ArticlePDF Available

Late Glacial knapped stone industry of Kopacina Cave

Authors:

Abstract and Figures

The article presents the results of a lithic analysis of stone artefacts discovered over the course of multiple years of excavations in Kopacina Cave (1978-1993). The frequency of backed bladelets and curved backed points served as the criteria for distinguishing between two phases: the older, lithic phase I and the younger lithic phase II. Based on the absolute dates and the lithic analysis, an interpretation of the cultural stratigraphy (late Upper Palaeolithic, Bronze Age) is proposed here which differs from prior interpretations (late Upper Palaeolithic, Mesolithic, Bronze Age). In terms of technology and typology, Kopacina exhibits considerable similarity to the Late Glacial industries of Vela Spila and Badanj. Microscopic and macroscopic analysis of a portion of the lithics set of finds has facilitated the definition of 8 petrographic groups, among which the group of local micritic cherts dominates. The group of red and green radiolarites, although few in number, is an indicator of the ties between the Kopacina hunter-gatherers and the deep Eastern Adriatic hinterland. There is a similar pattern of raw materials use running through the entire stratigraphic sequence.
Content may be subject to copyright.
7
Nikola Vukosavljević
Faculty of Humanities and Social Sciences, University of Zagreb
Department of Archaeology
I. Lučića 3
Croatia, 10000 Zagreb
nvukosav@zg.hr
Zlatko Perhoč
Hans-Sachs-Ring 128
Germany, 68199 Mannheim
zlatko.perhoc@web.de
Božidar Čečuk †
Ivor Karavanić
Faculty of Humanities and Social Sciences, University of Zagreb
Department of Archaeology
I. Lučića 3
Croatia, 10000 Zagreb
ikaravan@zg.hr
UDC: 903.2 (497.5 Špilja Kopačina) “626”
Original scientic paper
Received: 7 December 2010
Accepted: 19 January 2011
The article presents the results of a lithic analysis of stone artefacts
discovered over the course of multiple years of excavations in Kopačina
Cave (1978-1993). The frequency of backed bladelets and curved
backed points served as the criteria for distinguishing between two
phases: the older, lithic phase I and the younger lithic phase II. Based
on the absolute dates and the lithic analysis, an interpretation of the
cultural stratigraphy (late Upper Palaeolithic, Bronze Age) is proposed
here which diers from prior interpretations (late Upper Palaeolithic,
Mesolithic, Bronze Age). In terms of technology and typology, Kopačina
exhibits considerable similarity to the Late Glacial industries of Vela
Spila and Badanj. Microscopic and macroscopic analysis of a portion
of the lithics set of nds has facilitated the denition of 8 petrographic
groups, among which the group of local micritic cherts dominates.
The group of red and green radiolarites, although few in number, is
Nikola Vukosavljević
Sveučilište u Zagrebu
Filozofski fakultet/ Odsjek za arheologiju
I. Lučića 3
HR, 10000 Zagreb
nvukosav@zg.hr
Zlatko Perhoč
Hans-Sachs-Ring 128
D, 68199 Mannheim
zlatko.perhoc@web.de
Božidar Čečuk †
Ivor Karavanić
Sveučilište u Zagrebu
Filozofski fakultet/ Odsjek za arheologiju
I. Lučića 3
HR, 10000 Zagreb
ikaravan@zg.hr
UDK: 903.2 (497.5 Špilja Kopačina) “626”
Izvorni znanstveni članak
Primljeno: 7. 12. 2010.
Prihvaćeno: 19. 1. 2011.
Članak donosi rezultate litičke analize kamenih artefakata
otkrivenih tijekom višegodišnjih iskopavanja u pećini Kopačini
(1978.-1993.). Učestalost pločica s hrptom i zakrivljenih šiljaka
s hrptom bio je kriterij za izdvajanje dviju litičkih faza, starije,
litičke faze I, i mlađe, litičke faze II. Na temelju apsolutnih datuma
i litičke analize ovdje je predloženo drugačije tumačenje kulturne
stratigraje (kasni gornji paleolitik, brončano doba) u odnosu
na prethodna tumačenja (kasni gornji paleolitik, mezolitik,
brončano doba). Tehnološki i tipološki Kopačina pokazuje znatnu
sličnost s kasnoglacijalnim industrijama Vele spile i Badnja.
Mikroskopskom i makroskopskom analizom dijela litičkog skupa
nalaza denirano je osam petrografskih skupina, među kojima
dominira skupina lokalnog mikritnog rožnjaka. Skupina crvenog
i zelenog radiolarita, iako malobrojna, indikator je povezanosti
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
9
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
an indicator of the ties between the Kopina hunter-gatherers and
the deep Eastern Adriatic hinterland. There is a similar pattern of raw
materials use running through the entire stratigraphic sequence.
Key words: Late Glacial period, lithic analysis, Kopačina, Epigravettian,
raw material, petrographic analysis, cultural stratigraphy
kopačinskih lovaca i skupljača s dubokim istočnojadranskim
zaleđem. U cijelom stratitigrafskom slijedu postoji sličan obrazac
iskorištavanja sirovine.
Ključne riječi: kasni glacijal, litička analiza, Kopačina, epigravetijen,
sirovina, petrografska analiza, kulturna stratigraja
1. Uvod
Arheološki podaci o boravku čovjeka tijekom kasnog glacijala
u Dalmaciji poprilično su rijetki. Postoji svega nekoliko nalazišta
datiranih u to vrijeme (npr. Vela spila na Korčuli, Vlakno na Dugom
otoku, Kopačina na Braču, Zemunica). Broj nalazišta nešto je veći
uzmemo li u obzir cijelu istočnojadransku obalu i njezino zaleđe
(Šandalja II, Vešanska peć, Nugljanska peć, Pupićina peć, Badanj,
Crvena stijena, Medena stijena, Mališina stijena, Trebački krš).
Usporedi li se arheološka slika kasnoga gornjeg paleolitika s ranijim
razdobljima gornjeg paleolitika i srednjeg paleolitika, razvidno je
da su nalazišta brojnija i ukazuju na intezivnije naseljavanje ovog
prostora tijekom kasnoga glacijala.
1
Sva nalazišta iz tog vremena
su pećinska, a lokaliteti na otvorenom gotovo su nam potpuno
nepoznati osim nekoliko površinskih koncentracija, ali je njihova
kulturno-kronološka atribucija upitna. Malobrojnost nalazišta u
Dalmaciji iz tog vremena može biti povezana s podizanjem morske
razine i potapanjem potencijalnih nalazišta, recentnim kultiviranjem
terena, kao i sa slabim intenzitetom istraživanja na ovom prostoru.
U članku se prvi put objavljuju kvantitativni rezultati litke
analize cjelokupnog skupa nalaza iz Kopačine. Analizom litičkog
skupa nalaza iz Kopine pokat ćemo proširiti naše spoznaje
o ovoj poprilično slabo dokumentiranoj fazi ljudskog boravka u
Dalmaciji, a usporedbom kopačinske litičke industrije s približno
istovremenim industrijama na istočnojadranskoj obali i u
njezinom zaleđu, dobit ćemo jasniju sliku prostorne distribucije
regionalnih sličnosti i razlika vremenski srodnih industrija. Osim
tehno-tipološke analize provedena je i petroarheološka analiza
litičkog inventara koja je poduzeta u okviru istrivanja nabave
sirovine u prapovijesnoj litičkoj industriji u srednjoj Dalmaciji.
2
Prilikom pripremnog pregleda inventara zapažena je sličnost
dijela kopačinske litike i velospilske s Korčule, a zatim, prema
informacijama koje treba još potvrditi, i litike istodobnog
nalazišta Badanj kod Stoca u istočnoj Hercegovini i to je poticaj
za daljnje istraživanje povezanosti populacija ovih lokaliteta.
3
Ustanovljena nelokalna provenijencija pojedinih kopinskih
i velospilskih petrografskih tipova, bila je dodatan razlog
za sustavnu analizu litičkog inventara ovog prapovijesnog
nalazišta, pa je 2007. i 2008. godine obavljena petrografska
klasikacija dijela iskopanih nalaza iz istraživanja provedenih
između 1978. i 1993. godine. Pri izboru uzorka vodilo se računa
da se pokrije cjelokupni stratigrafski slijed, od najplićih do
najdubljih slojeva.
Ovo je prvi izvještaj o porijeklu kamena korištenog za izradu
litičkih artefakata iz pećine Kopačine. Naše istraživanje izvora
sirovine u prapovijesnoj litičkoj industriji srednje Dalmacije vrlo
brzo je nadišlo svoj radni okvir, dugoročno je i kompleksno već
samim time što je litički inventar svih do sada poznatih litičkih
1 Kozlowski 1999, str. 322; Mihailović 1999, str. 385.
2 Perhoč 2009a; Perhoč 2009b.
3 Zahvaljujemo arheologu Damiru Kliškiću iz Arheološkog muzeja u Splitu
za nalaze ustupljene na pregled.
1. Introduction
Archaeological data on human habitation in Dalmatia during the Late
Glacial period are rather meagre. There are several sites dated to this
time (e.g. Vela Spila on the island of Korčula, Vlakno on the island of
Dugi otok, Kopačina on the island of Br, Zemunica). The number of
sites increases somewhat if the entire Eastern Adriatic seaboard and
its hinterland are considered (Šandalja II, Vešanska peć, Nugljanska
peć, Pupićina peć, Badanj, Crvena stijena, Medena stijena, Mališina
stijena, Trebački krš). A comparison of the archaeological picture
of the late Upper Palaeolithic with earlier periods of the Upper and
Middle Palaeolithic shows that the sites are more numerous and
indicate more intensive settlement of this area during the Late Glacial
period.
1
All sites from this period are caves, while outdoor sites are
virtually unknown except for a few surface concentrations, but their
cultural/chronological attribution is tenuous. The small number of
sites in Dalmatia from this period may be linked to rising sea levels
and the ooding of potential sites, and more recent soil cultivation,
but also the rather low intensity of research in this region.
In this article, the quantitative results of lithic analysis of the entire
assemblage from Kopina are published for therst time. Through
an analysis of the lithic nds from Kopačina, we shall endeavour to
expand our knowledge of this rather poorly documented phase of
human habitation in Dalmatia, while a comparison of the Kopina lithic
industry with chronologically approximately contemporary industries
on the Eastern Adriatic and its hinterland will provide a clearer picture
of the spatial distribution of regional similarities and dierences of
chronologically related industries. Besides a techno-typological analysis,
a petrographic analysis of the lithic assemblage was also conducted
within the framework of research into the procurement of raw materials
in the prehistoric lithic industry in central Dalmatia.
2
During a preliminary
examination of the inventory, a similarity was noted between some of
the Kopačina lithics and Vela Spila lithics from Korčula, and subsequently
- based on information which has yet to be conrmed - the lithics
from Badanj site near Stolac, in eastern Herzegovina. This served as the
impetus for further research into the links between the populations
of this sites.
3
The established extra-local provenance of individual
Kopina and Vela Spila petrographic types served as an added reason
for systematic analysis of the lithic inventory of this prehistoric site, so
in 2007 and 2008 a petrographic classication was made for a portion
of thends excavated during research conducted between 1978 and
1993. During sampling due attention was paid to encompass the entire
stratigraphic sequence, from the shallowest to the the deepest layers.
This is the rst report on the origin of the stone used to make
the lithic artefacts from Kopačina Cave. Our research into the sources
of the raw materials for the lithic industry of central Dalmatia very
quickly exceeded its operative framework, for it is long-term and
complex simply because the lithic inventory of all thus-far known
1 Kozlowski 1999, p. 322; Mihailović 1999, p. 385.
2 Perhoč 2009a; 2009b.
3 We would like to thank archaeologist Damir Kliškić from the Archaeological
Museum in Split for the nds he allowed us to examine.
10
VAPD 104, 2011., 7-54
11
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
prapovijesnih inventara šire petrograje negoli su to lokalni izvori
korištenog kamena iz skupine sedimentnih silicijskih stijena. Stoga
je svrha ovog izvještaja ukazati na moguće porijeklo kamena
kopačinskih artefakata, tj. na ležišta i izdanke korištenih stijena,
a cilj prilog rekonstrukciji ekonomije nabave litičke sirovine,
time i mreže kretanja kopačinske populacije u kasnoglacijalnom
okolišu.
4
2. Geografski položaj i povijest istraživanja
Pećina Kopačina smještena je na sjeverozapadnoj strani otoka
Brača, između Supetra i Donjeg Humca, na nadmorskoj visini od
280 m (43°22’ N i 16°32 E). Orijentirana je prema zapadu.
5
Tijekom
kasnoga glacijala Kopačina je kontrolirala moguću rutu ungulata
između Nerežiškog i Dračevskog polja, s jedne strane, i Jadranske
ravnice, s druge strane.
6
Prva istraživanja u Kopačini poduzeli su F. Bulić i J. Szombathy
1891. godine, kao dio pokusnih istraživanja prapovijesnih pećina
i gomila na otoku Braču. Otkopani su slojevi do dubine 50-60 cm
i zabilježeni su ulomci prapovijesne keramike, kostiju i puževa,
kao i dva rožnjačka artefakta.
7
Na istome mjestu Bulić navodi i
površinske nalaze rožnjačkih artefakata u okolici crkve sv. Ilije, kao
i u mjestu Banja, zapadno od crkve.
D. Vrsalović poduzeo je također pokusna istraživanja 1958.
godine, ali u prednjem dijelu pećine.
8
Pronađene arheološke
ostatke smješta u široki vremenski okvir, od mezolitika do kraja
trećeg tisućljeća prije Krista.
9
Sustavna arheološka istraživanja u Kopačini provođena su
od 1978. do 1993. godine pod vodstvom B. Čečuka. Iskopavanja
su provedena u prednjem i stražnjem dijelu pećine. Tijekom
iskopavanja B. Čečuk je u nekoliko navrata sumarno izvještavao
o tijeku istraživanja i pronađenim ostacima materijalne kulture,
10
a nakon završetka istraživanja isti autor je ukratko prikazao
dotadašnje spoznaje o pećini Kopačini.
11
Odnedavno se ponovno provode istraživanja u Kopačini
pod vodstvom D. Kliškića.
12
Iako su istraživanja u Kopačini
4 U kasnom pleistocenu Brač je bio povezan s obalom (uzak pojas recentne
dubine 24 m na liniji Split - Splitska vrata, mogao je biti najkasnija veza
otoka s kopnom). S porastom razine Jadrana Brač početkom holocena
postaje otokom (procjena prema Surić 2006, str. 169 i Batimetrijskoj karti
Jadrana 1994).
5 Za detaljan opis špilje vidi Čečuk 1981, str. 10, bilj. 2 i Miracle 1995, str. 68.
6 Miracle 1995, str. 67. Jadranska ravnica je kopno nastalo spuštanjem
morske razine tijekom pleistocenskih oledbi na mjestu današnjega
Jadranskog mora.
7 Bulić 1891, str. 17, 18.
8 Prema Vrsaloviću 1960, str. 36, Bulić i Szombathy iskopavali su u
unutrašnjem dijelu pećine.
9 Vrsalović 1960, str. 36, 37, 40; istražena je površina 2 x 1,5 m do dubine od 1,2 m.
10 Čečuk 1981; Čečuk 1982; Čečuk 1985; Čečuk 1986a; Čečuk 1986b; Čečuk 1987;
Čečuk 1989a; Čečuk 1989b; Čečuk 1990; Čečuk 1991; Čečuk 1992; Čečuk 1993.
11 Čečuk 1996.
12 Kliškić 2007; Kliškić 2008.
provođena dugi niz godina, izostala je sustavna objava iskopanog
arheološkog materijala. Iznimka je zooarheološka obrada
pronađenih faunističkih ostataka.
14
3. Kulturna stratigraja i apsolutna kronologija
Kulturna stratigraja Kopačine, prema dostupnim podacima,
može se podijeliti u tri velike cjeline: brončano doba, mezolitik
i kasni gornji paleolitik. Ovakav stratigrafski slijed zabilježen je
samo u unutrašnjem dijelu, dok u prednjem dijelu pećine nema
brončanodobnih ostataka.
15
Zbog nemogućnosti i teškoća pri
praćenju i odvajanju slojeva koji pripadaju kasnom gornjem
paleolitiku od onih koji pripadaju mezolitiku,
16
slojevi su iskopavani
arbitrarno u debljini od 15-20 cm, a dubine su mjerene u odnosu na
postojeću pećinsku hodnu površinu.
17
Uzimajući u obzir nagnutost
pećinskog tla,
18
a samim time i nataloženih slojeva, i metodologiju
iskopavanja, moralo je doći do stanovitog miješanja različitih
geoloških i/ili arheoloških slojeva tijekom arbitrarnog iskopavanja
slojeva.
19
Iskopani sediment nije prosijavan.
Na temelju radiokarbonskog datiranja kulturni ostaci iz
Kopačine pripisani su kasnom glacijalu i ranom holocenu
(preborealu), a jedan datum pripada razdoblju Atlantika (tablica 1).
13 Miracle 1995, str. 77, 80; Obelić et al. 1994, str. 304. Za kalibraciju datuma
korišten je program OxCal 4.1.7 (Bronk-Ramsey 2009) i kalibracijska
krivulja IntCal 09 (Reimer et al. 2009). Apsolutni datumi u Tablici 1. pod
laboratorijskom oznakom Z-2403 i Z-2404 navedeni su prema Obelić
et al. 1994, i nešto su stariji od datuma koje navodi Miracle 1995, str.
77 (Z-2403 12935 ± 250; Z-2404 11850 ± 220). Datumi koje navodi P.
Miracle vjerojatno nisu korigirani za δ
13
C (usmeno priopćenje B. Obelić,
N. Horvatinčić, I. Krajcar-Bronić). Apsolutnim datumom (Z-776) dobivena
je starost travertina nataloženog oko sloja s puževima, koji je kronološki
okvirno paralelan s kasnim neolitikom - kasni Hvar (Forenbaher et al. 2010,
str. 345), ali arheološki nalazi iz kasnog neolitika u pećini nisu pronađeni.
14 Miracle 1995; Miracle 1996.
15 Čečuk 1996, str. 16, 23. Detaljan opis stratigraje na temelju svojih i
Čečukovih terenskih zabilješki daje Miracle 1995, str. 76-78.
16 Čečuk 1981, str. 10; Čečuk 1989a, str. 30; Čečuk 1996, str. 18.
17 Napominjemo da među litičkim materijalom ima vrećica s oznakama
dubine koje obuhvaćaju raspon od nekoliko desetaka centimetara.
18 Čečuk 1981, str. 10, bilj. 2.
19 Miracle je detaljno ukazao na ovaj problem; Miracle 1995, str. 71.
prehistoric lithics inventories constitute a broader petrography
than the local sources of stone used from the group of sedimentary
siliceous rock. Thus, the purpose of this report is to highlight the
possible origin of the stone for the Kopačina artefacts, i.e. the
deposits and outcrops of used rock, and the objective of this article
is to reconstruct the economy underlying procurement of lithic
raw materials, and thereby the network in which the Kopačina
population moved in the Late Glacial environment.
4
2. Geographic position and research history
Kopačina Cave is situated on the north-west side of the island of
Brač, between Supetar and Donji Humac, at an elevation of 280
m (43°22’ N and 16°32 E). It has a westward orientation.
5
During
the Late Glacial period, Kopačina overlooked a possible route of
ungulates between the Nerežišće and Dračevica elds on one side
and the Adriatic plain on the other.
6
The rst research conducted in Kopačina was undertaken by
F. Bulić and J. Szombathy in 1891, as a part of test research into
prehistoric caves and mounds on Brač. Layers down to a level of 50-
60 cm were excavated, and fragments of prehistoric pottery, bones
and snail shells, as well as two chert artefacts, were recorded.
7
At the
same site, Bulić also cited surface nds of chert artefacts around the
Church of St. Elias, and in the village of Banja, west of this church.
D. Vrsalović also conducted test research in 1958, but in the
frontal portion of the cave.
8
The discovered archaeological remains
were classied over a broad chronological framework, from the
Mesolithic to the end of the third millennium BC.
9
Systematic archaeological research in Kopina was conducted
from 1978 to 1993 under the leadership of B. Čuk. Excavations were
conducted in the front and rear of the cave. During excavations, Čečuk
compiled summary reports on the course of research and the remains
of material culture found there,
10
and after the conclusion of research, he
compiled a brief overview of all previous knowledge of Kopačina Cave.
11
Recently research in Kopačina resumed under the leadership of
D. Kliškić.
12
Even though research in Kopačina has been conducted
4 In the late Pleistocene, Brač was linked to the coast (a narrow isthmus
with a recent depth of 24 m on the Split-Split Gate line may have been
the most recent link between the island and the mainland). When the
Adriatic’s level rose in the early Holocene, Brač became an island (estimate
based on Surić 2006, p.169 and the Bathymetric Map of the Adriatic, 1994).
5 For a detailed description of the cave, see Čečuk 1981, p. 10, note 2 and
Miracle 1995, p. 68.
6 Miracle 1995, p. 67. The Adriatic plain is a tract which emerged when the
sea level declined during the Pleistocene glaciation at the site of today’s
Adriatic Sea.
7 Bulić 1891, p. 17, 18.
8 Based on Vrsalov1960, p. 36, Bul and Szombathy dug in the cave’s interior.
9 Vrsalović 1960, pp. 36-37, 40; Researched surface is 2 x 1.5 m to a depth of 1.2 m.
10 Čečuk 1981; 1982; 1985; 1986a; 1986b; 1987; 1989a; 1989b; 1990; 1991;
1992; 1993.
11 Čečuk 1996.
12 Kliškić 2007; 2008.
over the course of many years, systematic publication of the
excavated archaeological material has been lacking. The exception
is zooarchaeological analysis of the animal remains.
14
3. Cultural stratigraphy and absolute chronology
The cultural stratigraphy of Kopačina, according to available data,
may be divided into three large units: the Bronze Age, the Mesolithic
and the late Upper Palaeolithic. This stratigraphic sequence was only
recorded in the interior, while in the frontal portion of the cave there
are no Bronze Age remains.
15
Due to the impossibility and diculty
involved in following and distinguishing the layers which belong to
the late Upper Palaeolithic from those belonging to the Mesolithic,
16
the layers were excavated arbitrarily at depths of 15-20 cm, and
the depths were measured in relation to the existing walking
surface in the cave.
17
Taking into consideration the inclination of
the caves oor,
18
and thereby also the sedimented layers, as well as
the excavation methodology, a mixing of dierent geological and/
or archaeological layers had to have occurred during the arbitrary
digging of layers.
19
The excavated sediment was not sifted.
Based on radiocarbon dating, the cultural remains from Kopačina
have been attributed to the Late Glacial period and early Holocene
13 Miracle 1995, pp. 77, 80; Obel et al. 1994, p. 304. The OxCal 4.1.7 program
(Bronk-Ramsey 2009) and the IntCal 09 calibration curve (Reimer et al. 2009)
were used to calibrate the dates. The absolute dates in Table 1 under laboratory
designations Z-2403 and Z-2404 are cited according to Obelić et al. 1994 and
they are somewhat older than the dates cited by Miracle 1995, p. 77 (Z-2403
1293250; Z-2404 1185 220). The dates cited by Miracle were probably
not adjusted by δ
13
C (personal communication from B. Obel, N. Horvatinčić,
I. Krajcar-Bron). The absolute date (Z-776) was obtained by the age of the
travertine deposited around the layer with snails, which is chronologically
parallel to the Late Neolithic - late Hvar (Forenbaher et al. 2010, p. 345), but
archaeological nds from the Late Neolithic were not found in the cave.
14 Miracle 1995; Miracle 1996.
15 Čečuk 1996, pp. 16, 23. A detailed description of the stratigraphy based on
his and Čečuk’s eld notes is provided by Miracle 1995, pp. 76-78.
16 Čečuk 1981, p. 10; 1989a, p. 30; Čečuk 1996, p. 18.
17 It is worth noting that among the lithic materials there are bags bearing
designations of the depths, which cover a range of several dozen centimetres.
18 Čečuk 1981, p. 10, note 2.
19 Miracle discussed this problem in detail; Miracle 1995, p. 71.
Tablica 1.
Radiokarbonski datumi iz pećine Kopačine
13
Table 1.
Radiocarbon dates from Kopačina Cave
13
Lab. No. BP cal BC (1 σ) cal BC (2 σ) Materijal Položaj Dubina (cm)
Z-2403 13160 ± 310 14630 - 13310 14960 - 12960 kost D1-C1/7 140-160
Z-2404 11980 ± 270 12240 - 11490 12960 - 11360 kost C1-A/5-6 20-40
Z-778 9160 ± 100 8540 - 8280 8700 - 8220 kućica kopnenog puža nepoznato nepoznato
Z-776 5340 ± 65 4260 - 4050 4340 - 4000 travertin nepoznato nepoznato
Lab. No. BP cal BC (1 σ) cal BC (2 σ) Material Site Depth (cm)
Z-2403 13160 ± 310 14630 - 13310 14960 - 12960 bone D1-C1/7 140-160
Z-2404 11980 ± 270 12240 - 11490 12960 - 11360 bone C1-A/5-6 20-40
Z-778 9160 ± 100 8540 - 8280 8700 - 8220 terrestrial snail shell unknown unknown
Z-776 5340 ± 65 4260 - 4050 4340 - 4000 travertine unknown unknown
12
VAPD 104, 2011., 7-54
13
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Na temelju apsolutne starosti i dubina čini se da najveći dio
stratigrafskog slijeda iz Kopačine treba pripisati kasnom glacijalu.
Apsolutnu radiokarbonsku starost od 9160 ± 100 BP (Z-778)
20
koja
bi dio stratigrafskog slijeda iz Kopačine smjestila u rani holocen,
treba uzeti s oprezom jer datumi dobiveni datiranjem kućica
kopnenih puževa vrlo često odstupaju od stvarne vrijednosti.
21
U
našem slučaju možemo pretpostaviti preveliku starost navedenog
uzorka kućice kopnenog puža. Posebno velika odstupanja
zabilježena su kod vrsta vezanih uz vapnenačku podlogu,
22
a
veliki broj pronađenih Helix sp. u Kopačini denitivno je vezan uz
vapnenačku kršku podlogu.
4. Metodologija
Litički skup nalaza iz Kopačine broji ukupno 13.763 kamena
artefakta i teži 68.819,5 grama. Tehno-tipološki je obrađeno 12.494
artefakta, a preostali dio samo je prebrojan i izvagan (tablica 2).
U tehnološkom dijelu litičke analize denirano je ukupno 17
kategorija (gomolj ili oblutak, prvotni odbojak, prvotno sječivo,
prvotna pločica, drugotni odbojak, drugotno sječivo, drugotna
pločica, odbojak, sječivo, pločica, jezgra, ulomak jezgre, krijestasti
komad, dotjerujući odbojak jezgre, odbojak dubila, krhotina i
neodredivo) koje mogu predstavljati različite faze proizvodnog
procesa. Prvotni odbojak, sječivo i pločica predstavljaju artefakte
kojima je 80-100 % dorzalne strane prekriveno okorinom,
dok drugotni odbojak, sječivo i pločica imaju manje od 80 %
dorzalne strane prekrivene okorinom. Kriterij za razlikovanje
sječiva i pločica je duljina (sječiva ≥ 3 cm). Među krhotine su
svrstani svi komadi koji se ne mogu svrstati ni u jednu drugu
kategoriju, a ne pokazuju smjer odbijanja. Jezgre su izdvojene
kao zasebna tehnološka kategorija, ali ovdje nije napravljena
njihova podrobnija analiza, jer je ona predmet daljnje obrade
u doktorskoj disertaciji jednog od autora ovog rada (N. V.).
Tipološka analiza najvećim je dijelom utemeljena na tipologiji za
gornji paleolitik P.-Y. Demarsa i P. Laurenta,
23
pa su tako u skladu
s njom denirani pojedini tipovi (noktolika grebala, zakrivljeni
šiljci s hrptom, pločice s hrptom, gravetijenski šiljci, geometrijski
mikroliti, strugala, iskrzani komadići, svrdla, dubila, zarupci, dok
su pojedini tipovi kao npr. komadići sa sitnom rubnom obradom,
kružno grebalo, grebalo na odbojku, grebalo na sječivu/pločici
i mikrograveta dodani. Dubila su ovdje promatrana kao cjelina i
nisu se izdvajali različiti tipovi. Iskrzani komadići ovdje su tretirani
kao alatke, iako ih se u literaturi tretira i kao bipolarne jezgre.
24
U oba slučaja iskrzani komadići pokazuju korištenje bipolarne
tehnologije odbijanja. U tehnološkom smislu iskrzani komadi
su razvrstani kao odbojci ili kao jezgre reducirane do kraja.
Obrada litičkog skupa nalaza prikupljenog tijekom višegodišnjih
20 Miracle 1995, str. 77.
21 Tamers 1970; Goodfriend 1987; Goodfriend, Stipp 1983; Goodfriend 1992.
22 Goodfriend, Stipp 1983, str. 576, T. 1.
23 Demars, Laurent 1992.
24 Whallon 1999.
istraživanja donekle je ograničena samom metodologijom
iskopavanja.
Najveći dio litičkog skupa nalaza nosi oznake dubine u
rasponu po 20 cm, počevši od 0 do 300 cm, a već je spomenuto
da ima i vrećica s oznakama raspona dubina od nekoliko
desetaka centimetara. Prema oznakama na vrećicama, najveća
dubina na kojoj su zabilježeni kameni artefakti u unutrašnjosti
pećine je 170 cm, a u prednjem dijelu pećine 300 cm.
25
Sve
skupine kamenih artefakata s istim oznakama dubine razvrstane
su te tehno-tipološki obrađene i međusobno uspoređene.
26
Tehnološka analiza pokazala je da od vrha stratigrafskog slijeda
pa do dna postoji dosta ujednačena slika. Tipološka analiza
pokazala je vjerojatnom mogućnost izdvajanja dvije litičke faze.
Na temelju relativne učestalosti pločica s hrptom i zakrivljenih
šiljaka s hrptom, koji su vrlo jasno tipološki odredivi, denirane
su dvije litičke faze (dodatak 1). Mlađa faza (litička faza II)
obuhvaćala bi dubine od 0-140, a starija (litička faza I) od 140-
300 cm. U obje faze prisutna su oba tipa alatki, ali je relativna
učestalost pločica s hrptom nekoliko puta veća u mlađoj fazi,
dok je obrnuto u starijoj fazi. Ostale sličnosti i razlike bit će
istaknute u poglavlju s usporedbom ove dvije faze. Nakon što su
ovako denirane dvije litičke faze, ostatak materijala s različitim
oznakama dubina (najčešće većim od 20 cm) pribrojen je jednoj
ili drugoj fazi ovisno o dubini, a pritom se učestalost tipova nije
značajnije promijenila.
27
Petroarheološko ispitivanje litičkog inventara iz pećine
Kopačine pokušaj je povezivanja kamenih artefakata s mogućim
izdancima stijena korištenih za njihovu izradu.
28
Početna
petrografska analiza artefakata obavljena je makroskopskim
pregledom inventara s ciljem deniranja petrografskih,
tj. materijalnih tipova. Mikrofacijalnom analizom uzoraka
25 Prema Čečuku 2006, str. 149, najveća dosegnuta dubina u prednjem
dijelu pećine je 360 cm, a u stražnjem 270 cm.
26 U ovoj fazi napravljena je usporedba samo između skupina koje
obuhvaćaju raspon od po 20 cm, počevši od 0 pa do 300 cm.
27 Vrećice sa sljedećim oznakama dubina pribrojene su litičkoj fazi I: 140-
180, 145-180, 150-170, 150-180, 200-260 i 290-? (sve u cm), a litičkoj fazi
II pribrojene su vrećice sa sljedećim oznakama dubina: 0-30, 0-50, 0-65,
0-80, 20-50, 30-60, 30-60, 30-70, 30-90, 60-120, 65-135, 80-110, 80-130,
90-110, 100-130, 100-140, 110-130 i 110-140 (sve u cm). Određeni broj
artefakata (307) izdvojen je iz obrade jer bi prema oznakama dubina na
vrećicama (110-150 i 120-150 cm) dijelom pripadali LF I, a dijelom LF II.
