ArticlePDF Available

Phellinotus, a new neotropical genus in the Hymenochaetaceae (Basidiomycota, Hymenochaetales)

Authors:

Abstract and Figures

A new poroid genus with two conspicuous and common species growing on living Fabaceae trees is described from the Seasonally Dry Tropical Forests biome of Brazil. Both taxa in this forest pathogen genus resemble Phellinus rimosus macroscopically, but are distinguished by a dimitic hyphal system with skeletal hyphae present only in the trama of the tube layer while the context remains monomitic, and by the ellipsoid, thick-walled, adaxially flattened, yellow basidiospores that turn chestnut brown in KOH solution. Molecular and morphological studies of Brazilian specimens macroscopically similar to the Phellinus rimosusspecies complex were carried out to solve their phylogenetic relationships among the Hymenochaetaceae. Phellinotus gen. nov.with P. neoaridus sp. nov.as the genus type and P. piptadeniae comb. nov.are presented and described. Phylogenetically, Phellinotusis closely related to Arambarria, Inocutis, Fomitiporellaand other taxonomically unresolved terminal clades, and unrelated to Fulvifomesand Phylloporia. Phellinotusand other genera of poroid Hymenochaetaceae that lack setae or setal hyphae and produce thick-walled, colored (pale yellow to rusty brown) basidiospores form a phylogenetic group here named the ‘phellinotus clade’. Our results indicate the need to include taxa from unexplored areas in order to get a thorough understanding of the phylogeny of the Hymenochaetaceae.
Content may be subject to copyright.
Phytotaxa 000 (0): 000–000
http://www.mapress.com/j/pt/
Copyright © 2016 Magnolia Press Article PHYTOTAXA
ISSN 1179-3155 (print edition)
ISSN 1179-3163 (online edition)
Accepted by Genevieve Gates: 29 Apr. 2016; published: xx xxx. 2016
http://dx.doi.org/10.11646/phytotaxa.00.0.0
1
Phellinotus, a new neotropical genus in the Hymenochaetaceae (Basidiomycota,
Hymenochaetales)
ELISANDRO RICARDO DRECHSLER-SANTOS1,*, GERARDO LUCIO ROBLEDO2,3*, NELSON C. LIMA-
JÚNIOR4, ELAINE MALOSSO4, MATEUS A. RECK1, TATIANA B. GIBERTONI4, MARIA A. DE QUEIROZ
CAVALCANTI4 & MARIO RAJCHENBERG5
1Laboratório de Micologia, Departamento de Botânica, Universidade Federal de Santa Catarina, CEP: 88040-900 Florianópolis, SC,
Brazil;
2Laboratorio de Micología, Instituto Multidisciplinario de Biología Vegetal, CONICET - Universidad Nacional de Córdoba, CC 495,
CP 5000 Córdoba, Argentina;
3FungiCosmos, Av. General Paz 154, 4º piso, oficina 4, Cordoba, Argentina;
4Departamento de Micologia, Universidade Federal de Pernambuco, CEP: 50760-420 Recife, PE, Brazil;
5Protección Forestal, Centro Forestal CIEFAP, C.C. 14, 9200 Esquel, Chubut, Argentina.
* Both authors contributed equally to the research and should be considered co-first authors
Correspondence to: Elisandro R. Drechsler-Santos. E-mail: e.ricardo@ufsc.br; drechslersantos@yahoo.com.br)
Abstract
A new poroid genus with two conspicuous and common species growing on living Fabaceae trees is described from the
Seasonally Dry Tropical Forests biome of Brazil. Both taxa in this forest pathogen genus resemble Phellinus rimosus macro-
scopically, but are distinguished by a dimitic hyphal system with skeletal hyphae present only in the trama of the tube layer
while the context remains monomitic, and by the ellipsoid, thick-walled, adaxially flattened, yellow basidiospores that turn
chestnut brown in KOH solution. Molecular and morphological studies of Brazilian specimens macroscopically similar to
the Phellinus rimosus species complex were carried out to solve their phylogenetic relationships among the Hymenochae-
taceae. Phellinotus gen. nov. with P. neoaridus sp. nov. as the genus type and P. piptadeniae comb. nov. are presented and
described. Phylogenetically, Phellinotus is closely related to Arambarria, Inocutis, Fomitiporella and other taxonomically
unresolved terminal clades, and unrelated to Fulvifomes and Phylloporia. Phellinotus and other genera of poroid Hymeno-
chaetaceae that lack setae or setal hyphae and produce thick-walled, colored (pale yellow to rusty brown) basidiospores form
a phylogenetic group here named the ‘phellinotus clade’. Our results indicate the need to include taxa from unexplored areas
in order to get a thorough understanding of the phylogeny of the Hymenochaetaceae.
Key words: forest pathogen, Fulvifomes, molecular phylogeny, mycodiversity, Phellinus rimosus complex, polypores, tax-
onomy
Introduction
Hymenochaetaceae Donk (Hymenochaetales Oberw., Agaricomycetes Doweld) comprises about 400 species and, as
originally circumscribed (Donk 1964), is not a monophyletic family (Larsson et al. 2006). Traditionally, the family has
been characterized by wood-decaying fungi with styrylpyrone contents that are responsible for a positive xanthochroic
reaction on the basidiomata (e.g., a black coloration of the surface and tissues in 5% KOH solution), simple-septate
hyphae and setal elements (Cannon & Kirk 2007). Most poroid Hymenochaetaceae were placed in Phellinus Quél.
(1886:172) and Inonotus P. Karst. (1879:39), except for species of Coltricia Gray (1821:644), Phylloporia Murrill
(1904:141) and Cyclomyces Kunze ex Fr. (1830:512), which have macro- and micro-morphological characters that
allow for their ready identification (Ryvarden 1991). Species of Phellinus and Inonotus are defined primarily by the
type of hyphal system, either monomitic or dimitic (with skeletal hyphae) hyphal systems, and the annual or perennial
habit of the basidiomata (Pilát 1936–42, Cunningham 1947). Species with a dimitic hyphal system and perennial
basidioma were placed in Phellinus whereas species with a monomitic hyphal system and annual basidioma were
identified as Inonotus (Fiasson & Niemelä 1984, Corner 1991, Wagner & Fischer 2001). In this context, several
smaller genera proposed by Murrill at the beggining of the 20th century were considered as synonyms of Phellinus and
DRECHSLER-SANTOS ET AL.
2 Phytotaxa 000 (0) © 2016 Magnolia Press
Inonotus (Pilát 1936–42, Cunningham 1947). Among the perennial species (Phellinus s.l.) those with pileate basidioma,
Pyropolyporus Murrill (1903:109) and Porodaedalea Murrill (1905:367) were proposed on account of their poroid
and daedaloid hymenophores, respectively and those with resupinate basidioma, Fomitiporia Murrill (1907:7) and
Fomitiporella Murrill (1907:12) were proposed on account of their hyaline and brown spores, respectively. Fulvifomes
Murrill (1914:49) was proposed to accommodate Pyropolyporus species with brown spores. Among the annual species
(Inonotus s.l.), Fuscoporia Murrill (1907:3) and Fuscoporella Murrill (1907:6) were distinguished by their hyaline and
brown spores, respectively (Murrill 1903, 1904, 1905, 1907, 1914).
Nevertheless, before the advent of molecular phylogenetics, authors neglected those names and accepted Phellinus
and Inonotus in a wide sense (Lowe 1957, Reid 1963, Pegler 1964, Gilbertson & Ryvarden 1986 and 1987, Wright &
Blumenfeld 1984, Larsen & Cobb-Poulle 1990, Ryvarden 2004, 2005). However, Phellinus and Inonotus were shown
to be polyphyletic by molecular phylogenetics and reinforced the observation that the type of hyphal system and
basidioma persistence are not valid generic traits in the Hymenochaetaceae (Wagner & Fischer 2002).
A revision of the European taxa of Phellinus and Inonotus was proposed by Fiasson & Niemelä (1984). They
identified smaller species groups that they recognized as morphologically distinct genera, including Inocutis Fiasson &
Niemelä (1984:24), a new genus based on morphological, cultural, chemical, and nuclear behavioural data. Since then,
Fiasson & Niemelä’s (1984) results were corroborated by Niemelä et al. (2001) and Wagner & Fischer (2001, 2002)
through molecular and morphological methods. These studies and others (e.g. Zhou & Qin 2013) supported the genera
Aurificaria D.A. Reid (1963:278), Fomitiporella, Fomitiporia, Fuscoporia, Inocutis, Inonotus s.s., Mensularia Lázaro
Ibiza (1916:736), Phellinidium (Kotl.) Fiasson & Niemelä (1984:25), Phellinopsis Y.C. Dai (2010:309), Phellinus s.s.,
Phellopilus Niemelä T., Wagner & M. Fischer (2001:53), Phylloporia Murrill, Porodaedalea and Pseudoinonotus T.
Wagner & M. Fischer (2001:781).
Larsson et al. (2006) presented a molecular phylogenetic analysis of the Hymenochaetales which supported several
different genera of poroid Hymenochaetaceae. Other studies have contributed to the phylogenetic relationships among
the Hymenochaetaceae, such as those by Decock et al. (2005, 2006, 2007), Jeong et al. (2005), Dai et al. (2008), Dai
(2010), Tura et al. (2012), Tian et al. (2013), Zhou & Qin (2013), Parmasto et al. (2014), Zhou (2014a), Rajchenberg
et al. (2015), Zhou (2015) and Zhou et al. (2015). However, the classification of this group is incomplete because, as
with other regions, neotropical taxa were often absent in the phylogenetic studies.
Research on poroid Hymenochaetaceae in the Caatinga dry woodlands, a northeastern Brazilian part of the
Seasonally Dry Tropical Forests biome - SDTFs (Särkinen et al. 2011), recovered several specimens that macroscopically
resemble the Phellinus rimosus species complex (Ryvarden 2004). Specimens were identified as Phellinus piptadeniae
Teixeira (1950:118), repeatedly recorded on Piptadenia Benth. (1840:135), and P. rimosus (Berk.) Pilát (1940:80)
s.l. on Caesalpinia L. (1753:380) (Drechsler-Santos et al. 2010). Species in the P. rimosus species complex are
characterized by having woody, pileate basidiomata with a cracked (rimose) pileus, a dimitic hyphal system throughout
the basidioma, a lack of setae, and ellipsoid, thick-walled, chestnut to rusty brown basidiospores (Fiasson & Niemelä
1984). These morphological features indicate that P. rimosus and similar species belong in Fulvifomes, as proposed
by Fiasson & Niemelä (1984) and confirmed by Dai (2010). The aim of this study was to investigate the identity of P.
rimosus s.l. and P. piptadeniae from Caatinga, Brazil, and to investigate the phylogenetic relationship of these species
to Fulvifomes and other Hymenochaetaceae.
Materials and methods
Collections
Collecting was carried out in the Caatinga dry woodlands in the states of Alagoas, Ceará, Paraíba, Pernambuco, Rio
Grande do Norte and Sergipe (Brazil) and specimens were deposited in the herbaria at CORD, FLOR, HTSA, O,
URM, and Centro Forestal CIEFAP (Esquel, Argentina). Herbarium codes follow Thiers (2015).
Morphological studies
Basidiomata were macro- and micro-morphologically analyzed. Microscopic observations were carried out on
basidioma sections stained with 3–5% KOH and 1% phloxine, neutral lactophenol, cotton blue, or Melzer’s reagent
(Largent et al. 1977, Ryvarden 1991). Measurements were taken from 3% KOH preparations, following a sampling
of 40 (n = 40) structures such as pores/mm, basidiospores, and diameter of hyphae. The size of microscopic elements
is given as values (or an interval) followed by 5% variation in parentheses. Abbreviation and symbols are KOH+ =
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 3
changing color (reacting) in KOH; IKI- = not reacting in Melzer’s reagent; CB± = weakly cyanophilous; (!) = type
studied; (≡) = homotypic synonym; (=) = heterotypic synonym; and Q = quotient of basidiospores length (L) / width
(W), L = mean of length (arithmetical mean of all basidiospores), and W = mean of width; ave. = arithmetic average;
ave.Q = Q arithmetic average. To access and determine the hyphal system under microscopy, sections from the trama
of tube layer and context of basidiomata under the pilear surface and between the tube layers were carefully dissected
under a stereomicroscope after incubation in 3‒5% NaOH for 48h at 40°C (Decock et al. 2010). Reference material
of Phellinus piptadeniae [BRAZIL. São Paulo: Campinas, Bosque dos Jequitibás, on living Piptadenia communis
Beth. (1841:337–338), 12 September 1943, A.R. Teixeira and P.R. Santos sine numerus (sn) (paratype IAC 4365)],
Pyropolyporus robiniae Murrill (1903:114) [USA. Ohio: January 1957, Lloyd 223 (lectotype NY 743007), Phylloporia
parasitica Murrill (1904:141) [COLOMBIA. Santa Marta: near Bonda, 16 December 1898, C. F. Baker sn (lectotype K-
M 00705227)], Arambarria destruens Rajchenb. & Pildain (2015:759) [ARGENTINA. Chubut: Lago Puelo National
Park, W arm of lago Puelo, oriental slope of Valle de las Lágrimas, Los Tineos stream, 10 May 1996, M. Rajchenberg
11172 (holotype BAFC 34575)], and Fomitiporella umbrinella (Bres.) Murrill (1907:13) [BRAZIL. Santa Catarina:
Blumenau, Parque Nacional da Serra do Itajaí, 27º02’20” S, 49º03’24” W, 12 June 2012, MAB Silva & al. 271 (FLOR
49263)] were used for morphological comparisons.
