Conference Paper

CYP4F2 IS THE MAJOR CYTOCHROME P450 ENZYME INVOLVED IN CMX001 METABOLISM

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Smallpox was eradicated in 1980 but remains a biothreat due to the potential release of variola virus into the general population. Brincidofovir, the second medicine approved by the US Food and Drug Administration to treat smallpox, is metabolized by oxidative and hydrolytic pathways. The oxidative pathway is initiated by cytochrome P450 4F2 (CYP4F2), an enzyme lacking clinical probes for drug interaction studies. The aim of this work was to assess the impact of reduced activity CYP4F2 variants (rs2108622, C/T and T/T) on brincidofovir pharmacokinetics as a surrogate for drug inhibition. Genotyping was performed on blood from healthy participants receiving oral (n = 261) and intravenous (IV, n = 49) brincidofovir across 6 phase 1 trials. Plasma concentrations were measured by validated liquid chromatography tandem mass spectrometry methods. After oral administration, subjects with the lowest activity CYP4F2 genotype (T/T) had up to 36% higher AUC inf and 29% higher C max while subjects with the moderate activity CYP4F2 genotype (C/T) had similar C max and AUC inf compared to those with the wild‐type genotype. Little to no increase in brincidofovir exposure parameters was observed following IV administration. Based on the lack of significant increases in brincidofovir plasma concentrations in subjects with low activity CYP4F2, a clinically meaningful drug–drug interaction is not expected with CYP4F2 inhibitor and brincidofovir coadministration.
Article
Full-text available
Compound-3 is an oral monophosphate prodrug of gemcitabine. Previous data showed that Compound-3 was more potent than gemcitabine and it was orally active in a tumor xenograft model. In the present study, the metabolism of Compound-3 was investigated in several well-known in vitro matrices. While relatively stable in human and rat plasma, Compound-3 demonstrated noticeable metabolism in liver and intestinal microsomes in the presence of NADPH and human hepatocytes. Compound-3 could also be hydrolyzed by alkaline phosphatase, leading to gemcitabine formation. Metabolite identification using accurate mass- and information-based scan techniques revealed that Compound-3 was subjected to sequential metabolism, forming alcohol, aldehyde and carboxylic acid metabolites, respectively. Results from reaction phenotyping studies indicated that cytochrome P450 4F2 (CYP4F2) was a key CYP isozyme involved in Compound-3 metabolism. Interaction assays suggested that CYP4F2 activity could be inhibited by Compound-3 or an antiparasitic prodrug pafuramidine. Because CYP4F2 is a key CYP isozyme involved in the metabolism of eicosanoids and therapeutic drugs, clinical relevance of drug-drug interactions mediated via CYP4F2 inhibition warrants further investigation.
ResearchGate has not been able to resolve any references for this publication.