ArticleLiterature Review

microRNA functions

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
Full-text available
Background Colorectal cancer (CRC) is a major worldwide health problem due to its high prevalence and mortality rate. T-cell intracellular antigen 1 (TIA1) is an important tumor suppressor involved in many aspects of carcinogenesis and cancer development. How TIA1 expression is regulated during CRC development remains to be carefully elucidated. Methods In CRC tissue sample pairs, TIA1 protein and mRNA levels were monitored by Western blot and qRT-PCR, respectively. Combining meta-analysis and miRNA target prediction software, we could predict microRNAs that targeted TIA1. Next, three CRC cell lines (SW480, Caco2 and HT29) were used to demonstrate the direct targeting of TIA1 by miR-19a. In addition, we investigated the biological effects of TIA1 inhibition by miR-19a both in vitro by CCK-8, EdU, Transwell, Ki67 immunofluorescence and Colony formation assays and in vivo by a xenograft mice model. ResultsIn colorectal cancer (CRC), we found that TIA1 protein, but not its mRNA, was downregulated. We predicted that TIA1 was a target of miR-19a and validated that miR-19a binded directly to the 3’-UTR of TIA1 mRNA. miR-19a could promote cell proliferation and migration in CRC cells and accelerated tumor growth in xenograft mice by targeting TIA1. Conclusions This study highlights an oncomiR role for miR-19a in regulating TIA1 in CRC and suggests that miR-19a may be a novel molecular therapeutic target for CRC.
Article
Full-text available
MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes and transcriptomes, identifying the true target genes of the miRNAs associated with the immune response is a challenge. Identifying such target genes by applying new methods and approaches will likely be the next important step to understand the function of the miRNAs associated with immune response in teleost fish.
Article
Full-text available
Background Distinct RNA species may compete for binding to microRNAs (miRNAs). This competition creates an indirect interaction between miRNA targets, which behave as miRNA sponges and eventually influence each other’s expression levels. Theoretical predictions suggest that not only the mean expression levels of targets but also the fluctuations around the means are coupled through miRNAs. This may result in striking effects on a broad range of cellular processes, such as cell differentiation and proliferation. Although several studies have reported the functional relevance of this mechanism of interaction, detailed experiments are lacking that study this phenomenon in controlled conditions by mimicking a physiological range. ResultsWe used an experimental design based on two bidirectional plasmids and flow cytometry measurements of cotransfected mammalian cells. We validated a stochastic gene interaction model that describes how mRNAs can influence each other’s fluctuations in a miRNA-dependent manner in single cells. We show that miRNA–target correlations eventually lead to either bimodal cell population distributions with high and low target expression states, or correlated fluctuations across targets when the pool of unbound targets and miRNAs are in near-equimolar concentration. We found that there is an optimal range of conditions for the onset of cross-regulation, which is compatible with 10–1000 copies of targets per cell. Conclusions Our results are summarized in a phase diagram for miRNA-mediated cross-regulation that links experimentally measured quantities and effective model parameters. This phase diagram can be applied to in vivo studies of RNAs that are in competition for miRNA binding.
Article
Full-text available
AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid (PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin (BSA) (400 μmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, miR-17-5p mRNA, as well as nucleotide-binding oligomerization domain-like receptor protein (NLRP3) and IL1β protein was determined. RESULTS High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers (P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased miR-17-5p expression, which were restored by inhibiting endoplasmic reticulum-stress with PBA (P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced miR-17-5p and induced thioredoxin interacting protein mRNA in retinal Müller glial cell line (P < 0.05). Palmitate upregulated NLRP3 and IL1β expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1β. CONCLUSION Our work suggests that targeting endoplasmic reticulum-stress or thioredoxin interacting protein are potential therapeutic strategies for early intervention of obesity-induced retinal inflammation.