DNA extraction
Fragments of basidioma (30 mg) were ground with a pestle in a porcelain mortar containing liquid nitrogen. The
resulting powder was transferred to a 1.5 mL pre-warmed (65ºC) microcentrifuge tube containing 700 μL of extraction
buffer [CTAB 2%, 100 mM Tris-HCl pH 8, 1.4 M NaCl, 20 mM EDTA, 1% PVP (Rogers & Bendich 1985)] and
incubated at 65ºC for at least 30 minutes. DNA was extracted once with chloroform-isoamyl alcohol (24:1), precipitated
with isopropanol, washed with 70% ethanol, and re-suspended in 50 μL ultrapure water (Góes-Neto et al. 2005).
Polymerase chain reaction and sequencing
Reaction mix and parameters for PCR amplification of the full ITS (Internal transcribed spacer of nuclear ribosomal
RNA gene) regions followed Kaliyaperumal & Kalaichelvan (2008) using the primers ITS1 and ITS4 (White et al.
1990). For the nLSU (Large sub-unit of nuclear ribosomal RNA gene), amplification was carried out with parameters
and reagent concentrations given by Góes-Neto et al. (2005) using the primers LR0R and LR7 (Moncalvo et al. 2000).
The amplicons were purified using the PureLink PCR Purification Kit (Invitrogen) and the purified products were
sequenced at the Human Genome Research Center of the Universidade de São Paulo (USP, Brazil) in an ABI-310
Capillary Sequencer (PerkinElmer, Wellesley Massachusetts, USA). Primers LR0R/LR5 and ITS1/ITS4 were used for
sequencing the nLSU and ITS, respectively. The sequences were deposited in the GenBank (Benson et al. 2009).
Phylogenetic analysis
Seven ITS and seven nLSU sequences obtained in this study were used to search for sequences of the closest related
taxa, using BLASTn searches in the GenBank (see Appendix 1). Most of the sequences and species in this study
represent the currently accepted genera of Hymenochaetaceae based on phylogenetic concepts (Wagner & Fischer 2002,
Larsson et al. 2006, Rajchenberg et al. 2015). ITS and nLSU sequences obtained in this study and those retrieved from
GenBank are added to the final matrix. Trichaptum sector (Ehrenb.) Kreisel (1971:84) was defined as the outgroup,
based on previous papers that showed this genus as related to Hymenochaetaceae within Hymenochaetales (Larsson et
al. 2006). All specimens and sequences used in this study are listed in the Appendix 1.
The final ITS and nLSU datasets were then automatically aligned with Mafft v.7 (Katoh & Standley 2013) under
the E-INS-I and G-INS-I strategies, respectively. The fisrt strategy is suitable for regions with multiple conserved
domains and long gaps, while the second is for regions with global homology. Both of the alignments were manually
adjusted as necessary with MEGA v.6.0 (Tamura et al. 2013). Unreliably aligned positions in the ITS alignment were
detected using GBLOCKS v.0.91b (Castresana 2000), using the following parameters: minimum number of sequences
for a conserved position and for a flank position, both set to 43; maximum number of contiguous nonconserved
positions set to 6; minimum length of a block set to 3; and allowed gap positions set to with half. The final alignment
was then divided in four partitions: ITS 1, 5.8S, ITS 2 and nLSU. The best nucleotide substitutions model for each
partition was estimated using the AIC (Akaike Information Criterion), as implemented in jModelTest2 v.2.1.6 (Darriba
et al. 2012, Guindon & Gascuel 2003).
Two phylogenetic routines were used to reconstruct the relationships hypothesis, using the concatenated dataset
with the four partitions: Maximum Likelihood (ML) and Bayesian Inference (BI). ML analysis was carried out as
implemented in RAxML v.8.1.24 (Stamatakis 2014), available in the CIPRES science gateway (Miller et al. 2010).
DRECHSLER-SANTOS ET AL.
4 Phytotaxa 000 (0) © 2016 Magnolia Press
The analysis first involved 100 ML hill-climbing searches, each one starting from one randomized stepwise addition
parsimony tree, under a GTRGAMMAI model, with all parameters estimated by the software. Only the best-scored
likelihood tree from all searches was kept. To access the reliability of the nodes, multiparametric bootstrapping
replicates under the same model were computed, allowing the program to halt bootstrapping automatically by the
autoMRE option. The bootstrap values were then annotated to the best likelihood tree find. An additional file with the
partitions was informed to force the software to estimate the parameters for each partition independently, through all
steps of the analyses.
To check for incongruences among the partitions, each partition was analyzed under ML separated under the same
parameters described above, comparing the resulting topologies and looking for conflicts only involving branches with
BS ≥ 70% (Reeb et al. 2004). A conflict was assumed to be significant if two different relationships for the same set of
taxa (one being monophyletic and the other non-monophyletic) were observed in rival trees.
BI was performed in the program Mr. Bayes v.3.2.6 (Ronquist et al. 2012). The analysis was implemented by two
MCMC independent runs, each one starting from random trees and with four simultaneous independent chains, performing
15,000,000 generations, keeping one tree every 1000th generation. Four rate categories were used to approximate the
gamma distribution, and the nucleotide substitutions rates were fixed to the estimated values. The first 20% of the sampled
trees was discarded as burn-in, checked by the convergence criterion (frequencies of average standard deviation of split
<0.01) in Tracer v.1.6 (Rambaut et al. 2014), while the remaining ones were used to reconstruct a 50% majority-rule
consensus tree and to estimate Bayesian Posterior Probabilities (BPP) of the branches.
A node was considered to be strongly supported if it showed a BPP 0.95 and/or BS 90%, while moderate
support was considered when BPP ≥ 0.9 and/or BS ≥ 70%. The alignment was deposited in TreeBASE (http://www.
treebase.org/treebase/index.html), under accession ID: 18406.
Results
Molecular analyses
The aligned matrix of the ITS 1 dataset was 160 bp, for the 5.8s was 155 bp, for the ITS 2 was 195 bp, while for nLSU
dataset it was 853 bp, resulting in a final gapped matrix of 1363 bp.
The concatenated dataset included sequences from 82 fungal specimens representing the main genera of
Hymenochaetaceae, and one representing the outgroup. According to the preceding analyses, GTR +I+G (ITS1), JC
(5.8s), K80+G (ITS2) and GTR+I+G (nLSU) were chosen as the best-fit substitution models for each dataset. During
the BI analyses, the indepentent Markov chains reach stability after 921,000 generations, which confirmed that the used
20% burn-in value was appropriate. The bootstopping criteria of the ML algorithm found that 252 pseudoreplicates
were sufficient for the dataset.
The phylogenetic reconstructions based on ML and BI analyses for the combined ITS+nLSU datasets did not
show major conflicts in the tree topology and were mostly congruent, which allowed us to combine them (Fig. 1).
Overall, most of the current genera were recognized in the analyses. The studied specimens from Caatinga, previously
determined as P. rimosus s.l. and P. piptadeniae (Drechsler-Santos et al. 2010), clustered in the same generic clade with
high support (BS=99, BPP=1), however separated from the currently known genera. This clade is here recognized as a
new genus Phellinotus. It is nested in a more inclusive clade composed of poroid members of the Hymenochaetaceae
in which setal elements are absent and possess colored and thick-walled basidiospores, e.g., Arambarria Rajchenb.
& Pildain (2015: 759), Fomitiporella, Fulvifomes, Inocutis, and Phylloporia, among other taxonomically unresolved
lineages. This more inclusive clade, with significant support in both analyses, moderate in ML (BS= 87) and strong
in BI (BPP=1), is here named the ‘phellinotus clade’. Despite some lower support values in some basal branches, the
overall topology from both ML and BI analyses is quite similar within this clade. Phellinotus appears to be the sister
group of specimens identified as Inocutis dryophila (Berk.) Fiasson & Niemelä (1984:25), but this relationship was
not significantly supported by the data analyzed. The relationship with other genera of the ‘phellinotus clade’ remains
unresolved, but species of Arambarria and Fomitiporella and specimens determined as Fulvifomes chinensis (Pilát)
Y.C. Dai, F. inermis (Ellis & Everh.) Y.C. Dai (2010:187), Inonotus tenuissimus H.Y. Yu, C.L. Zhao & Y.C. Dai
(2013:64), and unidentified isolates CIEFAPcc88 and 107 (Rajchenberg et al. 2015) appear to be closely related to
Phellinotus (Fig. 1). Also, the genera Fulvifomes s.s. and Phylloporia were recovered within the ‘phellinotus clade’.
The data also showed that the two species under study are closely related but can be considered as two distinct species.
Phellinus rimosus s.l. specimens from Caatinga, Brazil were unrelated to Fulvifomes s.s. (P. rimosus). Therefore, they
were assigned to a new species Phellinotus neoaridus.
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 5
FIGURE 1. Phylogram of Hymenochaetaceae recovered from ITS (ITS1, 5.8S, ITS2) and nucLSU regions, inferred by Maximum
likelihood analysis (log likelihood -16996.695988). Support values along branches are bootstrap from ML (≥ 50, before slash) and
Bayesian posterior probability (≥0.7, after slash). Trichaptum sector was used to root the tree.
Taxonomy
Phellinotus Drechsler-Santos, Robledo & Rajchenb. gen. nov.
Typus generis:—Phellinotus neoaridus Drechsler-Santos & Robledo.
Mycobank no:—MB804717
Etymology:—“Phelli” from Phellinus + “notus(ear) from Inonotus, in reference to Phellinus s.l. and Inonotus s.l., which traditionally
were considered dimitic and monotic, respectively. Phellinotus combines both dimitic and monomitic hyphal systems in different
parts of basidiomata.
Diagnosis:—Basidioma pileate, annual to perennial; hymenophore poroid. Hyphal system dimitic with skeletal hyphae found only in
trama of tube layer; generative hyphae with simple septa, skeletal hyphae aseptate. Basidiospores ellipsoid, adaxially flattened, thick-
walled, pale yellow, becoming chestnut brown in KOH solution. Setae and cystidioles absent.
DRECHSLER-SANTOS ET AL.
6 Phytotaxa 000 (0) © 2016 Magnolia Press
Description:—Basidioma annual to perennial, pileate, applanate to ungulate, fulvous brown to dark brown. Pileus
brown to blackened, rugose to rimose. Context with a black line near/below the upper surface, distinct or indistinct.
Tubes stratified, with or without contextual tissue layer between them. Hymenophore poroid, pores irregularly rounded,
fulvous brown to deep brown. Hyphal system dimitic with skeletal hyphae restricted to the trama of tube layer;
contextual generative hyphae in different stages of development, thin- to thick-walled, first regularly septate, branched,
becoming sclerified and some portions of thick-walled hyphae sparsely simple-septate; tramal hyphae with simple-
septate generative and skeletal hyphae. Setae and other sterile elements absent. Basidia not observed. Basidiospores
broadly ellipsoid to ellipsoid, adaxially flattened, smooth, thick-walled, yellow in lactophenol, becoming chestnut
brown in KOH solution, weakly cyanophilous, IKI-.
Habitat and distribution:—Found on living members of the family Fabaceae, with host specialization (Teixeira
1950, Drechsler-Santos et al. 2010, as Phellinus rimosus and P. piptadeniae). So far known from the South American
Seasonally Dry Tropical Forest (SDTF) biome, from the seasonally dry forests of the Atlantic Forest (states of Santa
Catarina and São Paulo) and Caatinga (states of Alagoas, Bahia, Ceará, Paraíba, Pernambuco, Rio Grande do Norte
and Sergipe) domains of Brazil, and from lowland SDTF of northwestern Peru (Drechsler-Santos et al. 2010, 2013,
Salvador-Montoya et al. 2015).
TABLE 1. Morphological features of poroid Hymenochaetaceae genera.
Genera Substrate Basidioma Hyphal
System
Setae Basidiospores
Shape Tube
layers
Shape Colour Wall/Dextrinoid/
KOH reaction
Arambarria DW RES/EFR AN MO Lacking EBE; FLT Yellow Thick / - / +
Asterodon CW RES/EFR AN DI Hymenial;
simple/branched
EBE Hyaline Thin / - / -
Aurificaria DW PIL AN MO Lacking EBE; FLT Yellow Thick / - / +
Cylindrosporus DW PIL AN MO Hymenial CYL Hyaline Thin / - / -
Fomitiporella DW RES/EFR P MO/DI Lacking EBE; FLT Brown Thick / - / +
Fomitiporia DW/CW RES/EFR/
PIL
P MO/DI Lacking or rare;
hymenial
GLB Hyaline Thick / + / -
Fulvifomes DW RES/EFR/
PIL
P DI Lacking GLB/
EBE; FLT
Yellow Thick / - / +
Fuscoporia DW/CW RES/EFR/
PIL
AN/P MO/DI Hymenial EBE/ALL/
CYL
Hyaline Thin / - / -
Inocutis DW PIL AN MO Lacking EBE; FLT Yellow/
brown
Thick / - / -
Inonotopsis CW RES AN MO Lacking EBE Hyaline Thin / - / -
Inonotus s.s.DW RES/EFR/
PIL
AN/P MO/DI Mostly presente;
hymenial/Setal
hyphae
EBE/GLB Yellow/
brown
Thin-thick / - / -
Mensularia DW RES/EFR/
PIL
AN MO Hymenial/
tramal
EBE Hyaline Thick / + / -
Nothophellinus DW PIL P DI-TRI Lacking CYL/OBC Hyaline Thin / - / -
Onnia CW SST AN MO Tramal to
hymenial
EBE/GLB Hyaline Thin / - / -
Phellinidium CW RES/EFR/
PIL
AN/P MO Setal hyphae EBE/ALL/
CYL
Hyaline Thin / - / -
...Continued on next page
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 7
TABLE 1. (Continued)
Genera Substrate Basidioma Hyphal
System
Setae Basidiospores
Shape Tube
layers
Shape Colour Wall/Dextrinoid/
KOH reaction
Phellinus s.s.DW RES/EFR/
PIL
P DI Hymenial EBE/GLB Hyaline Thin-thick / - / -
Phellinopsis DW RES/EFR/
PIL
P DI Arising from
trama
EBE Hyaline/
Yellow
Thick / - / -
Phellinotus DW PIL P DI Lacking EBE; FLT Yellow Thick / - / +
Phellopilus CW RES/EFR/
PIL
P DI-TRI Hymenial OBC/CYL Hyaline Thin / - / -
Phylloporia DW RES/EFR/
PIL
AN/P MO/DI Lacking EBE/
CYL; FLT
Pale
yellow
Thick / - / -
Porodaedalea CW RES/EFR/
PIL
P DI Hymenial EBE/GLB Hyaline Thin-thick / - / -
Pseudoinonotus DW/CW PIL AN MO/DI Hymenial GLB Hyaline Thick / + / -
Pyrrhoderma DW PIL/SST AN/P MO Lacking GLB Hyaline Thin / - / -
Sanghuangporus DW EFR/PIL P DI Hymenial EBE/GLB Pale
yellow
Thick / - / -
Tropicoporus DW RES/EFR/
PIL
AN/P DI Hymenial EBE/GLB Pale
yellow
Thick / - / -
DW = deciduous wood, CW = coniferous wood; DI = dimitic, MO = monomitic, TRI = trimitic, P = perennial, AN = annual-biannual,
RES = resupinate, EFR = effused-reflexed, PIL = pileate, SST = substipitate to stipitate, EBE = ellipsoid-broadly ellipsoid, FLT =
flattened, GLB = globose-subglobose, ellipsoid, ALL = allantoid, CYL = cylindric-subcylindric, OBC = obclavate, (+) or (-) = positive
or negative reaction in the basidiospores wall. Genera of the ‘phellinotus clade’ are presented in bold type.