28 Geološki uzorci, datoteka makroskopskih i mikroskopskih nalaza kao i
mikroskopske snimke su iz Geoarheološke litoteke, Perhoč 2010.
(Preboreal), while one date belongs to the Atlantic period (Table 1).
Based on the absolute age and depth, it would appear that the
majority of the stratigraphic sequence from Kopačina should be ascribed
to the Late Glacial period. The absolute radiocarbon age of 9160 ± 100 BP
(Z-778),
20
which would place the part of the stratigraphic sequence from
Kopačina in the early Holocene, should be taken with some reserve, for
the dates obtained by dating shells of terrestrial snails quite often deviate
from actual values.
21
In this case, it is possible to estimate an excessive age
for the sample of snail shells. Considerable deviation was recorded among
species tied to the limestone base,
22
while a high number of the Helix sp.
discovered in Kopačina is denitely tied to the karst limestone base.
4. Methodology
The lithic assemblage from Kopačina contains a total of 13,763
stone artefacts, with a weight of 68,819.5 grams. 12,494 artefacts
underwent techno-typological analysis, while the remaining
portion was only counted and weighed (Table 2).
In the technological portion of the lithics analysis, a total of 17
categories were dened (nodule and cobble, primary ake, primary
blade, primary bladelet, secondary ake, secondary blade, secondary
bladelet, ake, blade, bladelet, core, core fragment, crested piece, core
rejuvenation ake, burin spall, chunk and indeterminate), which may
represent dierent phases of the production process. The primary
ake, blade and bladelet are artefacts on which 80-100% of the dorsal
side is covered with cortex, while the secondary ake, blade and
bladelet have less than 80% of the dorsal side covered with cortex.
The criteria for distinguishing between blades and bladelets is the
length (blade ≥ 3 cm). Pieces were classied among the chunks
which could not be placed in any other category, and which do not
exhibit a aking direction. Cores have been set aside as a separate
technological category, but here they were not subjected to a more
thorough-going analysis, for the latter will be covered in the doctoral
dissertation of one of the authors of this paper (N.V.). The typological
analysis was largely based on the typology of the Upper Palaeolithic
by P.-Y. Demars and P. Laurent,
23
so in this regard, individual types have
been dened (thumbnail endscrapers, curved backed points, backed
bladelets, Gravettian points, geometric microliths, sidescrapers,
splintered pieces, borers, burins, truncations), while individual types
such as, for example, marginally retouched piece, circular endscraper,
endscraper on ake, endscraper on blade/bladelet and micro-Gravette
were added. Burins are here examined as a whole and they were
not separated into dierent types. Splintered pieces are here treated
as tools, even though they are also treated as bipolar cores in the
literature.
24
In both cases, splintered pieces exhibit use of bipolar
aking technology. In the technological sense, splintered pieces were
classied as akes or as completely reduced cores. The analysis of the
20 Miracle 1995, p. 77.
21 Tamers 1970; Goodfriend 1987; Goodfriend and Stipp 1983; Goodfriend 1992.
22 Goodfriend and Stipp 1983, p. 576, P. 1.
23 Demars, Laurent 1992.
24 Whallon 1999.
lithic assemblage gathered during the many years of research was
limited by the actual excavation methodology.
The majority of the lithic assemblage bears depth designations at
increments of 20 cm, starting with 0 and going to 300 cm, while earlier
it was noted that there are also bags with designations of depths
to several dozen centimetres. According to the designations on the
bags, the greatest depth at which stone artefacts were recorded in
the caves interior is 170 cm, and 300 cm in the front section of the
cave.
25
All of the groups of stone artefacts with the same designations
of depth have been grouped and techno-typologically analyzed and
compared to one another.
26
The technological analysis has shown
a rather uniform picture from the top of the stratigraphic sequence
to its bottom. Typological analysis has shown that the possibility
of distinguishing two lithic phases is likely. Based on the relative
frequency of backed bladelets and curved backed points, which are
very clearly typologically classiable, two lithic phases have been
dened (appendix 1). The younger phase (lithic phase II) would
encompass depths of 0-140 cm, while the older phase (lithic phase I)
depths of 140-300 cm. Both types of tools are present in both phases,
but the relative frequency of backed bladelets is several times higher
in the younger phase, while it is the reverse in the older phase. The
remaining similarities and dierences will be highlighted in the
section on comparisons between these two phases. After the two
lithic phases have been so dened, the remainder of the materials
with diering depth designations (most often greater than 20 cm) was
counted among one or the other phase depending on depth, and in
this process the frequency of types did not change signicantly.
27
Petroarchaeological examination of the lithic assemblage from
Kopačina Cave constituted an attempt to link the stone artefacts with
possible outcrops of rock used to make them.
28
The initial petrographic
25 Based on Čečuk 2006, p. 149, greatest depth reached in the caves front
was 360 cm, and 270 cm in its rear.
26 In this phase, a comparison was made only between the groups
encompassing a range of 20 cm, beginning with 0 and going to 300 cm.
27 The bags with the following depth designations were counted in lithic
phase I: 140-180, 145-180, 150-170, 150-180, 200-260 and 290-? (all in cm),
while the bags with the following designations were counted in lithic
phase II: 0-30, 0-50, 0-65, 0-80, 20-50, 30-60, 30-60, 30-70, 30-90, 60-120,
65-135, 80-110, 80-130, 90-110, 100-130, 100-140, 110-130 and 110-140 (all
in cm). A certain number of artefacts (307) were separated from analysis
for based on the depth designations on the bags (110-150 and 120-150
cm) they would partially belong to LP I, and partially to LP II.
28 The geological samples, database on macro- and microscopicnds and
microscopic images are from the Geoarchaeological Lithotheque, Perhoč 2010.
Tablica 2.
Litički skup nalaza iz Kopačine - broj i težina
Table 2.
Lithic assemblage from Kopačina - number and weight
Broj Težina (g)
s oznakom dubine 12494 61872,6
bez oznake dubine 844 4849,0
površinski nalazi 118 535,4
izdvojeno iz obrade 307 1562,5
ukupno 13763 68819,5
No. Weight (g)
with designation of depth 12494 61872.6
without designation of depth 844 4849.0
surface nds 118 535.4
excluded from analysis 307 1562.5
total 13763 68819.5
14
VAPD 104, 2011., 7-54
15
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
analysis of artefacts was conducted by macroscopic inspection of
the inventory with the objective of dening the petrographic, or
rather material types. Microfacial analysis of the samples of material
types veried the macroscopic petrographic classication, and the
characterization of types was supplemented.
29
The linkage of individual
types into groups based on similarity eased their ties to outcrops of
such rock. We attempted to draw a connection between material
groups of artefacts and potential sources based on the results of our
owneld research and testing of petrographic samples, geological
bibliographic sources and thanks to reports from our fellow geologists
and archaeologists on the sources of these stones.
The analysis encompassed the inventory excavated in several
campaigns undertaken between 1978 and 1993 from layers up
to 3 m deep. 4,600 nds, with a total weight of 22,366.39 g, were
examined macroscopically and under a magnifying scope with
10 and 20 factor enlargement, wherein the classication samples
of petrographic types by which the inventory was sorted were
set apart. Petrographic types were distinguished according to
macroscopically ascertained features: structure, colour, grain,
transparency, lustre, outer appearance, fraction type, forms of wear,
density and fossiliferous quality. Simultaneously, based on cortex,
30
29 Macroscopic and microscopic analysis could not be conducted
simultaneously, but rather successively.
30 Nodular rim (also nodular cortex, crust; Cro. nodularna okorina; Germ.
Knollenrinde, Kreiderinde) is the genetic crust of nodular chert. This is the
peripheral layer of the nodule which forms the transition zone toward the
host rock. It diers from the nodule’s core, i.e., the petrographically mature part
of the chert, in terms of mineral composition, colour, structure, density, and
thereby also resistance to wear. Mineralogically this is generally quartz, while
relics of the host rock (carbonate minerals, structure, fossils) are frequent. In
geology, the term “nodule” (Pettijohn 1957, p. 200), Cro. gomolj (Tišljar 2004,
p. 221), Germ. Hornstein-Knolle (Fürchtbauer, Müller 1970, p. 494) designates a
type of chemically secondary structure of sedimentary rock. Nodules form by
precipitation of quartz from silicic acid aqueous solutions around a core, often
organic substances, shell fragments or fossils. Nodules have rounded surfaces
and spherical, discoid or entirely irregular shapes. They appear individually and
in groups parallel to layers of host rock or in very irregular shapes connected
in interlayers. Their size can be measured from millimetres to meters. A rind
of pebbles (Cro. valutična okorina; Germ. Geröllrinde) is a type of weathering
rind (Cro. kora trošenja; Germ. Verwitterungsrinde) specic to gravel. This is an
external layer of pebbles (cobbles) of any type of rock, which - during the
sedimentation cycle (particularly wear during conveyance) - undergoes
physical (polish, rounding,ssures) and mineral changes (patina), which results
in changes in both structure and colour. The expression “uvial cortex should
be used only when the conveyance type is not known. The nodular rind of
pebbles is created by weathering of the chert nodule during conveyance by
water, which results in reduction of the genetic rind, or what is at a minimum
recognized as such, while the nodules shape is partially altered. The nodular
rind of pebbles on an artefact enables an archaeologist to decipher data on
the variety of chert and the type of outcrop in which the raw material for lithic
production was obtained. In numerous cases, an artefact’s cortex, in addition to
colour and macrostructure, actually serves geoarchaeologists as an indicative
factor in the recognition of regional types of cherts and their outcrops (e.g.
regional type of nodular cortex in the context of “Maas”-Knollenint and a rind
of pebbles designated as “Maas”-Rinde; cf. Arora 1979, pp. 2-5).
the genetic chert type
31
and classication to the assumed outcrop
type
32
were determined. Macroscopic sampling of petrographic
types was controlled by an inspection of over 120 polished sections
under a binocular microscope with enlargement factor of 25 of
100. The carbonate component was tested in individual samples
with diluted hydrochloric acid. The petrographic determination of
radiolarites and metasomatic cherts
33
was additionally conrmed
under a polarized light and scanning light microscope.
34
In
determining the colour according to the standards of the Rock-
Colour-Chart, the surface of the stone surfaces were moistened.
35
Based on the above criteria, the following basic material
groups for the archaeological nds were distinguished: radiolarites,
metasomatic cherts and petrographically indeterminate chert group.
36
5. Techno-typological analysis
5.1. Lithic phase I - technology
In lithic phase I (hereinafter LP I), 4,928 stone artefacts were recorded
with a total weight of 20,572.4 g. Out of the total number, tools account
for approximately 14% (689 pieces). In this phase, akes constitute the
predominant production category with relative frequency of 47.75%.
Together with decortication akes (primary, 2.56% and secondary,
14.14%), the total relative frequency of akes is 64.45%. After akes, the
next most common technological category encompasses chunks, with
a frequency of 18.75%, followed by cores with 9.26%. The frequency
of the remaining technological categories is below 5% (Table 3). In
contrast toakes, of which there is a considerable amount in the
total number of lithics and which constitute the absolutely preferred
product of knapping, blades are present in a small number with a
frequency of 5.23% (without cortex, 4.20%, with cortex, 1.03%), while
the frequency of bladelets is much lower, at 1.9% (without cortex, 1.7%,
with cortex, 0.2%). The small number of bladelets may be the result of
the failure to sift the sediments.
However, although the relative frequency of blades and bladelets
in the total quantity of lithics is small, a high number of them has been
31 Genetic types of silicate sedimentary rock, or sensu lato cherts are
biogenetic, diagenetic, chemogenetic and alterative (Tišljar 2004, p. 209).
32 The outcrop of a rock is the place at which it is accessible in its deposit. An
autochthonous or para-autochthonous outcrop of chert is its point of origin
in the host rock and its point of accessibility, or in the immediate vicinity. An
allochthonous outcrop of chert is a place more or less remote from its point of
origin, at which it was deposited after its erosion from the host rock and more or
less transformed during conveyance. Some scholars called the autochthonous
outcrop primary, and the allochthonous secondary. Traces of the wear process
(rind of pebbles) and structural features of the rock (nodular rim) visible on
artefacts indicate the type of outcrop from which the stone originated.
33 Specication of the fossils was done according to Flügel 1978 and Adams
et al. 1984.
34 Microscope analysis of the nds was made possible thanks to Professor Rainer
Altherr, Institut für Geowissenschaften, Rupprecht-Karls-Universität Heidelberg
and Professor Ernst Pernicka, Curt-Engelhorn-Zentrum Archäometrie Mannheim.
35 The Geological Society of America, 1995.
36 The names of all material groups of archaeological nds are still
provisional in character.
materijalnih tipova provjereno je makroskopsko petrografsko
određenje, a karakterizacija tipova je dopunjena.
29
Udruživanje
pojedinih tipova po srodnosti u skupine olakšalo je povezivanje
s izdancima takvih stijena. Materijalne skupine artefakata
nastojali smo dovesti u vezu s mogućim izvorima temeljem
rezultata vlastitih terenskih istraživanja i ispitivanja petrografskih
uzoraka, temeljem geoloških bibliografskih izvora te zahvaljujući
obavijestima kolega geologa i arheologa o izvorima predmetnih
stijena.
Analizom je obuhvaćen inventar iskopan u nekoliko
kampanja poduzetih između 1978. i 1993. godine iz slojeva
do 3,00 m dubine. Makroskopski i povećalom s povećanjem
od 10 i 20 puta pregledano je 4600 nalaza, ukupne težine
22.366,39 grama, pri čemu su izdvojeni klasikacijski uzorci
petrografskih tipova po kojima je inventar sortiran. Petrografski
tipovi izdvojeni su prema makroskopski utvrdivim značajkama:
strukturi, boji, zrnatosti, transparentnosti, sjaju, pojavnom obliku
stijene, tipu loma, oblicima trošnosti, tvrdoći i fosilifernosti.
Istodobno je prema okorini
30
određen genetski tip rožnjaka
31
29 Makroskopsku i mikroskopsku analizu nismo bili u prilici izvoditi sinkrono,
već sukcesivno.
30 Nodularna okorina (engl. nodular rim, cortex, crust; njem. Knollenrinde,
Kreiderinde) je genetska kora nodularnog rožnjaka. To je periferni sloj
nodule koji čini prijelaznu zonu prema stijeni domaćinu. Od jezgre
nodule, tj. petrografski zrelog dijela rožnjaka, razlikuje se po mineralnom
sastavu, boji, strukturi, tvrdoći, time i po stupnju rezistentnosti na
trošenje. Mineraloški je to uglavnom kvarc, dok su relikti stijene
domaćina (karbonatni minerali, struktura, fosili) česti. Izraz “nodula,
hrv. gomolj (Tišljar 2004, str. 221), engl. nodule (Pettijohn 1957, str. 200),
njem. Hornstein-Knolle (Füchtbauer, Müller 1970, str. 494), u geologiji
označava tip kemijske sekundarne strukture sedimentne stijene. Nodule
nastaju precipitiranjem kvarca iz vodene otopine silicijske kiseline oko
neke jezgre, često organske tvari, fragmenta školjke ili fosila. Nodule su
zaobljenih ploha i sferičnih, diskoidnih ili potpuno nepravilnih oblika.
Javljaju se pojedinačno i u skupinama usporedo sa slojevima stijene
domaćina ili vrlo razvedenih oblika spojenih u proslojke. Mogu biti
milimetarskog do metarskog reda veličine. Valutična okorina (njem.
Geröllrinde; engl. rind of pabbles) je tip kore trošenja (engl. weathering rind,
njem. Verwitterungsrinde) specičan za šljunak. To je vanjski sloj valutice
(oblutka) bilo koje vrste stijene, na kojoj u sedimentacijskom ciklusu
(naročito trošenjem tijekom transporta) dolazi do zikalnih (pohabanost,
zaobljenost, napukline) i mineralnih promjena (patina), što rezultira
promjenama u strukturi i boji. Izraz “uvijalni korteks” trebalo bi koristiti
samo kad je tip transporta poznat. Valutična nodularna okorina nastaje
habanjem nodule rožnjaka u vodenom transportu zbog čega je genetska
okorina reducirana, ali barem mjestimice prepoznatljiva kao takva dok
je noduli djelomično izmijenjen oblik. Valutična nodularna okorina na
artefaktu arheologu omogućuje očitavanje podataka o varijetetu rožnjaka
i tipu izdanka na kojem je nabavljena sirovina za litičku proizvodnju. U
brojnim slučajevima je geoarheolozima upravo korteks artefakata, osim
boje i makrostrukture, indikativan čimbenik u prepoznavanju regionalnih
tipova rožnjaka i njihovih izdanaka (npr. regionalni tip nodularne okorine
u kontekstu “Maas”-Knolleninta i valutična okorina označena je kao
“Maas”-Rinde; usp. Arora 1979, str. 2-5).
31 Genetski tipovi silicijskih sedimentnih stijena, odnosno rožnjaka sensu lato
su biogeni, dijagenetski, kemogeni i alteracijski (Tišljar 2004, str. 209).
i pripadnost tipu pretpostavljenog izdanka.
32
Makroskopsko
uzorkovanje petrografskih tipova kontrolirano je pregledom
više od 120 nabrušenih preparata binokularnim mikroskopom
s povećanjem od 25 i 100 puta. Karbonatna komponenta je
u pojedinih nalaza ispitana razrijeđenom solnom kiselinom.
Petrografsko određenje radiolarita i metasomatskog
rožnjaka
33
dodatno je potvrđeno polarizacijskim, odnosno
rasterelektronskim mikroskopom.
34
Pri određivanju boje prema
standardima Rock-Color-Chart, površine kamenih nalaza su
navlažene.
35
Temeljem navedenih kriterija, izdvojene su sljedeće osnovne
materijalne skupine arheoloških nalaza: radiolariti, metasomatski
rožnjaci i skupina petrografski neodređenih rožnjaka.
36
5. Tehno-tipološka analiza
5.1. Litička faza I - tehnologija
U litičkoj fazi I (dalje u tekstu LF I) zabilježeno je 4928 kamenih
artefakata ukupne težine 20.572,4 grama. Od ukupnog
broja alatke čine oko 14 % (689 komada). U ovoj fazi odbojci
predstavljaju prevladavajuću proizvodnu kategoriju s relativnom
učestalošću od 47,75 %. Zajedno s okorinskim odbojcima (prvotni
2,56 % i drugotni 14,14 %) ukupna relativna učestalost odbojaka
je 64,45 %. Nakon odbojaka sljedeća najzastupljenija tehnološka
kategorija su krhotine s učestalošću od 18,75 %, a slijede jezgre
sa 9,26 %. Učestalost ostalih tehnoloških kategorija je ispod 5 %
(tablica 3). Nasuprot odbojcima kojih je u ukupnom broju litike
jako puno, i koji predstavljaju apsolutno preferirajući proizvod
lomljenja, sječiva su prisutna u malom broju, s učestalošću od 5,23
% (bez okorine 4,20 %, s okorinom 1,03 %), a učestalost pločica
je i puno manja te iznosi 1,9 % (bez okorine 1,7 %, s okorinom
0,2 %). Mali broj pločica mogao bi biti posljedica neprosijavanja
sedimenta.
Međutim, iako je relativna učestalost sječiva i pločica u
ukupnoj količini litike mala, veliki broj ih je formalno obrađen
(sl. 1). Od ukupnog broja odbojaka obrađeno je 15,64 %, dok je
32 Izdanak stijene je mjesto na kojem je ona dostupna na svom ležištu.
Autohtoni ili paraautohtoni izdanak rožnjaka je mjesto njegova postanka
u stijeni domaćinu i dostupnosti ili mjesto erozije u neposrednoj blizini.
Alohtoni izdanak rožnjaka je mjesto manje-više udaljeno od njegova
postanka na kojem je nataložen nakon što je erodiran iz stijene domaćina
i tijekom transporta manje-više preoblikovan. Neki autori autohtoni
izdanak nazivaju primarnim, a alohtoni sekundarnim. Tragovi procesa
trošenja (valutična okorina) i strukturalne značajke stijene (nodularna
okorina) vidljivi na artefaktima, ukazuju na tip izdanka s kojeg potječe
kamen.
33 Određenje fosila obavljeno je prema Flügel 1978. i Adams et al. 1984.
34 Mikroskopiranje nalaza omogućeno nam je zahvaljujući prof. dr. sc.
Raineru Altherru, Institut für Geowissenschaften, Rupprecht-Karls-
Universität Heidelberg, i prof. dr. sc. Ernstu Pernicki, Curt-Engelhorn-
Zentrum Archäometrie Mannheim.
35 The Geological Society of Amerika, 1995.
36 Nazivi svih materijalnih skupina arheoloških nalaza imaju radni karakter.
16
VAPD 104, 2011., 7-54
17
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
obrađenih sječiva 49,61 %, a pločica 37,23 %. Kao i u sljedećoj fazi,
i ovdje je iskoristivost sječiva i pločica izuzetno velika.
Najveći broja alatki izrađen je na odbojcima, slijede sječiva,
zatim pločice, jezgre, dotjerujući odbojci jezgre i na kraju krhotine
(tablica 3).
Gotovo sve faze lanca operacija su prisutne. Nedostaje samo
inicijalna faza pribavljanja sirovine i mali odbojci (< 1 cm) koji bi
ukazivali na nalnu izradu i dotjerivanje alatki na samom nalazištu,
ali s obzirom na to da sediment nije prosijavan i da su prisutne
gotovo sve ostale faze, možemo pretpostaviti da je nedostatak
malih odbojaka jednostavno posljedica metodologije iskopavanja
i da su alatke izrađivane u samoj pećini. Kao što je već spomenuto,
slika je mogla biti nešto drugačija da se lanac operacija promatrao
zasebno kroz pojedine sirovinske kategorije.
5.2. Litička faza I - tipologija (sl. 2 i 3)
Ukupno 17 tipova alatki denirano je u LF I. Grebala čine
najbrojniju skupinu, s učestalošću od 26,42 %. Među njima
najbrojnija su noktolika grebala, slijede grebala na odbojku, zatim
na sječivu/pločici i na kraju kružna (tablica 4).
Već smo u poglavlju o metodologiji spomenuli da je
jedan od glavnih kriterija za izdvajanje ove faze kao zasebne
cjeline bio odnos relativne učestalosti plica s hrptom i
zakrivljenih šiljaka s hrptom. Učestalost pločica s hrptom
(sve su unilateralno strmo obrađene) u ovoj fazi iznosi 0,87
formally retouched (Fig. 1). Out of the total number ofakes, 15.64%
has been retouched, while 49.61% of blades and 37.23% of bladelets
have been retouched. As in the subsequent phase, here as well the
usability of blades and bladelets is exceptionally high.
The highest number of tools was made on akes, followed by
blades, then bladelets, cores, core rejuvenation akes and, in the
end, chunks (Table 3).
Almost all phases of the operational sequence are present.
Only missing is the initial phase of obtaining raw materials and
small akes (< 1 cm) which would indicate nal production and
rening tools at the site, but given that the sediment was not
sifted and that almost all remaining phases are present, we may
assume that the absence of small akes is simply the result of the
excavation methodology and that the tools were made in the cave
itself. As already mentioned, the picture may have been somewhat
dierent if the operational chain had been observed separately
through individual raw material categories.
5.2. Lithic phase I - typology (Fig. 2 and 3)
A total of 17 types of tools has been dened in LP I. Endscrapers
account for the most numerous group of tools with a frequency of
26.42%. Among them, the most numerous are thumbnail endscrapers,
followed by endscrapers on akes, and then endscrapers on blades/
bladelets, and nally circular endscrapers (Table 4).
In the section on methodology, we have already mentioned
that one of the principal criteria for distinguishing these phases
as separate units was the ratio between the relative frequency
of backed bladelets and curved backed points. The frequency of
Slika 1.
Relativni odnos obrađenih i neobrađenih odbojaka, sječiva i pločica u LF I
Figure 1.
Relative frequency ratio between retouched and unretouched akes, blades
and bladelets in LP I
neobrađeno obrađeno
kom. % g % kom. % g %
gomolj 0 0,00 0,0 0,00 0 0,00 0,0 0,00
prvotni odbojak 77 1,56 391,1 1,90 5 0,10 27,4 0,13
prvotno sječivo 1 0,02 2,5 0,01 0 0,00 0,0 0,00
prvotna pločica 0 0,00 0,0 0,00 0 0,00 0,0 0,00
drugotni odbojak 588 11,93 2066,7 10,05 109 2,21 496,2 2,41
drugotno sječivo 16 0,32 43,5 0,21 34 0,69 127,7 0,62
drugotna pločica 9 0,18 8,5 0,04 1 0,02 0,9 0,00
odbojak 1977 40,12 4905,7 23,85 376 7,63 1373,5 6,68
sječivo 113 2,29 291,6 1,42 94 1,91 310,2 1,51
pločica 50 1,01 43,1 0,21 34 0,69 29,4 0,14
jezgra 430 8,73 4783,4 23,25 26 0,53 137,6 0,67
ulomak jezgre 22 0,45 122,8 0,60 0 0,00 0,0 0,00
krijetasti komad 5 0,10 13,3 0,06 0 0,00 0,0 0,00
dotjerujući odbojak jezgre 23 0,47 94,4 0,46 5 0,10 32,5 0,16
odbojak dubila 5 0,10 9,4 0,05 0 0,00 0,0 0,00
krhotina 923 18,73 5238,2 25,46 1 0,02 15,9 0,08
neodredivo 0 0,00 0,0 0,00 4 0,08 6,9 0,03
ukupno 4239 86,02 18014,2 87,56 689 13,98 2558,2 12,44
unretouched retouched
pcs. % g % pcs. % g %
nodule 0 0.00 0.0 0.00 0 0.00 0.0 0.00
primary ake 77 1.56 391.1 1.90 5 0.10 27.4 0.13
primary blade 1 0.02 2.5 0.01 0 0.00 0.0 0.00
primary bladelet 0 0.00 0.0 0.00 0 0.00 0.0 0.00
secondary ake 588 11.93 2066.7 10.05 109 2.21 496.2 2.41
secondary blade 16 0.32 43.5 0.21 34 0.69 127.7 0.62
secondary bladelet 9 0.18 8.5 0.04 1 0.02 0.9 0.00
ake 1977 40.12 4905.7 23.85 376 7.63 1373.5 6.68
blade 113 2.29 291.6 1.42 94 1.91 310.2 1.51
bladelet 50 1.01 43.1 0.21 34 0.69 29.4 0.14
core 430 8.73 4783.4 23.25 26 0.53 137.6 0.67
core fragment 22 0.45 122.8 0.60 0 0.00 0.0 0.00
crested piece 5 0.10 13.3 0.06 0 0.00 0.0 0.00
core rejuvenation ake 23 0.47 94.4 0.46 5 0.10 32.5 0.16
burin spall 5 0.10 9.4 0.05 0 0.00 0.0 0.00
chunk 923 18.73 5238.2 25.46 1 0.02 15.9 0.08
indeterminate 0 0.00 0.0 0.00 4 0.08 6.9 0.03
total 4239 86.02 18014.2 87.56 689 13.98 2558.2 12.44
Tablica 3.
Litička faza I - tehnologija
Table 3.
Lithic phase I - technology
litička faza I (140 - 300 cm)
Tip alatke kom. %
noktoliko grebalo 84 12,19
kružno grebalo 8 1,16
grebalo na odbojku 81 11,76
grebalo na sječivu/pločici 9 1,31
pločica s hrptom 6 0,87
zakrivljeni šiljak s hrptom 26 3,77
gravetijenski šiljak 2 0,29
kružni segment 1 0,15
zarubak 10 1,45
strugalo 82 11,90
svrdlo 15 2,18
dubilo 24 3,48
iskrzani komadić 58 8,42
komadić sa sitnom rubnom obradom 20 2,90
komadić s obradom 140 20,32
nazubak 94 13,64
udubak 18 2,61
ulomak s obradom 11 1,60
ukupno 689 100,00
litic phase I (140 - 300 cm)
Tool type pcs. %
thumbnail endscraper 84 12.19
circular endscraper 8 1.16
endscaper on ake 81 11.76
endscraper on blade/bladelet 9 1.31
backed bladelet 6 0.87
curved backed point 26 3.77
Gravettian point 2 0.29
segment 1 0.15
truncation 10 1.45
sidescraper 82 11.90
borer 15 2.18
burin 24 3.48
splintered piece 58 8.42
marginally retouched piece 20 2.90
retouched piece 140 20.32
denticulate 94 13.64
notch 18 2.61
retouched fragment 11 1.60
total 689 100.00
Tablica 4.
Litička faza I - tipologija
Table 4.
Lithic phase I - typology
odbojci (N=3132)
akes (N=3132)
sječiva (N=258)
blades (N=258)
pločice (N=94)
bladelets (N=94)
neobrađeno
unretouhed
obrađeno
retouched
18
VAPD 104, 2011., 7-54
19
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Slika 2.
Izbor kamenih alatki iz litičke faze I. 1-11: noktolika grebala, 12: kružno
grebalo, 13: grebalo na odbojku, 14-16: grebala na sječivu/pločici, 17-26:
zakrivljeni šiljci s hrptom
Figure 2.
Selection of stone tools from lithic phase I. 1-11: thumbnail endscrapers, 12:
circular endscraper, 13: endscraper on ake, 14-16: endscrapers on blade/
bladelet, 17-26: curved backed points
Slika 3.
Izbor kamenih alatki iz litičke faze I. 1-3: zakrivljeni šiljci s hrptom, 4, 5: gravetijenski
šiljci, 6: kružni segment, 7, 8: pločice s hrptom, 9: zarubak, 10: komadić sa sitnom
rubnom obradom, 11: strugalo, 12: svrdlo, 13: nazubak, 14-16: dubila
Figure 3.
Selection of stone tools from lithic phase I. 1-3: curved backed points, 4, 5:
Gravettian points, 6: segment, 7, 8: backed bladelets, 9: truncation, 10: marginally
retouched piece, 11: sidescraper, 12: drill, 13: denticulate, 14-16: burins
25 26242322
20 21191817
161514
13
12
11
1098
7
65
4321
161514
131211
109
8765
4321
20
VAPD 104, 2011., 7-54
21
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
%, dok je učestalost zakrivljenih šiljaka s hrptom znatno veća
i iznosi 3,77 %. U litkom skupu nalaza faze I zabiljena su
dva gravetijenska šiljka (0,29 %) koja su karakteristična za ovu
fazu i ne javljaju se u onoj kasnijoj. Od geometrijskih mikrolita
zastupljen je samo jedan primjerak kružnog segmenta.
Najzastupljeniji pojedinni tip alatke je komad s obradom
relativne estalosti od 20,32 %. Brojni su i nazupci (13,64 %),
strugala (11,90 %) te iskrzani komadići (8,42 %).
5.3. Litička faza II - tehnologija
Litičku fazu II (dalje u tekstu LF II) čini ukupno 7566 kamenih
artefakata težine 41.300,2 grama. Alatke čine oko 12 % (923
komada) litičkog skupa nalaza ove faze. Među tehnološkim
kategorijama dominiraju odbojci s relativnom učestalošću
od 44,09 %, a kad im se pridodaju prvotni (1,45 %) i drugotni
odbojci (11,42 %), onda učestalost odbojaka raste na visokih
56,96 %. Slijede krhotine sa 22,17 %, zatim jezgre sa 12%, dok
ostale kategorije imaju učestalost manju od 5 % (tablica 5). I
u ovoj fazi, kao i u prethodnoj, udio sječiva koji iznosi 5,63 %
(bez okorine 4,6 7%, s okorinom 0,96 %) i pločica 1,39 % (bez
okorine 1,26 %, s okorinom 0,13 %), višestruko je manji od udjela
odbojaka.