Article
Full-text available
Background The midgut is the first barrier to dengue virus (DENV) infections of mosquitoes and therefore is a major bottleneck for the subsequent development of vector competence. However, the molecular mechanisms responsible for this barrier are unknown. ResultsWe constructed three small RNA libraries from the midguts of adult Aedes albopictus females that had been fed on either sugar solution, an uninfected blood meal, or a blood meal infected with DENV-2, and112 conserved microRNAs represented by 173 miRNA sequences were identified, with 34 novel microRNAs predicted by Mireap, RNAfold and Sfold software. In addition, the expression of aal-miR-1174, aal-miR-2951 and aal-miR-956 was confirmed via stem-loop quantitative real-time PCR (qRT-PCR). Compared with microRNA expression profiles of mosquitoes that had ingested a regular blood meal, 43 microRNAs were upregulated and 4were downregulated in mosquitoes that had ingested a DENV-2-infected blood meal. Among the differentially expressed microRNAs, miR-1767, miR-276-3p, miR-4448 and miR-4728-5p were verified via stem-loop qRT-PCR. Conclusions Analyses indicated that the changing patterns in miRNA expression during DENV-2 infection were significant and varied at different time points post infection. Most miRNA were upregulated at 24 h but were downregulated at 48 h post DENV-2 intake. The aal-miR-4728-5p was chosen for an in vitro transient transfection assay, and the results show that this miRNA enhances DENV replication in C6/36 cells. This study provides the first information on microRNAs expressed in the midgut of Ae. albopictus and describes species-specific changes in their expression levels following infection by DENV-2.
Article
Full-text available
Background and aim The potential of microRNAs (miRNA) as non-invasive diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, has recently been recognized. Previous studies have highlighted the importance of consistency in the methodology used, but to our knowledge, no study has described the methodology of sample preparation and storage systematically with respect to miRNAs as blood biomarkers. The aim of this study was to investigate the stability of miRNAs in blood under various relevant clinical and research conditions: different collection tubes, storage at different temperatures, physical disturbance, as well as serial freeze-thaw cycles. Methods Blood samples were collected from 12 healthy donors into different collection tubes containing anticoagulants, including EDTA, citrate and lithium-heparin, as well as into serum collection tubes. MiRNA stability was evaluated by measuring expression changes of miR-1, miR-21 and miR-29b at different conditions: varying processing time of whole blood (up to 72 hours (h)), long-term storage (9 months at -80°C), physical disturbance (1 and 8 h), as well as in a series of freeze/thaw cycles (1 and 4 times). Results Different collection tubes revealed comparable concentrations of miR-1, miR-21 and miR-29b. Tubes with lithium-heparin were found unsuitable for miRNA quantification. MiRNA levels were stable for at least 24 h at room temperature in whole blood, while separated fractions did show alterations within 24 h. There were significant changes in the miR-21 and miR-29b levels after 72 h incubation of whole blood at room temperature (p<0.01 for both). Both miR-1 and miR-21 showed decreased levels after physical disturbance for 8 h in separated plasma and miR-1 in serum whole blood, while after 1 h of disturbance no changes were observed. Storage of samples at -80°C extended the miRNA stability remarkably, however, miRNA levels in long-term stored (9 months) whole blood samples were significantly changed, which is in contrast to the plasma samples, where miR-21 or miR-29b levels were found to be stable. Repetitive (n = 4) freeze-thaw cycles resulted in a significant reduction of miRNA concentration both in plasma and serum samples. Conclusion This study highlights the importance of proper and systematic sample collection and preparation when measuring circulating miRNAs, e.g., in context of clinical trials. We demonstrated that the type of collection tubes, preparation, handling and storage of samples should be standardized to avoid confounding variables influencing the results.