Remarks:—Phellinotus is characterized by a pileate basidioma often with a rimose pileus, a dimitic hyphal system
with skeletal hyphae only present in the trama of the tube layer, and adaxially flattened, ellipsoid, thick-walled, pale
yellow basidiospores that turn chestnut brown in KOH solution. The absence of setae and setal hyphae and the presence
of colored (pale yellow to brown) and thick-walled basidiospores indicate that Phellinotus is morphologically similar
to Arambarria, Aurificaria, Fomitiporella, Fulvifomes, Inocutis, and Phylloporia (Larsson et al. 2006, Rajchenberg
et al. 2015). Fomitiporella and Fulvifomes have a dimitic hyphal system throughout the basidioma, while species of
Arambarria, Aurificaria and Inocutis are monomitic. Additionally, some species of Fulvifomes have mainly globose
to subglobose, yellowish basidiospores (Wagner & Fischer 2002), that become ferruginous to fulvous in KOH (5.5‒6
× 4.5‒5.5 µm, as observed in the lectotype of Pyropolyporus robiniae Murrill), while Phylloporia produces smaller,
light yellow basidiospores (Ryvarden 2004), as observed in the lectotype of P. parasitica Murrill. Fomitiporella also
produces basidiospores that turn darker in KOH, as verified in reference material of F. umbrinella, the genus type,
collected in the type locality (FLOR49263); however, species in this genus develop resupinate basidiomata and are
saprobes (Murrill 1907, Teixeira 1994, Zhou 2014b) (Table 1). This morphologically and molecularly related (Fig.
1) group of genera, e.g., Arambarria, Fomitiporella, Fulvifomes, Inocutis, Phylloporia, and other taxonomically
unresolved lineages, is named here as the ‘phellinotus clade’. Inonotopsis Parmasto (1973:12) and Pyrrhoderma
Imazeki (1966:4) are poroid members of the Hymenochaetaceae that also lack setae and setal hyphae; however, they
are phylogenetically unrelated and morphologically differ from members of the ‘phellinotus clade’ by producing thin-
walled basidiospores.
Phellinotus neoaridus Drechsler-Santos & Robledo sp. nov. (Figs 2A–G, 3A, C, E, Table 2)
Typus:—BRAZIL. Pernambuco: Serra Talhada, Estação Experimental do IPA, on living caatingueira tree (Caesalpinia sp.), 7º53’29” S,
38º18’17” W‒490m alt., 09 December 2008, Drechsler-Santos DS105PE (holotype URM 80362, isotype FLOR 53152).
DRECHSLER-SANTOS ET AL.
8 Phytotaxa 000 (0) © 2016 Magnolia Press
Mycobank no:—MB805901
Etymology:—neoaridus, in reference to the neotropical semiarid region of Brazil covered by Caatinga, a seasonally dry forest of the
SDTFs biome (Särkinen et al. 2011), where the species was first encountered.
Diagnosis:—Basidioma pileate, annual to perennial, distinctly rimose; black lines near the upper surface of the pileus present; tubes
distinctly stratified, hymenophore poroid (3‒6/mm). Hyphal system dimitic with skeletal hyphae restricted to trama of tube layer.
Basidiospores ellipsoid (5‒7 × 4‒5.5 µm), adaxially flattened, thick-walled, yellow, chestnut brown in KOH. Pathogenic on
Caesalpinia spp.
Description:—Basidioma mostly perennial, more rarely annual to bi-annual, pileate, projecting up to 150 mm, 100
mm wide and 80 mm thick at base, first applanate, triquetrous to strongly ungulate with age, sometimes with a basal
umbo; hard; usually solitary or in groups of several basidiomata widespread along the substrate; margin applanate to
convex, always distinct from older parts, cream to ochre orange at first, then turning brown with age. Pileus variable
in color, first cream to reddish yellow or olive to black, dull when rimose, azonate then sulcate, and finally strongly
rimose. Context 11‒21 mm thick in young, 3‒5 mm thick in ungulate specimens, weakly zonate near the base to
azonate towards the margin, with black lines near the upper surface of the pilei, granular core variably present, pale to
dark brown, becoming black with KOH, a thick gray to black crust present above contex. Tubes stratified, dark reddish
brown, without distinct tissue development between layers.
TABLE 2. Detailed morphology (n=40) of Phellinotus species and their hosts.
Phellinotus
species/specimens
Basidioma Context
dark line
Pore surface Basidiospores Skeletal
hypha
(µm long)
Hosts
Pores/mm ave. size (µm) Shape
Phellinotus neoaridus P AU Indistinct 36 5.66 × 4.25BE-E 110560 on Caesalpinia
spp.
URM 80494 P AU Indistinct 3‒4 (‒5) 5.6 × 4.2 BE-E 150‒300 C. pyramidalis
Robledo 1974 P AU Indistinct 3‒4 (‒5) 5.7 × 4.4 BE-E 110‒250 Caesalpinia sp.
URM 80299 P U Indistinct (3‒) 4‒6 5.9 × 4.5 BE-E 205‒554 Caesalpinia sp.
URM 80411 P AU Indistinct (4‒) 5‒6 5.8 × 4.8 BE-E 237‒560 Caesalpinia sp.
URM 80419 P U Indistinct 4‒6 5.7 × 4.5 BE-E 189‒339 Caesalpinia sp.
URM 80422 P AU Indistinct 4‒5 (‒6) 5.9 × 4.9 BE-E 209‒489 Caesalpinia sp.
URM 80536 P T Indistinct (4‒) 5‒6 5.9 × 4.9 BE-E 220‒524 Caesalpinia sp.
URM 80577 P U Indistinct 4‒5 (‒6) 5.6 × 4.6 BE 175‒372 Caesalpinia sp.
URM 80579 P AU Indistinct (4‒) 5‒6 6.0 × 5.0 BE-E 264‒446 Caesalpinia sp.
URM 80769 P U Indistinct (4‒) 5‒6 6.0 × 4.8 BE 245‒426 Caesalpinia sp.
URM 80362 (holotype) P U Indistinct (3‒) 4‒5 (‒6) 5.9 × 4.3 BE 198‒277 Caesalpinia sp.
Phellinotus piptadeniae P AU Distinct 36 55.3 ×
3.64.2
BE-E 230754 mostly on
Piptadenia spp.
IAC 4365 (paratype) P AU Distinct 3‒5 5.3 × 4.2 BE-E 280‒520 P. gonoachanta
Robledo 1982 P AU Distinct (4‒) 5‒6 5.1 × 4.0 E 250‒500 Piptadenia sp.
URM 80322 AN A Distinct 4‒5 (‒6) 5.1 × 4.1 BE-E 230‒615 Mimosa sp.
URM 80345 P T Distinct (4‒) 5‒6 5.0 × 3.6 E 300‒754 Senegalia sp.
URM 80768 P T Distinct (4‒) 5‒6 5.2 × 3.7 E 268‒504 P. stipulacea
A = applanate, AU = applanate to ungulate, BE = broadly ellipsoid, E = ellipsoid, P = perennial, AN = annual-biannual, U = ungulate, T =
triquetrous. Compilation of variation data about species is presented in bold type.
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 9
FIGURE 2. Phellinotus species. P. neoaridus. (A) holotype on specific host (lenticels of Caesalpinia sp. in detail); (B) applanate to
triquetrous basidioma with a distinct ochre-orange margin (URM80410); (C) ungulate with strongly rimose upper surface and brownish
margin (URM80641) (Bars = 5 cm); (D): isotype context and tubes lacking tissue layer between the tubes, in detail (D*) the black line
near the upper surface (Bars = 1 cm); (E–G) basidiospores, white arrows are indicating the adaxially flattened surface [(E) lactophenol,
(F) KOH+, (G) CB±; Bars = 5 µm]; P. piptadeniae. (H) paratype (IAC4365); (I) context in detail showing the distinct black line in the
paratype; (J) mature triquetrous, developing applanate basidiomata on Piptadenia spp. (URM 80768) (Bars = 5 cm); (L) black line and
tissue layer between the tubes are showing in detail in L and L* (Bars = 1 cm); (M–O) basidiospores, white arrows are indicating the
adaxially flattened surface [(M): lactophenol, (N) KOH+, (O) CB±; Bars = 10 µm]. Photos of basidiomata (A, B, C, D, H, I, J) by Elisandro
Ricardo Drechsler-Santos except for ‘L’ which is by Gerardo Lucio Robledo; photos of spores (E, F, G, M, N, O) by Carlos Salvador-
Montoya.
DRECHSLER-SANTOS ET AL.
10 Phytotaxa 000 (0) © 2016 Magnolia Press
FIGURE 3. Microscopic elements of Phellinotus species in line drawings. (A, C, E) P. piptadeniae (IAC 4365). (A) hyphal system of
context; (C) skeletal hyphae from trama of tube layer; (E) basidiospores. (B, D, F) P. neoaridus (URM 80362). (B) hyphal system of
context; (D) skeletal hyphae from trama of tube layer; (F) basidiospores. Drawings by Gerardo Lucio Robledo.
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 11
Hymenophore poroid, pores round, some elongated, 3‒6/mm, (90‒)150‒280(‒350) µm wide, reddish yellow to
dark brown; dissepiments entire, (20‒)40‒150(‒300) µm wide. Hyphal system dimitic with skeletal hyphae restricted
to the trama of the tube layer; contextual generative hyphae pale yellow to dark reddish brown, thin to thick-walled,
lumen (3‒)4‒6(‒7) µm wide, regularly simple-septate with ramifications, then becoming sclerified and septa in some
portions of thick-walled hyphae destroyed, sometimes forming secondary septa; trama of tube layer composed of
generative simple-septate and skeletal hyphae; generative hyphae hyaline, pale yellow to fulvous, thin to thick-walled,
(0.5‒)1‒2(‒3) µm wide, forming terminal, dark reddish brown skeletal hyphae, (110‒)232‒533(‒560) × (3‒)4‒6(‒7)
µm, lumen absent to 1–1.5 µm wide, with 1–4 adventitious septa at the narrow to obtuse apex; granular core with few
to many sclereoid hyphae. Basidia not observed. Basidiospores broadly ellipsoid to ellipsoid, 5‒6.5(‒7) × 4‒5(‒5.5)
µm (ave. = 5.8 × 4.7 µm), Q = 1.2‒1.3 (ave.Q = 1.2), adaxially flattened, smooth, thick-walled, yellow, chestnut brown
in KOH, weakly cyanophilous, IKI-.
Habitat and distribution:—Commonly found on living Caesalpinia spp. (Fabaceae) (Drechsler-Santos et al. 2010,
2013, as P. rimosus). Some basidiomata, mostly those that are annual or bi-annual, are found fallen on the ground near
the tree where they presumably developed. Usually, ungulate specimens with many tube layers were found on the tree
trunk as well. This species is widely distributed in the Brazilian semiarid region (Caatinga dry woodlands), from the
states of Alagoas, Bahia, Ceará, Paraíba, Pernambuco, Rio Grande do Norte and Sergipe.
Remarks:—The typical triquetrous to ungulate basidiomata with a black rimose pileus and reddish brown
hymenophore are useful in distinguishing this species. When present, the context of P. neoaridus is weakly zonate
developing one or more dark lines below the rimose upper surface of the pileus and some basidiomata present a very
distinct granular core. Phellinotus piptadeniae is similar, but develops a less rimose pilear surface, a distinct black line
in the context, and smaller basidiospores. Additionally, it grows repeatedly on Piptadenia spp. (Drechsler-Santos et al.
2010, 2013, as Phellinus rimosus).