Unatoč malom broju sječiva i pločica u ukupnoj količini litike,
veliki broj sječiva i pločica je formalno obrađen (sl. 4). Dok je kod
odbojaka od ukupnog broja obrađeno 16,40 %, kod sječiva je
34,28 %, a kod pločica 33,68 %. To ukazuje na veliku iskoristivost
sječiva i pločica. Sječiva i pločice više se dodatno obrađuju možda
zbog toga što je tehnološki postupak njihova dobivanja složeniji
od onog za dobivanje odbojaka.
Najveći broj alatki izrađen je na odbojcima, slijede sječiva, zatim
pločice, jezgre, krhotine i dotjerujući odbojci jezgre (tablica 5).
U LF II, promatrano u cjelini, zabilježen je gotovo cjelokupni
lanac operacija, od pribavljanja sirovine do odbacivanja alatki.
37
Slika lanca operacija mogla je biti nešto drugačija, da su se različite
skupine sirovine promatrale zasebno. U tom slučaju možda ne bi
bile prisutne sve faze u pojedinim kategorijama sirovine, osobito
ako se uzme u obzir (potencijalna) relativno velika udaljenost
(mogućih) pretpostavljenih izvora sirovine, ali to je predmet
budućih istraživanja.
37 Pronađena su svega dva odbojčića (< 1 cm), koji mogu biti nusprodukt
nalne izrade ili dotjerivanja alatki na samom nalazištu, a pribrojeni su
kategoriji odbojaka zbog malog broja pronađenih komada. Njihov mali
broj vjerojatno je posljedica neprosijavanja sedimenta.
backed bladelets (all unilaterally backed) in this phase is 0.87%,
while the frequency of curved backed points is considerably higher,
at 3.77%. In the lithic assemblage in phase I, two Gravettian points
(0.29%) were recorded, which are characteristic of this phase and do
not appear in the later phase. Among the geometric microliths, only
one example of a segment is present. The most common individual
type of tool is retouched piece, with relative frequency of 20.32%.
Denticulates (13.64%), sidescrapers (11.90%) and splintered pieces
(8.42%) are also frequent.
5.3. Lithic phase II - technology
Lithic phase II (hereinafter LP II) consists of a total of 7,566 stone
artefacts weighing 41,300.2 grams. The tools account for roughly
12% (923 pieces) of the lithic assemblage for this phase. Among
the technological categories, akes dominate with a relative
frequency of 44.09%, and when primary (1.45%) and secondary
akes (11.42%) are added to them, then the frequency of akes
grows to a high 56.96%. These are followed by chunks with
22.17% and cores with 12%, while the remaining categories have a
frequency less than 5% (Table 5). In this phase, as in the preceding
one, the share of blades at 5.63% (without cortex, 4.67%, with
cortex, 0.96%) and bladelets at 1.39% (without cortex, 1.26%, with
cortex, 0.13%) is many times less than the share of akes.
Despite the small number of blades and bladelets in the overall
quantity of lithics, a high number of blades and bladelets was formally
retouched (Fig. 4). While only 16.4% of the total number of akes
have been retouched, in the case of blades 34.28% were retouched,
together with 33.68% of the bladelets. This indicates the high usability
of blades and bladelets. Blades and bladelets underwent more
additional retouching perhaps because the technological procedure
to produce them was more complex than that for making akes.
The highest number of tools was done on akes, followed by blades,
then bladelets, cores, chunks and core rejuvenation akes (Table 5).
When viewed as a whole, almost the entire operational sequence has
been recorded in LP II, from procurement of raw materials to discarding of
tools.
37
The image of operational sequence would have been somewhat
dierent if dierent groups of raw materials were considered separately.
In this case, perhaps not all phases would have been present in individual
raw material categories, particularly if one takes into account the
(potentially) relatively great distance of (possible) assumed sources of raw
materials, but this shall be the subject of future research.
37 Only two small akes (< 1 cm) were found, and they may have been the by-
product ofnal retouching or renement of a tool at the nd-site itself; they
were added to theake category due to the small number of pieces found.
Their small number is probably due to the lack of sifting of the sediments.
neobrađeno obrađeno
kom. % g % kom. % g %
gomolj 1 0,01 95,8 0,23 0 0,00 0,0 0,00
prvotni odbojak 110 1,45 375,4 0,91 8 0,11 63,2 0,15
prvotno sječivo 2 0,03 6,6 0,02 1 0,01 11,3 0,03
prvotna pločica 0 0,00 0,0 0,00 0 0,00 0,0 0,00
drugotni odbojak 736 9,73 3310,7 8,02 128 1,69 598,5 1,45
drugotno sječivo 36 0,48 75,9 0,18 33 0,44 128,8 0,31
drugotna pločica 7 0,09 6,0 0,01 3 0,04 3,6 0,01
odbojak 2789 36,86 8543,4 20,69 547 7,23 2294,0 5,55
sječivo 232 3,07 538,9 1,30 121 1,60 458,5 1,11
pločica 63 0,83 54,3 0,13 32 0,42 24,9 0,06
jezgra 877 11,59 11100,9 26,88 31 0,41 169,3 0,41
ulomak jezgre 68 0,90 286,7 0,69 0 0,00 0,0 0,00
krijetasti komad 8 0,11 39,6 0,10 0 0,00 0,0 0,00
dotjerujući odbojak jezgre 37 0,49 176,2 0,43 4 0,05 24,7 0,06
odbojak dubila 11 0,15 21,4 0,05 0 0,00 0,0 0,00
krhotina 1666 22,02 12749,4 30,87 11 0,15 138,9 0,34
neodredivo 0 0,00 0,0 0,00 4 0,05 3,3 0,01
ukupno 6643 87,80 37381,2 90,51 923 12,20 3919,0 9,49
unretouched retouched
pcs. % g % pcs. % g %
nodule 1 0.01 95.8 0.23 0 0.00 0.0 0.00
primary ake 110 1.45 375.4 0.91 8 0.11 63.2 0.15
primary blade 2 0.03 6.6 0.02 1 0.01 11.3 0.03
primary bladelet 0 0.00 0.0 0.00 0 0.00 0.0 0.00
secondary ake 736 9.73 3310.7 8.02 128 1.69 598.5 1.45
secondary blade 36 0.48 75.9 0.18 33 0.44 128.8 0.31
secondary bladelet 7 0.09 6.0 0.01 3 0.04 3.6 0.01
ake 2789 36.86 8543.4 20.69 547 7.23 2294.0 5.55
blade 232 3.07 538.9 1.30 121 1.60 458.5 1.11
bladelet 63 0.83 54.3 0.13 32 0.42 24.9 0.06
core 877 11.59 11100.9 26.88 31 0.41 169.3 0.41
core fragment 68 0.90 286.7 0.69 0 0.00 0.0 0.00
crested piece 8 0.11 39.6 0.10 0 0.00 0.0 0.00
core rejuvenation ake 37 0.49 176.2 0.43 4 0.05 24.7 0.06
burin spall 11 0.15 21.4 0.05 0 0.00 0.0 0.00
chunk 1666 22.02 12749.4 30.87 11 0.15 138.9 0.34
indeterminate 0 0.00 0.0 0.00 4 0.05 3.3 0.01
total 6643 87.80 37381.2 90.51 923 12.20 3919.0 9.49
Tablica 5.
Litička faza II - tehnologija
Table 5.
Lithic phase II - technology
Slika 4.
Relativni odnos obrađenih i neobrađenih odbojaka, sječiva i pločica u litičkoj
fazi II
Figure 4.
Relative frequency ratio between retouched and unretouched akes, blades
and bladelets in lithic phase II
odbojci (N=3336)
akes (N=3336)
sječiva (N=353)
blades (N=353)
pločice (N=95)
bladelets (N=95)
neobrađeno
unretouhed
obrađeno
retouched
22
VAPD 104, 2011., 7-54
23
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
5.4. Litička faza II - tipologija (sl. 5, 6 i 7)
U LF II denirano je 18 tipova alatki. Najbrojniju skupinu čine
grebala, s učestalošću od 32,61 %. Među grebalima najbrojnija su
noktolika, slijede grebala na odbojku, zatim grebala na sječivu/
pločici i kružna grebala (tablica 6).
U ovoj fazi pločica s hrptom (1,95 %) gotovo je dvostruko više
od zakrivljenih šiljaka s hrptom (1,08 %). Sve pločice s hrptom
unilateralno su strmo retuširane. Za ovu fazu karakteristična je
prisutnost 2 mikrogravete (0,22 %) koje se ne javljaju u ranijoj fazi
(LF I). Komadi s obradom čine najzastupljeniji pojedinačni tip, s
učestalošću od 22,56 %. Brojni su i nazupci (13,54 %), strugala
(11,27 %), iskrzani komadići (8,45 %). Od geometrijskih mikrolita
zabilježena su dva kružna segmenta (0,22 %) i jedan pravokutnik
(0,11 %). Kao i mikrogravete, pravokutnik je tip alatke koji se javlja
samo u ovoj mlađoj fazi.
6. Usporedba LF I i LF II
LF I i LF II pokazuju znatnu tehnološku sličnost. Odbojci su
dominantna tehnološka kategorija, s učestalošću iznad 50 % u
obje faze. Krhotine su nakon odbojaka najzastupljenija kategorija,
s učestalošću od 18,75 % u LF I i 22,17 % u LF II. Učestalost i ostalih
tehnoloških kategorija gotovo je u potpunosti podudarna u obje
faze (vidi tablice 3 i 5).
Tipološka varijabilnost LF I i LF II vrlo je slična. U LF I denirano
je 17 tipova alatki, a u LF II 18. Svaka od ove dvije faze ima tipove
karakteristične samo za pojedinu fazu. Tako se samo u LF I javljaju
gravetijenski šiljci, a u LF II mikrogravete i pravokutnik. Ostali
tipovi alatki javljaju se u obje faze.
5.4. Lithic phase II - typology (Fig. 5, 6 and 7)
18 tool types were dened in LP II. The most numerous group of
tools consists of endscrapers, with a frequency of 33.61%. Among
the endscrapers, the most numerous are thumbnail endscrapers,
followed by endscrapers on akes, and then endscrapers on
blades/bladelets and circular endscrapers (Table 6).
In this phase, there are almost twice as many backed bladelets
(1.95%) as there are curved backed points (1.08%). All backed bladelets
are unilaterally retouched. The presence of two micro-Gravettes
(0.22%), which do not appear in the earlier phase (LP I), is characteristic
of this phase. Retouched pieces are the most common individual type,
with a frequency of 22.56%. Also numerous are denticulates (13.54%),
sidescrapers (11.27%), and splintered pieces (8.45%). Among the
geometric microliths, two segments (0.22%) and one rectangle (0.11%)
are present. Like the micro-Gravettes, the rectangle is a type of tool
which appears only in this younger phase.
6. Comparison of LP I and LP II
LP I and LP II exhibit considerable technological similarity. Flakes
are the dominant technological category with a frequency
higher than 50% in both phases. After akes, chunks are the most
common category with frequency of 18.75% in LP I and 22.17%
in LP II. The frequency of other technological categories almost
entirely corresponds in both phases (see Table 3 and 5).
The typological variability of LP I and LP II is quite similar. In
LP I, 17 tool types have been dened, while 18 have been dened
in LP II. Each of these two phases contains types characteristic of
only an individual phase. Thus, Gravettian points appear only in
LP I, while micro-Gravettes and a rectangle appear in LP II. The
remaining tool types appear in both phases.
litička faza II (140 - 300 cm)
Tip alatke kom. %
noktoliko grebalo 157 17,01
kružno grebalo 7 0,76
grebalo na odbojku 125 13,54
grebalo na sječivu/pločici 12 1,30
pločica s hrptom 18 1,95
zakrivljeni šiljak s hrptom 10 1,08
mikrograveta 2 0,22
kružni segment 2 0,22
pravokutnik 1 0,11
zarubak 11 1,19
strugalo 104 11,27
svrdlo 17 1,84
dubilo 17 1,84
iskrzani komadić 78 8,45
komadić sa sitnom rubnom obradom 17 1,84
komadić s obradom 199 21,56
nazubak 125 13,54
udubak 14 1,52
ulomak s obradom 7 0,76
ukupno 923 100,00
lithic phase I (140 - 300 cm)
Tool type pcs. %
thumbnail endscraper 157 17.01
circular endscraper 7 0.76
endscaper on ake 125 13.54
endscraper on blade/bladelet 12 1.30
backed bladelet 18 1.95
curved backed point 10 1.08
micro-Gravette 2 0.22
segment 2 0.22
rectangle 1 0.11
truncation 11 1.19
sidescraper 104 11.27
borer 17 1.84
burin 17 1.84
splintered piece 78 8.45
marginally retouched piece 17 1.84
retouched piece 199 21.56
denticulate 125 13.54
notch 14 1.52
retouched fragment 7 0.76
total 923 100.00
Tablica 6.
Litička faza II - tipologija
Table 6.
LLithic phase II - typology
Slika 5.
Izbor kamenih alatki iz litičke faze II. 1-8: noktolika grebala, 9: kružno grebalo, 10,
11: grebala na sječivu/pločici, 12, 13: grebala na odbojku, 14, 15: svrdla, 16-22:
pločice s hrptom, 23, 24: mikrogravete, 25, 26: kružni segmenti, 27: pravokutnik
Figure 5.
Selection of stone tools from lithic phase II. 1-8: thumbnail endscrapers, 9: circular endscraper,
10, 11: endscrapers on blades/bladelets, 12, 13: endscrapers on akes, 14, 15: borers,
16-22: backed bladelets, 23, 24: micro-Gravettes, 25, 26: segments, 27: rectangle
25 26242322
20 2119181716
1514
13
12
111098
765
4321
26
24
VAPD 104, 2011., 7-54
25
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Slika 6.
Izbor kamenih alatki iz litičke faze II. 1-5: zakrivljeni šiljci s hrptom, 6-8:
nazupci, 9, 10: iskrzani komadići, 11: udubak, 12-15: dubila
Figure 6.
Selection of stone tools from lithic phase II. 1-5: curved backed points, 6-8:
denticulates, 9, 10: splintered pieces, 11: notch, 12-15: burins
Slika 7.
Izbor kamenih alatki iz litičke faze II. 1, 2: komadići sa sitnom rubnom
obradom, 3: zarubak, 4: komadić s obradom, 5-7: strugala
Figure 7.
Selection of stone tools from lithic phase II. 1, 2: marginally retouched pieces,
3: truncation, 4: retouched piece, 5-7: sidescrapers
15141312
11
109
876
4321 5
76
3
5
21
4
26
VAPD 104, 2011., 7-54
27
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Noktolika grebala, iako su najzastupljenija među grebalima u
obje faze, brojnija su u LF II. Geometrijski mikroliti prisutni su u obje
faze, ali je njihova učestalost veća u LF II. Odnos pločica s hrptom i
zakrivljenih šiljaka s hrptom u ove dvije faze, poslužio je kao kriterij
za njihovo odvajanje, a već je prije spomenut. Učestalost zarubaka,
strugala, svrdla, iskrzanih komadića, komadića s obradom,
nazubaka i udubaka vrlo je slična. Uspoređujemo li relativnu
učestalost dubila, ona su u LF II manje zastupljena (1,84 %) negoli u
LF I (3,48 %) (sl. 8). Iako postoje određene razlike, ove dvije faze su
vrlo slične i pokazuju vrlo male razlike protokom vremena. Razlike u
litičkom materijalu mogle su biti uvjetovane trenutnim potrebama
i aktivnostima lovaca i skupljača koji su boravili u Kopačini. Važno
je istaknuti da ni među ostacima faune u Kopačini ne postoje
značajne promjene tijekom vremena. Najbrojniji su ostaci jelena
(Cervus elaphus), nakon čega slijede ostaci divljeg magarca (Equus
hydruntinus) tijekom čitavog stratigrafskog slijeda.
38
7. Petrografski tipovi korištene sirovine
7.1. Skupina crvenih radiolarita
Od ukupno 4600 nalaza, 162 nalaza ili 3,52 % su crveni radiolariti,
sa 2,67 % težinskog udjela u ukupnoj masi ispitanih artefakata
koja iznosi 22.366,39 grama (sl. 9).
38 Miracle 1996, str. 50-53.
Artefakte izrađene od crvenog radiolarita relativno je
lako prepoznati i preliminarno ih petrografski odrediti jer se
kamen ističe tipičnom pastelnom bojom, prigušenim sjajem
i neprozirnošću, a nerijetko su pod povećalom vidljivi fosili
radiolarija.
39
Kopačinski crveni radiolaritni nalazi raznih su
stupnjeva zasićenja i intenziteta crvenih, crvenosmeđih i
žutosmeđih tonova,
40
voštanog sjaja i slabe svjetlopropusnosti
ili su sasvim svjetlonepropusni.
41
Petrografski zreliji, tj. jače
silicicirani primjerci imaju izražen konkavno-konveksan lom i
39 Radiolarit (engl. radiolarite, radiolarian chert) je biogeni varijetet rnjaka koji
nastaje liticiranjem dubokomorskih (ispod CCD-crte) silicijskih muljeva
bogatih radiolarijama. Radiolarit je tvrda i gusta stijena, trobridnog školjkastog
loma, voštanog sjaja, svjetlonepropusna, crvenih i crvenosmeđih tonova, rjeđe
zelenih i sivozelenih, dok je lidit (engl. lydite) crne boje (Füchtbauer, ller 1970,
str. 487). Za radiolarite bi trebalo izbjegavati izraz radiolarijski rnjak” (eng.
radiolarian chert) jer se taj izraz rabi za tip metasomatskog rožnjaka koji obiluje
fosilima radiolarija (usp. Tišljar 2001, str. 46).
40 Crvenu boju radiolaritima, tipičnu za europski varijetet, daje uklopljeni
hematit koji potječe od crvenice isprane u sedimentacijski bazen. Sivozelenu
boju daju minerali iz skupine klorita, odnosno prevlast dvovalentnog željeza
nad trovalentnim u sedimentu (Grunau 1965, str. 196).
41 Stupnjevi transparentnosti: opaque ili svjetlonepropusno, slabo
svjetlopropusno na rubu, svjetlopropusno na rubu, svjetlopropusno,
svjetlopropusno-prozirno, prozirno.
Thumbnail endscrapers, although most common among the endscrapers
in both phases, are more numerous in LP II. Geometric microliths are
presentin both phases, but their frequency is greater in LP II. The ratio
of backed bladelets to curved backed points in both phases served as
the criterion for distinguishing them, as already mentioned previously.
The frequency of truncations, sidescrapers, borers, splintered pieces,
retouched pieces, denticulates and notches is very similar. If the relative
frequency of burins is compared, they are less frequent in LP II (1.84%)
than in LP I (3.48%) (Fig. 8). Although there are certain dierences, these
two phases are very similar and exhibit very little variation over time. The
dierences in lithic materials may have been dictated by the momentary
needs and activities of the hunter-gatherers who resided in Kopačina.
Worth emphasizing is that there are no signicant changes over time
among animal remains either. The most numerous are remains of red
deer (Cervus elaphus), followed by remains of European ass (Equus
hydruntinus), over the course of the entire stratigraphic sequence.
38
7. Petrographic types of raw materials used
7.1. Red radiolarite group
Out of the total 4,600, 162 nds or 3.52% are red radiolarites with
a 2.67% weight share in the total mass of the examined artefacts,
which is otherwise 22,366.39 g (Fig. 9).
38 Miracle 1996, pp. 50-53.
Artefacts made of red radiolarite are rather easy to recognize
and also to specify petrographically, because the stone exhibits a
typical pastel colour, subdued lustre and opacity, while radiolarian
fossils are not rarely visible under a magnifying glass.
39
The Kopačina
red radiolarite nds exhibit varying degrees of saturation and
intensity of red, red-brown and yellow-brown tones,
40
a waxy lustre
and meagre translucence, or they are completely translucent.
41
The
petrographically more mature, i.e. more silicied, examples have
marked concave and convex fraction and they are harder than those
39 Radiolarite (radiolarian chert) is a biogenetic variety of chert which emerges
by lithication of deep-sea (below the CCD-line) silicate mud rich in radiolaria.
Radiolarite is a hard and dense rock, with sharp-edged, shell-like fraction, waxy
lustre, translucent, red and red-brown tones, more rarely green and grey-green,
while lydite is black (Fürchtbauer, Müller 1970, p. 487). In case of radiolarite,
the term “radiolarian chert should be avoided, for this is used for a type of
metasomatic chert which abounds in fossil radiolaria (cf. Tišljar 2001, p. 46).
40 The red colour in radiolarites, typical of the European variety, is provided
by incorporated haematite which originates in red soils weathered in
sedimented basins. The grey-green colour is provided by the minerals of
the chlorite group, i.e. the predominance of divalent iron over the trivalent
variety in the sediment (Grunau 1965, p. 196).
41 Degrees of transparency: opaque or translucent, poorly translucent at
the edge, translucent at the edge, translucent, translucent-transparent,
transparent.
Slika 8.
Usporedba učestalosti tipova alatki u litičkoj fazi I i litičkoj fazi II
Figure 8.
Relative frequency comparison of tool types in lithic phase I and lithic phase II
Slika 9.
Brojčana i težinska učestalost petrografskih skupina korištene sirovine iz
Kopačine
Figure 9.
Numerical and weight frequency of petrographic groups of used raw
materials from Kopačina
noktoliko grebalo / thumbnail endscraper
kružno grebalo / circular endscraper
grebalo na odbojku / endscraper on ake
grebalo na sječivu/pločici / endscraper on blade/bladelet
pločica s hrptom / backed bladelet
zakrivljeni šiljak s hrptom / curved backed point
mikrograveta / micro-Gravette
gravetijenski šiljak / Gravettian point
segment / segment
pravokutnik / rectangle
zarubak / truncation
strugalo / sidescraper
svrdlo / borer
dubilo / burin
iskrzani komadić / splintered piece
komadić sa sitnom rubnom obradom /
marginally retouced piece
komadić s obradom / retouched piece
nazubak / denticulate
udubak / notch
ulomak s obradom / retouched fragment
kom. (ukupno 4600 kom.)
pcs. (total 4,600)
težina (ukupno 22366,39 g)
weight (total 22,366.39 g)
radiolarit crveni
red radiolarite
radiolarit zeleni
green radiolarite
rožnjak numulitni
nummulite chert
rožnjak mikritni
micrite chert
rožnjak bioklastični
bioclastic chert
rožnjak crni
black chert
skupina nalaza razne petrograje
group of finds with differing petrography
rožnjak žareni
burned chert
28
VAPD 104, 2011., 7-54
29
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
coarser structures, which is an indication of the poor condition of the
stone or a signicant share of minerals from neighbouring stones.
42
Granularity is not visible to the naked eye, and the edges are smooth
and sharp. The hardness of the stone of those nds that are entirely
silicied is 6.5 to 7 according to the Mohs scale.
43
The technical
quality of the stone in most of the nds from this group is very good
to excellent.
44
When petrographically determining radiolarites under
a scope with a magnication factor of 10, it is possible to see dots
with a diameter of 0.2 mm, which can rarely be seen with the naked
eye. White dots, almost always regular circles, are the imprints of
radiolarian skeletons, whose fossil cavities were most often lled
with calcite from pore water, while the black dots are the fossils
remains of radiolaria, skeletons primarily composed of opal-B, which
in the diagenesis of the sediment recrystallizes into cryptocrystalline
quartz or brous chalcedony.
45
Microscopic examples indicate a non-
uniform structure and unequally preserved fossil radiolaria (Fig. 10).
46
Radiolarian fossils are recognized by the regular circular or
ellipsoidal accretions lled with brous and spherulite chalcedony
42 In such examples, the picture of the fossils is clearer, because the radiolaria
are less recrystallized.
43 Relative hardness based on scratch resistance is measured by a test rod
with mineral grains of specied hardness.
44 Degrees of technical quality of stone: poor, good, very good, excellent.
45 Radiolaria are plankton rhizopod protozoa which build their skeletons
from opal (amorphous silicic acid, SiO
2
x nH
2
O). Most often the fossilized
remains consist of the contours (traces of radial pseudopodia) of larger
skeletons of dead plankton (spherical or discoid species of Spumellaria
and conical Nassellaria, φ 0.005-0.25 mm), lithied in radiolarian mud
which emerges by sedimentation of decomposed tiny skeletons
(Fürchtbauer, Müller 1970, p. 479).
46 All microscopic images made by Z. Perhoč 2010.
tvrđi su od onih grublje strukture koja je znak trošnosti kamena
ili značajnijeg udjela minerala susjedne stijene.
42
Zrnatost nije
uočljiva prostim okom, bridovi su glatki i oštri. Tvrdoća kamena
onih nalaza koji su sasvim silicicirani je 6,5 do 7 prema Mohsovoj
skali.
43
Tehnička kakvoća kamena većine nalaza iz ove skupine je
vrlo dobra i odlična.
44
Pri petrografskom određivanju radiolarita
pod povećalom s povećanjem od 10 puta, moguće je vidjeti
točkice promjera oko 0,2 mm, rijetko prostim okom. Bijele točkice,
gotovo redovito pravilni krugovi, otisci su skeleta radiolarija čija
je fosilna šupljina najčešće zapunjena kalcitom iz pornih voda,
dok crne točkice predstavljaju fosilne ostatke radiolarija, skeleta
primarno izgrađenih od opala-B, koji u dijagenezi sedimenta
rekristalizira u kriptokristalni kvarc ili vlaknasti kalcedon.
45
Mikroskopirani primjerci pokazuju neujednačenu strukturu i
nejednako očuvane fosile radiolarija (sl. 10).
46
Fosili radiolarija prepoznaju se po pravilnim kružnim ili
elipsoidnim nakupinama ispunjenim broznim i sferulitnim
kalcedonom u gustom mikrokristalnom i kriptokristalnom
kvarcnom matriksu (sl. 11).
47
42 U takvim je primjercima slika fosila jasnija jer su radiolarije manje
rekristalizirane.
43 Relativna tvrdoća prema paranju mjeri se ispitnim štapićima s mineralnim
zrnima određene tvrdoće.
44 Stupnjevi tehničke kakvoće kamena: loša, dobra, vrlo dobra, odlična.
45 Radiolarije su planktonske protozoe rhizopoda koje svoje skelete grade
od opala (amorfne silicijske kiseline, SiO
2
x nH
2
O). Fosilno sačuvani
ostaju najčešće obrisi (tragovi radijalnih pseudopodija) krupnijih skeleta
uginulih planktona (kuglasta ili diskoidna vrsta spumellaria i stožasta
nassellaria, φ 0,005-0,25 mm), liticirani u radiolarijskom mulju koji nastaje
sedimentiranjem rastvorenih sitnijih skeleta (Füchtbauer, Müller 1970, str.
479).
46 Sve mikrosnimke izradio Z. Perhoč 2010.
47 Na nabrusku s binokularnim i u izbrusku s polarizacijskim mikroskopom.
Pod većim povećanjem relikti pseudopodija radiolarija
vidljivi su kao nazubljeni rubovi fosila. Radiolarije dobro vidljive u
izbrusku, moguće je uočiti već na nabrusku (sl. 12).
Primjerci koji makroskopski u svemu odgovaraju radiolaritnoj
stijeni, bez jasno vidljivih radiolarija na nabrusku ili s tek vidljivim
duhovima” fosila, pridruženi su istoj skupini.
48
Radiolaritne
stijene često su tektonski poremećene, raspucane okomito na
taložnu plohu i prošarane bijelim, crnim, narančasto-žućkastim,
zelenkastoplavim žilicama koje nastaju cementiranjem tako
nastalih pukotina kalcedonom ili mikrokristalnim kvarcom,
nerijetko i kalcitom. Na manjem broju nalaza vidljiva je valutična
okorina posuta udarnim napuklinama
49
(10 odbojaka, dvije
jezgre i jedna velika krhotina), što dokazuje da su tehnološke
jezgre preparirane od dobro zaobljenih valutica i da je barem dio
radiolaritnih artefakata proizveden in situ.
50
48 U radiolaritima fosili radiolarija nisu uvijek prisutni ili vidljivi (usp.
Füchtbauer, Müller 1970, str. 487-491.). Za nomenklaturu pojmova
“radiolarit”, “radiolarijski rožnjak, vidi u Halamić, Šošić Klindžić 2009, str. 20.
49 Udarne napukline, engl. impact marks, crush marks, percusions marks,
crescentic impact marks (Pettijohn 1957, str. 71), njem. Rindenvernarbung,
Schlagnarben, Vernarbung der Rinde (Floss 1994, str. 98, 99), sporedna je
petrografska strukturna značajka kore krupnijeg šljunčanog zrna, valutica
i oblutaka. Te napukline su površinski lik konkavno-konveksnog loma
(tzv. školjkasti lom) na valutičnoj kori tvrdih, sitnozrnih i homogenih
uglavnom silicijskih ili siliciciranih stijena. Do napuknuća kamena dolazi
u procesu trošenja stijena, tijekom uvijalnog ili marinskog transporta u
vodi visoke energije, kad se lom uzrokovan udarcem kamena o kamen
nema prilike potpuno razviti, tj. kad se udareni i pritisnuti dio kamena ne
odlome, a lomna brazda bude “zaustavljena”, odnosno kad je kinetička sila
podređena inerciji mase kamena.
50 Stupnjevanje zaobljenosti po modelu Russel-Taylor-Pettijohn (Müller
1964, str. 108).
in a dense micro- and cryptocrystalline quartz matrix (Fig. 11).
47
Under greater magnication, relics of radiolarian pseudopodia
are visible as serrated fossil edges. Radiolaria are easily visible in
the thin-section, and already noticeable on the polished section
(Fig. 12).
Examples that macroscopically correspond to radiolarite rock
in all aspects, without clearly visible radiolaria on the thin-section
or only with discernable “phantoms” of fossils, were put together in
the same group.
48
Radiolarite rocks are often tectonically damaged,
vertically ssured on the deposit surface and interspersed with
white, black, orange-yellow and green-blue veins which are
created by the cementing of such ssures by chalcedony or
microcrystalline quartz, and, occasionally, calcite as well. A rind
of pebbles with scattered impact marks
49
is visible on a smaller
number of nds (10 akes, 2 cores and 1 large chunk), which
demonstrates that technological cores were prepared from well
rounded pebbles and that at least some of the radiolarite artefacts
were produced in situ.
50
Consequently, the red radiolarite used in the Kopačina
products was gathered at allochthonous outcrops, in gravel. Based
on the spherical nature of the weathering rinds, we postulate
that these were pebbles with granulometry of medium gravel.
51
There are no autochthonous radiolarite deposits on the islands,
nor in Dalmatias coastal belt. An insular allochthonous outcrop
of radiolarite pebbles is highly unlikely,
52
while there is no reason
to speak of Apennine
53
and Pannonian-Carpathian
54
deposits,
so following the principle of nearer to farther, we may take into
consideration deposits and outcrops in the nearer and more
remote hinterland and the lands on the Eastern Adriatic side.
Conglomerates containing radiolarite (and chert) components are
47 On polished section with binocular microscope and thin-section with
polarized light microscope.
48 In radiolarites the radiolarian fossils are not always present nor visible
(cf. Fürchtbauer, Müller 1970, pp. 487-491). For the nomenclature terms
“radiolarite and “radiolarian chert, see Halamić, Šošić Klindžić 2009, p. 20.
49 Impact marks, also crush marks, percussion marks, crescentic impact marks
(Pettijohn 1957, p. 71), Cro. udarne napukline, Germ. Rindenvernarbung,
Schlagnarben, Vernarbung der Rinde (Floss 1994, 98, 99), are ancillary
petrographic structural traits of the crust of larger gravel grains, pebbles
and cobbles. These marks are the surface image of concave-convex
fraction (so-called shell fraction) on the pebbled crust of hard, ne-grain
and homogenous, generally siliceous or silicied rocks. Cracks in the stone
appear during the process of weathering of the rock, during uvial or
marine conveyance in high-energy water when the breakage caused by
rocks striking each other does not have the opportunity to expand, and
the break ssure is “halted”, i.e., the kinetic force is subordinated to the
inertia of the stone’s mass.
