingly, PKCα activity per se is not required. Rather, all of the FcγRI-mediated increase in PKC activity requires phospholipase D1, as treatment of cells with butan-1-ol (0.3%) or specific downregulation of phospholipase D1 using antisense oligonucleotides inhibits FcγRI-coupled PKC activation. Moreover, treatment of cells with butan-1-ol or phospholipase D1 antisense oligonucleotides inhibits translocation of PKCδ, -ϵ, and -ζ but had no effect on the association of PKCα or ARF6 with phospholipase D1. These data indicate that association with ARF6 and PKCα plays a role in coupling FcγRI to phospholipase D1 activation and that PLD1 lies upstream of all FcγRI-mediated PKC activity.
Article
The glucose transporter type 4 (glut4) is critical for metabolic homeostasis. Insulin regulates glut4 by modulating its expression on the cell surface. This regulation is mainly achieved by targeting the endocytic recycling of glut4. We identify general receptor for 3-phosphoinositides 1 (Grp1) as a guanine nucleotide exchange factor for ADP-ribosylation factor 6 (ARF6) that promotes glut4 vesicle formation. Grp1 also promotes the later steps of glut4 recycling through ARF6. Insulin signaling regulates Grp1 through phosphorylation by Akt. We also find that mutations that mimic constitutive phosphorylation of Grp1 can bypass upstream insulin signaling to induce glut4 recycling. Thus, we have uncovered a major mechanism by which insulin regulates glut4 recycling. Our findings also reveal the complexity by which a single small GTPase in vesicular transport can coordinate its multiple steps to accomplish a round of transport.
Article
NMDA receptor activation leads to clathrin-dependent endocytosis of postsynaptic AMPA receptors. Although this process controls long-term depression (LTD) induction in the hippocampus, how it is regulated by neuronal activities is not completely clear. Here, we show that Ca²⁺ influx through the NMDA receptor activates calcineurin and protein phosphatase 1 to dephosphorylate phosphatidylinositol 4-phosphate 5-kinaseγ661 (PIP5Kγ661), the major phosphatidylinositol 4,5-bisphosphate (PI(4,5)P₂)-producing enzyme in the brain. Bimolecular fluorescence complementation analysis revealed that the dephosphorylated PIP5Kγ661 became associated with the clathrin adaptor protein complex AP-2 at postsynapses in situ. NMDA-induced AMPA receptor endocytosis and low-frequency stimulation-induced LTD were completely blocked by inhibiting the association between dephosphorylated PIP5Kγ661 and AP-2 and by overexpression of a kinase-dead PIP5Kγ661 mutant in hippocampal neurons. Furthermore, knockdown of PIP5Kγ661 inhibited the NMDA-induced AMPA receptor endocytosis. Therefore, NMDA receptor activation controls AMPA receptor endocytosis during hippocampal LTD by regulating PIP5Kγ661 activity at postsynapses.
Article
The small GTPase Arf6 is a member of the Arf (ADP-ribosylation factor) family. Although the function of Arf6 has been heavily studied at the cellular level, its physiological function at the whole animal level is largely unknown. In this study, we examined both the tissue distribution and developmental timing of Arf6 expression in wild type mice to obtain valuable information to speculate on the physiological function of Arf6. Western blot analysis using anti-Arf6 antibody revealed that Arf6 was ubiquitously expressed with its developmental timing differing in a tissue-specific manner. These results were supported by Arf6 mRNA in situ hybridization experiments, which showed that Arf6 was highly expressed in the polarized epithelial cells and embryonic mesenchymal cells of most tissues in a temporally dependent manner. Taken in toto, our results suggest that the expression of Arf6 in mouse tissues is precisely regulated in a development- and tissue-dependent manner.
Article
A wide range of cellular activities depends upon endocytic recycling. ARF6, a small molecular weight GTPase, regulates the processes of endocytosis and endocytic recycling in concert with various effector molecules and other small GTPases. This review highlights three critical processes that involve ARF6-mediated endosomal membrane trafficking-cell motility, cytokinesis, and cholesterol homeostasis. In each case, the function of ARF6-mediated trafficking varies-including localization of specific protein and lipid cargo, regulation of bulk membrane movement, and modulation of intracellular signaling. As described in this review, mis-regulation of endocytic traffic can result in human disease when it compromises the cell's ability to regulate cell movement and invasion, cell division, and lipid homeostasis.