Material examined:—BRAZIL. Alagoas: São José da Tapera, Fazenda do Sr. Rudá, on living Caesalpinia sp.,
9º32’47” S, 37º33’11” W‒227m alt., 17 June 2008, Drechsler-Santos & al DS017AL (URM 80411, O); ibid, on living
Caesalpinia sp., 9º32’49” S, 37º33’27” W‒224m alt., 17 June 2008, Drechsler-Santos & al. DS009AL (URM 80579);
ibid, on living Caesalpinia sp., 9º32’49” S, 37º33’29” W‒230m alt., 17 June 2008, Drechsler-Santos DS007AL (URM
80410). Ceará: Reriutaba, Serrote de Boqueirão on living Caesalpinia sp., 4º01’13” S, 40º38’43” W‒290m alt., 15
June 2007, Drechsler-Santos DS034CE (URM 80847); ibid, on living Caesalpinia sp., 4º01’15” S, 40º38’41” W‒280m
alt., 15 June 2007, Drechsler-Santos DS033CE (URM 80536). Paraíba: Sumé, Fazenda Almas, on living Caesalpinia
pyramidalis Tul., 7º28’21” S, 36º53’28” W‒686m alt., 10 August 2008, Drechsler-Santos & Rajchenberg DS044PE
(URM 80494). Pernambuco: Cabrobó, Fazenda Mosquito, on living Caesalpinia sp., 08º23’06’ S, 39º25’30’’ W‒75m
alt., 21 November 2009, Robledo 1974 (CORD); Serra Talhada, Estação Experimental do IPA, on living Caesalpinia
sp. 7º53’49” S, 38º18’12” W‒501m alt., 5 March 2009, Drechsler-Santos & al. DS143PE (URM 80769); ibid, on
living Caesalpinia sp., 7º53’50” S, 38º18’11” W‒560m alt., 5 March 2009, Drechsler-Santos DS151PE (URM 80764);
ibid, on living Caesalpinia sp., 7º53’20” S, 38º18’25” W‒486m alt., 11 March 2008, Drechsler-Santos DS056PE
(URM 80641); ibid, on living Caesalpinia sp., 7º53’47” S, 38º8’12” W‒502m alt., 5 March 2009, Drechsler-Santos
DS140PE (URM 80741); ibid, 7º55’78” S, 38º17’39” W‒504m alt., 12 September 2007, Drechsler-Santos DS22PE
(URM 80299, O). Sergipe: Niterói on living Caesalpinia sp., 9º45’23” S, 37º27’56” W‒57m alt., 16 June 2008,
Drechsler-Santos & al. DS042SE (URM 80422); Poço Redondo, Trilha de Angicos, on living Caesalpinia sp., 9º38’08”
S, 37º40’42” W‒30m alt., 14 June 2008, Drechsler-Santos DS001SE (URM 80419); ibid, on living Caesalpinia sp.,
9º39’08” S, 37º40’42” W‒30m alt., 14 June 2008, Drechsler-Santos & al. DS009SE (URM 80568); Porto da Folha,
on living Caesalpinia sp., 9º54’40” S, 37º16’16” W‒10m alt., 15 June 2008, Drechsler-Santos & al. DS026SE (URM
80577).
Phellinotus piptadeniae (Teixeira) Drechsler-Santos & Robledo comb. nov. (Figs 2H–O, 3B, D, F, Table 2)
≡ Phellinus piptadeniae Teixeira, Bragantia 10: 118, 1950 (IAC, paratype !).
≡ Fomitiporella piptadeniae (Teixeira) Teixeira, Revista Brasileira de Botânica 15(2): 126, 1992.
Mycobank no:—MB805902
Description:—Basidioma annual to bi-annual or perennial, pileate, projecting up to 250 mm, 300 mm wide and 150
mm thick at base, applanate to triquetrous; hard; usually solitary, but also gregarious or many basidiomata widespread
along the substrate; margin applanate, usually distinct from older parts of basidioma, pale brown to brown. Pileus
variable in color, first cream to reddish yellow, becoming olive to black grayish, first azonate, afterwards with sulcate
DRECHSLER-SANTOS ET AL.
12 Phytotaxa 000 (0) © 2016 Magnolia Press
zones and finally cracked to rimose. Context 20‒60 mm thick, zonate, with a distinct black line separating it in two
parts, pale, fulvous to redish brown, becoming black with KOH, a thin to slightly thick dark brown crust present above
contex. Tubes distinctly stratified, reddish to dark brown, with context layers among the strata of tubes. Hymenophore
poroid, pores round, 3‒6/mm, (100‒)130‒200(‒230) µm wide, reddish yellow to dark brown; dissepiment entire, (40‒
)60‒160(‒200) µm. Hyphal system dimitic with skeletal hyphae restricted to trama of tube layer; contextual generative
hyphae in different stages of development, pale yellow to reddish dark brown, thin to thick-walled, (4‒)5‒8(‒10)
µm wide, always with wide lumen (2‒)2.5‒5(‒8) µm wide, first regularly septate, branched, becoming sclerified
and some portions of thick-walled hyphae sparsely simple-septate; tramal hyphae formed by generative and skeletal
hyphae; generative hyphae simple-septate, hyaline, pale yellow to fulvous, thin to thick-walled in different stages
of development, (1‒)2‒2.5(‒3) µm wide; skeletal hyphae terminal, reddish dark brown, (230‒)280‒470(‒760) µm
long, (3.5‒)5‒8(‒10) µm wide, lumen 1‒2(‒3) µm to solid, some with small aborted ramifications and geniculate
portions at the base or apex, with one to four adventitious septa at the apex, which is narrow to obtuse. Basidia not
found. Basidiospores broadly ellipsoid to ellipsoid, (4.5‒)5‒5.5(‒6) × 3.5‒4.5(‒5) µm (ave.= 5.1 × 3.9 µm), Q =
1.2‒1.4 (ave.Q = 1.3), adaxially flattened, smooth, thick-walled, yellowish, becoming chestnut brown in KOH, weakly
cyanophilous, IKI-.
Habitat and distribution:—Phellinotus piptadeniae is a very common pathogen of living Piptadenia spp.
(Fabaceae), also found on Eugenia L. (1753:470) (Myrtaceae) and on other genera of Fabaceae such as Libidibia
(DC.) Schltdl. (1830: 192), Mimosa L. (1753:516), Pithecellobium Mart. (1837:114), and Senegalia Raf. (1838:119)
(Drechsler-Santos et al. 2010, 2013, Salvador-Montoya et al. 2015, as Phellinus piptadeniae). Most specimens from
Caatinga are annual or bi-annual. Occasionally, basidiomata are large and perennial with many tube layers, such as
the paratype (IAC 4365!) from the SDTFs of Atlantic Forest in Santa Catarina and São Paulo states (Teixeira 1950,
Salvador-Montoya et al. 2015). Additionally, this species is widely distributed in the Brazilian Caatinga dry woodlands
of Alagoas, Bahia, Ceará, Paraíba, Pernambuco, Rio Grande do Norte and Sergipe states and was recently recorded for
lowland SDTF of northwestern Peru (Salvador-Montoya et al. 2015).
Remarks:—This species is morphologically variable, but the slightly rimose pileus, fulvous to reddish brown
context and a longitudinal dark line in the middle of the basidioma context are diagnostic (Drechsler-Santos et al.
2010, Salvador-Montoya et al. 2015). Phellinotus piptadeniae presents slightly smaller basidiospores (ave.= 5.1 ×
3.9 µm versus 5.8 × 4.7 µm) than those of P. neoaridus. Additionally, it is repeatedly found on living Piptadenia spp.
(Drechsler-Santos et al. 2010), not yet recorded on Caesalpinia spp.
Material examined:—BRAZIL. Alagoas: São José da Tapera, Fazenda do Sr. Rudá, on living Mimosa sp., 9º32’45”
S, 37º33’12” W‒231m alt., 17 June 2008, Drechsler-Santos DS16AL (URM 80414). Bahia: Senhor do Bonfim, Serra
do Santana, Fazenda Passaginha, Vasconcellos-Neto J.R.T. 195 (HUEFS 133884, O). Ceará: Reriutaba, Boqueirão, on
living Piptadenia stipulacea (Benth.) Ducke (1930:126), 4º01’30” S, 40º38’21” W‒197m alt., 14 June 2007, Drechsler-
Santos DS23CE (URM 80466, O). Paraíba: Sumé, Fazenda Almas, on living Mimosa ophthalmocentra Mart. ex Benth.
(1875:415), 7º28’21” S, 36º53’28” W‒686m alt., 11 August 2008, Drechsler-Santos & Rajchenberg DS52PB (URM
80498). Pernambuco: Cabrobó, Fazenda Mosquito, on living Mimosa sp., 21 September 2009, Robledo 1982 (CORD);
Caruaru, Estação Experimental do IPA, on living Mimosa sp., 8º13’50” S, 35º55’14” W‒569m alt., 6 August 2006,
Drechsler-Santos DS163PE (URM 80766, O); ibid, on living Senegalia sp., 8º13’51” S, 35º55’13” W‒558m alt., 10
December 2008, Drechsler-Santos & al. DS128PE (URM 80361); ibid, on living Mimosa sp., 8º13’53” S, 35º55’12”
W‒562m alt., 10 December 2008, Drechsler-Santos & al. DS109PE (URM 80322); ibid, on living Senegalia sp.
(CB01), 10 December 2008, Drechsler-Santos & al. DS110PE (URM 80345); Parque Nacional do Catimbau, Barro
Branco, on living Piptadenia moniliformis Benth. (1841:339‒340), 8º30’0” S, 37º18’57” W‒818m alt., 9 February
2007, Drechsler-Santos & al. DS158 (URM 80884); ibid, Breu, on living P. stipulacea, 8º30’29” S, 37º16’58” W‒
964m alt., 22 June 2007, Drechsler-Santos DS240 (URM 80854, O); ibid, Casa da Farinha, on living P. stipulacea,
8º33’38” S, 37º13’89” W‒839m alt., 31 October 2007, Drechsler-Santos & al. DS280 (URM 80602); ibid, Cerca
de Pedra, on living P. moniliformis, 8º29’04” S, 37º19’24” W‒723m alt., 9 February 2007, Drechsler-Santos & al.
DS152 (URM 80694); ibid, Dor de Dente, on living P. stipulacea, 8º30’33” S, 37º16’59” W‒958m alt., 23 July 2007,
Drechsler-Santos & al. DS253 (URM 80737); ibid, Morro do Cachorro, on living Pithecollobium polycephallum
Benth. (1844:219), 8º34’28” S, 37º14’47” W‒751m alt., 5 August 2006, Drechsler-Santos DS64 (URM 80667, O);
ibid, Muquém, on living P. moniliformis, 8º29’42” S, 37º19’03” W‒795m alt., 29 September 2006, Drechsler-Santos
DS85 (URM 80713); ibid, on living P. stipulacea, 8º30’10” S, 37º17’76” W‒921m alt., 25 January 2008, Drechsler-
Santos & al. DS300 (URM 80595); ibid, Pedra Solteira, on living P. moniliformis, 8º29’42” S, 37º19’03” W‒795m alt.,
27 May 2006, Drechsler-Santos DS003 (URM 80825); ibid, on living P. stipulacea, 8º32’52” S, 37º14’38” W‒922m
alt., 15 April 2007, Drechsler-Santos & al. DS207 (URM 80697); ibid, Trilha da Batinga, on living P. stipulacea,
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 13
8º30’47” S, 37º16’57” W‒957m alt., 28 September 2006, Drechsler-Santos & al. DS76 (URM 80730); ibid, Trilha
das Torres, on living P. stipulacea, 8º34’20” S, 37º14’44” W‒764m alt., 8 July 2006, Drechsler-Santos DS101 (URM
80662, O); ibid, Trilha do Pereira, on dead Eugenia rostrifolia D. Legrand (1957:2), 8º30’37” S, 37º14’39” W‒943m
alt., 10 July 2006, Drechsler-Santos & al. DS133 (URM 80890); Petrolina, Embrapa Semi-árido, on living Mimosa
arenosa (Willd.) Poir. (1810:66), 9º04’22” S, 40º01’91” W‒386m alt., 17 April 2008, Drechsler-Santos DS6PETRO
(URM 80436, HTSA, O); Serra Talhada, Estação Experimental do IPA, on living P. stipulacea, 7º53’27” S, 38º18’22”
W‒503m alt., 11 March 2008, Drechsler-Santos DS72PE (URM 80631); ibid, on living Mimosa sp., 11 March 2008,
Drechsler-Santos & al. DS74PE (URM 80317); ibid, on living Piptadenia sp., 7º54’01” S, 38º18’05” W‒513m alt.,
5 March 2009, Drechsler-Santos DS139PE (URM 80768, O); ibid, on living Mimosa sp., 7º53’29” S, 38º18’17” W‒
490m alt., 9 July 2008, Drechsler-Santos & al. DS97PE (URM 80360, O). Rio Grande do Norte: Estação Ecológica do
Seridó-ESEC, 19 February 2007, Silva & al. Sn (URM 80883). Sergipe: Niterói, 9º45’20” S, 37º27’55” W‒65m alt.,
16 June 2008, Drechsler-Santos & al. DS40SE (URM 80567).
Discussion
Phellinotus and its phylogenetic affinities
Phellinotus is considered a pathogenic polypore, common on living members of the family Fabaceae, and so far
endemic to the Neotropics. Within the ‘phellinotus clade’, Phellinotus is closely related, both phylogenetically and
morphologically, to Arambarria, Inocutis, Fomitiporella and some other taxonomically unresolved lineages (Fig. 1,
Table 1). Phellinotus develops skeletal hyphae in the trama of the tube layer whereas Arambarria and Inocutis lack
skeletal hyphae entirely. Fomitiporella differs from Phellinotus by its saprotrophic habit, resupinate basidiomata and
skeletal hyphae that occur throughout the basidioma (Murrill 1907, Teixeira 1994, Zhou 2014b). Inocutis dryophila,
the closest lineage in our phylogeny, is distributed in the Holartic region, has ellipsoid to ovoid, thick-walled and
brownish basidiospores, as well as a monomitic hyphal system throughout the basidioma; it also grows on living oaks
(Ryvarden 2005). Fulvifomes chinensis and F. inermis also present broadly ellipsoid, fairly thick-walled, yellowish
and cyanophilous basidiospores (Dai 2010); on the other hand, they have effused-reflexed and resupinate basidiomata,
respectively, besides a dimitic hyphal system both in the context and trama of the tubes. Their phylogenetic position is
still unresolved (Zhou 2014a). Inonotus tenuissimus was described from China as having ellipsoid, thick-walled and
yellowish basidiospores and a monomitic to dimitic hyphal system with “skeletal-like” hyphae in the trama of tube
layer (Yu et al. 2013), which could be interpreted as a similar hyphal system to Phellinotus. However, the resupinate
and adnate annual basidiomata and absence of cyanophilous reaction in the basidiospores of I. tenuissimus are quite
different from the new genus. Isolates CIEFAPcc107 and cc88 from Patagonia (named as Hymenochaetaceae sp.)
are known only from mycelium isolates of wood and their basidiomata have not been recorded; they form a distinct
phylogenetic species (Rajchenberg et al. 2015).