50 Grading of roundness based on Russel-Taylor-Pettijohn model (Müller
1964, p. 108).
51 Pebbles, specication according to Wentworth’s granulometric scale,
dimensions from 4 to 64 mm (Müller 1964, p. 57).
52 Perhoč, in preparation.
53 Maggi et al. 1995, p.187.
54 Biro et al. 2009.
Slika 10.
Crveni radiolarit. Polarizacijski
mikroskop, polarizirano svjetlo
Figure 10.
Red radiolarite. Polarized light
microscope, polarized light
Slika 11.
Crveni radiolarit. Polarizacijski
mikroskop, ukršteni nikoli
Figure 11.
Red radiolarite. Polarized light
microscope, crossed polars
Slika 12.
Crveni radiolarit. Binokularni
mikroskop, nabrusak
Figure 12.
Red radiolarite. Binocular
microscope, polished section
30
VAPD 104, 2011., 7-54
31
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Prema svemu ovome, crveni radiolarit je za kopačinske
izrađevine bran na izdancima alohtonog tipa, u šljuncima. Prema
sferičnosti valutičnih okorina procjenjujemo da se radilo o
valuticama granulometrije srednjeg šljunka.
51
Autohtonih ležišta
radiolarita na otocima nema, kao ni u obalnom pojasu Dalmacije.
Otočni alohtoni izdanak radiolaritnih valutica malo je vjerojatan
52
,
o apeninskim
53
i panonsko-karpatskim
54
ležištima nemamo
povoda diskutirati, stoga slijedom principa od bližeg prema
daljem uzimamo u obzir ležišta i izdanke u bližem i daljem zaleđu i
zemljama na istočnoj jadranskoj strani.
Konglomerati s radiolaritnim (i rožnjačkim) komponentama malo
su vjerojatan izvor sirovine, i to samo u slučaju erodiranih valutica
iz takvih stijena. Radiolarijske valutice iz prominskih konglomerata
zabilježene su kod Drivenika u Vinodolu.
55
Konglomerati na
području južnog Velebita pored rožnjačkih sadrže i radiolarijske
valutice.
56
Arheološka relevantnost navedenih izdanaka nije nam
poznata. Izdanak konglomerata tipa Promina kod Benkovca i
Šopota, prema našim zapanjima, sadrži vrlo istrošene i arheolki
uglavnom nevažne rožnjačke komponente, dok radiolaritne valutice
nismo zapazili.
57
Međutim, valutice radiolarita i drugih silicijskih
i siliciciranih stijena arheološki relevantne kakvoće, količine i
dostupnosti, zapazili smo u kvartarnom sedimentu Ravnih kotara kod
Ražanca, nastalim vjerojatno erozijom okolnih konglomerata.
58
Vjerojatniji izvor kopačinskih radiolaritnih valutica je rijeka
Neretva. Pretraživanjem recentnog nanosa i terasa (u šljuarama)
Neretve na nekoliko mjesta, kod Čeljeva i drugdje uzvodno do
Pitelja, odnosno do utoka Drežanke u Neretvu u Bosni i Hercegovini,
osim nekoliko tipova rnjaka u šljunku smo ustanovili manju
koncentraciju crvenog (crveno-zelenog i crnog) radiolarita solidne
kakvoće.
59
Ako je radiolarit u prapovijesti bran na Neretvi, to je moglo
biti na šljunku akumuliranom na obali, na prudovima ili na riječnoj
terasi bilo kojeg dijela njezina toka, te u gornjoj lepezi delte rijeke.
Tijekom kasnoglacijalnog maksimuma delta Neretve lala je u
Korčulanskom kanalu, vjerojatno nedaleko od linije dannjeg otoka
51 Valutice (engl. pebble), određenje prema granulometrijskoj skali
Wentwortha, dimenzija od 4 do 64 mm (Müller 1964, str. 57).
52 Perhoč, u pripremi.
53 Maggi et al. 1995, str. 187.
54 Biro et al. 2009.
55 Tišljar 2004, str. 129, 215.
56 Ivanović et al. 1976.
57 Prominski konglomerati rasprostranjeni su u Ravnim kotarima,
Dalmatinskoj zagori i u zapadnoj Hercegovini. Treba upozoriti na
raznovrsnost strukture konglomerata iste i različite geološke starosti,
osobito s arheološkog aspekta tehničke pogodnosti rožnjačkih valutičnih
komponenti tih stijena. Stoga je terensko istraživanje s ciljem prikupljanja
uzoraka za korelaciju s artefaktima neizostavno.
58 O lokalnim izvorima rožnjaka srednjopaleolitičkih artefakata u Ravnim
kotarima, vidi u Vujević 2009.
59 Petrografsko određenje radiolaritnih valutica iz Neretve, Perhoč
neobjavljeno istraživanje 2009. Radiolarit u Neretvu dospijeva vjerojatno
u njenom gornjem toku iz zone bosanskog iša, a jednim dijelom iz
ladinika okolice Konjica, Jablanice i Drežnice (usmeno priopćenje dr. sc.
Hazima Hrvatovića, Federalni geološki zavod BiH, 2011.).
Šćedra kod Hvara i u tada j neotni dalmatinski bazen naplavljivala
golemu količinu šljunka.
60
Reljef kasnoglacijalnog jadranskog okoliša,
bitno drugačijeg izgleda od dannjeg zbog znatno niže morske
razine, ostavlja otvorenim mogućnost prikupljanja sirovine iz šljunka
Paleoneretve na prostoru koji je danas potopljen.
Sljedeći mogući izvor radiolarita korištenog u prapovijesnoj litičkoj
industriji su izdanci u zoni Budva koja se proteže od Herceg Novog
(najsjeverniji izdanci isklinjavaju u Konavlima) do Sutomora u Crnoj
Gori i dalje na jug do Grčke.
61
Brojni su izdanci radiolarita na obroncima
crnogorskoprimorskih planina u pojasu širokom nekoliko kilometara
koji dopire do obale, ulazi u more i nastavlja se na obližnjim otočićima.
Na žalu obale kod Herceg Novog, a narito na potezu od Budve do
Svetog Stefana, zabilježili smo veliku koncentraciju valutica i oblutaka
od crvenog radiolarita. Pristupačnost tih crnogorskih izdanaka,
obilatost radiolarijskih valutica i oblutaka na žalu vrlo dobre do odlične
tehničke kakvoće, svakako treba uzeti u obzir kao mogući izvor sirovine
u prapovijesnoj litičkoj proizvodnji u našem radnom prostoru i šire.
Ipak, najvjerojatniji izvor valutica od kojih su izreni kopačinski
radiolaritni artefakti jesu šljunčani agregati rijeka i potoka u središnjoj
oolitnoj zoni unutrašnjih Dinarida.
62
U oolitnom melangeu, koji
zauzima najveći prostor kompleksa Krivaja-Konjuh
63
u oolitnoj zoni,
pored ostalih stijena u šejl-siltnom matriksu, ima i radiolarita.
64
Jakob
Pam za stijene radiolarita koje je moge kartirati u kontekstu
svjetskog oolitskog kompleksa, uvodi termin “radiolarit formacija.
Radiolarit formacija se pojavljuje duž krajnje jugozapadne margine
60 Šegota 1979, str. 32.
61 U zoni Budva najsjeverniji su izdanci mezozojskih (jura, donja i srednja
kreda) dubokomorskih sedimenata s radiolaritima u vanjskim Dinaridima
istočnog Jadrana. Zona Budva nastavlja se na jug preko zone Krasta-
Cukali u Albaniji do zone Pindos-Olonos u Grčkoj. Facijalni razvoj zone
Budva u tijesnoj je vezi s tektonikom susjedne platforme Visokog krasa
što je rezultiralo izmjenom karbonatnih i kremičnih naslaga. Sedimenti
zone Budva, nastali od trijasa do paleogena, predstavljeni su naslagama
pješčenjaka, iša, vulkansko-sedimentnih stijena, siliciciranih vapnenaca,
vapnenaca s nodularnim i prugastim rožnjacima, radiolarita, šejlova i
vapnenaca (Goričan 1994, str. 8-11).
62 Ooliti su zajednica intruzivnih i efuzivnih stijena te silicijskih i klastičnih
sedimenata koji se na našem interesnom području protežu od Banovine
preko Bosne u pravcu Makedonije, a pripadaju europskom oolitnom
kompleksu (Tišljar 2004, str. 219; Pamić, Hrvatović 2000, str. 60). Radiolariti
koji su petrogenetski povezani s oolitima, na europskom prostoru se
tijekom srednjeg trijasa, u razdoblju od srednje do gornje jure i donje
krede sedimentiraju u eugeosinklinali Thetisa, a pojavljuju se u jurskim
Alpama, sjevernim europskim područjima (Šumava, Türinger Wald, Harz,
Norveška i Škotska) i južnim, od Sredozemlja preko Karpata te dalje
prema Srednjem istoku (Grunau 1965, str. 157, 191).
63 Krivaja-Konjuh oolitni kompleks predstavlja najveći dio Dinarske oolitne
zone jurske starosti s gornjotrijaskim olistolitima. Osim Krivaje-Konjuh,
središnji dinarski oolitni pojas čine masivi Banija, Kozara, Vrbanja-Čelinac-
Skatavica-Šnjegotinja, Ljubić-Čavka, Bosanski Ozren, Boja, Vardar-Tara-
Zlatibor i Sjenički Ozren (Lugović et al. 1991, str. 202).
64 Kompleks Krivaja-Konjuh čine stijenska tijela gabra, diabaz-bazalta,
ambolita i oolitnog melangea. Oolitni melange čine fragmenti
radiolarita, grauvake, bazalta, tufa, dijabaza, gabra, serpentiniziranog
peridotita i egzotičnog vapnenca (Pamić, Hrvatović 2000, str. 60, 61).
a rather improbable source of raw materials, and only in the case of
eroded pebbles from such rocks. Radiolarian pebbles from Promina
conglomerates have been recorded at Drivenik, in Vinodol.
55
Conglomerates on the territory of southern Velebit contain,
besides chert, radiolarian pebbles as well.
56
The archaeological
relevance of these outcrops is not known. The outcrop of Promina-
type conglomerates at Benkovac and Šopot contain, based on our
observations, very worn and archeologically generally negligible
chert components, while we noted no radiolarite pebbles.
57
However, pebbles of radiolarite and other siliceous and silicied
rocks of archeologically relevant quality, quantity and accessibility
have been noticed in the quaternary sediment of Ravni Kotari
at Ražanac, probably created by the erosion of the surrounding
conglomerates.
58
The more likely source of the Kopačina radiolarite pebbles is
the Neretva River. Upon examination of recently formed alluvium
and terraces (in gravel pits) along the Neretva at several places, at
Čeljevo and elsewhere upstream to Počitelj, i.e., up to the mouth
of the Drežanka into the Neretva in Bosnia-Herzegovina, we have
ascertained, besides several types of chert, a small concentration
of red (red-green and black) radiolarites of suitable quality in the
gravel.
59
If radiolarite was gathered along the Neretva in prehistory,
this may have been done on gravel accumulated on bar, on sand
bars or on riverine terraces at any part of its course, in the upper
fan of the river’s delta. During the Late Glacial Maximum, the
Neretva Delta lay in the Korčula Channel, probably not far from the
line of today’s island of Šćedro, near Hvar, and in the then as-yet
non-insular Dalmatian basin composed of an enormous quantity
of gravel.
60
The relief of the glacial Adriatic environment, essentially
dierent from the appearance of today’s due to the considerably
lower sea level, left open the possibility of gathering raw materials
from the paleo-Neretvas gravel in an area that is today submerged.
The next possible source of radiolarites used in the prehistoric
lithics industry is the outcrops in the Budva zone, which extends
from Herceg Novi (the northernmost outcrops protrude in
Konavle) to Sutomore in Montenegro and farther south into
55 Tišljar 2004, pp. 129 and 215.
56 Ivanović et al. 1976.
57 Promina conglomerates are widespread in Ravni Kotari, the Dalmatian
highland interior (Zagora) and western Herzegovina. The diversity of the
structure of conglomerates of the same or dierent geological ages must
be underlined, particularly from the archaeological standpoint of technical
suitability of the chert pebble components of these rocks. Field research for
the purpose of gathering samples to correlate with artefacts is thus essential.
58 On local sources of the cherts in middle Palaeolithic artefacts in Ravni
Kotari, see Vujević 2009.
59 On the petrographic specication of radiolarite pebbles from the Neretva,
see Perhoč’s unpublished research in 2009. Radiolarite gravel from the
Neretva comes probably in its upper course from the Bosnian ysch zone
and partly from Ladinian surrounding Konjic, Jablanica and Drežnica
(personal communication with Hazim Hrvatović, Ph.D. Federal Geology
Department of Bosnia-Herzegovina, 2011).
60 Šegota 1979, p. 32.
Greece.
61
There are numerous outcrops of radiolarites on the
foothills of Montenegrin mountains in a belt of several kilometres
which reaches to the seashore, enters the sea and continues to
the nearby islands. On the beach at Herceg Novi, and particularly
along the stretch from Budva to Sveti Stefan, we have recorded
a high concentration of red radiolarite pebbles and cobbles. The
accessibility of these Montenegrin outcrops and the abundance
of radiolarite pebbles on the beach, which are of very good to
excellent technical quality, should certainly be taken into account
as a possible source of raw materials for the prehistoric lithic
industry in the relevant working area and beyond.
Nonetheless, the most likely source of the pebbles used to
make the Kopačina radiolarite artefacts is the gravel aggregates of
the rivers and streams in the central ophiolite zone of the Dinaric
interior.
62
The ophiolite mélange, which occupies the largest space
in the Krivaja-Konjuh complex
63
in the ophiolite zone, contains,
besides other rocks in the shale-silt matrix, radiolarites as well.
64
Jakob Pamić introduced the term “radiolarite formation” for rocks
which may be mapped in the context of the global ophiolite
complex. The radiolarite formation appears all along the extreme
south-west margins of the Dinaric ophiolite zone, together with
igneous rock and fragments incorporated into the ophiolite
mélange, and it borders with the Bosnian ysch. In some areas of
61 The Budva zone has the northernmost outcrops of Mesozoic (Jurassic,
lower and middle Cretaceous) deep-sea sediments with radiolarites in
the external Dinaric Alps of the Eastern Adriatic seaboard. The Budva zone
continues southward through the Krasta-Cukali zone into Albania up to the
Pindos-Olonos zone in Greece. The facial development of the Budva zone
is intimately tied to the tectonics of the neighbouring High Karst Plateau
which resulted from an exchange of carbonate and silicon deposits. The
sediments of the Budva zone, created from the Triassic to the Palaeogene,
are represented by deposits of sandstone, ysch, igneous-sedimentary rock,
silicied limestone, limestone, limestone with nodular and striped cherts,
radiolarites, shales and limestones (Goričan 1994, pp. 8-11).
62 Ophiolites are a community of intrusive and eusive rocks and silicate and
clastic sediments which extend in the area of interest relevant to this work
from Banovina though Bosnia toward Macedonia, and they belong to the
European ophiolite complex (Tišljar 2004, p. 219; Pamić, Hrvatović 2000, p.
60). Radiolarites petrogenetically tied to ophiolites sedimented in Europe
during the mid-Triassic, mid- to late Jurassic and lower Cretaceous in the
eugeosynclinal of Thetis, and they appear in the Jurassic Alps, northern
(Šumava, Türinger Wald, Harz, Norway and Scotland) and southern Europe,
from the Mediterranean through the Carpathians and onward to the
Middle East (Grunau 1965, pp. 157, 191).
63 The Krivaja-Konjuh ophiolite complex constitutes the largest portion of
the Dinaric ophiolite zone of Jurassic age with upper Triassic olistoliths.
Besides Krivaja-Konjuh, the central Dinaric ophiolite belt consists of
the Banija, Kozara, Vrbanja-Čelinac-Skatavica-Šnjegotinja, Ljubić-Čavka,
Bosanski Ozren, Boja, Vardar-Tara-Zlatibor and Sjenički Ozren massifs
(Lugović et al. 1991, p. 202.)
64 The Krivaja-Konjuh complex consists of rock bodies of gabbro, diabase-
basalt, amphibolite and ophiolite mélange. Ophiolite mélange consists
of fragments of radiolarite, greywacke, basalt, tufa, diabase, gabbro,
serpentinized peridotite and exotic limestone (Pamić, Hrvatović 2000, pp.
60, 61).
32
VAPD 104, 2011., 7-54
33
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
dinaridne oolitne zone, u zajednici s vulkanskim stijenama i
fragmentima uključenim u oolitski melange te graniči s bosanskim
išom. U nekim područjima bosanskoga iša debljina sekvence
proslojaka radiolarita, šejla i mikrita iznosi do 10 metara. Osim
radiolarit formacije na području kompleksa Krivaja-Konjuh unutar
središnjeg pojasa dinaridskog oolita, u istočnom pojasu su radiolariti
kartirani u paleozojsko-trijaskoj formaciji zone Golija. Radiolariti s
područja kompleksa Krivaja-Konjuh uglavnom su crvene boje (Pamić
navodi inačicu jaspis), preslojavaju se sa šejlom, rijetko s mikritom, a u
nekim područjima se radiolariti ravnomjerno izmjenjuju s mikritima.
Radiolarit formacija se stratigrafski proteže od kasnog trijasa do
krede.
65
Fragmenti radiolaritnih stijena iz primarnih ležišta oolitnog
melangea i radiolarit formacije, erozivnim procesima dospijevaju u
bosanske rijeke i tijekom transporta zaobljuju se u valutice i oblutke.
66
Osim kopačinskih, crvene (zelene i crne) radiolaritne artefakte,
kako alatke tako i tehnološki ostatak, ustanovili smo u istodobnom
inventaru Vele spile, a predmnijevamo ga i u inventaru Badnja.
67
Navedene hipoteze o mogućim i vjerojatnim izvorima radiolarita
korištenih u proizvodnji kopačinskih artefakata, treba potvrditi
daljnjim geoarheološkim terenskim istraživanjem izdanaka
radiolarita kao i laboratorijskim uspoređivanjem artefakata i
petrografskih uzoraka tih stijena.
68
7.2. Skupina zelenih radiolarita
Samo 1,45 % težine analizirane litike čine artefakti izrađeni od
kamena zelene boje, odnosno 99 nalaza ili 2,15 % od ukupnog
broja, ipak značajnih za problematiku provenijencije sirovine (sl.
9) jer su petrografski, izuzevši boju i odsutnost okorine, srodnici
crvenih radiolarita.
65 Radiolarite čine brojne radiolarije sastavljene od kalcedona i opala
s malim primjesama kalcita, sitnih zrnaca hematita i organske tvari.
Mikriti su kalcitični ili su silicicirani. Šejlove izgrađuju minerali gline,
kvarc, feldšpat i hematit u crvenim varijetetima, a organska materija u
tamnosivim (Pamić 2000, str. 70).
66 Prema Pamić, Hrvatović 2000, str. 67; Pamić 2000, str. 70 i osobnom priopćenju
dr. Hazima Hrvatova (Federalni geolki zavod BiH, Sarajevo 2010). Perh,
nobjavljeno istraživanje.
67 Crvene radiolaritne artefakte za sada smo zabilježili još u litičkim
inventarima prapovijesnih nalazišta na otocima Veloj Palagruži i Sušcu te u
pećini Vlakno na Dugom otoku i drugim nalazištima na prostoru Hrvatske,
u pećini Zala u Gorskom kotaru, Vindiji, Ozalj-gradu, Bapskoj (Perhoč,
neobjavljena istraživanja). Zahvaljujemo arheolozima dr. sc. Marcelu Buriću,
mr. sc. Borisu Čargu, dr. sc. Staši Forenbaheru, dr. sc. Branku Kiriginu, Mati
Parici, Dinku Radiću, Branki Stergar, Marini Šimek i dr. sc. Dariju Vujeviću, što
su nam omogućili pregled inventara navedenih nalazišta.
68 Analogno nalazu minerala krom-spinela (akcesorni mineral oolitnih
stijena) u artefaktu od crvenog radiolarita iz Vele spile s Korčule, takve
artefakte možda je moguće korelirati s bosanskim oolitskim izvorima
ili njima bliskima. Na vezu krom-spinela i oolitskih stijena upozorio
nas je geolog Professor Rainer Altherr, Institut für Geowissenschaften,
Rupprecht-Karls-Universität Heidelberg, 2009 (usp. Majer, Jurković 2001,
str. 337).
the Bosnian ysch, the thickness of the sequence of radiolarite, shale
and micrite interlayers reaches up to 10 m. Besides the radiolarite
formation in the territory of the Krivaja-Konjuh complex inside
the central belt of the Dinaric ophiolite, radiolarites have been
mapped in the Palaeozoic-Triassic formation of the Golija zone
in the eastern belt. Radiolarites from the Krivaja-Konjuh complex
are generally red (Pamić uses the variant jaspis), they overlay with
shale, and more rarely with micrite, although in some regions
there is uniform alteration between radiolarites and micrites. The
radiolarite formation stratigraphically extends from the late Triassic
to the Cretaceous.
65
Fragments of radiolarite rock from the primary
deposits of the ophiolite mélange and the radiolarite formation
reached Bosnian rivers by means of erosive processes and assumed
the form of pebbles and cobbles during conveyance.
66
Besides the Kopačina red (green and black) radiolarite artefacts,
both tools and technological remainders, we have ascertained a
coterminous inventory in Vela Spila, and we have also assumed its
existence in the inventory of Badanj.
67
This hypothesis on possible and
probable sources of the radiolarites in the production of the Kopačina
artefacts should be conrmed by further geoarchaeological eld
research into radiolarite outcrops and in laboratory comparisons of
artefacts and petrographic samples from these rocks.
68
7.2. Group of green radiolarites
Only 1.45% of the weight of the analyzed lithics consists of
artefacts made of green-coloured stones, or 99 nds or 2.15% of
the total number, which is nonetheless signicant to the problem
surrounding the origin of the raw materials (Fig. 9) because
petrographically - excepting the colour and absence of cortex -
they are akin to red radiolarites.
65 Radiolarites consist of numerous radiolaria composed of chalcedony
and opal with tiny admixtures of calcite, ne grains of haematite and
organic substances. Micrites are calcitic or silicied. Shales are composed
of minerals of clay, quartz, feldspar and haematite in red varieties, and
organic matter in dark grey (Pamić 2000, p. 70).
66 Based on Pamić, Hrvatović 2000, p. 67; Pamić 2000, p. 70 and personal
communication Hazim Hrvatović, Ph.D. (Federal Geology Department of
Bosnia-Herzegovina, Sarajevo), 2010. Perhoč, unpublished research.
67 For now, we also have recorded red radiolarite artefacts in the lithics
inventories of prehistoric sites on the islands of Vela Palagruža and Sušac
and Vlakno Cave on the island of Dugi and other sites in Croatia, in Zala
Cave in Gorski Kotar, Vindija, Ozalj-grad, and Bapska (Perhoč, unpublished
research). We would like to thank archaeologists Marcel Burić, Ph.D., Boris
Čargo, Ph.D., Stašo Forenbaher, Ph.D., Branko Kirigin, Ph.D., Mate Parica,
Dinko Radić, Branka Stergar, Marina Šimek and Dario Vujević, Ph.D. for
allowing us to examine the inventory of these sites.
68 By way of analogy to the discovery of chrome-spinel (an accessory mineral
of ophiolite rocks) in a red radiolarite artefact from Vela Spila on Koula,
such artefacts may be correlated with Bosnian ophiolite and similar sources.
The link between chrome-spinel and ophiolite rocks was pointed out to us
by geologist Professor Rainer Altherr, Ph.D., Institut für Geowissenschaften,
Rupprecht-Karls-Universität Heidelberg, 2009 (cf. Majer, Jurković 2001, p. 337).
The stone in the artefacts with cherty appearance from this group
is green or grey-green,
69
with sharp concave and convex fraction,
waxy lustre and weak to medium translucence at the thin edges,
homogenous, dense, quite tough and hard.
70
Rare, very tiny yellow
and red grains, probably haematite, are visible in the matrix in thin-
sections. In thin-sections under a polarized light microscope with
crossed Nicols, we have ascertainedint stone with the customary
micro- to crypto-crystalline mosaic structure of the matrix and
bundles of brous chalcedony in radial or spherulitic growth. In plane-
polarised light, the radiolaria overlaying one another are visible (Fig.
13).
71
Radiolaria in this stone are dicult to observe macroscopically.
It is interesting that in the green group there are almost no nds
with an unambiguously determinate rind of pebbles. A rind was only
observed on two examples, but on such a small surface that it was
not possible to determine whether this was a rind of pebbles or a
surface interlayers.
72
Thus, for now it remains unclear as to whether
the raw materials for the green radiolarite artefacts were gathered
from autochthonous or allochthonous outcrops. Green (and black)
radiolarites of excellent quality as among the ophiolites of Banija
with the outcrop at Lasinja,
73
macroscopically correspond entirely
with the Kopačina nds, so this indicates possible sources of raw
materials in the belt of Dinaric ophiolite and Bosnian ysch.
74
Only two green radiolaritends appear alongside the red
examples. One has a laminary structure, with sharply divided colours,
while the other, on which a rind of pebbles with impact marks has
been preserved, has overlapping green and red. We have classied
them in the red radiolarite group. It should be noted that the red
or green colour of radiolarites depends on the di- and trivalent iron
which pigments primarily transparent mineral quartz or chalcedony,
and that multi-coloured radiolarite rocks in the same outcrop are
not rare. How much the colour of the rocks in these artefacts may
contribute to determining the origin of their sources will be shown
69 10GY5/2.
70 According to personal communication from Ilona Fin, Microscopic
Solution Workshop, Institut für Geowissenschaften, Universität Heidelberg
2010.
71 We would like to thank geologists Jožica Zupanič, Ph.D. and Dražen
Kurtanjek, Ph.D., Faculty of Science and Mathematics, Zagreb, who helped
us resolve this petrographic dilemma.
72 Here the surface of interlayers designates the part of the rock where
it contacts another of the same or dierent petrography and which is
exposed to wear, so its appearance diers from the remaining parts of the
rock. On small samples, which lithic artefacts usually are, the surface of
interlayers cannot always be distinguished from a ssure.
73 We would like to thank Rajna Šošić Klindžić, Ph.D. (Faculty of Humanities
and Social Sciences, Zagreb) and Josip Halamić, Ph.D. (Croatian Geology
Institute, Zagreb) for samples of green and black radiolarite from Banovina.
On radiolarites of Jurassic-Triassic age in the highlands of Žumberak,
Medvednica, Ivanščica and Kalnik, as well as the archeologically relevant
green and black radiolarites in Banovina (Lasinja, Zrinska gora), see
Halamić and Šošić Klindžić 2009.
74 Hrvatović 2006, and also based on personal communication from Hazim
Hrvatović, Ph.D. (Federal Geology Department of Bosnia-Herzegovina,
Sarajevo) 2010.
Kamen artefakata rožnata izgleda iz ove skupine je zelen,
sivozelenkast,
69
oštrog konkavno-konveksnog loma, voštanog
sjaja i slabe do srednje svjetlopropusnosti na tankim rubovima,
homogen, gust, izrazito žilav i tvrd.
70
Na nabrusku su u matriksu
vidljiva rijetka, vrlo sitna žuta i crvena zrna, vjerojatno hematita.
U izbrusku pod polarizacijskim mikroskopom s ukriženim
nikolima ustanovili smo za kremene stijene uobičajenu mikro
do kriptokristalnu mozaičnu strukturu matriksa s gnijezdima
vlaknastog kalcedona u radijalnom ili sferulitičnom rastu. U
prolaznom svjetlu se vidi kako radiolarije naliježu jedna na drugu
(sl. 13).
71
Radiolarije su u ovom kamenu makroskopski teško
uočljive.
Zanimljivo je da u zelenoj skupini gotovo da nema nalaza
s jednoznačno odredivom valutičnom okorinom. Tek na dva
primjera smo zapazili okorinu, ali tako male površine da nije
moguće odrediti radi li se o valutičnoj okorini ili o međuslojnoj
površini.
72
Stoga, zasad ostaje nejasno je li sirovina za artefakte
od zelenog radiolarita brana iz autohtonih ili alohtonih izdanaka.
Zeleni (i crni) radiolariti odlične kakvoće kakvih ima u oolitima
69 10GY5/2.
70 Prema osobnom priopćenju Ilone Fin, Radionica za izradu mikroskopskih
preparata, Institut für Geowissenschaften, Universität Heidelberg 2010.
71 Zahvaljujemo geolozima dr. sc. Jožici Zupanič i dr. sc. Draženu Kurtanjeku,
PMF u Zagrebu, koji su nam pomogli u rješavanju ove petrografske
dvojbe.
72 Međuslojnom povinom ovdje označavamo dio stijene kojom ona prianja na
drugu iste ili drugije petrograje i koja je izlena trenju pa se izgledom
razlikuje od ostalog dijela stijene. Na malim uzorcima, kakvi su naće litički
artefakti, međuslojnu površinu nije uvijek moguće razlikovati od pukotine.
Slika 13.
Zeleni radiolarit. Polarizacijski
mikroskop, polarizirano svjetlo
Figure 13.
Green radiolarite. Polarized light
microscope, polarized light
34
VAPD 104, 2011., 7-54
35
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Banije s izdankom kod Lasinje,
73
makroskopski sasvim odgovaraju
kopačinskim nalazima pa nas to upućuje na moguće izvore
sirovine u pojasu dinaridskih oolita i bosanskoga iša.
74
Samo se na dva radiolaritna nalaza zelena boja pojavljuje uz
crvenu. Jedan je laminarne strukture, oštro odvojenih boja dok
se na drugom, na kojem je sačuvana valutična okorina s udarnim
napuklinama, zelena i crvena boja prelijevaju. Svrstali smo ih u
skupinu crvenih radiolarita. Treba upozoriti da crvena ili zelena
boja radiolarita ovisi o odnosu dvovalentnog i trovalentnog
željeza koje pigmentira primarno proziran mineral kvarc ili
kalcedon i da nije rijetka višebojna radiolaritna stijena na istom
izdanku. Koliko boja predmetne stijene artefakata ipak može
pridonijeti određenju porijekla njezinog izvora, pokazat će
terensko istraživanje konkretnih autohtonih i alohtonih izdanaka
dotičnih stijena i njihovo mikrofacijelno ispitivanje. Ova dva
nalaza ne dopuštaju zaključak o zajedničkom porijeklu sirovine za
artefakte iz zelene i crvene radiolaritne skupine.
7.3. Skupina metasomatskih nodularnih rožnjaka
Litološki gledano, Brač i Dalmacija sastavni su dio karbonatne
platforme dinarskoga krša izgrađenog od karbonatnih stijena
kontinuirano taloženih od trijasa do paleogena.
75
Izdanci rožnjaka
koji se pojavljuju s tim stijenama rasuti po cijeloj regiji, jesu
trijaske, jurske, kredne, najčešće paleogenske starosti. Stoga ne
čudi da je većinski dio arheološkog litičkog inventara istraženih
prapovijesnih kamenodobnih nalazišta u regiji i šire, pa i
kopačinski, izrađen upravo od metasomatskih rožnjaka nastalih i
dostupnih u karbonatnim stijenama Dinarida.
Nodularni metasomatski ili zamjenski rožnjaci nastaju u
ranodijagenetskom procesu silicifikacije stijene domaćina
(najčešće vapnenaca, ali i dolomita, lapora) pri čemu mineral
kvarca (opal, kalcedon, mikrokristalni i kriptokristalni kvarc)
zamjenjuje karbonatni talog (mineral kalcit), njegove
primarne i sekundarne komponente.