Article
Full-text available
MicroRNAs (miRNAs) are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression. Although it is reported in many studies that there are associations between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease and autoimmune disease, the effects of common genetic variants of these genes on male infertility are unclear. To better understand this effect, we performed a case-control study including a total of 108 infertile men with idiopathic azoospermia and 125 fertile control subjects. Real-time polymerase chain reaction was used to genotype six single-nucleotide polymorphisms (SNPs) of microRNA biogenesis pathway genes and the associations between individual and combined genotypes and idiopathic azoospermia were analysed. The results showed significant difference between the individual AA genotype frequency of the GEMIN3 (rs197388) gene in the patient and control groups, indicating that the AA genotype may be considered as indicative of a higher predisposition to idiopathic azoospermia. The combined genotype analysis, including six SNPs, revealed statistically significant differences between the patients and control subjects for some combinations. For example, the frequency of genotype distributions of the AA\CA-CC-TT-AT genotype combination for the XPO5-RAN-DICER1-GEMIN3 combined loci was significantly different, and it may be considered a predisposition to idiopathic azoospermia. According to the obtained results, both individual and combined genotypes of SNPs from miRNA genes may be used to predict the risk of male infertility with idiopathic azoospermia.
Article
Full-text available
Tendinopathy is a multifactorial spectrum of tendon disorders that affects different anatomical sites and is characterized by activity-related tendon pain. These disorders are common, account for a high proportion (~30%) of referrals to musculoskeletal practitioners and confer a large socioeconomic burden of disease. Our incomplete understanding of the mechanisms underpinning tendon pathophysiology continues to hamper the development of targeted therapies, which have been successful in other areas of musculoskeletal medicine. Debate remains among clinicians about the role of an inflammatory process in tendinopathy owing to a lack of clinical correlation. The advent of modern molecular techniques has highlighted the presence of immune cells and inflammatory mechanisms throughout the spectrum of tendinopathy in both animal and human models of disease. Key inflammatory mediators — such as cytokines, nitric oxide, prostaglandins and lipoxins — play crucial parts in modulating changes in the extracellular matrix within tendinopathy. Understanding the links between inflammatory mechanisms, tendon homeostasis and resolution of tendon damage will be crucial in developing novel therapeutics for human tendon disease.
Article
Full-text available
MicroRNAs (miRNAs) represent a class of small non-coding RNAs that act as efficient gene expression regulators and thus play many important roles in living organisms. Due to their involvement in several known human pathological and pathogenic states, miRNA molecules have become an important issue in medicine and gained the attention of scientists from the pharmaceutical industry. In recent few years, a growing number of studies have provided evidence that miRNAs may be transferred from one species to another and regulate gene expression in the recipients’ cells. The most intriguing results revealed that stable miRNAs derived from food plants may enter the mammals’ circulatory system and, after reaching the target, inhibit the production of specific mammalian protein. Part of the scientific community has perceived this as an attractive hypothesis that may provide a foundation for novel therapeutic approaches. In turn, others are convinced about the "false positive" effect of performed experiments from which the mentioned results were achieved. In this article, we review the recent literature that provides evidence (from both fronts) of dietary, plant miRNA uptake and functionality in various consumers. Additionally, we discuss possible miRNA transport mechanisms from plant food sources to human cells.
Article
Full-text available
Diverse stresses and aging alter expression levels of microRNAs, suggesting a role for these posttranscriptional regulators of gene expression in stress modulation and longevity. Earlier studies demonstrated a central role for the miR-34 family in promoting cell cycle arrest and cell death following stress in human cells. However, the biological significance of this response was unclear. Here we show that in C. elegans mir-34 upregulation is necessary for developmental arrest, correct morphogenesis, and adaptation to a lower metabolic state to protect animals against stress-related damage. Either deletion or overexpression of mir-34 lead to an impaired stress response, which can largely be explained by perturbations in DAF-16/FOXO target gene expression. We demonstrate that mir-34 expression is regulated by the insulin signaling pathway via a negative feedback loop between miR-34 and DAF-16/FOXO. We propose that mir-34 provides robustness to stress response programs by controlling noise in the DAF-16/FOXO-regulated gene network.
Article
Full-text available
Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9-18 nt and 131-151 nt downstream of the stop codon in the AFP mRNA 3'-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV.