Article
Inositol phospholipid turnover is enhanced during mitogenic stimulation of cells by growth factors and the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) may be important in triggering cell proliferation. PtdInsP2 also binds actin-binding proteins to regulate their activity, but it is not yet understood how this control is achieved. The protein alpha-actinin from striated muscle contains large amounts of endogenous PtdInsP2, whereas that from smooth muscle has only a little but will bind exogenously added PtdInsP2. In vitro alpha-actinin binds to F-actin and will crosslink actin filaments, increasing the viscosity of F-actin solutions. We report here that alpha-actinin from striated muscle is an endogenous PtdInsP2-bound protein and that the specific interaction between alpha-actinin and PtdInsP2 regulates the F-actin-gelating activity of alpha-actinin. Although the F-actin-gelating activity of alpha-actinin from smooth muscle is much reduced compared with that from striated muscle, exogenous PtdInsP2 can enhance the activity of smooth muscle alpha-actinin to the level seen in striated muscles. These results show that PtdInsP2 is present in striated muscle alpha-actinin and that it is necessary for alpha-actinin to realize its maximum gelating activity.
Article
The actin-binding protein gelsolin requires micromolar concentrations of calcium ions to sever actin filaments, to potentiate its binding to the end of the filament and to promote the polymerization of monomeric actin into filaments. Because transient increases in both intracellular [Ca2+] and actin polymerization accompany the cellular response to certain stimuli, it has been suggested that gelsolin regulates the reversible assembly of actin filaments that accompanies such cellular activations. But other evidence suggests that these activities do not need increased cytoplasmic [Ca2+] and that once actin-gelsolin complexes form in the presence of Ca2+ in vitro, removal of free Ca2+ causes dissociation of only one of two bound actin monomers from gelsolin and the resultant binary complexes cannot sever actin filaments. The finding that cellular gelsolin-actin complexes can be dissociated suggests that a Ca2+-independent regulation of gelsolin also occurs. Here we show that, like the dissociation of profilin-actin complexes, phosphatidylinositol 4,5-bisphosphate, which undergoes rapid turnover during cell stimulation, strongly inhibits the actin filament-severing properties of gelsolin, inhibits less strongly the nucleating ability of this protein and restores the potential for filament-severing activity to gelsolin-actin complexes.
Article
Hydrolysis of guanosine triphosphate (GTP) by the small guanosine triphosphatase (GTPase) adenosine diphosphate ribosylation factor-1 (ARF1) depends on a GTPase-activating protein (GAP). A complementary DNA encoding the ARF1 GAP was cloned from rat liver and predicts a protein with a zinc finger motif near the amino terminus. The GAP function required an intact zinc finger and additional amino-terminal residues. The ARF1 GAP was localized to the Golgi complex and was redistributed into a cytosolic pattern when cells were treated with brefeldin A, a drug that prevents ARF1-dependent association of coat proteins with the Golgi. Thus, the GAP is likely to be recruited to the Golgi by an ARF1-dependent mechanism.
Article
Vinculin, a prominent cytoskeletal protein at cell-substrate adhesions (focal adhesions) and cell-cell adhesions (adherens junctions), interacts with other cytoskeletal proteins, including talin and actin. An intramolecular interaction between the head and tail domains of vinculin masks the binding sites for both proteins. The exposure of cryptic binding sites may be important for promoting focal adhesion assembly. Several agents that induce the formation of focal adhesions act through the GTP-binding protein Rho, which elevates phosphatidylinositol-4,5-bisphosphate (PtdInsP2) levels by activating phosphatidyl-inositol-4-phosphate-5-OH kinase (PtdIns-5-OH kinase). PtdInsP2 regulates several actin-binding proteins, including profilin, gelsolin and alpha-actinin, and interacts with vinculin. Here we report that PtdInsP2 dissociates vinculin's head-tail interaction, unmasking its talin- and actin-binding sites. Microinjection of antibodies against PtdInsP2 inhibit assembly of stress fibres and focal adhesions.