76
Rnjaci pritom
73 Zahvaljujemo dr. sc. Rajni Šošić Klindžić (Filozofski fakultet u Zagrebu) i dr.
sc. Josip Halamiću (Hrvatski geološki institut, Zagreb) na uzorcima zelenih
i crnih radiolarita iz Banovine. O radiolaritima jursko-trijaske starosti na
Žumberku, Medvednici, Ivanščici i Kalniku, kao i arheološki relevantnim
zelenim i crnim radiolaritima na Banovini (Lasinja, Zrinska gora), vidi u
Halamić, Šošić Klindžić 2009.
74 Hrvatović 2006 i prema osobnom priopćenju dr. sc. Hazima Hrvatovića
(Federalni geološki zavod BiH, Sarajevo, 2010).
75 Geografski pojednostavnjeno, pojas dinarskog krša proteže se u regijama
uz more i duboko u zaleđu duž cijelog istočnog Jadrana (Tišljar et al.
2002, str. 139-141).
76 Klasikacija vapnenaca provodi se prema strukturno-teksturnim
značajkama koje su odraz ekoloških, sedimentoloških i hidrodinamičkih
uvjeta i okoliša taloženja. Paleontološko imenovanje vapnenaca slijedi
prema prevladavajućoj vrsti fosila, a sedimentološko i petrografsko prema
genetskim značajkama stijene (Füchtbauer, Müller 1970, str. 494; Tišljar
2001, str. 221). Geneza metasomatskih rožnjaka neodvojiva je od geneze
karbonatnih stijena u kojima oni nastaju, zahvaljujući čemu je moguće
odrediti i imenovati tipove rožnjaka (usp. Aolter 2002).
preuzimaju strukturu stijene na mjestu nastanka pa ih je po
tome moguće razlikovati unutar varijeteta, ovisno o stupnju
sačuvanosti te strukture.
77
Pojavljuju se kao pojedinne
nodularne nakupine, skupine nodula u nizu ili izdužene
lećaste forme paralelne slojevima stijene domaćina, a slojeviti
ili prugasti rožnjaci kao samostalni slojevi. Zahvaljujući
genetskim reliktima stijene domaćina u rožnjacima, rožnjake
upotrijebljene za izradu artefakata donekle je moguće
korelirati s vjerojatnim ležištima tih stijena. U kopačinskom
inventaru izdvojili smo sljedeće podskupine artefakata
zgotovljenih od metasomatskih rožnjaka: numulitni, mikritni,
bioklastični i crni rožnjaci.
78
7.3.1. Numulitni rožnjaci
Sa 256 nalaza (5,56 % od ukupnog broja) težinski udio
ove podskupine iznosi 8,03 % (sl. 9). Nalazi od numulitnih
rožnjaka su žućkastosmeđih tonova,
79
voštanog sjaja i slabe
svjetlopropusnosti na tanjim rubovima. Nodularne jezgre su
sivobijele, češće žućkastosmeđe, a okorina zna biti dodatno
patinirana crvenicom. Brojne kalcitne partije i uklopljeni
biodetritus smanjuju homogenost i tvrdoću kamena pa lom nije
izrazito konhoidalan, nego facetiran.
80
Foraminifere numuliti
dominiraju među fosilima, često su vidljive prostim okom (najveća
izmjerena je duljine 13 mm). Isti fosili pojavljuju se u okorini kao
i u jezgri nodule i to je školski primjer dijagenetskog postanka
rožnjaka ovoga tipa (sl. 14).
Nodularna okorina na brojnim nalazima dodatno potvrđuje
da se radi o metasomatskom rožnjaku. Na staništu su nađeni
krupniji fragmenti nodula od kojih su preparirane tehnološke
jezgre. Okorina je trošna i kavernasta na mjestu ispranih kalcitnih
faza, ali bez tragova habanja, što govori da su nodule brane na
paraautohtonom izdanku ili su stršeće nodule lomljene iz stijene
domaćina. Pored fosilnog detritusa neodredive pripadnosti,
u kvarcnom matriksu vidljive su staklaste ljušturice protozoa
numulita (sl. 14), po čemu porijeklo ove podskupine treba
tražiti u eocenskim vapnencima. Od foraminifera zapažene su
još diskocikline, globigerine, alveoline (orbitolide), a od ostalih
fosila bodlje brahiopoda, peteljke zelenih algi (dasikladacea) i
ehinoderme.
77 Tišljar 2001, str. 46.
78 Unatoč nekoliko desetaka autohtonih izdanaka rožnjaka i srodnih stijena
koje smo do sada registrirali u užem i širem krugu radnog prostora,
vjerujemo da se nismo približili metodički kritičnom broju uzoraka
predmetnih stijena neophodnom za sustavnu mikrofacijalnu analizu
i korelaciju s kamenim artefaktima temeljem pojedinih petrografskih
tipova (Perhoč 2009b).
79 5YR 5/2, 10 YR 6/2.
80 Tehnička vrsnoća rožnjaka može se prepoznati po tvrdoći, izraženom
konhoidalnom lomu, glatkoj plohi loma i oštrom bridu.
byeld research into specic autochthonous and allochthonous
outcrops of these rocks and their microfacial testing. These two
nds do not allow for a conclusion on the common origin of the raw
materials for artefacts from the green and red radiolarite group.
7.3. Group of metasomatic nodular cherts
Considered in lithological terms, Brač and Dalmatia are a component
of the carbonate platform of the Dinaric karst composed of
carbonate rock that was deposited continually from the Triassic to the
Palaeogene.
75
Chert outcrops which appear with these rocks scattered
throughout the entire region are of Triassic, Jurassic, Cretaceous, and
most often Palaeogenic age. Therefore it is not surprising that most
of the archaeological lithics inventory of the prehistoric Stone Age
sites in the region and beyond, including the Kopina Cave, consists
precisely of metasomatic cherts that emerged and became available
in the carbonate rocks of the Dinaric zone.
Nodular metasomatic or diagenetic cherts emerge in the
early diagenetic process of silicication of the host rock (most
often limestones, but also dolomite, marl) wherein quartz
minerals (opal, chalcedony, micro- and crypto-crystalline quartz)
replace the carbonate sediment (mineral calcite), its primary and
secondary components.
76
Cherts here assume the structure of the
rock at the point of origin, so they can thereby be distinguished
within varieties, depending on the degree of preservation of this
structure.
77
They appear as individual nodular accretions, nodule
groups in a row or as elongated lentil-shaped forms parallel to the
layers of the host rock, while layered or striped cherts appear as
independent layers. Thanks to the genetic relics of the host rock
in them, the cherts used to make artefacts can to a certain extent
be correlated with the possible deposits of these rocks. In the
Kopačina inventory, we have distinguished the following sub-
groups of artefacts nished from metasomatic cherts: nummulitic,
micritic, bioclastic and black cherts.
78
75 Geographically simplied, the Dinaric karst belt extends from regions
along the coast deep into the hinterland of the entire Eastern Adriatic
seaboard (Tišljar et al. 2002, pp. 139-141).
76 Classication of limestone is done according to structural-textural features
which are a reection of ecological, sedimentological and hydrodynamic
conditions and the sedimentation environment. The palaeontological
designation of limestones is based on the predominant fossil type,
while sedimentologically and petrographically according to the genetic
features of the rock (Fürchtbauer, Müller 1970, p. 494; Tišljar 2001, p. 221).
The genesis of metasomatic cherts is inseparable from the genesis of
the carbonate rocks in which they form, thanks to which it is possible to
designate chert types (cf. Aolter 2002).
77 Tišljar 2001, p. 46.
78 Despite several dozen autochthonous outcrops of chert and related
rocks which we have thus far been registered in the narrower and
wider radius of the work area, we believe that we have not approached
the methodologically critical number of samples of the relevant rocks
necessary for systematic microfacial analysis and correlation with stone
artefacts based on individual petrographic types (Perhoč 2009b).
7.3.1. Nummulitic cherts
With 256 nds (5.56% of the total number), the weight share of this
sub-group is 8.03% (Fig. 9). Finds made of nummulitic cherts have
yellowish-brown tones
79
with waxy lustre and poor translucence at
the thinner edges. The nodular cores are grey-white, often yellow-
brown, while the cortex may be patinated red. Numerous calcite
sequences and incorporated biodetritus reduce the homogeneity
and hardness of the stone, so the fraction is not markedly
conchoidal, but rather faceted.
80
Foraminiferous nummulites
dominate among the fossils, and are often visible to the naked eye
(longest measured length is 13 mm). The same fossils appear in the
cortex and in the nodule core, and this is a textbook example of
diagenetic formation of cherts of this type (Fig. 14).
The nodular rim on many nds further conrms that this is
metasomatic chert. Larger nodule fragments were found in the
habitat that were used to make technological cores. The cortex
is worn and pitted at the place of the eroded calcite phase, but
without traces of wear, which indicates that the nodules were
gathered at a para-autochthonous outcrop or that jutting nodules
were broken o from the host rock. Besides fossil detritus of
indeterminate character, glassy nummulitic protozoa shells (Fig.
14) are also visible in the quartz matrix, so that the origin of this
sub-group should be sought in the Eocene limestones. Among
the foraminifers, discocyclinae, globigerinae, and alveolinae
(orbitolidae) have also been observed, while among the remaining
fossils, the spines of brachiopods, the stalks of green algae
(dasycladales) and echinoderms have been noted.
79 5YR 5/2, 10 YR 6/2.
80 The technical excellence of cherts may be recognized in their hardness,
expressed as conchoidal fraction, the smooth surface and the sharp edge.
Slika 14.
Numulitni rožnjak. Binokularni
mikroskop, nabrusak
Figure 14.
Nummulitic chert. Binocular
microscope, polished section
36
VAPD 104, 2011., 7-54
37
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
The nummulitic cherts are probably an island import, because the
Eocene limestone deposits on Brač are negligible and do not contain
cherts.
81
On the remaining central Dalmatian islands, we have only
discovered vestiges of cherts without any sign of technological value
in the narrow Hvar Eocene belt.
82
The most numerous, abundant
and easily accessible outcrops of Eocene chert closest to Brač were
recorded in the central Dalmatian belt of the Split-Kaštel area
83
on the
southern slope of Vlaška Hill, in Seget Donji, on Opor, Kozjak and Mosor,
on the Marjan Peninsula, on the island of Čiovo and in Baška Voda.
84
7.3.2. Micritic limestone cherts
The sub-group of cherts which emerged in micritic limestone, wherein
the grey transparent type is distinguished from the yellowish translucent
chert, and which encompasses the most artefacts, is of insular origin.
The sub-group contains 1,774 nds (38.56% of the total number) and
its weight share is 42.79% in the total inventory mass (Fig. 9). The Br
cherts, particularly the grey type, evidently lags behind the quality of the
stones from other groups, largely from more distant sources.
The grey type, with 1,077 nds, predominates in this sub-
group. The core portion of the nodule is grey with several nuances,
with very unremarkable lustre or even entirely matte and poor
translucence, most often opaque.
85
The chert emerged in friable
micrite limestone (Fig. 15).
81 The guide to the basic geological map does not indicate the appearance
of cherts in the Brač Eocene deposits at Cape Gomilica (Magaš, Marinčić
1973, p. 23; Marinčić et al. 1971).
82 Marjanac et al. 1998, p. 224. We did not research the cherts in the Eocene
belt on Pelješac Peninsula.
83 Marjanac 1987, pp. 182-188; Marjanac et al. 1998, p. 224.
84 For details on outcrops, see Perhoč 2009b.
85 N9-4; red and yellow tiny grains of haematite and goethite are visible in
the polished section.
Fossil detritus is not visible on the polished section. Thus far, we
have recorded such cherts on Brač on the northern side of the island
in the Upper Cretaceous zone of limestones with lenses, inserts
or interlayers of dolomite. In Pučišće, on Mala Bračuta Hill and the
northern slope of Mladinje Hill, an autochthonous outcrop of rare
chert lenses were recorded. The chert outcrop in the vicinity of Dol
is more productive, with somewhat higher quality product and thus
more archeologically relevant. There are rare nodule fragments in
the torrential detritus in Dunaj eld, and more in the loose rock of
the surrounding hills, particularly on the northern and western slope
of Veli Hill, where outcrops of limestone with cherts are visible.
The yellowish, yellow-brown type has a waxy lustre and more
notable transparency than the grey type.
86
Very tiny fossil detritus
is visible in the micritic mass in the polished section. The yellowish
chert type is of a better quality than the grey, but among the
greys there are black-grey lots, normally toward the middle of the
nodule, which have a higher quality than the peripheral portions.
The nodular rim has the same traces of wear as in the fossiliferous
chert group, which indicates the same type of outcrop. We have
linked the origin of the yellowish chert type to the grey type based
on a similar structure, but we know of no specic deposit. There are
examples of zonal structure in both types of this sub-group.
The geological data on the formation of Sveti Duh with
limestones and dolomites of Turonian Upper Cretaceous age in
which there are bulbs of chert in the area between Vidova gora
and Gornji Humac,
87
just like our nds of chert karst on the beaches
of the Bol inlet, indicate that there are more chert deposits on Brač
than we have thus far recorded.
88
7.3.3. Bioclastic limestone cherts
The weight share of this chert is 15.97%, with 483 nds, accounts
for 10.5% of the total number (Fig. 9). The cherts are dark brown,
with waxy lustre and poor or no translucence.
89
The nodular rim,
whereby we have classied it in the metasomatic nodular cherts, is
brown like the core, but lighter. The core portion of the nodule has a
very uniform ne-grain structure which has a shell-like appearance
under the magnifying scope. On a thin-section, it is apparent that
the chert emerged by silicication of dense micrite and generally
unrecognizable tiny fragments of shells of marine organisms (the
shells of shellsh and brachiopods can be discerned) (Fig. 16). Rare,
scattered red haematite grains can be seen.
Almost of a third of the nds from this sub-group are deeply
patinated, so the external worn cortex largely diers from the core
portion. The wear cortex is characterized by tiny cavities made
by the washing o of calcite, and only visible under a magnifying
scope. They are lled with terra rossa, so the stone seems grainy,
with a dark porcelain lustre, or entirely matte.
86 10YR5/4.
87 Derado 1984, pp. 8-9 (map based on V. Nastić et al. 1958).
88 Perhoč, unpublished nd, 2010.
89 10YR4/2, 5/4.
Numulitni rožnjaci vjerojatno su otočki import, jer su eocenske
naslage vapnenaca na Braču neznatne i bez rožnjaka.
81
Od ostalih
srednjodalmatinskih otoka, u uskom hvarskom eocenskom pojasu
otkrili smo tek tragove rožnjaka bez ikakve tehničke vrijednosti.
82
Brojne, obilne i lako dostupne, Braču najbliže izdanke eocenskih
rožnjaka zabilježili smo u srednjodalmatinskom eocenskom
pojasu splitsko-kaštelanskog područja,
83
i to na južnoj padini
brda Vlaška, u Segetu Donjem, na Oporu, Kozjaku i Mosoru, na
poluotoku Marjanu, na Čiovu i u Baškoj Vodi.
84
7.3.2. Rožnjaci mikritnog vapnenca
Artefaktima najzastupljenija podskupina rožnjaka nastalog u
mikritnom vapnencu, u kojoj razlikujemo tip sivog neprozirnog
i tip žkastog svjetlopropusnog rožnjaka je otočkog porijekla.
Podskupina broji 1774 nalaza (38,56 % od ukupnog broja) i težinskog
je udjela od 42,79 % u ukupnoj masi inventara (sl. 9). Brački rožnjaci,
naročito sivi tip, tehničkom kakvoćom osjetno zaostaju za kakvoćom
kamena iz drugih skupina, mahom iz udaljenijih izvora.
Sivi tip sa 1077 nalaza prevladava u ovoj podskupini.
Jezgreni dio nodule je siv, s nekoliko nijansi, vrlo neizraženog
sjaja ili sasvim mat i slabe svjetlopropusnosti, najčešće
svjetlonepropustan.
85
Rožnjak je nastao u mrvičastom mikritnom
vapnencu (sl. 15).
81 Tumač osnovne geološke karte u bračkim eocenskim naslagama kod
rta Gomilice ne navodi pojavu rožnjaka (Magaš, Marinčić 1973, str. 23;
Marinčić et al. 1971).
82 Marjanac et al. 1998, str. 224. Rožnjake u eocenskom pojasu na poluotoku
Pelješcu nismo istraživali.
83 Marjanac 1987, str. 182-188; Marjanac et al. 1998, str. 224.
84 Podrobnosti o izdancima, vidi u Perhoč 2009b.
85 N9-4; u nabrusku su vidljiva crvena i žuta sitna zrna hematita i getita.
Fosilni detritus na nabrusku nije vidljiv. Do sada smo
ovakve rožnjake na Braču zabilježili na sjevernoj strani
otoka u gornjokrednoj zoni vapnenaca s lećama, ulcima
ili proslojcima dolomita. U Pučišćima na brdu Mala Bračuta
i sjevernoj padini Mladinjeg brda zabilježen je autohtoni
izdanak rijetkih leća rožnjaka. Izdanak rožnjaka u okolici Dola je
izdašniji, nešto je bolje kakve i time arheološki relevantniji.
Rijetkih fragmenata nodula ima u nanosu bujičnjaka u polju
Dunaj, više u siparu okolnih brda, osobito na sjevernom
i zapadnom obronku Velog brda, gdje su vidljivi izdanci
vapnenca s rnjacima.
Žućkasti, žutosmeđi tip ima voštani sjaj i izraženiju
transparentnost u odnosu na sivi tip.
86
U nabrusku je u mikritnoj
masi vidljiv vrlo sitan fosilni detritus. Rožnjak žućkastog tipa
bolje je kakvoće od sivih, ali i među sivima ima crnosivih
partija, obično prema središtu nodule, koje su bolje kakvoće
od perifernih dijelova. Nodularna okorina ima iste tragove
trošenja kao i u skupini fosilifernih rožnjaka, što upućuje na
isti tip izdanka. Porijeklo žućkastog tipa rožnjaka temeljem
slične strukture vežemo za sivi tip, no konkretna ležišta nam
nisu poznata. U oba tipa ove podskupine ima primjeraka sa
zonarnom strukturom.
Geološki podaci o formaciji Sveti Duh s vapnencima i
dolomitima turonske gornjokredne starosti u kojima ima kvrga
rožnjaka na području između Vidove gore i Gornjeg Humca,
87
kao i naši nalazi rožnjačkog krša na žalu bolskog zaljeva, ukazuju
da na Braču ima više ležišta rožnjaka nego što smo ih do sada
zabilježili.
88
7.3.3. Rožnjaci bioklastičnog vapnenca
Težinski udio ovog rožnjaka je 15,97 %, sa 483 nalaza zauzima
10,5 % od ukupnog broja (sl. 9). Rožnjaci su zagasite smeđe boje,
voštanoga sjaja i slabe ili nikakve svjetlopropusnosti.
89
Nodularna
okorina, po kojoj ih svrstavamo u metasomatske nodularne
rožnjake, smeđe je boje kao i jezgra, ali svjetlija. Jezgreni dio
nodule vrlo je ujednačene sitnozrne strukture koja pod povećalom
ima ljuskav izgled. Na nabrusku je vidljivo da je rožnjak nastao
siliciciranjem gustog mikrita i uglavnom neprepoznatljivih sitnih
fragmenata ljušturica morskih organizama (razaznaju se ljušturice
školjkaša i brahiopoda) (sl. 16). Vide se rijetka raspršena crvena
zrnca hematita.
Gotovo trećina nalaza iz ove podskupine duboko je patinirana
pa se vanjska trošna kora uvelike razlikuje od jezgrenog dijela.
Trošnu koru karakteriziraju sitne kaverne nastale ispiranjem
kalcita, a vidljive su tek pod povećalom. Ispunjene su crvenicom
pa kamen djeluje zrnato, prigušenog je porculanskog sjaja ili je
sasvim mat.
86 10YR5/4.
87 Derado 1984, str. 8, 9 (karta prema Nastiću et al. 1958).
88 Perhoč neobjavljeni nalaz 2010.
89 10YR4/2, 5/4.
Slika 16.
Bioklastični rožnjak. Binokularni
mikroskop, nabrusak
Figure 16.
Bioclastic chert. Binocular
microscope, polished section
Slika 15.
Mikritni rožnjak. Binokularni
mikroskop, nabrusak
Figure 15.
Micritic chert. Binocular
microscope, polished section
38
VAPD 104, 2011., 7-54
39
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Podrobnija karakterizacija bez destrukcije artefakata nije
moguća. Pripadnost takvih nalaza ovoj podskupini moguće
je ustanoviti tek temeljem nabruska, što znači da je postotak
pogreške u makroskopskom klasiciranju bez mikrofacijelne
kontrole viši negoli u drugim skupinama. Ovakav rožnjak je
čest među metasomatskim rožnjacima; prema tipu vapnenca
domaćina pretpostavljamo i dalmatinska ležišta koja za sada
nismo pobliže locirali.
90
7.3.4. Crni rožnjaci
Skupina crnog rožnjaka (sl. 9) broji 679 nalaza (14,76 % od
ukupnog broja) s težinskim udjelom od 15,02 %. Kamen je
voštanog staklastog sjaja, različitih stupnjeva svjetlopropusnosti,
izraženog konhoidalnog loma, mjestimično facetiranih lomnih
ploha, glatkih i oštrih bridova. Po sivocrnim i zelenkastim
nijansama uvjetno bi se moglo govoriti o dva tipa.
91
Rožnjak je
većinom metasomatskog postanka.
92
Na to ukazuju tzv. fosilni
duhovi”, okruglaste ili nepravilne uglavnom svjetlije mrlje vidljive
90 Sličan je rožnjacima na Kozjaku kakve smo zabilježili na položaju
Starosevski gaj (Perhoč 2009a).
91 Te nijanse boja su zamjetljive samo na najtanjim rubovima gledanjem
prema svjetlu.
92 I ovaj primjer pokazuje koliko je temeljita mikrofacijelna analiza važna
za preciznu klasikaciju, statistiku i interpretaciju u materijalnoj analizi
arheoloških nalaza. Naime, u ovoj podskupini moguć je i crni radiolarit
sasvim druge provenijencije od opisanog crnog metasomatskog
rožnjaka. Na crnom kamenu malih i patiniranih artefakata izrađenih od
jezgrenog dijela stijene (bez sačuvane nodularne, valutične okorine ili
međuslojne plohe), nemoguće je makroskopski razlikovati matasomatski
rožnjak od radiolarita. Nodularni crni rožnjak iz Stračinčice kod Vele Luke
na Korčuli, primjerice, vrlo je sličan crnom radiolaritu iz Lasinje.
prostim okom.
93
U nabrusku su pored rijetkih crvenih zrnaca,
vidljive dominante crne nepravilne mrlje organske tvari koja ovom
rožnjaku daje boju (sl. 17).
Izrazito crne metasomatske rožnjake izvanredne kakvoće za
sada smo zabilježili na položajima Stračinčica kod Vele Luke na
Korčuli i Labinska draga na Oporu.
94
7.4. Skupina nalaza raznovrsne petrograje
Posljednju malobrojnu skupinu artefakata (285 nalaza, brojčani
udio 6,19 %, težinski 3,86 %,) čine petrografski heterogeni
nalazi (sl. 9) koje nismo posebno klasicirali.
95
U ovoj skupini
pojedinačno izdvajamo dvije tehnološke predjezgre preparirane
od subangularnih valutica s debelo patiniranom okorinom
(crvenosmeđi tonovi) po postanku tipičnoj za ilovaste ili slične
sedimente s povećanom koncentracijom željezovitih minerala.
Valutična okorina potpuno se razlikuje od jezgre, koja je u jednom
slučaju zelenkasta, u drugom crna. Nalazi ovakvih značajka
ukazuju na izvore sirovine tipa riječnih i potočnih prudova.
7.5. Žareni rožnjaci
Skupinu žarenih rožnjaka (sl. 9) čine artefakti na koje je
djelovala visoka temperatura, u našem slučaju vatra ognjišta
na staništu. Težinski udio skupine iznosi 10,16 %, a 862 nalaza
čini 18,7 % od ukupnog broja.
96
Izravan utjecaj vatre na rožnjak
vidljiv je u promjeni boje kamena, strukture i smanjene
specifične težine. Nalazi su najčće svjetlonepropusne sive,
crne ili crvenkaste boje, bez sjaja i s tipičnom mrom prslina
koje nastaju zbog napetosti uzrokovanih grijanjem i hlađenjem
kamena (sl. 18).
Nalaze na koje je djelovala visoka temperatura potrebno je
statistički izdvojiti kako bi se moglo ustanoviti jesu li termički
tretirani. Struktura žarenih kopačinskih artefakata odaje da je
kamen tehnički neuporabiv i prema tome slučajno dospio u
izravan dodir s ognjištem. Njihovu relativnu brojnost tumačimo
malim prostorom pećine u kojoj se očito često ložilo, što ukazuje
na trajnost ili učestalost boravka.
8. Kulturna stratigraja - novi pogled
Kako smo već istaknuli, prema dostupnim podacima u dosad
objavljenoj literaturi, u Kopačini su izdvojene tri kulturne
faze ljudskog boravka: kasnogornjopaleolitka, mezolitička i
brončanodobna. Ovdje je tehno-tipološki obrađen cjelokupni
litki skup nalaza iz Kopine, iako je u unutrnjem dijelu
93 Tišljar 2004, str. 217. U ovoj podskupini nalaza nisu isključeni artefakti od
siliciciranog šejla, siltita i tufa.
94 Usp. Perhoč 2009a.
95 Ti su nalazi snažno patinirani, razlomljenih ploha ili naprosto zamrljani
zemljom i teško petrografski odredivi.
96 Na odnos broja i težine utječe gubitak higroskopne vode pri paljenju.
A more thorough characterization of the artefact is not possible
without destroying it. Whether or not such nds belong to this sub-
group may be established only on the basis of a polished section,
which means that the margin of error in macroscopic classication
without microfacial control is higher than in other groups. Such a chert
is frequent among the metasomatic cherts, and based on the type of
host limestone, we have assumed the existence of a Dalmatian deposit
which we have as yet not been able to pinpoint with any certainty.
90
7.3.4. Black cherts
The black chert group (Fig. 9) encompasses 679 nds (14.76%
of the total number) with a weight share of 15.02%. The stone
has a waxy glassy lustre, with varying degrees of translucence
and marked conchoidal fraction, and occasional faceted fraction
surfaces, and smooth and sharp edges. Based on the grey-black
and greenish nuances, one may provisionally speak of two types.
91
The chert is mostly metasomatic in origin.
92
This is indicated by
so-called fossil ghosts, round or irregular generally lighter stains
90 The situation is similar with the cherts on Kozjak as noted at the
Starosevski Gaj site (Perhoč 2009a).
91 These nuances were noticeable only at the thinnest edges when viewed
in light.
92 This example also shows how important a thorough microfacial analysis is
to precise classication, statistics and interpretation in the material analysis
of archaeological nds. For black radiolarites of entirely dierent origin than
the described metasomatic chert are possible in this sub-group. On the black
stone of small and patinated artefacts made of the core portion of rocks
(without preserved nodular, pebble rinds or interstitial surfaces), it is impossible
to macroscopically distinguish between metasomatic chert and radiolarite. The
nodular black chert from Stračiica near Vela Luka on the island of Korčula, for
example, is very similar to the black radiolarite from Lasinja.
visible to the naked eye.
93
In the polished section, besides rare red
grains, the dominant black irregular stains of organic matter are
visible, which give this chert its colour (Fig. 17).
Distinctly black metasomatic cherts of extraordinary quality
have for now been recorded at the sites at Stračinčica near Vela
Luka on Korčula and Labinska draga on Opor.
94
7.4. Group of nds with various petrography
The nal small group of artefacts (285 nds, numerical share 6.19%,
weight 3.86%) consists of petrographically heterogeneous nds
(Fig. 9) which we did not specically classify.
95
In this group, we
individually distinguished two technological sub-cores prepared
from sub-angular pebbles with a thickly patinated cortex (red-
brown tones) formed typically for loam or similar sediments with
an increased concentration of ferrous minerals. The rind of pebbles
is entirely dierent from the core, which is greenish in one case,
and black in another. Finds with such features indicate sources of
raw materials of a type from riverine and stream sandbars.
7.5. Burned cherts
The group of burned cherts (Fig. 9) consists of artefacts aected by
high temperatures, in this case the re of a hearth in the dwelling.
The weight share of the group is 10.16%, while the 862 nds
account for 18.7% of the total number.
96
The direct impact of re
on the chert is visible in the change in the stone’s colour, structure
and reduced specic weight. The nds are most often opaque
grey, black or reddish, without lustre and with the typical lattice of
cracks which emerged as a result of the tension caused by heating
and cooling of the stone (Fig. 18).
The nds aected by high temperatures must be statistically
separated in order to establish whether they had been heat treated.
The structure of the red Kopačina artefacts indicate that the stone
was technically unusable and thus came into direct contact with
the hearth by chance. We interpret their relatively high number as a
result of the small size of the cave in which res were often stoked,
which testies to permanency or frequency of residence.
8. Cultural stratigraphy - a new look
As already stressed above, according to available data in the
literature thus far published, three cultural phases of human
habitation have been distinguished in Kopačina: late Upper
Palaeolithic, Mesolithic and Bronze Age. Here the entire lithic
93 Tišljar 2004, p. 217. Artefacts made of silicied shale, siltite and tufa were
not excluded from this group.
94 Cf.. Perhoč 2009a.
95 These nds are highly patinated, with broken surfaces, or they are simply
smudged with soil and dicult to determine petrographically.
96 The ratio between number and weight is inuenced by the loss of
hygroscopic water at ignition.
Slika 17.
Crni rožnjak. Binokularni
mikroskop, nabrusak
Figure 17.
Black chert. Binocular microscope,
polished section
Slika 18.
Žareni rožnjak. Binokularni
mikroskop, nabrusak
Figure 18.
Burned chert. Binocular
microscope, polished section
40
VAPD 104, 2011., 7-54
41
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
pećine, prema literaturi, zabilježen i brončanodobni sloj na
dubinama od 0-70 cm. Brončanodobni sloj dokumentiran je
prisutnošću keramike i jedne brončane sjekire.
97
Litički skup
nalaza iz dubina od 0-70 cm iz unutrašnjeg dijela pećine
malobrojan je i pokazuje veliku tehno-tipolku sličnost s onim
iz većih dubina, tako da se činilo opravdanim uključiti ovaj dio
litkog skupa nalaza u analizu. Smatramo da je litički materijal
pronađen u kontekstu s brončanodobnom keramikom stariji,
odnosno gornjopaleolitički, a kontekst u kojem je pronađen
mogao bi biti posljedica miješanja sedimenata uzrokovanog
aktivnostima koje su brončanodobni ljudi obavljali u samoj
pećini. Za ti pretpostavku nemamo terenske podatke, ali
spomenuta tehno-tipološka sličnost ide joj u prilog. Slna
situacija zabilježena je u pećini Badanj na Hvaru, gdje su
pločice s hrptom pronađene u kontekstu s neolitičkom
hvarskom keramikom, vjerojatno kao posljedica određenog
miješanja paleolitičkih i neolitičkih slojeva. Nekoliko apsolutnih
datuma, kasnoglacijalne starosti, iz slojeva s hvarskom
keramikom i pločicama s hrptom taker ukazuje na ovu
mogućnost.
98
Što je mezolitičko u Kopačini?
Glavni argument za pripisivanje dijela stratigrafskog slijeda
mezolitiku vjerojatno bi bio ranoholocenski datum (Z-778)
dobiven radiokarbonskim datiranjem kućica kopnenih puževa.
Već smo spomenuli da je pouzdanost ovako dobivenih datuma
vrlo upitna. Sama prisutnost velike količine kopnenih puževa u
pećini također bi mogla upućivati na mezolitičku starost slojeva.
Međutim, iako se kopneni puževi vrlo često pronalaze kao
ostaci mezolitičkih obroka u pećinama u cirkummediteranskom
prostoru, oni su česti i u kasnom gornjem paleolitiku.