Article
Full-text available
MicroRNAs are endogenous ~22 nt RNAs that regulate gene expression by translational inhibition and mRNA destabilization. MicroRNA-29b (miR-29b) is essential for progression of mouse embryos past preimplantation development; however, details of the underlying regulatory network remain to be elucidated. Here, we used RNA sequencing to identify changes in the transcriptome of mouse embryos in response to miR-29b inhibition. Morula-stage embryos that had been subject to miR-29b inhibition throughout preimplantation development exhibited significant expression changes in 870 genes compared with controls. Among 405 genes that were downregulated, 30 genes encoded factors with known essential function during early embryonic development, including the pluripotent stem cell factor Nanog. We identified 19 genes encoding putative miR-29b target transcripts. These included Zbtb40, Hbp1, Ccdc117, Ypel2, Klf4, and Tmed9, which are upregulated at the 4-cell state of mouse development concomitant with miR-29b downregulation. Luciferase reporter analysis confirmed that Zbtb40, Hbp1, Ccdc117, Ypel2, and Klf4 transcripts are direct targets of miR-29b. These results suggest that miR-29b decreases the mRNA levels of several target genes during early mouse development, including the gene encoding the reprogramming factor Klf4. We hypothesize that inhibition of miR-29b causes overexpression of its target genes, triggering downstream signaling networks to decrease the expression of genes that are essential for embryonic development. In conclusion, miR-29b controls an extensive regulatory network in early mouse embryos, which comprises reprogramming factors and molecular regulators of posttranscriptional modification processes.
Article
Full-text available
Long-term potentiation (LTP), the persistent strengthening of synapses following high levels of stimulation, is a form of synaptic plasticity that has been studied extensively as a possible mechanism for learning and memory formation. The strengthening of the synapse that occurs during LTP requires cascades of complex molecular processes and the coordinated remodeling of pre-synaptic and post-synaptic neurons. Despite over four decades of research, our understanding of the transcriptional mechanisms and molecular processes underlying LTP remains incomplete. Identification of all the proteins and non-coding RNA transcripts expressed during LTP may provide greater insight into the molecular mechanisms involved in learning and memory formation.
Article
MicroRNAs-491-5p (miR-491-5p) has been found to involve in tumor initiation and development in several tumors. However, the biological function and underlying molecular mechanism of miR-491-5p in non-small lung cancer (NSCLC) remain unclear. This study was therefore to investigate biological role of and underlying molecular mechanisms of in NSCLC. It was found that miR-491-5p expression was significantly downregulated in NSCLC tissues when compared with corresponding adjacent normal tissues (P<0.01), and the value was negatively related to advanced and tumor-node-metastasis (TNM) stage and lymph node metastasis (both P<0.01). We also demonstrate that restoration of miR-491-5p suppressed NSCLC cell proliferation by arresting NSCLC cells in the G1/G0 phase and accelerating apoptosis. miR-491-5p also inhibited cell migration and invasion in NSCLC cells. Mechanically, IGF2BP1 was identified as direct targets of miR-491-5p. And IGF2BP1 expression was significantly upregulated, and correlated negative with miR-491-5p expression in NSCLC tissues. In vivo assay showed thatmiR-491-5p suppressed tumor growth in nude model by repressing IGF2BP1 expression. Collectively, miR-491-5p functioned as a tumor suppressor in NSCLC by targeting IGF2BP1. Restoration of miR-491-5p expression may represent a promising therapeutic approach for targeting malignant NSCLC.
Article
Full-text available
Background MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. ResultsWe identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. Conclusions The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.