Phellinotus is also phylogenetically close to Fulvifomes s.s. and Phylloporia. This group of related genera,
previously noted by Wagner & Fischer (2002), Larsson et al. (2006), Zhou (2014a), Rajchenberg et al. (2015) and Zhou
et al. (2015), named here as the ‘phellinotus clade’, deserves special taxonomic recognition. This is a group of poroid
Hymenochaetaceae taxa with thick-walled and colored basidiospores and without setae or setal hyphae. Aditionally, the
adaxially flattened basidiospores seems to be an important taxonomic feature and probably phylogenetically significant
for the ‘phellinotus clade’. Actually, despite Phellinotus, in our morphological analysis of types of Arrambaria (A.
destruens), Fomitiporella (F. umbrinella), Fulvifomes (Pyropolyporus robiniae), and Phylloporia (P. parasitica)
we were able to observe adaxially flattened basidiospores. Type specimens of Fulvifomes chinensis, F. inermis and
Inonotus tenuissimus should be revised to confirm this character. This is a feature usually not checked and not found
in the literature, except by Kotlaba & Pouzar (1978, 1979), who mentioned it in the description of Phellinus robiniae
(Murrill) A. Ames (1913:246), P. rimsosus s.s., P. coffeatoporus Kotl. & Pouzar (1979: 259), and P. resinaceus Kotl.
& Pouzar (1979: 261).
Fulvifomes s.s. (F. rimosus group excluding F. chinensis and F. inermis) is macro- and micro- morphologically
similar to Phellinotus, but distinguishable mainly by the shape of its basidiospores and hyphal system (Table 1). The
shape of the basidiospore is an important feature, as recognized by Murrill (1914), who segregated Fulvifomes from
Pyropolyporus Murrill (1903:109) based on Pyropolyporus robiniae [≡ Fulvifomes robiniae (Murrill) Murrill (1914:49)]
as genus type. The lectotype of Phellinus robiniae presents subglobose, 5.5‒6 × 4.5‒5(‒5.5) µm basidiospores.
Aurificaria is characterized by basidiospores that turn dark olivaceous green in KOH and by a monomitic hyphal
DRECHSLER-SANTOS ET AL.
14 Phytotaxa 000 (0) © 2016 Magnolia Press
system (Ryvarden 2004). Phylogenetic studies by Larsson et al. (2006) and Zhou (2014c), based on ITS and nLSU,
show that Aurificaria is a basal sister clade of Fulvifomes s.s. Zhou (2014c) proposed its synonymy with Fulvifomes,
which would expand the concept of Fulvifomes by including monomitic and dimitic species with annual or perennial
basidiomata and basidiospores that can turn brown or green in KOH.
Phylloporia species are mostly parasitic on lianas and roots of shrubs and trees, which are difficult to identify
in the Neotropics (Ryvarden 2004). As a result, the extent of host specialization of Phylloporia species is unknown.
Phylloporia and Phellinotus share the black line in the context; however, the former is distinguished by its smaller,
yellow basidiospores that remain slightly yellowish in KOH (Ryvarden 2004).
The occurrence of different types of hyphal systems in the same basidioma is well documented and has been
used to distinguish taxa (Niemelä et al. 2001, Tian et al. 2013). The Inonotus linteus (Berk. & M.A. Curtis) Teixeira
(1992:126) species-complex, like Phellinotus species, develops perennial basidiomata with skeletal hyphae restricted
to the trama of the tube layer (Tian et al. 2013, Vlasák et al. 2013). However, it differs from Phellinotus by the presence
of hymenial setae and is not phylogenetically related. Phylogenetic studies confirmed its relationship with Inonotus
(Wagner & Fischer 2002), and the closely related recently described genera Sanghuangporus Sheng H. Wu, L.W.
Zhou (2015:6) & Y.C. Dai and Tropicoporus L.W. Zhou, Y.C. Dai & Sheng H. Wu (2015:7)(Zhou et al. 2015), are also
positioned outside of the ‘phellinotus clade’. Indeed, the sequences available in GenBank, identified as Inonotus linteus
(Tropicoporus) should be taxonomically re-evaluated, as some vouchers are actually placed in the Sanghuangporus
clade (e.g., vouchers F915611 and MUCL74139) (Fig. 1).
The current phylogenetic scenario shows that the diversity of the group is higher than expected and the incorporation
of specimens and taxa from other unexplored regions of the world into phylogenetic studies is necessary to attain a
better understanding of the diversity and natural classification of Hymenochaetaceae.
Phellinotus and its species
Phellinus piptadeniae was proposed by Teixeira (1950) and described as host specific on living Piptadenia communis
Benth. [=Piptadenia gonoacantha (Mart.) J.F. Macbr. (1919:17)]. He described it as having a large basidioma with
a smooth pilear surface that becomes rimose at maturity, a golden brown and lustrous context with a distinct black
line, and stratified tubes forming 4‒5 pores/mm on the hymenophore. Regarding particular microscopic characters,
the hyphal construction of the basidioma deserves special attention. Teixeira (1950) described two types of hyphae
in the context, branched or not, with walls not much thickened and simple-septa present in the unbranched hyphae.
He did not mention the specific type of hyphal system present. Later, he transferred this species to Fomitiporella as
F. piptadeniae (Teixeira) Teixeira (1992:126) (Teixeira 1992), again without describing the hyphal system. Later, he
described Fomitiporella as dimitic and closely related to Phellinus and Phylloporia (Teixeira 1994).
According to Ryvarden (2004), Phellinus piptadeniae is closely related to Phellinus rimosus; moreover, he
suggested that molecular work would be necessary to determine if P. piptadeniae was an immature stage of P. rimosus
or not. Phellinus piptadeniae is morphologically and ecologically a well-delimited species (Teixeira 1950, Drechsler-
Santos et al. 2010), whereas Phellinus rimosus is considered to be a taxonomic complex of three or more cryptic
species, namely, P. badius (Berk. ex Cooke) G. Cunn. (1965:273), P. rimosus s.s. and P. robiniae (Kotlaba & Pouzar
1978). Interestingly, most of these species seem to be host-specific and geographically restricted (Kotlaba & Pouzar
1978, 1979). Species in the P. rimosus complex are characterized by having woody, pileate basidiomata with a cracked
to strongly rimose pileus, a lack of setae, and ellipsoid, thick-walled, chestnut to rusty brown basidiospores (Fiasson
& Niemelä 1984). Fulvifomes has a dimitic hyphal system and globose to subglobose basidiospores (Table 1).
Key to Phellinus s.l. and Inonotus s.l. and related poroid/hydnoid genera of Hymenochaetaceae
1. Basidiospores hyaline and slightly to strongly dextrinoid .................................................................................................................2
1. Basidiospores hyaline to chestnut brown and not dextrinoid .............................................................................................................4
2. Basidiospores ellipsoid, hyphal system monomitic, setae (hymenial or tramal) present ..................................................Mensularia
2. Basidiospores globose, hyphal system monomitic or dimitic, if present, setae only hymenial .........................................................3
3. Basidiomata perennial, resupinate to pileate, setae absent, occasionally present ............................................................ Fomitiporia
3. Basidiomata annual, pileate, hymenial setae present ................................................................................................ Pseudoinonotus
4. Setae (any type) present ......................................................................................................................................................................5
4. Setae (any type) absent .....................................................................................................................................................................17
5. Asterosetae present .......................................................................................................................................................Asterodon Pat.
5. Asterosetae absent, hymenial setae and/or setal hyphae present ........................................................................................................6
6. Hyphal system monomitic throughout ...............................................................................................................................................7
6. Hyphal system dimitic, at least in the trama of tube layer, or trimitic .............................................................................................11
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 15
7. Setal hyphae present ...........................................................................................................................................................................8
7. Setal hyphae absent ............................................................................................................................................................................9
8. Basidiospores hyaline, thin-walled, hymenial setae absent ........................................................................................... Phellinidium
8. Basidiospores yellow to brown, thick-walled, hymenial setae absent or present ...........................................................Inonotus s.s.
9. Basidiomata sessile pileate to substipitate, basidiospores thin-walled ............................................................................ Inonotus s.l.
9. Basidiomata sessile resupinate/pileate, basidiospores thick-walled .................................................................................................10
10. Basidiomata stipitate, sub-stipitate or centrally sessile, basidiospores ellipsoid to globose, tramal to hymenial setae present ..........
......................................................................................................................................................................................Onnia P. Karst
10. Basidiomata sessile, basidiospores cylindrical, hymenial setae present ...............................Cylindrosporus L.W. Zhou & Y.C. Dai
11. Basidiospores obclavate to cylindric, hyphal system dimitic-trimitic ............................................................................... Phellopilus
11. Basidiopores ellipsoid, broadly ellipsoid to globose-subglobose, hyphal system dimitic ...............................................................12
12. Basidiospores thin-walled, basidiospores ellipsoid/allantoid/cylindrical, generative hyphae with crystals .....................Fuscoporia
12. Basidiospores slightly thick- to thick- walled, basidiospores ellipsoid/to subglobose-globose, generative hyphae without crystals .
..........................................................................................................................................................................................................13
13. Hyphal system mono-dimitic, contex monomitic, trama of tube layer dimitic ................................................................................14
13. Hyphal system dimitic throughout ...................................................................................................................................................15
14. Basidiomata annual to perennial, resupinate to pileate, basidiospores when ellipsoid mostly < 3.5 μm wide, exclusively in tropical
zone .................................................................................................................................................................................Tropicoporus
14. Basidiomota perennial, resupinate, effused-reflexed to pileate, basidiospores when ellipsoid mostly > 3.5 μm wide, in boreal,
temperate, subtropical to tropical zones .................................................................................................................. Sanghuangporus
15. Tramal setae penetrating into hymenium ........................................................................................................................ Phellinopsis
15. Tramal setae absent ..........................................................................................................................................................................16
16. On coniferous wood ......................................................................................................................................................Porodaedalea
16. On hardwood ..................................................................................................................................................................Phellinus s.s.
17. Basidiospores thin-walled ...............................................................................................................................................................18
17. Basidiospores thick-walled ..............................................................................................................................................................20
18. Basidiospores cylindrical to obclavate ...................................................................................................................... Nothophellinus
18. Basidiospores subglobose to ellipsoid .............................................................................................................................................19
19. Basidiomata resupinate, basidiospores ellipsoid, on coniferous wood ........................................................................... Inonotopsis
19. Basidiomata pileate/substipitate, basidiospores subglobose, on deciduous wood .........................................................Pyrrhoderma
20. Hyphal system monomitic ................................................................................................................................................................21
20. Hyphal system dimitic, at least in the trama of tube layer ...............................................................................................................25
21. Basidiospores ellipsoid smaller than 5 µm, hyaline in KOH ...........................................................................................Phylloporia
21. Basidiospores usually larger than 5 µm ...........................................................................................................................................22
22. Basidiospores yellowish, becoming dark olivaceous green in KOH ................................................................................ Aurificaria
22. Basidiospores do not become dark olivaceous green in KOH .........................................................................................................23
23. Basidiospores yellowish to yellowish brown, becoming chestnut brown in KOH, thick-walled and adaxially flattened ............. 24
23. Basidiospores without this combination of characters .................................................................................................. Inonotus s.l.
24. Granular core present at the base of the context ................................................................................................................... Inocutis
24. Granular core absent at the base of the context .............................................................................................................. Arambarria
25. Basidiospores usually shorter than 5 µm, hyaline in KOH ............................................................................................. Phylloporia
25. Basidiospores usually larger than 5 µm, becoming chestnut brown in KOH ................................................................................. 26
26. Basidiospores globose to subglobose ...............................................................................................................................Fulvifomes
26. Basidiospores ellipsoid to broadly ellipsoid ....................................................................................................................................27
27. Skeletal hyphae restricted to the trama of tube layer ........................................................................................................Phellinotus
27. Skeletal hyphae found throughout the basidiomata .........................................................................................................................28
28. Basidiomata resupinate ..................................................................................................................................................Fomitiporella
28. Basidiomata pileate ........................................................................................................................................................ Phellinus s.l.