99
Nekoliko
probušenih Columbella rustica, koje su jako česte u mezolitiku
istočnog Jadrana,
100
pronađeno je i u novim istraživanjima
u Kopačini,
101
ali probušene Columbelle rustice na Jadranu
pronalazimo i u kasnom gornjem paleolitiku.
102
Smatramo da osim brončanodobne faze, ostatak
stratigrafskog slijeda iz pine Kopačine geokronolki
najvjerojatnije pripada kasnom glacijalu, a kulturno-
kronolki kasnom gornjem paleolitiku, odnosno kasnom
epigravetijenu. Dva apsolutna datuma iz Kopačine (tablica 1)
koji pripadaju kasnom glacijalu (Z-2403, Z-2404) idu u prilog
ovom prijedlogu, a pogotovo zato što mlađi datum pripada
samom vrhu stratigrafskog slijeda (rasponu dubine od 20-40
cm). Prosječna minimalna stopa talenja u Kopačini mogla
97 Čečuk 1996, str. 18, 19.
98 Forenbaher 2002, str. 364.
99 Lubell 2004a; Lubell 2004b.
100 Komšo 2007, str. 35, 36; Čečuk, Radić 2005, str. 57.
101 Kliškić 2008, str. 529. Pronađene su izvan arheološkog konteksta, u
sedimentu iskopanom u prethodnim iskopavanjima.
102 Bietti 1990, str. 133; Brusić 2008, str. 402; Komšo 2007, str. 34.
assemblage Kopačina has been techno-typologically analyzed,
although according to the literature, a Bronze Age layer at depths
of 0-70 cm has been recorded in the cave’s interior. The Bronze
Age layer has been documented by the presence of ceramics
and one bronze axe.
97
The lithic assemblage from depths of 0-70
cm from the cave’s interior are few in number and exhibit a high
techno-typological similarity to those from greater depths, so that
it would appear justied to encompass this portion of the lithic
assemblage in the analysis. We consider the lithic material found in
the context of the Bronze Age pottery older, i.e., Upper Palaeolithic,
while the context in which it was found may be a result of mixing
of sediments caused by activities carried out by the Bronze Age
people in the cave itself. There are no eld data to back this
hypothesis, but the aforementioned techno-typological similarity
would appear to uphold it. A similar situation was recorded in
Badanj Cave on Hvar, where backed bladelets were found in a
context with Neolithic Hvar pottery, probably as a result of a
certain mixing of Palaeolithic and Neolithic layers. Several absolute
dates of Late Glacial age from the layers with Hvar pottery and
backed bladelets also suggest this possibility.
98
What in Kopačina is Mesolithic?
The principal argument for ascribing a part of the stratigraphic
sequence to the Mesolithic would probably be the early Holocene
date (Z-778) obtained by radiocarbon dating of the land snail shells.
It has already been noted that the reliability of dates so obtained is
rather precarious. The very presence of a high quantity of land snails
may also indicate the Mesolithic age of the layers. However, even
though land snail shells are often found as the remains of Mesolithic
meals in caves of the circum-Mediterranean zone, they were
also frequent in the late Upper Palaeolithic.
99
Several perforated
Columbella rustica shells, which were quite frequent in the Mesolithic
of the Eastern Adriatic,
100
were also found in more recent research in
Kopačina,
101
but perforated Columbella rustica shells in the Adriatic
zone can also be found in the late Upper Palaeolithic.
102
We consider that besides the Bronze Age phase,
geochronologically the remainder of the stratigraphic sequence in
Kopačina Cave most likely belongs to the Late Glacial, and culturally-
chronologically to the late Upper Palaeolithic or, more specically,
the late Epigravettian. The two absolute dates from Kopačina (Table
1) which belong to the Late Glacial period (Z-2403, Z-2404) support
this proposal, particularly since the more recent date belongs to the
very top of the stratigraphic sequence (depth range of 20-40 cm).
The average minimum sedimentation rate in Kopačina may have
97 Čečuk 1996, pp. 18-19.
98 Forenbaher 2002, p. 364.
99 Lubell 2004a; Lubell 2004b.
100 Komšo 2007, pp. 35, 36; Čečuk and Radić 2005, p. 57.
101 Kliškić 2008, p. 529. Found outside of an archaeological context, in a
sediment excavated in prior excavations.
102 Bietti 1990, p. 133; Brusić 2008, p. 402; Komšo 2007, p. 34.
bi biti u rasponu od 0,056 do 0,078 cm po radiokarbonskoj
godini,
103
a maksimalna u rasponu od 0,167 do 0,233 cm po
radiokarbonskoj godini.
104
U slaju minimalne brzine za
taloženje gornjih 40 cm stratigrafskog slijeda bilo bi potrebno
između približno 715 i 510 radiokarbonskih godina, a kod
maksimalne brzine talenja bilo bi potrebno između približno
240 i 170 radiokarbonskih godina. U oba slučaja, sam vrh
stratigrafskog slijeda pripadao bi vremenu kasnoga glacijala.
Ove procjene su vrlo grube zbog nedostatka terenskih
podataka po kojima bi se mogla napraviti nešto preciznija
procjena. Uzimajući u obzir rezultate dobivene za pripećke
Klithi
105
i Badanj,
106
vjerojatnija je procjena obroka talenja u
rasponu od 0,056 do 0,078 cm po radiokarbonskoj godini. Za
Kopinu se me pretpostaviti čak i nešto niža stopa talenja
od navedene, jer je taloženje u pripećcima kakvi su Klithi i
Badanj brže, zahvaljuji erodiranom materijalu s okolnih
klifova i padina koje okružuju pripećak, nego u pećinama.
107
Litički skup nalaza pokazuje veliku tehno-tipološku sličnost
kroz cijeli stratigrafski slijed, unatoč izdvojenim dvjema
fazama. Unutar LF II ne primjećuju se razlike koje bi se
mogle interpretirati kao kasnogornjopaleolitke, odnosno
mezolitičke. Ako u Kopačini zaista postoje mezolitički ostaci,
onda ih nije moguće detektirati u litičkom skupu nalaza. U tom
slučaju postoji tehno-tipološki kontinuitet, kao i kontinuitet u
iskorištavanju sirovina, na prijelazu iz pleistocena u holocen.
Prema tome, kasni gornji paleolitik i mezolitik ne bi se mogli
odvojiti u Kopačini na temelju kamenih artefakata, što bi bila
situacija vrlo slična onoj u jnoj i srednjoj Italiji, gdje se finalni
epigravetijen i mezolitik ne mogu razlikovati na temelju litičkih
nalaza.
108
Pouzdana apsolutna datiranja i podaci o paleoklimi i
okolišu pomogla bi u rasvjetljavanju prijelaza iz pleistocena u
holocen u Kopačini, ako ta prijelazna faza zaista postoji.
9. Regionalni kontekst kasnoglacijalnih industrija istočnog
Jadrana i zaleđa
9.1. Istra
Na prostoru Istre poznato je nekoliko nalazišta iz kasnoga
glacijala. Litički skup nalaza iz Kopačine uspoređivat ćemo s jedne
strane sa Šandaljom II, a s druge strane sa skupinom nalazišta
103 Procjena prosječnog minimalnog obroka taloženja izračunata je na
temelju maksimalnog vremenskog raspona (oko 1800 radiokarbonskih
godina) za dva kasnoglacijalna datuma iz Kopačine kod pretpostavljene
debljine sloja od 100 i 140 cm.
104 Procjena prosječnog maksimalnog obroka taloženja izračunata je na
temelju minimalnog vremenskog raspona (oko 600 radiokarbonskih
godina) za dva kasnoglacijalna datuma iz Kopačine kod pretpostavljene
debljine sloja od 100 i 140 cm.
105 Bailey, Woodward 1997, str. 83, T. 4.1.
106 Bailey, Galanidou 2009, str. 227.
107 Bailey, Galanidou 2009, str. 231.
108 Bietti 1990, str. 131.
ranged from 0.056 to 0.078 cm per radiocarbon year,
103
while the
maximum range could have been 0.167 to 0.233 cm per radiocarbon
year.
104
In case of the minimum rate of sedimentation in the upper
40 cm of the stratigraphic sequence, this would have required
approximately 710 and 510 radiocarbon years, while in case of the
maximum sedimentation rate, it would require roughly 240 and 170
radiocarbon years. In both cases, the actual top of the stratigraphic
sequence would fall into the Late Glacial. These approximations are
very rough due to the absence of eld data that would allow for a
more precise estimate. Taking into consideration the results obtained
from the abris at Klithi
105
and Badanj,
106
a likely estimate for the
sedimentation rate ranges from 0.056 to 0.078 cm per radiocarbon
year. For Kopačina, one may assume an even lower sedimentation
rate than the one proposed, for sedimentation in abris such as Klithi
and Badanj proceeds more rapidly, thanks to eroding material from
the surrounding clis and slopes which encircle it, than in actual
caves.
107
The lithic group of nds exhibits a high techno-typological
similarity over the entire stratigraphic sequence, despite the division
into two phases. Within LP II no dierences can be discerned
which could be interpreted as late Upper Palaeolithic or Mesolithic.
Insofar as there are truly Mesolithic remains in Kopačina, then they
could not be detected in the lithic assemblage. In this case there
is techno-typological continuity, as well as continuity in use of raw
materials at the Pleistocene-Holocene transition. Therefore, the late
Upper Palaeolithic and the Mesolithic could not be distinguished
in Kopačina on the basis of stone artefacts, which would be quite
similar to the situation in southern and central Italy, where the nal
Epigravettian and Mesolithic cannot be distinguished on the basis of
lithic nds.
108
Reliable absolute dating and data on the palaeoclimate
and environment would help to shed light on the Pleistocene-
Holocene transition in Kopačina, in case this transition actually exists
on this site.
9. Regional context - Late Glacial industry of the Eastern
Adriatic and its hinterland
9.1. Istria
Several Late Glacial sites are known in Istria. The lithic assemblage
from Kopačina shall be compared, on one hand, with Šandalja
II, while on the other with the group of sites including Vešanska,
103 An estimate of the average minimum sedimentation rate has been
computed on the basis of the maximum time span (ca. 1800 radiocarbon
years) for the two late glacial dates from Kopačina with reference to the
assumed layer thicknesses of 100 and 140 cm.
104 An estimate of the maximum sedimentation rate has been computed on
the basis of the minimum time span (ca. 600 radiocarbon years) for the
two late glacial dates from Kopačina with reference to the assumed layer
thicknesses of 100 and 140 cm.
105 Bailey, Woodward 1997, p. 83, P. 4.1.
106 Bailey, Galanidou 2009, p. 227.
107 Bailey, Galanidou 2009, p. 231.
108 Bietti 1990, p. 131.
42
VAPD 104, 2011., 7-54
43
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Nugljanska and Pupićina Caves. Large lithic assemblages were
discovered in both Šandalja II and in Kopačina,
109
while Vešanska,
Pupićina and Nugljanska Caves had several times smaller
assemblages. Based on the lithics industry of Šandalja II and
Kopačina, we may assume that these residential bases or simply
points in the Late Glacial environment that were frequently visited.
As opposed to Šandalja II and Kopačina, in Nugljanska, Vešanska
and Pupićina Caves, visits by Late Glacial people were much more
rare.
Layers C/s from Šandalja II, with a determined radiocarbon age
of 13120 ± 230 BP (Z-2424),
110
B/C with an age of 13050 ± 220 BP
(Z-2423),
111
B/s 12 320 ± 100 BP (GrN-4978)
112
and B/g with an age
of 10830 ± 50 BP (GrN-4976)
113
belong to the Late Glacial period
and may be chronologically linked to the Kopačina dates, even
though the youngest date from Šandalja II deviates somewhat
from this comparison because it is roughly ca. 1000 radiocarbon
years younger than the youngest Late Glacial date from Kopačina.
The radiocarbon age of layer B/d of 10140 ± 160 BP (Z-2421) and
10990 ± 60 BP (CAMS-12062)
114
deviates from the date obtained
for layer B/s. P. Miracle assumed a sedimentation time between
roughly 13 ,000 and 11,000 years before the present for layers B/d
and B/s,
115
while I. Karavanić believes that the entire B complex
was deposited roughly 10,000 years ago.
116
The longer-term
sedimentation of the Šandalja sediments appears likely.
Although there are chronological parallels between the
Šandalja dates for layers C/s and B/C and the Kopačina dates,
here we shall restrict ourselves only to a comparison of the lithic
assemblage from Kopačina with those from the B complex of
Šandalja II, for the lithic assemblages from layers C/s and C/g, like
that from layer B/C, could not be reliably interpreted.
117
In all layers of complex B, akes predominated with a relative
frequency of over 50% (B/d ca. 56%, B/s 53% and B/g 50%).
118
Flakes
also dominated in both lithic phases of Kopačina. As opposed to the
lithic assemblage from Kopačina in which the relative frequency of
bladelets in both lithic phases is very small (see Tables 3 and 5), in
all three layers of the B complex of Šandalja II, the bladelets were
more frequently produced (relative frequency in all three layers is
ca. 11%). Even though the blades in Šandalja II are somewhat more
numerous than in Kopačina, the dierence is not as distinctive as
in the case of bladelets. The share of cores in the lithic assemblage
of Kopačina is relatively high (LF I ca. 9%, LF II 12%) if compared to
Šandalja (B/d ca. 5%, B/s 6%, B/g 6%). Even though the dierences
109 Karavanić 1999.
110 Obelić et al. 1994, p. 305.
111 Obelić et al. 1994, p. 304.
112 Malez, Vogel, 1969, p.129.
113 Malez, Vogel, 1969, p. 129.
114 Miracle 1995, p. 92, P. 3.3.
115 Miracle 1995, p. 93.
116 Karavanić 1999, p. 93.
117 Karavanić 1999, p. 91.
118 Karavanić 1999, p. 70, P. 26, p. 73, P. 28, p. 78, P. 30. Worth mentioning is
that these data pertain solely to unretouched artefacts.
between layer B/d on the one hand and layers B/s and B/g on
the other are clearly notable,
119
here we shall compare the lithic
assemblage from Kopačina with the entire B complex from Šandalja
II through the prism of formally retouched artefacts, i.e. tools. In
Kopačina, as in Šandalja II, the most common individual tool type
is retouched piece. Although endscrapers are quite numerous
at both sites, in Kopačina they are more numerous and there is a
higher instance of thumbnail endscrapers than in Šandalja II. On
the other hand, the share of backed bladelets and micro-Gravettes
is considerably lower in Kopačina (Tables 4 and 6) than in Šandalja
II.
120
The geometric microliths which appear in Kopačina in both
phases are also present in the Šandalja B complex, but only in layers
B/s and B/g. Relative frequency of geometric microliths is greater
in Šandalja II than in Kopačina, while the repertoire of types is also
greater than in Šandalja II (segment and rectangle from Kopačina
as opposed to the segment, rectangle, triangle and trapeze from
Šandalja II). Splintered pieces are much more present in Kopačina
(LF I 8.42%; LF II 8.45%) than in Šandalja II (B/d 2.1%; B/s 5.1%; B/g
3.3%). The share of Azilian points in Šandalja II increases from the
older to younger layers of the B complex,
121
while curved backed
points in Kopačina are more numerous in the older than in the
younger phase.
122
Although there are numerous techno-typological similarities
between the Šandalja and Kopačina industries, here numerous
dierences also stand out.
Several absolute radiocarbon dates from Vanska Cave show a
considerable chronological correspondence with Kopačina. The Late
Glacial stratigraphic sequence from Vešanska Cave can be absolutely
chronologically dated within the span of 12490 ± 100 BP (OxA-8443)
123
to 11410 ± 90 BP (Beta-127706).
124
In the oldest Late Glacial horizon
of Vešanska Cave, only 5 artefacts were discovered,
125
which is why
we shall exclude them from further comparison. In the subsequent
horizon from Vešanska which has not been dated, but has been
designated as Interstadial Phase I
126
and is somewhat older than ca.
11,500 BP, a lithic assemblage was discovered which is dominated
byakes and chunks, with a high relative frequency of bladelets,
while among the tools backed artefacts predominate, with backed
bladelets and backed points being the most numerous.
127
Such a lithic
assemblage is probably a result of the hunting activities of the group
119 Karavanić 1999, p. 93, 94.
120 Karavanić 1999, p. 72, P.27, p. 76, P.29, p. 80, P. 31.
121 Karavanić 1999, p. 72, P. 27, p. 76, P. 29, p. 80, P. 31
122 Here we are using the term curved backed points (pointe a dos courbe)
based on Demars, Laurent 1992, p. 112. According to them, curved backed
points appeared at the same time as thumbnail endscrapers, i.e., in the
late glacial industries of Europe, while in the literature they are known
under various names: pointe azilienne, canif de Villepin, pointe deTjonger,
Federmesser.
123 Komšo, Pellegati 2007, p. 31.
124 Miracle, Forenbaher 2000, p. 44; Komšo, Pellegati 2007, p. 31.
125 Komšo, Pellegati 2007, p. 30.
126 Komšo, Pellegati 2007, p. 32.
127 Komšo, Pellegati 2007, p. 32.
koju čine Vešanska, Nugljanska i Pupićina peć. U Šandalji II kao
i u Kopačini otkriveni su veliki litički skupovi nalaza,
109
dok su
Vešanska, Pupićina i Nugljanska peć dale desetke puta manje
skupove nalaza od prethodno spomenutih. Na temelju litičke
industrije Šandalje II i Kopačine možemo pretpostaviti da se
radi o dugotrajnijim osnovnim staništima (residential base) ili
jednostavno o točkama u kasnoglacijalnom okolišu koje su
posjećivane učestalo. Za razliku od Šandalje II i Kopačine, u
Nugljanskoj, Vešanskoj i Pupićinoj peći, boravci kasnoglacijalnog
čovjeka bili su puno rjeđi.
Slojevi C/s iz Šandalje II s određenom radiokarbonskom
starošću od 13.120 ± 230 BP (Z-2424),
110
B/C sa starošću od 13.050
± 220 BP (Z-2423),
111
B/s 12.320 ± 100 BP (GrN-4978)
112
i B/g sa
starošću od 10.830 ± 50 BP (GrN-4976)
113
pripadaju kasnom
glacijalu i mogu se kronološki povezati s kopačinskim datumima,
iako najmlađi datum iz Šandalje II donekle iskače iz ove usporedbe
jer je za nekih 1000 radiokarbonskih godina mlađi od najmlađega
kasnoglacijalnog datuma iz Kopačine. Radiokarbonska starost
sloja B/d od 10.140 ± 160 BP (Z-2421) i 10.990 ± 60 BP (CAMS-
12062)
114
odudara od datuma dobivenih za sloj B/s. P. Miracle
pretpostavlja vrijeme taloženja slojeva B/d i B/s okvirno između
13.000 i 11.000 godina prije sadašnjosti,
115
dok I. Karavanić
smatra da je cijeli kompleks B taložen prije približno 10000
godina.
116
Dugotrajnije taloženje šandaljskih sedimenata čini se
vjerojatnijim.
Iako postoje kronološke paralele između šandaljskih
datuma za sloj C/s i B/C i kopačinskih datuma, ovdje ćemo se
ograničiti samo na usporedbu litičkog skupa nalaza iz Kopačine
s onim iz B kompleksa Šandalje II, jer litički skup nalaza iz
sloja C/s i C/g, kao i onaj iz sloja B/C nije moguće pouzdano
interpretirati.
117
U svim slojevima kompleksa B odbojci su dominanti, s
relativnom učestalošću od preko 50 % (B/d oko 56 %, B/s 53 %
i B/g 50 %).
118
Odbojci dominiraju i u obje litke faze Kopine.
Za razliku od litičkog skupa nalaza iz Kopačine u kojem je
relativna učestalost pločica u obje litičke faze jako mala (vidi
tablice 3 i 5), u sva tri sloja B kompleksa Šandalje II pločice su
puno češće proizvođene (relativna učestalost u sva tri sloja
je oko 11 %). Iako su sjiva u Šandalji II nto brojnija negoli
u Kopačini, razlika nije tako jako izražena kao kod pločica.
Udio jezgara u litičkom skupu nalaza Kopačine razmjerno je
visok (LF I oko 9 %, LF II 12 %), usporuje li se sa Šandaljom
109 Karavanić 1999.
110 Obelić et al. 1994, str. 305.
111 Obelić et al. 1994, str. 304.
112 Malez, Vogel 1969, str.129.
113 Malez, Vogel 1969, str. 129.
114 Miracle 1995, str. 92, T. 3.3.
115 Miracle 1995, str. 93.
116 Karavanić 1999, str. 93.
117 Karavanić 1999, str. 91.
118 Karavanić 1999, str. 70, T. 26, str. 73, T. 28, str. 78, T. 30. Treba spomenuti da
se navedeni podaci odnose samo na neobrađene artefakte.
(B/d oko 5 %, B/s 6 %, B/g 6 %). Iako su razlike između sloja
B/d s jedne strane i slojeva B/s i B/g s druge strane jasno
istaknute,
119
ovdje ćemo, promatrano kroz formalno obrene
artefakte, tj. alatke, usporediti litki skup nalaza iz Kopine
s cjelokupnim kompleksom B iz Šandalje II. U Kopini kao i u
Šandalji II najzastupljeniji pojedinačni tip alatki su komadi s
obradom. Iako su na oba nalazta grebala iznimno brojna, u
Kopačini su ona brojnija i puno je veća zastupljenost noktolikih
grebala negoli u Šandalji II. S druge strane, udio pločica s
hrptom i mikrograveta znatno je manji u Kopačini (tablica 4 i 6)
negoli u Šandalji II.
120
Geometrijski mikroliti koji se u Kopačini
pojavljuju u obje faze prisutni su i u šandaljskom B kompleksu,
ali samo u slojevima B/s i B/g. U Šandalji II je relativna
učestalost geometrijskih mikrolita veća nego u Kopačini, a i
repertoar tipova također je veći u Šandalji II (kružni segment
i pravokutnik iz Kopačine nasuprot kružnom segmentu,
pravokutniku, trokutu i trapezu iz Šandalje II). Iskrzani komadići
puno su zastupljeniji u Kopini (LF I 8,42 %; LF II 8,45 %) nego
u Šandalji II (B/d 2,1 %; B/s 5,1 %; B/g 3,3 %). Udio azilijenskih
šiljaka u Šandalji II raste od starijih prema mlađim slojevima
kompleksa B,
121
dok su zakrivljeni šiljci s hrptom u Kopini
brojniji u starijoj negoli u mlađoj fazi.
122
Iako postoje brojne tehno-tipološke sličnosti između
šandaljske i kopačinske industrije, ovdje su istaknute i brojne
razlike.
Nekoliko apsolutnih radiokarbonskih datuma iz
Vešanske peći pokazuje znatnu vremensku podudarnost s
Kopačinom. Kasnoglacijalni stratigrafski slijed iz Vešanske peći
apsolutnokronološki se može smjestiti u rasponu od 12.490 ± 100
BP (OxA-8443)
123
do 11.410 ± 90 BP (Beta-127706).
124
U najstarijem
kasnoglacijalnom horizontu Vešanske peći pronađeno je samo pet
artefakata,
125
zbog čega ćemo ga izuzeti iz daljnje komparacije. U
sljedećem horizontu iz Vešanske koji nije datiran, ali je označen
kao Interstadial phase I
126
i nešto je stariji od oko 11.500 BP,
pronađen je litički skup nalaza u kojem u tehnološkom smislu
dominiraju odbojci i krhotine, s velikom relativnom učestalošću
pločica, a među alatkama dominiraju strmo obrađeni artefakti,
među kojima su najbrojnije pločice i šiljci s hrptom.
127
Ovakav skup
nalaza vjerojatno je uvjetovan lovnim aktivnostima skupine koja
119 Karavanić 1999, str. 93, 94.
120 Karavanić 1999, str. 72, T. 27, str. 76, T. 29, str. 80, T. 31.
121 Karavanić 1999, str. 72, T. 27, str. 76, T. 29, str. 80, T. 31
122 Mi ovdje rabimo termin zakrivljeni šiljci s hrptom (pointe a dos courbe)
prema Demars, Laurent 1992, str. 112, koji drže da se zakrivljeni
šiljci s hrptom pojavljuju u isto vrijeme kad i noktolika grebala, tj. u
kasnoglacijalnim industrijama Europe, a u literaturi su poznati pod
različitim imenima: pointe azilienne, canif de Villepin, pointe deTjonger,
Federmesser.
123 Komšo, Pellegati 2007, str. 31.
124 Miracle, Forenbaher 2000, str. 44; Komšo, Pellegati 2007, str. 31.
125 Komšo, Pellegati 2007, str. 30.
126 Komšo, Pellegati 2007, str. 32.
127 Komšo, Pellegati 2007, str. 32.
44
VAPD 104, 2011., 7-54
45
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
which resided in Vešanska Cave. The subsequent phase from Vešanska
(Interstadial Phase II), viewed technologically and typologically,
exhibits some dierences in relation to the preceding phase, although
backed artefacts are still the most numerous among the tools.
128
The repertoire of tools present in Vešanska corresponds largely to
that found in Kopačina, but their relative frequency signicantly
diers from one cave to the other, what could be a result of dierent
activities undertaken in each cave. The activities undertaken were not
necessarily entirely dierent, but their intensity diered. In contrast
to Kopačina, where micro-burins are not present, they appeared in
Vešanska in this youngest phase.
129
A part of the stratigraphic sequence from Pupićina Cave which
belongs to the Late Glacial period based on radiocarbon dating
can be placed within the span from 11150 ± 80 BP (Beta-145095) to
10020 ± 180 BP (Z-2613).
130
The initial phase, as in Vešanska Cave,
has a small documented number of animal and lithic remains.
Although there are certain dierences between the later two
phases, both are dominated by akes and chunks with roughly
equal shares, while the share of bladelets is considerably higher
than in Kopačina. The repertoire of tools, which is similar to that
of Kopačina, is dominated by endscrapers, thumbnail and circular,
while the share of backed artefacts is also high, and in the later
phase geometric microliths also appear in this group of tools.
Micro-burins are also present in the latest phase.
131
A part of stratigraphic sequence from Nugljanska Cave, based
on the radiocarbon age of 11520 ± 90 (Beta-127705), may be
placed in the Late Glacial period.
132
In Nugljanska, as in Vešanska
and Pupićina, there are certain dierences between the dierent
phases of residence in the cave which were probably dictated
by the function of the cave itself in certain periods. Among the
technological categories, akes dominate, with a rather high share
of bladelets and blades (in comparison to Kopačina). Among the
backed tools, backed bladelets dominate, while in the younger
phase geometric microliths also appear. Micro-burins are present
in Nugljanska as well, in both phases.
Taking into account all of the aforementioned aspects, we may
conclude as follows: at the Istrian sites as in Kopačina, akes were
the primary product of knapping; bladelets in Istria are much more
common than in Kopačina; while micro-burins are present at almost
all of the Istrian sites (except in Šandalja II, which may be due to
the lack of sifting of sediments), they are unknown in Kopačina;
splintered pieces are rarer in Istria than in Kopačina; the share of
endscrapers is high in both Kopačina and Istria, but it would appear
that thumbnail endscrapers are more numerous in Kopačina;
geometric microliths are present in Kopačina as at the Istrian sites.
128 Komšo, Pellegati 2007, p. 32.
129 Komšo, Pellegati 2007, p. 32.
130 Komšo, Pellegati 2007, p. 33, Fig. 3.5. Here are cited three more dates
which belong to the afore mentioned time span.
131 Komšo, Pellegati 2007, p. 34.
132 Komšo, Pellegati 2007, p. 35; Miracle, Forenbaher 1997, p. 41.
9.2. Dalmatia
Besides Kopačina, three other Late Glacial sites (Vlakno, Zemunica,
Vela spila) are known in Dalmatia. Only a chronological parallel can
be drawn with Vlakno Cave on the island of Dugi otok, because the
materials have not yet been published. The late Upper Palaeolithic
hunter-gatherers resided in Vlakno between 14,900 BP, established by
the age of the tephra,
133
and 10160 ± 100 BP (Z-3383).
134
As in the case of Vlakno, only a chronological parallel can be
drawn for Zemunica Cave, because the lithic assemblage has
not yet been published, while part of the stratigraphic sequence
probably belongs to the late Upper Palaeolithic.
135
The Late Glacial stay of hunter-gatherers in Vela Spila has been
determined by an absolute radiocarbon date to an age of 12260
± 40 BP (VERA-2346).
136
When taking into consideration the age
and tool types present, as well as their relative frequency, layers
8/2 - 8/6 will be observed as a whole and compared to the lithic
industry from Kopačina. The dominant technological category in
the Late Glacial lithic assemblage of Vela Spila are chunks (with
the exception of chips), followed by akes, and then bladelets
and nally blades. As opposed to Kopačina, bladelets and blades
were produced much more often in Vela Spila.
137
The authors did
not mention the presence of micro-burins in the lithic inventory
of Vela Spila.
138
In the lithic asemblage of Vela Spila, endscrapers
predominate among the tools, which is also the case in Kopačina
in both lithic phases, but they are much more numerous in Vela
Spila, where they compose almost 50% of all tools.
139
Among
the endscrapers, the thumbnail endsraper is the most numerous
type after endscrapers on akes, while thumbnail endscrapers in
Kopačina are the most numerous type among the endscrapers.
The relative frequency of backed bladelets in Vela Spila (ca.
12%) is much higher than in Kopačina, but this may be a result
of the absence of sifting of sediments in Kopačina. Among the
geometric microliths in Vela Spila, the most numerous are backed
segments, and only one example of a trapeze is present. The
higher frequency of geometric microliths in Vela Spila compared to
Kopačina may, as in the case of backed bladelets, be the result of
the excavation methodology. The relative frequency of splintered
pieces is identical at both sites. Curved backed bladelets are more
numerous in Kopačina than in Vela Spila (0.38%). Based on this, we
may conclude that the Late Glacial lithic industries in Vela Spila and
Kopačina exhibit considerable similarities.
133 Brusić 2008, p. 402.
134 Brusić 2005, p. 198; Komšo 2006, p. 74.
135 Šošić, Karavanić 2006, p. 378.
136 Čečuk, Radić 2005, p. 34, note 9. A charcoal sample from layer 8/6 was
dated.
137 Čečuk, Radić 2005, p. 26, Table 2.
138 Čečuk, Radić 2005.
139 Data on the relative frequency of tools from Vela Spila were obtained on
the basis of data shown in Čečuk and Radić 2005, p. 27, Table 4.
je boravila u Vešanskoj peći. Sljedeća faza iz Vešanske (Interstadial
Phase II) tehnološki i tipološki gledano pokazuje određene
razlike u odnosu na prethodnu fazu, ali su i dalje među alatkama
najbrojniji strmo obrađeni artefakti.
128
Repertoar alatki prisutan
u Vešanskoj podudara se dobrim dijelom s onim pronađenim u
Kopačini, ali se međusobni omjeri bitno razlikuju u jednoj i drugoj
pećini i odraz su različitih aktivnosti poduzimanih u svakoj od
pećina. Poduzimane aktivnosti nisu nužno potpuno različite, ali je
različit njihov intenzitet. Za razliku od Kopačine gdje mikrodubila
nisu prisutna, ona se u Vešanskoj peći pojavljuju u ovoj najmlađoj
fazi.
129
Dio stratigrafskog slijeda iz Pupićine peći koji pripada kasnom
glacijalu na temelju radiokarbonskih datuma može se smjestiti
u rasponu od 11.150 ± 80 BP (Beta-145095) do 10.020 ± 180 BP
(Z-2613).
130
Inicijalna faza je kao i u Vešanskoj peći dokumentirana
malim brojem ostataka faune i litike. Iako između kasnijih dviju
faza postoji određena razlika, u obje faze dominiraju odbojci
i krhotine s približno jednakim udjelima, a udio pločica je
znatno veći nego u Kopačini. U repertoaru alatki koji je sličan
kopačinskom, dominiraju grebala, noktolika i kružna, udio strmo
retuširanih artefakata je također veliki, a u kasnijoj fazi se u ovoj
skupini alatki pojavljuju i geometrijski mikroliti. Mikrodubila su
također prisutna u najkasnijoj fazi.