Article
Synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a signaling phospholipid, is primarily carried out by phosphatidylinositol 4-phosphate 5-kinase [PI(4)P5K], which has been reported to be regulated by RhoA and Rac1. Unexpectedly, we find that the GTPgammaS-dependent activator of PI(4)P5Kalpha is the small G protein ADP-ribosylation factor (ARF) and that the activation strictly requires phosphatidic acid, the product of phospholipase D (PLD). In vivo, ARF6, but not ARF1 or ARF5, spatially coincides with PI(4)P5Kalpha. This colocalization occurs in ruffling membranes formed upon AIF4 and EGF stimulation and is blocked by dominant-negative ARF6. PLD2 similarly translocates to the ruffles, as does the PH domain of phospholipase Cdelta1, indicating locally elevated PI(4,5)P2. Thus, PI(4)P5Kalpha is a downstream effector of ARF6 and when ARF6 is activated by agonist stimulation, it triggers recruitment of a diverse but interactive set of signaling molecules into sites of active cytoskeletal and membrane rearrangement.
Article
Type I PIPkins (phosphatidylinositol 4-phosphate 5-kinases) are the enzymes that catalyse the major cellular route of synthesis of PtdIns(4,5) P2, and three isoforms (alpha, beta and gamma) with several splice variants have been found to date. In the present paper, we describe the discovery of a novel splice variant of the gamma isoform, which we call PIPkin Igammac, and which is characterized by the inclusion of a 26-amino-acid insert near the C-terminus. Its transcript appears to be selectively expressed in brain, where it locates in the neurons of restricted regions, such as cerebellum, hippocampus, cortex and olfactory bulb, as indicated by in situ hybridization studies. Overexpression of two different catalytically inactive constructs of PIPkin Igammac in rat cerebellar granule cells causes a progressive loss of their neuronal processes, whereas equivalent kinase-dead versions of PIPkin Igammaa did not induce any such effect, suggesting the possible existence of a specific PtdIns(4,5) P2 pool synthesized by PIPkin Igammac, which is involved in the maintenance of some neuronal cellular processes.
Article
Cargo sorting that promotes the transport of cargo proteins from a membrane compartment has been predicted to be unlikely in the endocytic recycling pathways. We now show that ACAP1 binds specifically and directly to recycling cargo proteins. Reducing this interaction for TfR inhibits its recycling. Moreover, ACAP1 binds to two distinct phenylalanine-based sequences in the cytoplasmic domain of TfR that function as recycling sorting signals to promote its transport from the recycling endosome. Taken together, these findings indicate that ACAP1 promotes cargo sorting by recognizing recycling sorting signals.
Article
Components of intracellular signaling that mediate the stimulation-dependent recycling of integrins are being identified, but key transport effectors that are the ultimate downstream targets remain unknown. ACAP1 has been shown recently to function as a transport effector in the cargo sorting of transferrin receptor (TfR) that undergoes constitutive recycling. We now show that ACAP1 also participates in the regulated recycling of integrin beta1 to control cell migration. However, in contrast to TfR recycling, the role of ACAP1 in beta1 recycling requires its phosphorylation by Akt, which is, in turn, regulated by a canonical signaling pathway. Disrupting the activities of either ACAP1 or Akt, or their assembly with endosomal beta1, inhibits beta1 recycling and cell migration. These findings advance an understanding of how integrin recycling is achieved during cell migration, and also address a basic issue of how intracellular signaling can interface with transport to achieve regulated recycling.
Article
Actin cytoskeletal reorganization and membrane trafficking are important for spine morphogenesis. Here we investigated whether the small GTPase, ADP-ribosylation factor 6 (ARF6), which regulates actin dynamics and peripheral vesicular trafficking, is involved in the regulation of spine formation. The developmental expression pattern of ARF6 in mouse hippocampus was similar to that of the post-synaptic density protein-95, and these molecules colocalized in mouse hippocampal neurons. Overexpression of a constitutively active ARF6 mutant in cultured hippocampal neurons decreased the spine density, whereas a dominant-negative ARF6 mutant increased the density. These results demonstrate a novel function for ARF6 as a key regulator of spine formation.
ARF proteins: roles in membrane traffic and beyond
  • D'Souza-Schorey