Acknowledgements
The authors thank Aristóteles Góes-Neto, Clarice Loguercio-Leite, Carlos Urcelay, Cony Decock, Domingos Cardoso,
Gladstone Silva, Leonor Costa Maia, and Carlos Alberto Salvador Montoya for their valuable contributions to
this work. Curators of herbaria mentioned here are thanked for the loan of exsiccates. The managers of the study
areas are thanked for permission to sample collections. This research was supported by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico – CNPq-Brazil (Universal 478973/2006-3 and 479961/2007-7, Pesquisa
em Biodiversidade do Semi-árido 010105.00/2004/PPBio) and the Coordenação de Aperfeiçoamento Pessoal de Nível
Superior–CAPES-Brazil and Ministerio de Ciencia, Tecnología e Innovación Productiva–MINCYT-Argentina (Project
161/09 - BR/08/13). CNPq, MINCYT and CAPES supported the first author’s PhD (modalities: GD 141072/2006-7
and SWE 201847/2008-6) and Post-doctoral scholarships (CAPES-MINCYT and CAPES/REUNI). GLR and MR
are members of the Research Career of CONICET (Argentina). MAR thanks CAPES (PNPD Institucional 2011 -
23038.007790/2011-93) for Postdoctoral scholarship.
DRECHSLER-SANTOS ET AL.
16 Phytotaxa 000 (0) © 2016 Magnolia Press
References
Ames, A. (1913) A consideration of structure in relation to genera of the Polyporaceae. Annales Mycologici 11(3): 209‒253.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. (2009) GenBank. Nucleic Acids Research 37 (Database
issue), D26‒31.
http://dx.doi.org/10.1093/nar/gkn723
Bentham, G. (1840‒44) Notes on Mimoseae, with a short synopsis of species. In: Hooker, W.K. Journal of Botany, being a second series
of the Botanical Miscellany. London Journal of Botany 4: 323–418.
Cannon, P. F. & Kirk, P. M. (2007) Fungal Families of the World. CAB International.
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology
and Evolution 17: 540‒552.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334
Corner, E. J. H. (1991) Ad Polyporaceas VII. Beihefte zur Nova Hedwigia 101: 1‒175.
Cunningham, G. (1947) Notes on the classification of the Polyporaceae. New Zealand journal of science and technology 28: 238‒251.
Cunningham, G. H. (1965) Polyporaceae of New Zealand. Bulletin of the New Zealand Department of Industrial Research 164: 1‒304.
Dai, Y. C. (2010) Hymenochaetaceae (Basidiomycota) in China. Fungal Diversity 45: 131‒343.
http://dx.doi.org/10.1007/s13225-010-0066-9
Dai, Y. C., Cui, B. K. & Decock, C. (2008) A new species of Fomitiporia (Hymenochaetaceae, Basidiomycota) from China based on
morphological and molecular characters. Mycological Research 112: 375‒380.
http://dx.doi.org/10.1016/j.mycres.2007.11.020
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature
Methods 9(8): 772.
http://dx.doi.org/10.1038/nmeth.2109
Decock, C., Bitew, A. & Castillo, G. (2005) Fomitiporia tenuis and Fomitiporia aethiopica (Basidiomycetes, Hymenochaetales), two
undescribed species from the Ethiopian highlands: taxonomy and phylogeny. Mycologia 97: 121‒129.
http://dx.doi.org/10.3852/mycologia.97.1.121
Decock, C., Herrera-Figueroa, S., Robledo, G. & Castillo, G. (2006) Phellinus caribaeo-quercicolus sp. nov., parasitic on Quercus cubana,
taxonomy and preliminary phylogeny. Mycologia 98: 265‒274.
http://dx.doi.org/10.3852/mycologia.98.2.265
Decock, C., Herrera-Figueroa, S., Robledo, G. & Castillo, G. (2007) Fomitiporia punctata (Basidiomycota, Hymenochaetales) and its
presumed taxonomic synonyms in America: taxonomy and phylogeny of some species from tropical/subtropical areas. Mycologia
99: 733‒752.
http://dx.doi.org/10.3852/mycologia.99.5.733
Decock, C., Castillo, G. & Valenzuela, R. (2010) Studies in Perenniporia s.l. Perenniporiella tepeitensis comb. nov., an addition to
Perenniporiella: evidence from morphological and molecular data. Cryptogamie Mycologie 31: 419‒429.
Donk, M. A. (1964) A conspectus of the families of Aphyllophorales. Persoonia 3: 199‒224.
Drechsler-Santos, E. R., Gibertoni, T. B., Cavalcanti, M. A. Q., Ryvarden, L. & Góes-Neto, A. (2013) Basidiomycota: Polypores-Orelhas
de pau. In Neves, M. A., Baseia, I. G., Drechsler-Santos, E. R. & Góes-Neto, A., Eds., Guide to the common fungi of the semiarid
region of Brazil. TECC Editora, Florianópolis, Brazil, pp. 51‒82.
Drechsler-Santos, E. R., Santos, P. J. P., Gibertoni, T. B. & Cavalcanti, M. A. Q. (2010) Ecological aspects of Hymenochaetaceae in an
area of Caatinga (semiarid) in Northeast Brazil. Fungal Diversity 42: 71‒78.
http://dx.doi.org/10.1007/s13225-010-0021-9
Fiasson, J. L. & Niemelä, T. (1984) The Hymenochaetales: a revision of the European poroid taxa. Karstenia 24: 14‒28.
Fries, E. M. (1830) Eclogae fungorum, praecipue ex herbarus germanorum de scriptorum. Linnaea 5: 497‒553.
Gilbertson, R. L. & Ryvarden, L. (1986‒87) North American Polypores. 2 vols. Oslo, Fungiflora.
Góes-Neto, A., Loguercio-Leite, C. & Guerrero, R. T. (2005) DNA extraction from frozen field-collected and dehydrated herbarium fungal
basidiomata: perform of SDS and CTAB-based methods. Biotemas 18: 19‒32.
Gray, S. F. (1821) A natural arrangement of British plants 1: 1‒824.
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood”. Systematic
Biology 52: 696‒704.
http://dx.doi.org/10.1080/10635150390235520
Imazeki, R. (1966) The genus Pyrrhoderma Imazeki. Transactions of the Mycological Society of Japan 7: 3‒11.
Jeong, W. J., Young, W. L., Jin, S. L. & Hack, S. J. (2005) Phylogeny of Phellinus and relataed genera inferred from combined data of ITS
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 17
and mitochondrial SSU rDNA sequences. Journal of Microbiology and Biotechnology 14: 1028‒1038.
Kaliyaperumal, M. & Kalaichelvan, P. T. (2008) Ganoderma australe from southern India. Microbiological Research 163: 286‒292.
http://dx.doi.org/10.1016/j.micres.2007.01.003
Karsten, P. A. (1879) Symbolae ad mycologiam Fennicam VI. Meddelanden af Societas pro Fauna et Flora Fennica 5: 15‒46.
Katoh, K. & Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Molecular Biology and Evolution 30: 772‒780.
http://dx.doi.org/10.1093/molbev/mst010
Kotlaba, F. & Pouzar, Z. (1978) Notes on Phellinus rimosus complex (Hymenochaetaceae). Acta Botanica Croatica 37: 171‒182.
Kotlaba, F. & Pouzar, Z. (1979) Two new setae-less Phellinus species with large coloured spores. (Fungi, Hymenochaetaceae). Folia
Geobotanica & Phytotaxonomica 14(3): 259–263.
http://dx.doi.org/10.1007/BF02854391
Kreisel, H. (1971) Clave para la identificación de los macromicetos de Cuba. Monografias Ciencias Universidad de Habana 16: 1‒101.
Largent, D. L., Johnson, D. & Wathling, R. (1977) How to identify mushrooms to genus III. Microscopic features. Mad River Press,
Eureka, California, USA.
Larsen, M. J. & Coubb-Poulle, L. A. (1990) Phellinus (Hymenochaetaceae). A survey of the world taxa. Oslo, Fungiflora.
Larsson, K. H., Parmasto, E., Fischer, M., Langer, E., Nakasone, K. & Redhead, S. (2006) Hymenochaetales: a molecular phylogeny for
the hymenochaetoid clade. Mycologia 98: 926‒936.
http://dx.doi.org/10.3852/mycologia.98.6.926
Lázaro Ibiza, B. (1916) Los poliporáceos de la flora española. Estudio crítico y descriptivo de los hongos de esta familia. Imprenta
Renacimiento, Madrid.
Legrand, C. M. D. E. (1957) Sellowia. Anais Bot. Herb. “Barbosa Rodrigues”, Itajaí, Brazil.
Linnaeus, C. (1753) Species Plantarum. Imprensis Laurenti Salvii, Holmiae 1: 380.
Lowe, J. L. 1957. Polyporaceae of North America. The genus Fomes. Syracuse, State University College of Forestry, Syracuse
University.
Macbride, J.F. (1919) Notes on certain Leguminosae. Contributions from the Gray Herbarium of Harvard University 59: 1–27.
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) “Creating the CIPRES Science Gateway for inference of large phylogenetic trees” in
Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp. 1‒8.
http://dx.doi.org/10.1109/GCE.2010.5676129
Moncalvo, J. M., Lutzoni, F. M., Rehner, S. A., Johnson, J. & Vilgalys, R. (2000) Phylogenetic relationships of agaric fungi based on
nuclear large subunit ribosomal DNA sequences. Systematic Biology 49: 278‒305.
http://dx.doi.org/10.1093/sysbio/49.2.278
Murrill, W.A. (1903) The Polyporaceae of North America: II. The genus Pyropolyporus. Bulletin of the Torrey Botanical Club 30(2):
109‒120.
http://dx.doi.org/10.2307/2478882
Murrill, W.A. (1904) A new polyporoid genus from South America. Torreya 4: 141‒142.
Murrill, W.A. (1905) The Polyporaceae of North America: XI. A synopsis of the brown pileate species. Bulletin of the Torrey Botanical
Club 32(7): 353‒371.
http://dx.doi.org/10.2307/2478499
Murrill, W. A. (1907) Polyporaceae. North American Flora 9, pp. 1‒72.
Murrill, W. A. (1914) Northen Polypores. The New Era Printing Company. New York.
Niemelä, T., Wagner, T., Fischer, M. & Dai, Y. C. (2001) Phellopilus gen. nov. and its affinities within Phellinus sensu lato and Inonotus
sensu lato (Basidiomycetes). Annales Botanici Fennici 38: 51–62.
Parmasto, E. (1973) Novyi rod Inonotopsis Parm. (sem. Hymenochaetaceae). Folia Cryptogamica Estonica 2: 11–13.
Parmasto, E., Saar, I., Larsson, E. & Rummo, S. (2014) Phylogenetic taxonomy of Hymenochaete and related genera (Hymenochaetales).
Mycological Progress 13: 55‒64.
http://dx.doi.org/10.1007/s11557-013-0891-9
Pegler, D. N. (1964) A survey of the genus Inonotus (Polyporaceae). Transactions of the British Mycological Society 47: 175–195.
Pilát, A. (1940) Basidiomycetes chinenses a cel. Emilio Licentio in itineribus per Chinam septentrionalem annis 1914–1936 susceptis,
lecti. Annales Mycologici 38(1): 61–82.
Pilát, A. (1936–42) Polyporaceae. In Atlas des Champignons de l’Europe (C. Kavina and A. Pilat, Eds.), pp. 311–624.
Quélet, L. (1886) Enchiridion Fungorum in Europa media et praesertim in Gallia Vigentium 0: 1‒352.
Rafinesque, C. S. (1838) Sylva Telluriana. Philadelphia: Printed for the author and Publisher.
Rambaut A., Suchard, M. A., Xie, D. & Drummond, A. J. (2014) Tracer v1.6, Available from http://tree.bio.ed.ac.uk/software/tracer/
Rajchenberg M., Pildain, M. B., Bianchinotti, M. V. & Barroetaveña, C. (2015) The phylogenetic position of poroid Hymenochaetaceae
DRECHSLER-SANTOS ET AL.
18 Phytotaxa 000 (0) © 2016 Magnolia Press
(Hymenochaetales, Basidiomycota) from Patagonia, Argentina. Mycologia 107(4): 754‒67.
http://dx.doi.org/10.3852/14-170
Reeb, V., Lutzoni, F. & Roux, C. (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina,
Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and
Evolution 32: 1036–1060.
http://dx.doi.org/10.1016/j.ympev.2004.04.012
Reid, D. A. (1963) New or interesting records of Australasian Basidiomycetes V – Aphyllophorales. Kew Bulletin 17: 267–308.
http://dx.doi.org/10.2307/4118959
Rogers, S. O. & Bendich, A. J. (1985) Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant
Molecular Biology 5: 69‒76.
http://dx.doi.org/10.1007/BF00020088
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J.
P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology
61: 539–542.
http://dx.doi.org/10.1093/sysbio/sys029
Ryvarden, L. (1991) Genera of polypores, nomenclature and taxonomy. Synopsis Fungorum 5, 1‒373.
Ryvarden, L. (2004) Neotropical Polypores Part 1. Oslo, Fungiflora.
Ryvarden, L. (2005) The genus Inonotus, a synopsis. Oslo, Fungiflora.
Särkinen, T., Iganci, J. R. V., Linares-Palomino, R., Simon, M. F. & Prado, D. E. (2011) Forgotten forests - issues and prospects in biome
mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecology 11: 27.
http://dx.doi.org/10.1186/1472-6785-11-27
Salvador-Montoya, C. A., Robledo, G. L., Cardoso, D., Borba-Silva, M. A., Fernandes M. & Drechsler-Santos, E. R. (2015) Phellinus
piptadeniae (Hymenochaetales: Hymenochaetaceae): taxonomy and host range of a species with disjunct distribution in South
American seasonally dry forests. Plant Systematics and Evolution 301: 1887‒1896.
http://dx.doi.org/10.1007/s00606-015-1201-6
Schlechtendal, D. F. L. (1830) Linnaea: Ein Journal für die Botanik in ihrem ganzen Umfange. Berlin & Halle, Germany.