131
Dio stratigrafskog slijeda iz Nugljanske peći na temelju
radiokarbonske starosti od 11520 ± 90 (Beta-127705) može se
smjestiti u kasnoglacijalno razdoblje.
132
I u Nugljanskoj kao i
u Vešanskoj i Pupićinoj peći postoje određene razlike između
različitih faza boravka u pećini koje su vjerojatno uvjetovane
funkcijom same pećine u određenim razdobljima. Među
tehnološkim kategorijama dominiraju odbojci uz poprilično
visoki udio pločica i sječiva (u usporedbi s Kopačinom). Kod strmo
retuširanih alatki dominantne su pločice s hrptom, a u mlađoj
fazi se javljaju i geometrijski mikroliti. Mikrodubila su prisutna i u
Nugljanskoj, i to u obje faze.
Uzimajući u obzir gore navedeno, možemo zaključiti: na
istarskim nalazištima kao i u Kopačini odbojci predstavljaju
primarni proizvod lomljenja; pločice su u Istri puno zastupljenije
nego u Kopačini; dok su mikrodubila prisutna na gotovo svim
spomenutim istarskim nalazištima (osim u Šandalji II, što može
biti posljedica neprosijavanja sedimenta), ona nisu poznata u
Kopačini; iskrzani komadi puno su rjeđi u Istri nego u Kopačini;
udio grebala je velik i u Kopačini i u Istri, ali se čini da su noktolika
grebala brojnija u Kopačini; geometrijski mikroliti prisutni su u
Kopačini kao i na istarskim nalazištima.
128 Komšo, Pellegati 2007, str. 32.
129 Komšo, Pellegati 2007, str. 32.
130 Komšo, Pellegati 2007, str. 33, sl. 3.5. Ovdje su navedena još tri datuma
koja pripadaju spomenutom rasponu.
131 Komšo, Pellegati 2007, str. 34.
132 Komšo, Pellegati 2007, str. 35; Miracle, Forenbaher 1997, str. 41.
9.2. Dalmacija
Osim Kopačine, u Dalmaciji su nam poznata još tri kasnoglacijalna
nalazišta (Vlakno, Zemunica, Vela spila). S pećinom Vlakno na
Dugom otoku možemo povući samo vremensku paralelu jer
materijal još nije objavljen. Kasnogornjopaleolitički lovci i skupljači
u Vlaknu su boravili između 14.900 BP, utvrđena starost tefre,
133
i
10.160 ± 100 BP (Z-3383).
134
Kao i u slučaju Vlakna, s pećinom Zemunicom možemo povući
samo kronološku paralelu jer litički skup nalaza još nije objavljen,
a dio stratigrafskog slijeda vjerojatno pripada kasnom gornjem
paleolitiku.
135
Kasnoglacijalni boravak lovačko-sakupljačkih zajednica
u Veloj spili određen je jednim apsolutnim radiokarbonskim
datumom starosti 12.260 ± 40 BP (VERA-2346).
136
Uzimajući
u obzir dobivenu starost i prisutne tipove alatki te njihovu
relativnu učestalost, slojeve 8/2 - 8/6 promatrat ćemo kao
cjelinu i usporediti ih s litičkom industrijom iz Kopine.
Dominantna tehnološka kategorija u kasnoglacijalnom litičkom
skupu nalaza Vele spile su krhotine (izuzmemo li sitni otpad),
nakon kojih slijede odbojci, zatim plice i na kraju sjiva. Za
razliku od Kopačine, pločice i sječiva u Veloj spili proizvođena
su puno češće.
137
U litičkom inventaru Vele spile autori ne
spominju prisutnost mikrodubila.
138
U litičkom skupu nalaza
Vele spile među alatkama dominiraju grebala, što je slučaj i u
Kopačini u obje litičke faze, ali su ona znatno brojnija u Veloj
spili, gdje čine gotovo 50 % svih alatki.
139
Među grebalima,
noktolika su najbrojniji tip nakon grebala na odbojku, dok su
noktolika grebala u Kopačini najbrojniji tip među grebalima.
Relativna učestalost plica s hrptom u Veloj spili (oko 12
%) puno je veća nego u Kopačini, ali to može biti posljedica
neprosijavanja sedimenta u Kopini. Mu geometrijskim
mikrolitima u Veloj spili najbrojniji su krni segmenti, a
prisutan je i samo jedan primjerak trapeza. Veća učestalost
geometrijskih mikrolita u Veloj spili nego u Kopačini me biti
rezultat, kao i kod plica s hrptom, metodologije iskopavanja.
Relativna učestalost iskrzanih komadića podjednaka je na oba
nalazišta. Zakrivljeni šiljci s hrptom brojniji su u Kopačini nego
u Veloj spili (0,38 %). Na temelju iznesenog možemo zaključiti
da kasnoglacijalne litičke industrije Vele spile i Kopačine
pokazuju znatnu sličnost.
133 Brusić 2008, str. 402.
134 Brusić 2005, str. 198; Komšo 2006, str. 74.
135 Šošić, Karavanić 2006, str. 378.
136 Čečuk, Radić 2005, str. 34, bilj. 9. Datiran je uzorak drvenog ugljena iz sloja
8/6.
137 Čečuk, Radić 2005, str. 26, tablica 2.
138 Čečuk, Radić 2005.
139 Podaci o relativnoj učestalosti alatki za Velu spilu dobiveni su na temelju
podataka prikazanih u Čečuk, Radić 2005, str. 27, tablica 4.
46
VAPD 104, 2011., 7-54
47
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
9.3. Herzegovina
The absolute radiocarbon dates from Badanj show a clear chronological
link with Kopačina. The older date is 13200 ± 150 BP (OxA-2196), while
the younger is 12380 ± 110 BP (OxA-2197).
140
At least a portion of the
stratigraphic sequence from Kopačina is contemporaneous to that of
Badanj. Based on typology, two phases have been distinguished in
Badanj,
141
wherein the younger phase which commenced at around
12,500 BP may be correlated to Kopina. The younger phase in
Badanj is, in its general contours, characterized by the predominance
of thumbnail endscrapers (20.64%) over backed bladelets, and the
appearance of geometric microliths (mostly circular segments),
142
which
complies entirely with Kopina in both lithic phases, particularly with
the younger. In Badanj, as in Kopačina, no micro-burin technique has
been recorded. Splintered pieces are common in Badanj over the entire
stratigraphic sequence,
143
as in Kopačina.
9.4. Montenegro
Layers containing Late Glacial Epigravettian industry have been
conrmed at several Montenegrin sites which may be compared
to Kopačina. These are Crvena stijena, Mališina stijena, Medena
stijena and Trebački krš.
144
The late Epigravettian industry from
Crvena stijena (layers IX and VIII), Medena stijena (layers VIII-V),
Mališina stijena (layer 2) and Trebački krš (layer II) have been
grouped as industries with curved backed bladelets and geometric
tools and they belong to the transitional (Crvena stijena IX and
Medena stijena VIII) and late phases of the late Upper Palaeolithic
in Montenegro.
145
Thus far there is only a single absolute date from
the Montenegrin site which belongs to the late Upper Palaeolithic.
Layer 3b1 from Mališina stijena has been dated by C-14 AMS
method and an age of 13780 ± 140 BP (OxA-1894) was obtained.
146
At the aforementioned Montenegrin sites, akes dominate in
technological terms, as in Kopačina, while blades are much more
frequent than in Kopačina, with a particularly high frequency in
Medena stijena.
147
Micro-burins are almost entirely absent, only a
single example was found in Trebački krš,
148
which is very similar to
the situation in Kopačina, where they are entirely absent. Splintered
pieces have been recorded in Crvena stijena and Medena stijena,
but not in Trebački krš.
149
While in Kopačina the relative frequency
of burins is rather minor, at the Montenegrin sites it is considerably
higher. Thumbnail endscrapers are much more frequent in Kopačina
140 Whallon 1999, p. 332.
141 Whallon 1989, p. 12; 1999, p. 332.
142 Whallon 1989, p. 12; 1999, p. 337.
143 Whallon 1999, p. 339.
144 Basler 1983; Đuričić 1996; Radovanović 1986; Mihailović 1996.
145 Mihailović 1998, p. 193; Mihailović 2009, pp. 76, 77, 91.
146 Mihailović 1998, p. 43.
147 Đuričić 1996, p. 95 Fig. 7; Mihailović 1996, p. 57 Table 2; Mihailović 2009, p.
31 Table 2.
148 Đuričić 1996, p. 86.
149 Đuričić 1996; Mihailović 1996; Mihailović 2009.
than at any other of the aforementioned sites.
150
Geometric microliths
and truncations are more frequent at the Montenegrin sites
than in Kopačina. Besides considerable similarities, there are also
considerable dierences between Kopačina and the Montenegrin
sites, which are summarily specied here.
Based on a regional comparison, we can say that the Kopačina
industry shows the greatest similarity to Badanj (younger phase)
and Vela Spila, which may be tied to the geographic proximity of
these sites.
10. Conclusion
A lithic analysis of the Kopačina assemblage points to the possibility
of existence of two lithic phases, based on relative frequency
ratio between backed bladelets and curved backed points. The
older phase (LP I) would have lasted until ca 13,200 BP, which is
the terminus post quem non for this phase, while the oldest part
of the stratigraphic sequence from Kopačina has no absolute
dates that would designate the beginning of LP I. The duration
of the younger phase (LP II) may be placed between ca 13,200
and 12,000 BP, although we may assume a close to this younger
phase several hundred radiocarbon years later. Although there
are certain dierences between these two phases in typology, the
similarities are much greater. Based on the lithic industry and the
absolute dates, the entire stratigraphic sequence from Kopačina
may be chronologically determined as Late Glacial, and culturally
as Epigravettian, although revisionary research in the future, with
new absolute dates, may correct such conclusions. Based on
comparisons with the Late Glacial industries of the Eastern Adriatic
and its hinterland, the lithic assemblage from Kopačina is most akin
to those discovered in Vela Spila and Badanj, which would t nicely
with the hypothetical hexagonal ideal space of movement of hunter-
gatherers along the Adriatic coast proposed by R. Whallon.
151
The petrographic analysis of the lithic artefacts from Kopačina
Cave, although a limited undertaking, provided the platform for a
geoarchaeological sketch of the economy of procuring lithic raw
materials, and also the network of movements of the Kopačina
population in the Late Glacial environment. The analyzed lithic
artefacts were crafted from metasomatic cherts and radiolarites.
Eight materials groups have been distinguished, of which three were
certainly imports to Brač. These are the groups of red and green
radiolarites and nummulitic cherts, with a total of 12% of the weight
share. They serve as unambiguous proof of the movement of the
Kopačina population in the territory of present-day central Dalmatia
and the region on the Adriatic eastern seaboard, probably up to
central Bosnia. These three groups are present at all depths of the
excavated cave sediment (less in the deeper, older layers), which
speaks to the continuity of the hypothesized network of movement
of the hunter-gatherers from Kopačina. While the group of nummulite
cherts testies to the link between the island and the coastal belt,
150 Đuričić 1996; Mihailović 1996; Mihailović 2009.
151 Whallon 2007.
9.3. Hercegovina
Apsolutni radiokarbonski datumi iz Badnja pokazuju jasnu
kronološku povezanost s Kopačinom. Stariji datum iznosi 13.200
± 150 BP (OxA-2196), a mlađi 12.380 ± 110 BP (OxA-2197).
140
Barem dio stratigrafskog slijeda iz Kopačine istovremen je s onim
iz Badnja. Tipološki gledano, u Badnju su izdvojene dvije faze,
141
pri čemu se mlađa faza, koja počinje oko 12.500 BP, može
dobro korelirati s Kopačinom. Mlađu fazu u Badnju u glavnim
crtama karakterizira dominacija noktolikih grebala (20,64,%)
nad pločicama s hrptom, te pojava geometrijskih mikrolita
(uglavnom kružnih segmenata),
142
što je u potpunom suglasju
s Kopačinom s obje litičke faze, a posebno s mlađom. U Badnju,
kao i u Kopačini, nije zabilježena tehnika mikrodubila. Iskrzani
komadi uobičajeni su u Badnju kroz cijeli stratigrafski slijed,
143
kao i u Kopačini.
9.4. Crna Gora
Na nekoliko crnogorskih nalazišta utvrđeni su slojevi s
kasnoglacijalnom epigravetijenskom industrijom koji se mogu
komparirati s Kopačinom. To su Crvena stijena, Mališina stijena,
Medena stijena i Trebački krš.
144
Kasnoepigravetijenske industrije
iz Crvene stijene (slojevi IX i VIII), Medene stijene (slojevi VIII-V),
Mališine stijene (sloj 2) i Trebačkog krša (sloj II) grupirane su
kao industries with arched backed bladelets and geometric tools i
pripadale bi prijelaznoj (Crvena stijena IX i Medena stijena VIII)
i kasnoj fazi kasnoga gornjeg paleolitika u Crnoj Gori.
145
Dosad
postoji samo jedan apsolutni datum s crnogorskih nalazišta koji
pripada vremenu kasnoga gornjeg paleolitika. Sloj 3b1 iz Mališine
stijene datiran je
14
C AMS metodom i dobivena je starost od
13.780 ± 140 BP (OxA-1894).
146
Na spomenutim crnogorskim nalazištima tehnološki
gledano dominiraju odbojci, kao i u Kopačini, a sječiva su
puno češća nego u Kopačini, dok je osobito velika učestalost
u Medenoj stijeni.
147
Mikrodubila su gotovo potpuno odsutna,
zabilježen je samo jedan primjerak u Trbačkom kršu,
148
što
je situacija vrlo slična onoj u Kopini, gdje u potpunosti
nedostaju. Iskrzani komadi zabiljeni su u Crvenoj stijeni i
Medenoj stijeni, a u Trebačkom kršu nisu.
149
Dok je u Kopačini
relativna učestalost dubila dosta mala, na crnogorskim
nalaztima znatno je viša. Noktolika grebala puno su čća
140 Whallon 1999, str. 332.
141 Whallon 1989, str. 12; Whallon 1999, str. 332.
142 Whallon 1989, str. 12; Whallon 1999, str. 337.
143 Whallon 1999, str. 339.
144 Basler 1983; Đuričić 1996; Radovanović 1986; Mihailović 1996.
145 Mihailović 1998, str. 193; Mihailović 2009, str. 76, 77, 91.
146 Mihailović 1998, str. 43.
147 Đuričić 1996, str. 95, sl. 7; Mihailović 1996, str. 57, tablica 2; Mihailović
2009, str. 31, tablica 2.
148 Đuričić 1996, str. 86.
149 Đuričić 1996; Mihailović 1996; Mihailović 2009.
u Kopačini nego na bilo kojem od spomenutih nalazišta.
150
Geometrijski mikroliti i zarupci češći su na crnogorskim
nalazištima nego u Kopačini. Pored dosta sličnosti, između
Kopine i crnogorskih nalazta postoje i znatne razlike, koje
su ovdje sumarno navedene.
Na temelju regionalne usporedbe možemo reći da najveću
sličnost kopačinska industrija pokazuje s Badnjem (mlađom
fazom) i s Velom spilom, što može biti povezano s geografskom
bliskošću ovih nalazišta.
10. Zaključak
Litička analiza skupa nalaza iz Kopačine pokazala je mogućnost
izdvajanja dviju faza, na temelju odnosa relativne učestalosti
pločica s hrptom i zakrivljenih šiljaka s hrptom. Starija faza (LF
I) trajala bi do ca. 13.200 BP, što je terminus post quem non za
ovu fazu, dok za najstariji dio stratigrafskog slijeda iz Kopačine
nemamo apsolutne datume koji bi odredili početak LF I. Trajanje
mlađe faze (LF II) može se staviti između otprilike 13.200 i
12.000 BP, s tim da možemo pretpostaviti završetak ove mlađe
faze nekoliko stotina radiokarbonskih godina kasnije. Iako
između ove dvije faze postoje određene razlike u tipološkom
smislu, puno su veće sličnosti. Na temelju litičke industrije i
apsolutnih datuma, cjelokupni stratigrafski slijed iz Kopačine
možemo kronološki odrediti kao kasnoglacijalni, a kulturno
kao epigravetijenski, iako će možda revizijska istraživanja u
budućnosti s novim apsolutnim datumima korigirati ovakve
zaključke. Na temelju usporedbe s kasnoglacijalnim industrijama
istočnog Jadrana i zaleđa, litički skup nalaza iz Kopačine najbliži
je onima otkrivenima u Veloj spili i Badnju, što bi se dobro
poklapalo s hipotetičkim heksagonalnim idealnim prostorom
kretanja lovačko-sakupljačkih zajednica na Jadranu koji je
predložio R. Whallon.
151
Petrografska analiza litkih artefakata iz pine Kopačine,
iako ogranena zahvata, podloga je geoarheolke skice
ekonomije nabave litičke sirovine, a time i mreže kretanja
kopinske populacije u kasnoglacijalnom okolišu. Analizirani
litki artefakti izreni su od metasomatskog rožnjaka i
radiolarita. Izdvojeno je osam materijalnih skupina od kojih
su tri zasigurno brački import. To su skupine crvenog, zelenog
radiolarita i numulitnog rnjaka s ukupno 12 % težinskog
udjela. One su nedvojbeni dokaz o kretanjima kopačinske
populacije na prostoru današnje srednje Dalmacije i regija
na istočnoj strani Jadrana, vjerojatno sve do srednje Bosne.
Te tri skupine zastupljene su u svim dubinama iskopanoga
pećinskog sedimenta (manje u dubljim starijim slojevima),
što govori o kontinuitetu pretpostavljene mreže kretanja
lovaca i sakupljača iz Kopine. Dok skupina numulitnog
rožnjaka svjedoči o povezanosti otoka s obalnim pojasom,
skupine zelenog i crvenog radiolarita malog udjela u litičkom
150 Đuričić 1996; Mihailović 1996; Mihailović 2009.
151 Whallon 2007.
48
VAPD 104, 2011., 7-54
49
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
the group of green and red radiolarites, with a small share in the
lithic inventory, but with an indicative value for the origin of the raw
materials, point to the ties between the Kopačina population with
the deep hinterland. Indicators of potential oscillations between the
radius and direction of movement have thus far not been noted in the
Kopačina lithics. All three of the aforementioned material groups can
be found in the inventory of Vela Spila, which indicates their structural
similarity or even a link, and serves as an impetus for further research
into this phenomenon. Besides the group of petrographically dierent
and individually indeterminate nds, a group of red nds, with a
10% share in the overall inventory, has also been distinguished, which
speaks in favour of the more permanent use of the cave. The weight
share of Brač metasomatic cherts is roughly 43%, and this, judging
by the core nds and technological remains, was mostly used to craft
nds in the habitat. The predominance of this more or less local chert
and cherts from outcrops in the area up to the recent coastline over
the share of radiolarites which come from more distant regions leads
to the conclusion that the Kopačina population preferred to reside
on Brač and move about in the central Dalmatian zone as opposed to
movement over longer distances.
The retouching of red radiolarites at the site, beginning with the
preparatory phase for technological cores, has been conrmed in
individual nds with rinds of pebbles in these groups, which means
that the rocks were not dug out from their place of origin, but rather
gathered at some allochthonous outcrop, transported to the habitat
and then processed. Since the group of artefacts made of green
radiolarites contains no nds with a rind of pebbles, we assume that
the raw materials at the habitat were brought already prepared into
technological cores. The nds from the group of cherts with nodular,
more or less weathered cortex indicates that the nodules were not
extracted from a rock face, but rather jutting nodules of chert were
broken o, or more likely, eroded nodules and fragments were
gathered in accretions in the immediate vicinity of the host rock.
The metasomatic nodular chert used to make the Kopačina artefacts
may have originated from autochthonous, or para-autochthonous
outcrops on Brač, some other island, and in the inter-insular area or
on the mainland side of Dalmatia and its hinterland. Given that the
Kopačina hunter-gatherers did not use the numerous, abundant and
easily accessible outcrops of chert in the nearer and more distant
vicinity of Brač, i.e., in the territory of central Dalmatia, which are of a
higher quality than the nds in the lithic inventory of Kopačina, we
have concluded that they did not undertake forays to specically
search for stone to procure, rather they met their need for raw
materials at outcrops inside the network of their daily and seasonal
movement in the Brač area.
If the two basic types of stone raw materials which form the
lithic inventory of Kopačina (metasomatic chert and radiolarite)
are compared with the culturally, chronologically, geographically
and petrographically similar Vela Spila, it is apparent that these
inventory nds are a reection of the deposits of the source
rocks, i.e. similar types of outcrops very widespread in the
carbonate rocks of the external Dinaric zone and the ophiolites
inside the Dinaric zone. Therefore, this work serves as the basis
for the continuation of research into the territory in which these
rocks appear in parts of Croatia, Bosnia and Herzegovina and
Montenegro, with the objective of geoarchaeological mapping
of the sources of the rocks present in the lithic inventories of the
prehistoric sites in the same area. Systematic eld research into
above all allochthonous outcrops of such rock in the regional
and supra-regional zone may provide more specic and precise
answers to the question of the potential and probable origin of the
stone in these artefacts, and thereby also the links between these
Epigravettian sites.
152
152 Thanks are due to Asja Tonc and Tomislav Pušić for their assistance during
the initial phase of lithic analysis. All sketches were done by Martina
Rončević. Thank you, Martina. Study of the lithic group of nds from
Kopačina was partially nanced under Project 130-0000000-087 of the
Croatian Ministry of Science, Education and Sports.
inventaru, ali indikativne vrijednosti za porijeklo sirovine,
ukazuju na povezanost kopačinske populacije s dubokim
zaleđem. Pokazatelje eventualnih oscilacija radijusa ili
pravaca kretanja, zasad nismo zapazili u litici Kopačine. Sve
tri navedene materijalne skupine nalazimo i u inventaru Vele
spile, što upućuje na njihovu strukturalnu srodnost ili čak
povezanost i motivira na detaljnije istrivanje te pojave.
Pored skupine petrografski raznih i pojedinačno neodređenih
nalaza, izdvojena je skupina žarenih nalaza s oko 10 % udjela
u ukupnom inventaru, što govori u prilog trajnijeg korištenja
pećine. Težinski udio brkog metasomatskog rožnjaka iznosi
oko 43 % i taj je, sudeći po nalazima jezgri i tehnološkim
ostacima, najviše rabljen za izradu alatki na staništu. Pretežnost
tog manje-više lokalnog rožnjaka i rožnjaka s izdanaka na
prostoru do recentne obale nad udjelom radiolarita koji
potječe iz daleko udaljenijih krajeva, daje zaključiti da je
kopinska populacija prebivanje na Braču i kretanje na
srednjodalmatinskom prostoru preferirala u odnosu na kretanja
na duge relacije.
Obrada crvenog radiolarita na staništu, počevši od faze
pripreme tehnolke jezgre, potvena je pojedinim nalazima
s valutičnom okorinom u tim skupinama, što zni da kamen
nije kopan iz stijene na mjestu postanka, nego ubran na nekom
alohtonom izdanku, dopremljen na stanište gdje je i obrađivan.
Budući da u skupini artefakata od zelenog radiolarita nema
nalaza s valutičnom okorinom, pretpostavljamo da je sirovina
na stanište donena već preparirana u tehnolke jezgre.
Nalazi iz skupine rožnjaka s nodularnom, manje-ve trošnom
okorinom govore da nodule nisu kopane iz stijene, nego
da su na ispranoj stijeni stršeće nodule rožnjaka lomljene
ili da su, što je vjerojatnije, erodirane nodule i fragmenti
brani u nakupinama u neposrednoj blizini stijene domaćina.
Metasomatski nodularni rožnjak od kojeg su izrađivani
kopačinski artefakti, može potjecati s autohtonog, odnosno
s paraautohtonog izdanka na Braču, s nekog drugog otoka
kao i muotnog prostora ili s kopnene strane Dalmacije i
zala. S obzirom da brojne, obilne i lako dostupne izdanke
rožnjaka u bloj i daljnjoj okolici Bra, odnosno na prostoru
srednje Dalmacije, koji je kvalitetniji od nalaza u litičkom
inventaru Kopačine, kopačinski lovci i sakupljači nisu
iskorištavali, zaključujemo da nisu poduzimali posebne daleke
pohode u potrazi i nabavi kamena, nego su sirovinske potrebe
zadovoljavali na izdancima u mreži dnevnih i sezonskih
kretanja u brkom prostoru.
Usporede li se dvije osnovne vrste kamene sirovine
koje čine litički inventar Kopačine (metasomatski rožnjak i
radiolarit), s kulturološki, vremenski, geografski i petrografski
srodnim vrstama iz Vela spile, vidljivo je da su ti inventari
odraz ležišta sirovinskih stijena, odnosno srodnih tipova
izdanaka vrlo rasprostranjenih u karbonatnim stijenama
vanjskih Dinarida i oolitima unutrašnjih Dinarida. Stoga je
ovaj rad podloga nastavka terenskih istraživanja na području
pojavljivanja predmetnih stijena u dijelu Hrvatske, Bosne i
Hercegovine i Crne Gore s ciljem geoarheološkog kartiranja
izvora stijena zastupljenih u litičkim inventarima prapovijesnih
nalazišta na istom prostoru. Sustavno terensko istraživanje
prije svega alohtonih izdanaka takvih stijena na regionalnom
i supraregionalnom prostoru, moglo bi dati konkretnije i
preciznije odgovore na pitanja mogućeg i vjerojatnog porijekla
kamena predmetnih artefakata, a time i povezanosti navedenih
epigravetijenskih nalazišta.
152
152 Hvala Asji Tonc i Tomislavu Pušiću na pomoći tijekom inicijalne faze
litičke analize. Zahvaljujemo i Martini Rončević, koja je izradila sve crteže.
Studijski rad na litičkom skupu nalaza iz Kopačine nanciran je dijelom
iz projekta 130-0000000-087 Ministarstva znanosti, obrazovanja i športa
Republike Hrvatske.
50
VAPD 104, 2011., 7-54
51
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Literatura / Bibliography
Adams et al. 1984
A. E. Adams, W. S. MacKenzie,
C. Guilford, Atlas of sedimentary
rocks under the microscope, Essex
1984.
Aolter 2002
J. Aolter, Provenance des silex
préhistoriques du Jura et des
régions limitrophes, Archéologie
Neuchâteloise 28, Neuchâtel
2002.
Arora 1979
S. K. Arora, Mesolithische
Rohstoversorgung im westlichen
Deutschland, Beiträge zur
Urgeschichte des Rheinlandes
III, Rheinische Ausgrabungen 19,
Mainz 1979, 1-51.
Bailey, Woodward 1997
G. Bailey, J. Woodward, The
Klithi Deposits: Sedimentology,
Stratigraphy and Chronology,
in: Klithi: Palaeolithic Settlement
and Quaternary landscapes
in northwest Greece. Vol. 1:
Excavation and intra-site
analysis at Klithi, G. Bailey (ed.),
Cambridge 1997, 61-94.
Bailey, Galanidou 2009
G. Bailey, N. Galanidou, Caves,
palimpsests and dweling spaces:
examples from the Upper
Palaeolithic of south-east Europe,
World Archaeology 41 (2), The
Archaeology of Caves, Shelters
and the Deep Karst, New York
2009, 215-241.
Basler 1983
Đ. Basler, Paleolitske kulture
u jadranskoj regiji Jugoslavije,
Glasnik Zemaljskog muzeja
Bosne i Hercegovine u Sarajevu
n.s. 38, Sarajevo 1983, 1-63.
Batimetrijska karta, Jadransko
more;, 1:1mio, Split 1994.
Bietti 1990
A. Bietti, The Late Upper
Paleolithic in Italy: An Overview,
Journal of World Prehistory 4/1,
New York 1990, 95-155.
Biró et al. 2009
K. T. Biró, V. Silágy, Z. Kasztovszky,
New data on the Characterisation
of Radiolarite Sources of the
Carpathian Basin, Archeometriai
Mühely, 2009. VI. 3., 25-44.
(dostupno na: http://www.ace.
hu/am/2009_3 pristup 01. 03.
2010).
Bronk-Ramsey 2009
C. Bronk-Ramsey, Bayesian
analisys of radiocarbon dates,
Radiocarbon 51 (1), Tucson
2009, 337-360.
Brusić 2005
Z. Brusić, Pećina Vlakno, Hrvatski
arheološki godišnjak 1(2004),
Zagreb 2005, 197-199.
Brusić 2008
Z. Brusić, Pećina Vlakno, Hrvatski
arheološki godišnjak 4(2007),
Zagreb 2008, 400-403.
Bulić 1891
F. Bulić, Starinska iznašašća na
otoku Braču (Brattia), Bulletino di
archeologia e storia Dalmata XIV,
Split 1891, 117-120.
Čečuk 1981
B. Čečuk, Kopačina, otok Brač -
višeslojno prethistorijsko nalazište,
Arheološki pregled 22 (1980),
Beograd 1981, 9 -10.
Čečuk 1982
B. Čečuk, Spilja Kopačina, Donji
Humac, otok Brač - višeslojno
prethistorijsko nalazište,
Arheološki pregled 23, Beograd
1982, 14-15.
Čečuk 1985
B. Čečuk, Istrivanja u spilji
Kopačini na otoku Braču, Obavijesti
Hrvatskog arheološkog društva
17/3, Zagreb 1985, 29-30.
Čečuk 1986a
B. Čečuk, Kopačina. Epipaleolitsko,
mezolitsko i brončanodobno
nalazište/Epipaleolithic, Mesolithic
and Bronze Age Site, Arheološki
pregled 26 (1985), Ljubljana
1986, 32.
Čečuk 1986b
B. Čečuk, Istraživanja u spilji
Kopačini na otoku Braču i Veloj
spilji na otoku Korčuli, Obavijesti
Hrvatskog arheološkog društva
18/3, Zagreb 1986, 32-34.
Čečuk 1987
B. Čečuk, Istraživanja u spilji
Kopačini na otoku Braču i Veloj
spilji na otoku Korčuli, Obavijesti
Hrvatskog arheološkog društva
19/3, Zagreb 1987, 32-34.
Čečuk 1989a
B. Čečuk, Istraživanja u Veloj spilji
na otoku Korčuli i spilji Kopačini
na otoku Braču, Obavijesti
Hrvatskog arheološkog društva
21/1, Zagreb1989, 16-18.
Čečuk 1989b
B. Čečuk, Istrivanja u spilji
Kopačini na otoku Braču, Obavijesti
Hrvatskog arheološkog društva
21/3, Zagreb 1989, 29-31.
Čečuk 1990
B. Čečuk, Istraživanja u
spilji Kopačini na otoku
Braču, Obavijesti Hrvatskog
arheološkog društva 22/3,
Zagreb 1990, 24-26.
Čečuk 1991
B. Čečuk, Istraživanja u
spilji Kopačini na otoku
Braču, Obavijesti Hrvatskog
arheološkog društva 23/3,
Zagreb 1991, 43-45.
Čečuk 1992
B. Čečuk, Arheološka istraživanja
u spilji Kopačini na otoku
Braču, Obavijesti Hrvatskog
arheološkog društva 24/3,
Zagreb 1992, 37-42.
Čečuk 1993
B. Čečuk, Istraživanja u špilji
Kopačini pokraj Donjeg Humca
na otoku Braču, Obavijesti
Hrvatskog arheološkog društva
25/3, Zagreb 1993, 46-51.
Čečuk 1996
B. Čečuk, Špilja Kopačina kod
Donjeg Humca na otoku Braču,
Arheološki radovi i rasprave 12,
Zagreb 1996, 13-30.
Čečuk 2006
B. Čečuk, Kopačina na Braču,
in: Stotinu hrvatskih arheoloških
lokaliteta, A. Durman (ed.),
Zagreb 2006, 148-149.
Čečuk, Radić 2005
B. Čečuk, D. Radić, Vela Spila.
Višeslojno pretpovijesno nalazište.
Vela Luka - otok Korčula, Vela
Luka 2005.
Demars, Laurent 1992
P. Y. Demars, P. Laurent, Types
d’outiles lithiques du Paleolithique
Superieur en Europe, Paris 1992.
Derado 1984
K. Derado, Reljef otoka Brača, Brački
zbornik 14, Supetar 1984, 8-9.
Đuričić 1996
Lj. Đuričić, The cipped stone industry
from the rock-shelter of Trebački Krš,
in: Prehistoric settlements in caves
and rock-shelters of Serbia and
Montenegro (Fascicule 1), D. Srejović
(ed.), Beograd 1996, 75-102.
Floss 1994
H. Floss, Rohmaterialversorgung
im Paläolithikum des
Mittelrheingebietes, Bonn 1994.
Dubina (cm)
0-20 (N=67)
20-40 (N=124)
40-60 (N=117)
60-80 (N=87)
80-100 (N=83)
100-120 (N=82)
120-140 (N=96)
140-160 (N=136)
160-180 (N=135)
180-200 (N=155)
200-220 (N=44)
220-240 (N=9)
240-260 (N=30)
260-280 (N=16)
280-300 (N=14)
Tip % % % % % % % % % % % % % % %
noktoliko grebalo 13,43 29,84 17,09 12,64 14,46 17,07 20,83 8,09 14,07 9,03 13,64 33,33 13,33 12,50 0,00
kružno grebalo 0,00 0,00 1,71 0,00 0,00 1,22 4,17 2,94 0,00 0,00 0,00 0,00 0,00 0,00 0,00
grebalo na odbojku 22,39 12,10 12,82 11,49 19,28 17,07 14,58 10,29 12,59 9,03 15,91 0,00 13,33 0,00 7,14
grebalo na sječivu/pločici 0,00 2,42 1,71 3,45 1,20 2,44 0,00 0,00 1,48 1,29 2,27 0,00 6,67 0,00 0,00
pločica s hrptom 0,00 2,42 2,56 1,15 1,20 0,00 6,25 0,00 0,74 0,65 0,00 0,00 0,00 6,25 0,00
šiljak s hrptom 1,49 0,00 0,85 0,00 0,00 6,10 0,00 4,41 2,22 6,45 0,00 11,11 0,00 12,50 0,00
mikrograveta 0,00 0,00 0,00 0,00 0,00 0,00 1,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
gravetijenski šiljak 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00
segment 0,00 0,81 0,00 0,00 0,00 0,00 0,00 0,00 0,74 0,00 0,00 0,00 0,00 0,00 0,00
pravokutnik 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
zarubak 0,00 1,61 0,85 0,00 2,41 0,00 4,17 2,21 0,00 2,58 2,27 0,00 3,33 6,25 0,00
strugalo 8,96 11,29 9,40 12,64 15,66 6,10 7,29 15,44 6,67 16,77 4,55 0,00 13,33 18,75 14,29
svrdlo 1,49 0,81 1,71 0,00 1,20 1,22 2,08 2,21 0,74 5,16 0,00 0,00 0,00 0,00 14,29
dubilo 2,99 1,61 3,42 1,15 1,20 1,22 0,00 1,47 2,22 1,94 13,64 0,00 10,00 0,00 28,57
iskrzani komad 8,96 4,84 7,69 8,05 8,43 6,10 11,46 7,35 11,85 10,32 4,55 11,11 10,00 0,00 0,00
komad sa sitnom rubnom
obradom
4,48 2,42 1,71 2,30 2,41 1,22 2,08 2,21 2,22 0,65 4,55 0,00 3,33 0,00 14,29
komad s obradom 17,91 13,71 17,95 28,74 18,07 25,61 18,75 18,38 20,74 18,71 20,45 44,44 20,00 18,75 14,29
nazubak 14,93 13,71 17,09 9,20 13,25 14,63 7,29 16,18 14,81 14,84 18,18 0,00 6,67 18,75 7,14
udubak 2,99 2,42 1,71 5,75 1,20 0,00 0,00 2,94 5,19 2,58 0,00 0,00 0,00 6,25 0,00
obrađeni ulomak 0,00 0,00 1,71 3,45 0,00 0,00 0,00 4,41 3,70 0,00 0,00 0,00 0,00 0,00 0,00
ukupno 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Depth (cm)
0-20 (N=67)
20-40 (N=124)
40-60 (N=117)
60-80 (N=87)
80-100 (N=83)
100-120 (N=82)
120-140 (N=96)
140-160 (N=136)
160-180 (N=135)
180-200 (N=155)
200-220 (N=44)
220-240 (N=9)
240-260 (N=30)
260-280 (N=16)
280-300 (N=14)
Type % % % % % % % % % % % % % % %
thumbnail endscraper 13.43 29.84 17.09 12.64 14.46 17.07 20.83 8.09 14.07 9.03 13.64 33.33 13.33 12.50 0.00
circular endscraper 0.00 0.00 1.71 0.00 0.00 1.22 4.17 2.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00
endscraper on ake 22.39 12.10 12.82 11.49 19.28 17.07 14.58 10.29 12.59 9.03 15.91 0.00 13.33 0.00 7.14
endscraper on blade/
bladelet
0.00 2.42 1.71 3.45 1.20 2.44 0.00 0.00 1.48 1.29 2.27 0.00 6.67 0.00 0.00
backed bladelet 0.00 2.42 2.56 1.15 1.20 0.00 6.25 0.00 0.74 0.65 0.00 0.00 0.00 6.25 0.00
curved backed point 1.49 0.00 0.85 0.00 0.00 6.10 0.00 4.41 2.22 6.45 0.00 11.11 0.00 12.50 0.00
micro-Gravette 0.00 0.00 0.00 0.00 0.00 0.00 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gravettian point 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
segment 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00
rectangle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
truncation 0.00 1.61 0.85 0.00 2.41 0.00 4.17 2.21 0.00 2.58 2.27 0.00 3.33 6.25 0.00
sidescraper 8.96 11.29 9.40 12.64 15.66 6.10 7.29 15.44 6.67 16.77 4.55 0.00 13.33 18.75 14.29
borer 1.49 0.81 1.71 0.00 1.20 1.22 2.08 2.21 0.74 5.16 0.00 0.00 0.00 0.00 14.29
burin 2.99 1.61 3.42 1.15 1.20 1.22 0.00 1.47 2.22 1.94 13.64 0.00 10.00 0.00 28.57
splintered piece 8.96 4.84 7.69 8.05 8.43 6.10 11.46 7.35 11.85 10.32 4.55 11.11 10.00 0.00 0.00
marginally retouched
piece
4.48 2.42 1.71 2.30 2.41 1.22 2.08 2.21 2.22 0.65 4.55 0.00 3.33 0.00 14.29
retouched piece 17.91 13.71 17.95 28.74 18.07 25.61 18.75 18.38 20.74 18.71 20.45 44.44 20.00 18.75 14.29
denticulate 14.93 13.71 17.09 9.20 13.25 14.63 7.29 16.18 14.81 14.84 18.18 0.00 6.67 18.75 7.14
notch 2.99 2.42 1.71 5.75 1.20 0.00 0.00 2.94 5.19 2.58 0.00 0.00 0.00 6.25 0.00
retouched fragment 0.00 0.00 1.71 3.45 0.00 0.00 0.00 4.41 3.70 0.00 0.00 0.00 0.00 0.00 0.00
total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Dodatak 1.
Relativna učestalost različitih tipova alatki po dubinama, uzimajući u obzir
samo vrećice s rasponom dubina od 20 cm, od 0 do 300 cm.
Appendix 1.
Relative frequency of dierent types of tools by depth, taking into
consideration only the bags with depth increments of 20 cm, from 0 to 300 cm.
52
VAPD 104, 2011., 7-54
53
Kasnoglacijalna industrija lomljenog kamena pećine Kopačine
Late Glacial knapped stone industry of Kopačina Cave
Nikola Vukosavljević, Zlatko Perhoč, Božidar Čečuk †, Ivor Karavanić
Komšo 2007
D. Komšo, Nakit na području Istre
od paleolitika do neolitika, in:
Scripta praehistorica in honorem
Biba Teržan, M. Blečić et al. (eds.),
Situla 44, Ljubljana 2007, 31-40.
Komšo, Pellegati 2007
D. Komšo, P. Pellegati, The
Late Epigravettian in Istria. Late
Paleolithic colonization and
lithic technology in the northern
Adriatic area, in: Late Paleolithic
Environments and Cultural
Relations around the Adriatic, R.
Whallon (ed.), BAR International
Series 1716, Oxford 2007, 27-39.
Kozłowski 1999
J. Kozłowski, Gravettian/
Epigravettian sequences in
the Balkans: environment,
technologies, hunting strategies
and raw material procurement,
in: The Palaeolithic Archaeology
of Greece and adjacent areas
(Proceedings of the ICOPAG
Conference, Ioannina 1994), G. N.
Bailey et al. (eds.), British School
at Athens Studies 3, London
1999, 330-342.
Lubell 2004a
D. Lubell, Prehistoric
edible land snails in the
circum-Mediterranean: the
archaeological evidence, in: Petits
animaux et Sociétés Humaines,
Du Complément Alimentaire
Aux Ressources Utilitaires. XXIV
e
rencontres internationales
d’archéologie et d’histoire
d’Antibes, J.-P. Brugal, J. Desse
(eds.), Antibes 2004, 77-98.
Lubell 2004b
D. Lubell, Are land snails a
signature for the Mesolithic-
Neolithic transition?, Documenta
Praehistorica XXXI, Ljubljana
2004, 1-24.
Lugović et al. 1991
B. Lugov, R. Altherr, I. Raczek, A.W.
Hofmann, V. Majer, Geochemistry of
peridotites and mac igneous rock
from the Central Dinaric Ophilite
Belt, Yugoslavia, Contributions to
Mineralogy and Petrology 106,
Berlin 1991, 201-216.
Magaš, Marinčić 1973
N. Magaš, S. Marinčić, Osnovna
geološka karta SFRJ 1: 100.000, K
33-20, K 33-21, tumza listove Split
i Primošten, Institut za geološka
istraživanja Zagreb, Beograd:
Savezni geološki zavod 1973.
Magaš et al. 1973
S. Marinčić, N. Magaš, I. Borović,
Osnovna geološka karta SFRJ 1:
100.000; List Split, K 33-21. Institut
za geološka istraživanja Zagreb
(1968-9), Beograd: Savezni
geološki zavod 1971.
Marinčić et al. 1971
S. Marinčić, N. Magaš i I. Borović,
Osnovna geološka karta SFRJ 1:
100.000; List Split, K 33-21. Institut
za geološka istraživanja Zagreb
(1968-9), Beograd: Savezni
geološki zavod 1971.
Maggi et al. 1995
R. Maggi, N. Campana, F.
Negrino, Valle Lagora (I 18): a
quarry of radiolarite (jasper)
exploited during the Copper
and Early Bronze Ages (Liguria,
Italy), Archaeologija Polona 33,
Warszawa 1995, 187-208.
Majer, Jurković 2001
V. Majer, I. Jurković, Bilješka o
nalazu krom-spinela kod Čelinca
u Bosni, Znanstveni radovi 1954-
1999, Zagreb 2001, 337-339.
Malez, Vogel 1969
M. Malez, J. C. Vogel, Rezultati
određivanja apsolutne starosti
pleistocenskih naslaga Šandalje II
kod Pule u Istri, Geološki vjesnik
22 (1968), Zagreb 1969, 121-133.
Flügel 1978
E. Flügel, Mikrofazielle
Untersuchungsmthoden von
Kalken, Berlin 1978.
Forenbaher 2002
S. Forenbaher, Prehistoric
Populations of the Island of Hvar - An
Overview of Archaeological Evidence,
Collegium Antropologicum 26/1,
Zagreb 2002, 361-378.
Forenbaher et al. 2010
S. Forenbaher, T. Kaiser, S. Frame,
Adriatic Mortuary Ritual at
Grapčeva Cave, Croatia, Journal
of Field Archaeology 35/4,
Boston 2010, 337-354.
Füchtbauer, Müller 1970
H. Füchtbauer, G. Müller,
Sediment-Petrologie. Teil II:
Sedimente und Sedimentgesteine,
Stuttgart 1970.
Goodfriend 1987
G. A. Goodfriend, Radiocarbon
age anomalies in shell carbonate
of land snails from semi-arid
areas, Radiocarbon 29 (2),
Tucson 1987, 159-167.
Goodfriend 1992
G. A. Goodfriend, The use of land
snail shells in paleoenvironmenal
reconstruction, Quaternary
Science Reviews 11, Amsterdam
1992, 665-685.
Goodfriend, Stipp 1983
G. A. Goodfriend, J. J. Stipp,
Limestone and the problem of
radiocarbon dating of land-snail
shell carbonate, Geology 11,
Washington 1983, 575-577.
Goričan 1994
Š. Goričan, Jurassic and
Cretaceous radiolarian
biostratigraphy and sedimentary
evolution of the Budva Zone
(Dinarides, Montenegro),
Mémoires de Géologie 18,
Lausanne 1994.
Grunau 1965
H. R. Grunau, Radiolarian chert
and associated rock in space
and time, Eclogae Geologicae
Helvetiae, 58/1, Basel 1965,
157-209.
Halamić, Šošić Klindžić 2009
J. Halamić, R. Šošić Klindžić,
Radiolarites and Radiolarian chert
in Northern Croatia - Possible
sources for the Production of
Artfact, Archeometriai Mühely
2009. VI. 3., 19-24. (dostupno na:
http://www.ace.hu/am/2009_3
pristup 01. 07. 2010).
Hrvatović 2006
H. Hrvatović, Geological
Guidebook through Bosnia and
Herzegovina, Sarajevo 2006.
Ivanović et al. 1976
A. Ivanović, K. Sakač, B. Sokač,
I. Vrsalović-Carević, J. Županić,
Osnovna geološka karta SFRJ,
tumač za list Obrovac, 1:100.000,
Institut za geološka istraživanja
Zagreb (1967), Beograd, Savezni
geološki zavod, 1976.
Karavanić 1999
I. Karavanić, Gornji paleolitik
Šandalje II u okviru jadranske
regije, neobjavljena doktorska
disertacija, Sveučilište u
Zagrebu, Zagreb 1999.
Kliškić 2007
D. Kliškić, Špilja Kopačina,
Hrvatski arheološki godišnjak
2(2006), Zagreb 2007, 443-445.
Kliškić 2008
D. Kliškić, Špilja Kopačina,
Hrvatski arheološki godišnjak
4(2007), Zagreb 2008, 528-530.
Komšo 2006
D. Komšo, Mezolitik u Hrvatskoj,
Opuscula archaeologica 30,
Zagreb 2006, 55-91.
Marjanac 1987
T. Marjanac, Sedimentacija
Kernerove “srednje iške zone
(paleogen, okolica Splita),
Geološki vjesnik 40, Zagreb
1987, 177-194.
Marjanac et al. 1998
T. Marjanac, D. Baba, J. Benic, V.
Ćosović, K. Drobne, Lj. Marjanac,
R. Pavlovec, Z. Velimirović,
Eocene Carbonate Sediments and
Sea-Level Changes on the NE Part
of Adriatic Carbonate Platform
(Island of Hvar and Peljesac
Peninsula, Croatia), Dela-Opera
SAZU 4. razred 34/2, Ljubljana
1998, 243-254.
Mihailović 1996
D. Mihailović, Upper Palaeolithic
and Mesolithic chipped stone
industries from the rock-shelter
of Medena Stijena, in: Prehistoric
settlements in caves and rock-
shelters of Serbia and Montenegro
(Fascicule 1), D. Srejović (ed.),
Beograd 1996, 9-60.
Mihailović 1998
D. Mihailović, Gornji paleolit i
mezolit Crne Gore, neobjavljena
doktorska disertacija, Univerzitet
u Beogradu, Beograd 1998.
Mihailović 1999
D. Mihailović, Intensication of
settlement in the Late Glacial
of south-western Balkans, Folia
Quaternaria 70, Kraków 1999,
385-392.
Mihailović 2009
D. Mihailović, Upper Palaeolithic
and Mesolithic chipped stone
industries from Crvena stijena
(Prehistoric settlements in caves
and rock-shelters of Serbia and
Montenegro Fascicule II), Beograd
2009.
Miracle 1995
P. T. Miracle, Broad-Spectrum
Adaptations Re-Examined:
Hunther-Gatherer Responses to Late
Glacial Environmental Changes in
the Eastern Adriatic, neobjavljena
doktorska disertacija, University of
Michigan, Ann Arbor 1995.
Miracle 1996
P. Miracle, Diversication in
Epipaleolithic subsistence strategies
along the Eastern Adriatic coast:
a simulation approach applied to
zooarchaeological assemblages,
Atti della Società per la Preistoria
e Protostoria della regione Friuli-
Venezia Giulia IX(1994-1995),
Trieste 1996, 33-62.
Miracle, Forenbaher 2000
P. T. Miracle, S. Forenbaher,
Pupićina Cave project: Brief
summary of the 1998 season -
Projekt Pupićina peć: prethodni
izvjtaj o istraživanjima tijekom
1998. godine, Histria archaeologica
29(1998), Pula 2000, 27-47.
Müller 1964
G. Müller, Sediment-Petrologie.
Teil I: Methoden der Sediment-
Untersuchung, Stuttgart 1964.
Obelić et al. 1994
B. Obelić, N. Horvatinčić, D.
Srdoč, I. Krajcar Bronić, A.
Sliepčević, S. Grgić, Rudjer
Bošković Institute radiocarbon
measurements XIII, Radiocarbon
36 (2), Tucson 1994, 303-324.
Pamić 2000
J. Pamić, Radiolarite Formation,
Vijesti Hrvatskoga geološkoga
društva 37/2, Zagreb 2000, 70.
Pamić, Hrvatović 2000
J. Pamić, H. Hrvatović, Dinaride
Ophiolite Zone (DOZ). Basic data
on the geology end petrology of the
Krivaja-Konjuh ophiolite complex,
Vijesti Hrvatskoga geološkoga
društva 37/2, Zagreb 2000, 60-68.
Perhoč u pripremi
Z. Perhoč, Litički nalazi sa otoka
Sušca.
Perhoč 2009a
Z. Perhoč, Sources of Chert in
Middle Dalmatia: Supplying
Raw Material to Prehištoric Lithic
Industries, in: A Connecting Sea:
Maritime Interaction in Adriatic
Prehistory, S. Forenbaher (ed.),
BAR International Series 2037,
Oxford 2009, 25-46.
Perhoč 2009b
Z. Perhoč, Sources of Chert for
Prehistoric Lithic Industries in
Middle Dalmatia, Archeometriai
Mühely, 2009. VI. 3., 45-56
(dostupno na: http://www.ace.
hu/am/2009_3 pristup 01. 07.
2010).
Pettijohn 1957
F. J. Pettijohn, Sedimentary Rocks,
New York 1957.
Radovanović 1986
I. Radovanović, Novija istraživanja
paleolita i mezolita u Crnoj Gori,
Glasnik srpskog arheološkog
društva 3, Beograd 1986, 63-77.
Reimer et al. 2009
P. J. Reimer, M.G.L. Baillie, E.
Bard, A. Bayliss, J. W. Beck, P. G.
Blackwell, C. Bronk Ramsey, C.
E. Buck, G.S. Burr, R. L. Edwards,
M. Friedrich, P. M. Grootes, T. P.
Guilderson, I. Hajdas, T. J. Heaton,
A. G. Hogg, K. A. Hughen, K. F.
Kaiser, B. Kromer, F. G. McCormac,
S. W. Manning, R. W. Reimer, D. A.
Richards, J. R. Southon, S. Talamo,
C. S. M. Turney, J. van der Plicht,
C. E. Weyhenmeyer, IntCal09
and Marine09 Radiocarbon Age
Calibration Curves, 0-50,000 Years
cal BP, Radiocarbon 51(4), Tucson
2009, 1111-1150.
Surić 2006
M. Surić, Promjene u okolišu
tijekom mlađeg pleistocena
i holocena - zapisi iz morem
potopljenih siga istočnog
Jadrana, neobjavljena doktorska
disertacija, Prirodnoslovno-
matematički fakultet, Zagreb
2006.
Šegota 1979
T. Šegota, Prirodni okviri u
kvartaru jugoslavenskih zemalja;
Paleoklimatske i Paleografske
promjene, in: Praistorija
jugoslavenskih zemalja I -
Paleolitsko i mezolitsko doba, A.
Benac (ed.), Sarajevo 1979, 21-33.
Šošić, Karavanić 2006
R. Šošić, I. Karavanić, Pećina
Zemunica, Hrvatski arheološki
godišnjak 2(2005), Zagreb 2006,
376-378.
Tamers 1970
M. A. Tamers, Validity of
Radiocarbon Dates on Terrestrial
Snail Shells, American Antiquity
35/1, Washington 1970, 94-100.
Tišljar 2001
J. Tišljar, Sedimentologija karbonata
i evaporita, Zagreb 2001.
Tišljar 2004
J. Tišljar, Sedimentologija
klastičnih i silicijskih taložina,
Zagreb 2004.
Tišljar et al. 2002
J. Tišljar, I. Vlahović, I. Velić i
B. Sokač. Carbonate Platform
Megafacies of the Jurassic and
Cretaeous Deposits of the Karst
Dinarides, Geologica Croatica
55/2, Zagreb 2002, 139-170.
Vrsalović 1960
D. Vrsalović, Pretpovijest i stari
vijek, Brački zbornik 4 (Kulturni
spomenici otoka Brača), Supetar
1960, 31-110.
54
VAPD 104, 2011., 7-54
Vujević 2009
D. Vujević, The Relationship
Between the Middle Palaeolithic
Sites in the Zadar
Hinterland and the Zadar Islands,
in: A Connecting Sea: Maritime
Interaction in Adriatic Prehistory,
S. Forenbaher (ed.), BAR
International Series 2037, Oxford
2009, 1-11.
Whallon 1989
R. Whallon, The Paleolithic site
of Badanj: recent excavations
and results of analysis, Glasnik
Zemaljskog muzeja Bosne i
Hercegovine u Sarajevu 44 n.s.,
Sarajevo 1989, 7-20.
Whallon 1999
R. Whallon, The lithic tool
assemblages at Badanj within
their regional context, in: The
Palaeolithic Archaeology of
Greece and adjacent areas
(Proceedings of the ICOPAG
Conference, Ioannina 1994), G. N.
Bailey et al. (eds.), British School
at Athens Studies 3, London
1999, 330-342.
Whallon 2007
R. Whallon, Social territories
around the Adriatic in the late
Pleistocene, in: Late Paleolithic
Environments and Cultural
Relations around the Adriatic, R.
Whallon (ed.), BAR International
Series 1716, Oxford 2007, 61-65.
... Unfortunately, due to a hiatus between the Late Palaeolithic and Early Mesolithic, a comparison with the older Holocene phase (Stratum 3) at Vlakno is not possible. Other sites (Karavanić 1999;Vukosavljević et al. 2011) correspond only to parts of the stratigraphic sequence found at Vlakno, and they can only be used in a partial comparison of individual strata. ...
... Osim toga, rezultati geoarheoloških, geofizičkih, malakoloških te analiza kamene sirovine još uvijek su relativno rijetki za većinu lokaliteta u Istri te na istočnojadranskoj obali općenito (v. Vukosavljević, Perhoč 2017;Perhoč 2009a;2009b;Vukosavljević et al. 2011;Šošić Klindžić et al. 2015;Rizner et al. 2009;Becker et al. 2018;. Stoga će podaci o ovim aspektima, pla-niranima u okviru projekta PREHISTRIA, pružiti solidnu osnovu za usporedbu s rezultatima sličnih studija dostupnih za talijanska nalazišta ili s dosadašnjim istarskim i dalmatinskim uzorcima. ...
... Such a pattern is perfectly consistent with the changes recorded at Riparo Tagliente reinforcing the hypothesis of the diffusion of common traditions throughout the continent during the interstadial phase. Interesting similarities should also be highlighted with Late Epigravettian curved backed points from the Balkans (Montet-White and Kozlowski, 1999;Vukosavljević et al., 2011;Janković et al., 2012). ...
Article
The Late Epigravettian is one of the main European Late Palaeolithic cultural traditions covering the whole Late Glacial. Although it took place in a timespan marked by significant climatic and environmental changes, it is usually perceived as rather homogenous when compared to the cultural evolution of the western and northern regions of Europe. The present work aims at highlighting the variability of backed points production methods at Riparo Tagliente (VR, Italy), the only north-eastern Italian deposit encompassing the first part of the Late Glacial and the Bølling-Allerød interstadial (17,000–13,500 cal BP approximately). By applying a specifically designed methodology, a change in the modalities of blank selection and of retouch modes was highlighted. This supports the existence of two different ways of conceiving backed points in the time span between the last part of GS-2 and the first half of GI-1. The shift from narrow, thin and standardized backed points to thicker, wider and more variable backed points coincides with the beginning of the so-called “azilianization” process attested throughout a large part of Europe and characterized by the diffusion of specific traits in lithic technology and other cultural aspects. This phenomenon probably also affected the variability of Late Epigravettian backed points.
... Late Upper Palaeolithic (Epigravettian) sites appear in larger numbers after the LGM and are present on the Adriatic coast and its hinterland and offshore islands, with evidence for movement of raw materials between northern Italy, Istria, and inland Croatia (Malez 1979;Cancellieri 2011;Vukosavljević et al. 2011Karavanić et al. 2013Karavanić et al. , 2015. It is likely that there was extensive activity on a landscape that is now submerged at depths of 60-110 m below present sea level and that many sites present there have been submerged by subsequent sea-level rise (Šegota 1982;Miracle 1995;Whallon 2007 Glycymeris, and Dentalium, collected for decorative purposes, is evidence of visits to a coastline that would have been more distant than today (Benjamin and Črešnar 2009;Vujević and Parica 2009;. ...
Chapter
Full-text available
Croatia has a long history of underwater archaeological research, especially of shipwrecks and the history of sea travel and trade in Classical Antiquity, but also including intermittent discoveries of submerged prehistoric archaeology. Most of the prehistoric finds have been discovered by chance because of construction work and development at the shore edge or during underwater investigations of shipwrecks. Eustatic sea-level changes would have exposed very extensive areas of now-submerged landscape, especially in the northern Adriatic, of great importance in the Palaeolithic and early Mesolithic periods. Because of sinking coastlines in more recent millennia, submerged palaeoshorelines and archaeological remains of settlement activity extend as late as the medieval period. In consequence, the chronological range of prehistoric underwater finds extends from the Mousterian period through to the Late Iron Age. Known sites currently number 33 in the SPLASHCOS Viewer with the greatest number belonging to the Neolithic or Bronze Age periods, but ongoing underwater surveys continue to add new sites to the list. Systematic research has intensified in the past decade and demonstrates the presence of in situ culture layers, excellent conditions of preservation including wooden remains in many cases, and the presence of artificial structures of stone and wood possibly built as protection against sea-level rise or as fish traps. Existing discoveries demonstrate the scope for new research and new discoveries and the integration of archaeological investigations with palaeoenvironmental and palaeoclimatic analyses of submerged sediments in lakes and on the seabed. A major challenge for the future is to develop better procedures for the integration of scientific research, commercial and industrial development, and the management and protection of the underwater heritage.
Chapter
Full-text available
Skill is widely accepted as a factor impacting diversity among assemblages produced by knappers of different levels of expertise; however, its identification in archaeological remains is related to specific attributes and detailed analyses, usually destined to estimate abilities of pre-modern humans. This paper approaches the skill study with a broader method, cross-examining the collections to assess its suggested visibility as a formative agent. Besides skill, the raw material quality and the site function have already been acknowledged as factors influencing the lithic assemblage structure. Lack of skill, considered an uncontrolled impact on worked material, is measured by number of irregular pieces (chunks, shatter) in the assemblage. The skillful activity is thus indirectly assessed by estimating the correlation of the quantity of chunks with variables representing the site function and the quality of raw materials. This hypothesis has been tested using published data related to the general structure of lithic assemblages and associated raw materials from the Late Upper Palaeolithic and Mesolithic sites on the Balkan Peninsula, which has led to the conclusion that identifying skill from the more general information is possible, but as of yet, still not precise.
Chapter
Full-text available
http://www.prehistoire.org/515_p_57109/acces-libre-seance-17-en-mouvement-on-the-move-in-bewgung.html The impressive corpus of recently published research on the Final Palaeolithic of Europe contrasts with few studies explicitly dealing with the demography of these hunter-gatherer communities. Our paper presents new results on population estimates for the period from 14,000 to 11,600 years cal. BP. The population estimates are obtained by applying the so-called ‘Cologne Protocol’ to the specifically challenging evidence of Final Palaeolithic human occupation across Europe, which is characterised by – environmental, cultural, and economical – changes and variability. Therefore, the paper explicitly focuses on effects of these factors as well as related methodological constraints. In doing so, we find strong arguments that our results of around 6,600 people (with minima and maxima of 3,100 to 10,900 people) likely overestimate the actual population size of the Final Palaeolithic. For the current dataset, low temporal resolution of the available data is one of the most critical factors. Additionally, a diachronic comparison of our results with estimates for preceding periods indicates a general population decline after the Late Magdalenian. This finding is fostered by evidence from independent proxies used in regional studies. The present case study demonstrates the importance of approaching prehistoric demography through independent proxies, disentangling causal relations between proxies, and by considering different spatial and temporal scales.
Article
Full-text available
This paper presents the first attempt to establish a Mid and Late Upper Palaeolithic absolute chronology of the Adriatic basin, including both eastern and western Adriatic coasts and their hinterlands. The proposed chronology for Gravettian, Early and Late Epigravettian techno-complexes is based on statistical analysis of 278 ¹⁴C dates from 66 archaeological sites. Our analyses are directed towards 1) identifying whether major climatic episodes and corresponding transformations in the local environments are correlated with long-term demographic trends, and potential changes in spatial patterning of human occupation, and 2) identifying robust absolute chronological estimates of techno-complexes to establish the timing of their succession, including their possible overlaps. Results show that the Gravettian appears in the Adriatic area at c. 35-34ka cal BP and ends at c. 26-25ka cal BP. Early and Late Epigravettian timespans are between c. 26-25ka and 18.1–17.6ka cal BP and 17.6–17.1 ka and 11.9–11.6 ka cal BP respectively. The Early-Late Epigravettian transition in the Great Adriatic-Po Region coincides with the transition between GS-2.2 and GI-2.1 and is also associated with apparent transformations in settlement pattern as new biotopes appear to be occupied, particularly in the mountainous areas such as Alps and Dinaric Alps. According to our results, the timespan of Early Epigravettian covers the Badegoulian, Solutrean and even Lower Magdalenian periods in western Europe, hence challenging the earlier interpretations on Early Epigravettian and Solutrean contemporaneity. This suggests an independent cultural evolutionary path for territories that previously (during the Gravettian) showed a high degree of technological affinity.
Article
In this paper new palaeogeographic and archaeological data from the prehistoric cave Vela Spila on the island of Korčula in Croatia are combined with new realizations of two glacial isostatic adjustment models in order to present relative sea-level change scenarios confronting the inhabitants of the cave at different time slices and to show how they experienced and adapted to sea-level and climate change from the Late Pleistocene through the Holocene. Our results show that from the Late Upper Palaeolithic until the Mesolithic, humans in the study area would have experienced tens of metres of sea-level rise, at rates in some cases up to 12 mm per year, and, owing to the relatively flat morphology of the now submerged plains, hundreds of meters of horizontal coastline change in the plains to the north and south of the island. This evidence supports the hypothesis that the rapid loss of these plains likely contributed to the human abandonment of the cave after the Palaeolithic for about five thousand years, followed by significant changes in lifestyle and diet in the Mesolithic. Our results have important implications for the study of how past human groups, especially in vulnerable coastal areas, were affected by sea level, climate, and other environmental changes. Vela Spila represents a case study of how changing environment and rising seas can force significant alterations in human societies, even when there is no risk of inundation to settlement sites.