Stamatakis, A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies”. Bioinformatics
30(9): 1312‒1313.
http://dx.doi.org/10.1093/bioinformatics/btu033
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Molecular Biology and Evolution 30(12): 2725–2729.
http://dx.doi.org/10.1093/molbev/mst197
Teixeira, A. R. (1950) Himenomicetos Brasileiros – V Polyporaceae – 2. Bragantia 10: 113‒135.
Teixeira, A. R. (1992) New combinations and new names in the Polyporaceae. Revista Brasileira de Botânica 15: 125–127.
Teixeira, A. R. (1994) Genera of Polyporaceae: An Objective Approach. São Paulo. Boletim da Chácara de Itu.
Thiers, B. (2015) [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York
Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/
Tian, X. M., Yu, H. Y., Zhou, L. W., Decock, C., Vlasák, J. & Dai, Y. C. (2013) Phylogeny and taxonomy of the Inonotus linteus complex.
Fungal Diversity 58: 159–169.
http://dx.doi.org/10.1007/s13225-012-0202-9
Tura, D., Zmitrovich, I. V., Wasser, S. P., Raats, D. & Nevo, E. (2012) Phylogenetic analyses of Phellinus s.l. and Inonotus s.l
(Hymenochaetales) inferred from rDNA ITS sequences and morphological data. In Misra, J. K., Tewari, J. P. & Deshmukh, S. K.,
Eds., Systematics and Evolution of Fungi, CRC Press, USA, pp. 253–273.
http://dx.doi.org/10.1201/b11606-10
Vlasák, J., Li, H. J., Zhou, L. W. & Daí, Y. C. (2013) A further study on Inonotus linteus complex (Hymenochaetales, Basidiomycota) in
tropical America. Phytotaxa 124: 25–36.
http://dx.doi.org/10.11646/phytotaxa.124.1.3
Wagner, T. & Fischer, M. (2001) Natural groups and a revised system for the European poroid Hymenochaetales (Basidiomycota) supported
by nLSU rDNA sequence data. Mycological Research 105: 773–782.
http://dx.doi.org/10.1017/S0953756201004257
Wagner, T. & Fischer, M. (2002) Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and
phylogenetic relationships of allied genera. Mycologia 94: 998‒1016.
http://dx.doi.org/10.2307/3761866
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In
PHELLINOTUS, A NEW NEOTROPICAL GENUS Phytotaxa 000 (0) © 2016 Magnolia Press 19
Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., Eds., PCR Protocols, a Guide to Methods and Applications, Academic
Press, New York, pp. 315‒322.
http://dx.doi.org/10.1016/b978-0-12-372180-8.50042-1
Wright, J. E. & Blumenfeld, S. N. (1984). New south american species of Phellinus (Hymenochaetaceae). Mycotaxon 21: 413‒425.
Yu, H. Y., Zhao, C. L. & Dai, Y. C. (2013) Inonotus niveomarginatus and I. tenuissimus spp. nov. (Hymenochaetales), resupinate species
from tropical China. Mycotaxon 124: 61–68.
http://dx.doi.org/10.5248/124.61
Zhou, L. W. (2014a) Notes on the taxonomic positions of some Hymenochaetaceae (Basidiomycota) species with colored basidiospores.
Phytotaxa 177(3): 183–187.
http://dx.doi.org/10.11646/phytotaxa.177.3.7
Zhou, L. W. (2014b) Fomitiporella caviphila sp. nov. (Hymenochaetales, Basidiomycota) from eastern China, with a preliminary discussion
on the taxonomy of Fomitiporella. Annales Botanici Fennici 51: 279–284.
http://dx.doi.org/10.5735/085.051.0503
Zhou, L. W. (2014c) Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, Basidiomycota) evidenced by a
combination of morphology and phylogeny. Mycoscience 55: 70‒77.
http://dx.doi.org/10.1016/j.myc.2013.05.006
Zhou, L. W. (2015) Cylindrosporus flavidus gen. et com. nov. (Hymenochaetales, Basidimycota) segregated from Onnia. Phytotaxa
219(3): 276‒282.
http://dx.doi.org/10.11646/phytotaxa.219.3.7
Zhou, L. W. & Qin, W. M. (2013) Phylogeny and taxonomy of the recently proposed genus Phellinopsis (Hymenochaetales, Basidiomycota).
Mycologia 105(3): 689‒696.
http://dx.doi.org/10.3852/12-145
Zhou, L.W., Vlasák, J., Decock, C., Assefa, A., Stenlid, J., Abate, D., Wu, S. H. & Dai, Y. C. (2015) Global diversity and taxonomy of
the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T.
guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Diversity.
http://dx.doi.org/10.1007/s13225-015-0335-8
DRECHSLER-SANTOS ET AL.
20 Phytotaxa 000 (0) © 2016 Magnolia Press
APPENDIX 1. List of species, sources, localities, and GenBank accession numbers of taxa used in this study.
Taxon; Geographic origin; Collection reference; Substrate;
GenBank accession.
nLSU sequences
Arambarria destruens Rajchenb. & Pildain; Argentina/Chubut;
CIEFAPcc 347; Diostea juncea; KP347523.
Cylindrosporus flavidus L.W. Zhou; China, Da 13213; on
fallen angiosperm wood; KP875561.
Fomitiporella sp.; Ethiopia; Oe5; JQ910908. Fomitiporella
sp.; Ethiopia; Oe6; JQ910909.
Fomitiporia hartigii (Allesch. & Schnabl) Fiasson &
Niemel; Europe/Estonia; MUCL 53551; JX093833.
F. mediterránea M. Fischer; Europe/Italy; MUCL
38514; living branch; AY618201. F. punctata (Fr.)
Murrill; Europe/Estonia; MUCL 53548; JX093834. F.
robusta (P. Karsten) Fiasson & Niemel; Europe/Czech
Republic; MUCL 51327; GU461993.
Fulvifomes chinensis (Pilát) Y.C. Dai; China/ Zhashui; LWZ
20130916-3; on dead standing angiosperm; KJ787809.
F. chinensis; China/ Weishan; LWZ 20130713-7; on
fallen angiosperm trunk; KJ787808. F. fastuosus (Lév.)
Bondartseva & S. Herrera; Philippines; CBS 213.36;
Gliricidia sepium; AY059057. F. indicus (Massee)
L.W. Zhou; Zimbabwe/Midlands; O 25034; KC879259.
F. indicus (Massee) L.W. Zhou; China/Ningming;
Yuan 5932; on living tree of Bombax ceiba; JX866777.
F. inermis (Ellis & Everh.) Y.C. Dai; China/Qimen;
LWZ 20130810-3; on fallen angiosperm branch;
KJ787812. F. inermis; China/Qimen; LWZ 20130809-
8; on living angiosperm tree; KJ787811. F. merrillii
(Murrill) Baltazar & Gibertoni; Taiwan; JX484002. F.
nilgheriensis (Mont.) Bondartseva & S. Herrera; USA;
CBS 209.36; on dead deciduous wood; AY059023. F.
rimosus (Berk.) Fiasson & Niemel; Taiwan; JX484003.
F. robiniae (Murrill) Murrill; USA; CBS 211.36;
Robinia pseudo-acacia; AY059038.
Fuscoporia atlantica Motato-Vásquez, Pires & Gugliotta;
Brazil; MV230; KP058517. F. gilva (Schwein.) T.
Wagner & M. Fisch.; Brazil; RP 17; KP859305. F.
senex (Nees & Mont.) Ghob.-Nejh.; KUC20110922-13;
JX463652. F. torulosa (Pers.) T. Wagner & M. Fisch.;
Csezh Republic; 759; AM269865.
Hymenochaetaceae sp.; Argentina/Chubut; CIEFAPcc88;
Austrocedrus chilensis; KP347524. Hymenochaetaceae
ITS sequences
Arambarria destruens Rajchenb. & Pildain; Argentina/Chubut;
CIEFAPcc 347; Diostea juncea; KP347538.
Cylindrosporus flavidus L.W. Zhou; China, Da 13213; on fallen
angiosperm wood; KP875564.
Fomitiporella sp.; Ethiopia; Oe5; JF895466. Fomitiporella sp.;
Ethiopia; Oe6; JF895467.
Fomitiporia hartigii (Allesch. & Schnabl) Fiasson & Niemel;
Europe/Estonia; MUCL 53551; JX093789. F.
mediterránea M. Fischer; Europe/Italy; MUCL 38514;
living branch; GU461953. F. punctata (Fr.) Murrill;
Europe/Estonia; MUCL 53548; JX093790. F. robusta
(P. Karsten) Fiasson & Niemel; Europe/Czech Republic;
MUCL 51327; GU461949.
Fulvifomes chinensis (Pilát) Y.C. Dai; China/ Zhashui; LWZ
20130916-3; on dead standing angiosperm; KJ787818.
F. chinensis; China/ Weishan; LWZ 20130713-7; on
fallen angiosperm trunk; KJ787817. F. fastuosus (Lév.)
Bondartseva & S. Herrera; Philippines; CBS 213.36;
Gliricidia sepium; AY558615. F. inermis (Ellis &
Everh.) Y.C. Dai; China/Qimen; LWZ 20130810-3; on
fallen angiosperm branch; KJ787821. F. inermis; China/
Qimen; LWZ 20130810-8; on living angiosperm tree;
KJ787820. F. indicus (Massee) L.W. Zhou; Zimbabwe/
Midlands; O 25034; KC879262. F. indicus (Massee)
L.W. Zhou; China/Ningming; Yuan 5932; on living
tree of Bombax ceiba; KC879261. F. merrillii
(Murrill) Baltazar & Gibertoni; Taiwan; JX484013. F.
nilgheriensis (Mont.) Bondartseva & S. Herrera; USA;
CBS 209.36; on dead deciduous wood; AY558633. F.
rimosus (Berk.) Fiasson & Niemel; Taiwan; JX484016.
F. robiniae (Murrill) Murrill; USA; CBS 211.36;
Robinia pseudo-acacia; AY558646.
Fuscoporia atlantica Motato-Vásquez, Pires & Gugliotta;
Brazil; MV230; KP058515. F. gilva (Schwein.) T.
Wagner & M. Fisch.; Brazil; RP 17; KP859295. F.
senex (Nees & Mont.) Ghob.-Nejh.; KUC20110922-13;
JX463658. F. torulosa (Pers.) T. Wagner & M. Fisch.;
Csezh Republic; 759; AM269803.
Hymenochaetaceae sp.; Argentina/Chubut; CIEFAPcc 88;
Austrocedrus chilensis; KP347536. Hymenochaetaceae
... When variation of hyphal width and basidiospore size were observed, the 20% and 5% extreme tails were respectively reported (different thresholds are advised when hyphal width variation is larger than spore size variation [26]). Sections of the tramal and context of the basidioma were incubated in 3% (v/w) NaOH solution for 48 h at 40 • C, and carefully dissected under a stereomicroscope to accurately describe the hyphal system [3]. Microscopic descriptions were abbreviated as follows: L for basidiospore length, W for basidiospore width, Q' for length/width ratio of individual spores, and Q-L/W for number (n) of basidiospores measured per specimen. ...
... The selected best-fit models were TN + F + I + G4 for ITS, TIM2 + F + R3 for nLSU, GTR + F + I + G4 for TEF1-α in all codons, HKY + F + R2 for TEF1-α-introns, and TIM2+F + I + G4 for RPB2 in all codon positions. The phylogenetic analysis (Figure 2) was agreed with previous studies [2,3,6,7]. ...
... Morphologically speaking, species of Phellinotus are classified and can be recognized through the presence of a dark line, a mycelial core, a dimitic hyphal structure with skeletal hyphae only present in the trama of the tube layer and adaxially flattened, ellipsoid, and thick-walled, the absence of setae or setal hyphae, and pale yellow basidiospores that turn chestnut in KOH solution [2]. In Hymenochaetaceae, Phellinotus was traditionally considered a genus with a Neotropical distribution based on phylogenetic and phylogeographic analyses [3]. However, Salvador-Montoya et al. [2], based on morphological analysis of P. badius (Berk. ...
Article
Full-text available
Phellinotus (Polyporales) is a common genus of wood-decay fungi in tropical and subtropical areas, endemic to the Seasonally Dry Tropical Forest (SDTF) biome. However, Phellinotus diversity remains unexplored, despite being a major threat to living trees. Therefore, this study is aimed at confirming and characterizing through morphological and molecular data the first isolates of Phellinotus teixeirae in Pithecellobium dulce (Fabaceae) trees (locally referred to as ‘Chiminango’) from the endangered Colombian SDTF biome. Fifteen fungal specimens were recovered from living P. dulce trees, in the urban area and at the Universidad del Valle campus, and classified as P. teixeirae based on taxonomical descriptors. Phylogenetic relationships were inferred from a four-loci dataset (ribosomal and gene-coding regions), including 82 taxa covering 3991 nucleotide positions. The analysis recovered seven highly supported (>90% bootstrapping) monophyletic taxa of the ‘Phellinotus Clade’, and confirmed the new distribution range of P. teixeirae (100% bootstrap support), which extends approx. 1000 km north in the Neotropics. Hierarchical stratified Analysis of MOlecular VAriance (AMOVA) provided a clear genetic distinction between species (70% of variation, p-value = 0.001) and low differentiation among country of origin within species (11%, p-value = 0.044). Discriminant Analysis for Principal Components (DAPC) indicated complex clustering including closely related species, probably a signal of recent radiation and weak species boundaries. Median-joining haplotype network analysis identified unique haplotypes, which may correlate with new host colonization and population expansion (Tajima’s D ≤ −0.5). In conclusion, this study provides the first assessment of the genetic diversity of P. teixeirae in a novel geography (SDTP) and host tree (P. dulce). However, increasing the number of isolates remains critical to understand further the genus’ distribution patterns and drivers of genetic diversity.
... With the beginning of phyletic and phylogenetic studies in 20 th century (Fiasson & Niemelä 1984), intensified in the 21 st century (Niemelä et al. 2001;, it was demonstrated that the traditional circumscription of Hymenochaetaceae was not natural, and that Inonotus and Phellinus comprised various non-related lineages. Many small genera long considered as synonyms of Phellinus s.l. and Inonotus s.l. were recovered (Fiasson & Niemelä 1984;Wagner & Fischer 2002), while others were proposed as new (Fiasson & Niemelä 1984;Rajchenberg et al. 2015;Zhou et al. 2015;Drechsler-Santos et al. 2016). The taxonomy of Hymenochaetaceae continues to be the subject of taxonomic discussions and proposals Zhou et al. 2015;Drechsler-Santos et al. 2016;Pildain et al. 2018;Wu et al. 2022). ...
... Many small genera long considered as synonyms of Phellinus s.l. and Inonotus s.l. were recovered (Fiasson & Niemelä 1984;Wagner & Fischer 2002), while others were proposed as new (Fiasson & Niemelä 1984;Rajchenberg et al. 2015;Zhou et al. 2015;Drechsler-Santos et al. 2016). The taxonomy of Hymenochaetaceae continues to be the subject of taxonomic discussions and proposals Zhou et al. 2015;Drechsler-Santos et al. 2016;Pildain et al. 2018;Wu et al. 2022). ...
... In the Neotropics, recent research on Hymenochaetaceae diversity uncovered many new taxa and valuable information for species identification such as hosts, vegetation types, distribution range and new morphological characteristics (e.g., Raymundo et al. 2013;Pires et al. 2015;Drechsler-Santos et al. 2016;Alves-Silva et al. 2020). Molecular studies of known species supported proposals of new genera, such as Nothophellinus Rajchenb. ...
Article
Full-text available
Specimens of poroid Hymenochaetaceae with uniquely strigose pileus surfaces were collected and studied morphologically and phylogenetically (using as markers ITS and nrLSU ribosomal DNA). Detailed morphological examination showed that the specimens belong to two distinct species of Fuscoporia. Fuscoporia sarcites comb. nov., which is proposed and recorded for the first time in Guatemala, Honduras, and Venezuela, and the newly described Fuscoporia dollingeri sp. nov., which was collected several times in Florida (USA). Morphological and ecological data of these species are compared to other similar species, and an identification key of Neotropical Fuscoporia is provided.
... Como resultado de lo anterior, se han revalidado algunos géneros y otros se han propuesto como nuevos, de modo que el concepto genérico de Phellinus fue restringido a las especies del complejo P. igniarius (L.) Quél. (Wagner & Fischer 2002, Drechsler-Santos & al. 2016, Zhou & al. 2016. Los representantes de este grupo se distinguen por desarrollar basidiomas perennes, resupinados, efuso-reflexos o pileados, contexto homogéneo, sistema hifal dimítico, setas himeniales, hifas generativas sin incrustaciones y basidiósporas de subglobosas a ampliamente elipsoides u ovoides, hialinas, inamiloides, indextrinoides y moderadamente cianófilas (Dai 2010, Zhou & al. 2016. ...
... Por otra parte, los representantes del género Phellinotus presentan un sistema hifal monomítico en el contexto y dimítico en la trama, de modo que las hifas esqueléticas se restringen a esta última región del basidioma. Estas características también se han descrito para algunas especies de Fulvifomes, entre ellas el tipo del género (Drechsler-Santos & al. 2016, Salvador-Montoya & al. 2018; lo que hace que la segregación sobre la base de caracteres morfológicos sea compleja. No obstante, el tipo de sistema hifal presente en el contexto de los representantes de Fulvifomes puede ser diferente entre especies (Olou & al. 2019), y es dimítico en todas las regiones del basidioma de F. minutiporus. ...
Article
Full-text available
The family Hymenochaetaceae includes a diversity of 893 species described around the world. Its representatives are known by their usually rusty colored basidiomes with a poroid hymenial surface, hydnoid or smooth, woody consistency, and wide morphological variation regarding the arrangement on the substrate. They behave as saprophytic, parasitic, ectomycorrhizal and play a fundamental role in the decomposition of wood in forest ecosystems. In the Brazilian Amazonia region, approximately 40 species of Hymenochaetaceae are currently recorded. The main goal of this study was to increase the knowledge on Hymenochaetaceae from the Brazilian Amazonia. Collections were carried out between October 2021 and April 2022 in the state of Pará, municipalities of Tomé-Açu and Bujaru, to expanding the knowledge of this fungal family to the Brazilian Amazonia. A total of 15 specimens were identified, distributed in seven genera and 12 species. Four species are new records for the state of Pará (Fomitiporia apiahyna, Phellinus neocallimorphus, Phellinus sancti-georgii, and Sclerotus extensus) and two of them are new records for the Brazilian Amazonia (P. neocallimorphus and P. sancti-georgii). Our findings contribute to taxonomic knowledge of this family in the Brazilian Amazonia and reduce the information gaps about the diversity of species.
Article
Full-text available
Corticioid and poroid fungi are widely known for wood decomposition which confers an important ecological role and biotechnological properties upon these species. Although being one of the most studied groups of fungi worldwide, data on diversity and geographic occurrence patterns in Brazil are insufficient, especially in poorly studied areas, including the Cerrado biome. Here we present an overview of the scientific literature concerning the corticioid and poroid fungi from Cerrado, along with a list of species found in the biome so far. The historic research at Cerrado comprised 47 articles published between 1876 and 2021, of which 55% were published in the last decade. We found 387 records and 223 species, while 94 species are new additions to the checklists published in the last decade. Six of the listed species are endemic to Cerrado. Furthermore, 29 species are only known from Cerrado in Brazil, although they occur in other regions of the world. The main research groups focused on these fungi in Brazil have already published at least one article with samples from Cerrado. Therefore, intensifying studies throughout Cerrado could help in a better understanding of its Funga, its evolutionary relationship, and its threatens status.
Article
Full-text available
Fomitiporella is an important genus of wood-decaying fungi. Many new species were revealed in the last five years, based on morphological characters and molecular data. During a study on the taxonomy of Fomitiporella , two specimens from China were investigated, which have morphological characteristics close to Fomitiporella . After morphological examinations and phylogenetic analyses, a new species was confirmed to be a member of the Fomitiporella clade. Fomitiporella crystallina sp. nov. is described and illustrated as a new species, based on morphological characters and molecular evidence. It has perennial, irregular, pileate basidiocarps, an indistinct subiculum (ultrathin to almost lacking), lack of any kind of setae, has brownish, thick-walled basidiospores and causes a white rot. A molecular study, based on the combined ITS (internal transcribed spacer region) and nrLSU (the large nuclear ribosomal RNA subunit) dataset, supports the new species in Fomitiporella . The differences between the new species and phylogenetically related and morphologically similar species are discussed. A key to species with pileate to effused-reflexed basidiocarps of Fomitiporella is given.
Article
Fulvifomes robiniae is a parasitic polypore with distribution in temperate zones of North America. However, specimens morphologically similar to F. robiniae are found in other parts of the Americas. In addition, species such as F. cedrelae and F. coffeatoporus are related to F. robiniae in morphology. In this work, the type material of F. cedrelae, F. centroamericanus, F. coffeatoporus, F. krugiodendri, F. swieteniae and F. robiniae was revised. Furthermore, phylogenetic inferences of species studied were performed. Based on our results, F. swieteniae and F. centroamericanus are synonymized to F. cedrelae and F. krugiodendri to F. coffeatoporus. Also, F. cedrelae and F. coffeatoporus are confirmed as species distinct from F. robiniae based on molecular data and epitypes are selected. Additionally, specimens that resemble F. robiniae were found in northern Argentina and found to be a distinct new species, F. popoffii sp. nov., based on morphological, molecular, and ecological data. Illustrations, taxonomic analyses and discussion of selected species are presented, and a key to the Fulvifomes species is provided.
Article
Full-text available
Un catálogo o checklist recopila la información conocida sobre un grupo taxonómico particular en una región específica. La contrastación de las fuentes utilizadas y la definición de los criterios empleados para la elaboración del catastro hacen del resultado final un material útil para la toma de decisiones sobre conservación de la biodiversidad. Los hongos afiloforoides (Basidiomycota, Agaricomycotina) son una categoría artificial que incluye principalmente a los políporos, corticioides y clavarioides. Tradicionalmente la taxonomía, sistemática y biogeografía del grupo a nivel local ha sido escasamente tratada. Este trabajo presenta datos actualizados sobre 16 especies de hongos afiloforoides de Chile, incorporando nuevos registros, nuevas localidades y nuevos datos sobre la ecología del grupo. A su vez, agrega nueva información sobre especies recientemente descritas. La realización de inventarios de especies y el monitoreo constante de los nuevos datos generados sobre un grupo taxonómico determinado, además del valor de las colecciones biológicas juegan un rol de extrema relevancia en la conservación de la biodiversidad.
Preprint
Full-text available
Fulvifomes robiniae is a parasitic polypore with distribution in temperate zones of North America. However, specimens morphologically similar to F . robiniae are found in other parts of America. In addition, species such as F . cedrelae and F . coffeatoporus are related to F . robiniae in morphology. In this work, the material type of F . robiniae , F . cedrelae F . coffeatoporus , F . krugiodendri , F . centroamericanus , and F . swieteniae were revised. Furthermore, phylogenetic inferences of species studied were performed. Based on our results, F . swieteniae and F . centroamericanus are synonymized in F . cedrelae and F . krugiodendri in F . coffeatoporus . Also, F . cedrelae and F . coffeatoporus are confirmed as distinct species of F . robiniae based on molecular data. Additionally, specimens that resemble F . robiniae in northern Argentina were found. Based on morphological, molecular, and ecological data, these specimens are resolved as a distinct entity from F . robiniae . Here presented as new, F . popoffii sp. nov. Illustrations, taxonomic analyses, a discussion is presented, and a Fulvifomes species key from America is provided.
Article
Taxonomy and phylogeny of poroid Hymenochaetaceae based on the most comprehensive phylogenetic analyses are presented. A phylogeny based on a combined dataset of ITS and nLSU sequences for accepted genera of Hymenochaetaceae was analyzed and two or multigene phylogenies for most species of ten large genera including Coltricia, Fomitiporella, Fomitiporia, Fulvifomes, Fuscoporia, Inonotus, Phylloporia, Porodaedalea, Sanghuangporus and Tropicoporus, were carried out. Based on samples from 37 countries of five continents, seven new genera, Meganotus, Neophellinus, Nothonotus, Pachynotus, Perenninotus, Pseudophylloporia and Rigidonotus, are introduced, 37 new species, Coltricia tibetica, Fomitiporella crassa, F. queenslandica, Fomitiporia eucalypti, F. gatesii, F. ovoidospora, Fulvifomes azonatus, F. caligoporus, F. costaricense, F. floridanus, F. jouzaii, F. nakasoneae, F. subindicus, Fuscoporia sinuosa, F. submurina, Inonotus subradiatus, I. vietnamensis, Neomensularia castanopsidis, Pachynotus punctatus, Phellinus cuspidatus, P. subellipsoideus, Phylloporia minutissima, P. tabernaemontanae, Porodaedalea occidentiamericana, P. orientoamericana, P. qilianensis, P. schrenkianae, Pseudophylloporia australiana, Sanghuangporus australianus, S. lagerstroemiae, Tropicoporus angustisulcatus, T. hainanicus, T. lineatus, T. minus, T. ravidus, T. substratificans and T. tenuis, are described, and 108 new combinations are proposed. In addition, one illegitimate name and two invalid names are renamed, and Coltricia and Coltriciella were synonymized. The taxonomic relevance and limits of the new taxa are discussed. Photos and illustrations for 37 new species are presented, and a full description for each new species is given. Eventually, this study recognizes 672 species in 34 genera and provides a modern treatment of the poroid Hymenochaetaceae in the world. A key to the accepted poroid genera of Hymenochaetaceae is provided, and identification keys to the accepted species of 32 poroid genera worldwide are given. A synopsis description of each species is included in these keys.
Chapter
The phylogenetic status of several taxonomically important wood-decaying species belonging to Phellinus s. l. and Inonotus s. l. was investigated by analyzing sequence data from ribosomal DNA ITS regions of 26 species. As expected, an evaluation of the results confirmed Phellinus s. l. and Inonotus s. l. as being polyphyletic. The generic concept of Inonotus s. str. was revised from a molecular and morphological point of view. Further analyses are still needed for a more comprehensive delimitation between Phellinus s. l. and Inonotus s. l. A comparison of results found in several publications might elucidate the phylogenetic identity of taxonomically problematic taxa belonging to these groups. Two new combinations in the genus Xanthoporia Murrill were made.
Article
Molecular analysis of a portion of the large ribosomal subunit was performed with Phellinus nigrolimitatus (Romell) Bourd. & Galzin and ten other species in Phellinus Quél. s. lato and Inonotus P. Karst. s. lato in order to establish their generic relationships. The microscopy of P. nigrolimitatus was revised. The species turned out to differ enough to be separated into a new genus, Phellopilus Niemelä, Wagner & Fischer. At the very onset of sporulation the spores are much longer and narrower (proterospores) than later on; this phenomenon is discussed. Morphological and anatomical characters were studied for a somewhat similar species from the Americas, Fomitiporia punctatiformis Murrill (Phellinus punctatiformis (Murrill) Ryvarden); it seems to fit best in the genus Fuscoporia. A new species, Fuscoporia montana Y.C. Dai & Niemelä, is described from Yunnan, China.