Article
Full-text available
Mounting evidences has shown that miRNAs are involved in the development and progression of gastric cancer acts as tumor suppressor genes or oncogenes. In our previous studies, we have found that the up-regulation of miR-106a occurs frequently in human gastric cancer tissues compared with that of normal tissues. Here, we investigate the role of the ectopic expressed miR-106a in the progression and metastasis of gastric cancer in vitro and in vivo. FFPE samples have the priority to be included and qRT-PCR was used to detect the miR-106a expression. Human gastric cancer cells and immortalized gastric epithelial cell were selected and the miR-106a mimic and inhibitor were transfected. Cell growth was determined by MTT method. The flow cytometric analysis for cell apoptosis and transwell assays for evaluating the cell migration and invasion were conducted. Luciferase assay and western blot confirmed the direct binding site of miR-106a and its target. BALB/c nude mice were randomly divided to explore the implantation of gastric cancer cells transfected with miR-106a antagomir. Abnormal over-expression of miR-106a significantly promoted gastric cancer cell proliferation, metastasis, inhibited the cell apoptosis. Functional experiment ascertained that miR-106a interacted with FAS and mediated caspase3 pathway. Knockdown of miR-106a leaded to the attenuation of gastric cancer implantation capacity in vivo. Moreover, expression of TIMP2 was inversely associated with miR-106a in nodule tissues. Apoptotic body was also seen under electron microscope accompanied by silencing of miR-106a. Together, this data indicated that miR-106a may act as an oncogene and contribute to gastric cancer development.
Article
Full-text available
Background Atlantic cod (Gadus morhua) is among the economically most important species in the northern Atlantic Ocean and a model species for studying development of the immune system in vertebrates. MicroRNAs (miRNAs) are an abundant class of small RNA molecules that regulate fundamental biological processes at the post-transcriptional level. Detailed knowledge about a species miRNA repertoire is necessary to study how the miRNA transcriptome modulate gene expression. We have therefore discovered and characterized mature miRNAs and their corresponding miRNA genes in Atlantic cod. We have also performed a validation study to identify suitable reference genes for RT-qPCR analysis of miRNA expression in Atlantic cod. Finally, we utilized the newly characterized miRNA repertoire and the dedicated RT-qPCR method to reveal miRNAs that are highly expressed in certain organs. Results The discovery analysis revealed 490 mature miRNAs (401 unique sequences) along with precursor sequences and genomic location of the miRNA genes. Twenty six of these were novel miRNA genes. Validation studies ranked gmo-miR-17-1—5p or the two-gene combination gmo-miR25-3p and gmo-miR210-5p as most suitable qPCR reference genes. Analysis by RT-qPCR revealed 45 miRNAs with significantly higher expression in tissues from one or a few organs. Comparisons to other vertebrates indicate that some of these miRNAs may regulate processes like growth, lipid metabolism, immune response to microbial infections and scar damage repair. Three teleost-specific and three novel Atlantic cod miRNAs were among the differentially expressed miRNAs. Conclusions The number of known mature miRNAs was considerably increased by our identification of miRNAs and miRNA genes in Atlantic cod. This will benefit further functional studies of miRNA expression using deep sequencing methods. The validation study showed that stable miRNAs are suitable reference genes for RT-qPCR analysis of miRNA expression. Applying RT-qPCR we have identified several miRNAs likely to have important regulatory functions in particular organs.
Article
Full-text available
Background MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs that function as post-transcriptional regulators of messenger RNA (mRNA) through base-pairing to 6–8 nucleotide long target sites, usually located within the mRNA 3’ untranslated region. A common approach to validate and probe microRNA-mRNA interactions is to mutate predicted target sites within the mRNA and determine whether it affects miRNA-mediated activity. The introduction of miRNA target site mutations, however, is potentially problematic as it may generate new, “illegitimate sites” target sites for other miRNAs, which may affect the experimental outcome. While it is possible to manually generate and check single miRNA target site mutations, this process can be time consuming, and becomes particularly onerous and error prone when multiple sites are to be mutated simultaneously. We have developed a modular Java-based system called ImiRP (Illegitimate miRNA Predictor) to solve this problem and to facilitate miRNA target site mutagenesis. Results The ImiRP interface allows users to input a sequence of interest, specify the locations of multiple predicted target sites to mutate, and set parameters such as species, mutation strategy, and disallowed illegitimate target site types. As mutant sequences are generated, ImiRP utilizes the miRBase high confidence miRNA dataset to identify illegitimate target sites in each mutant sequence by comparing target site predictions between input and mutant sequences. ImiRP then assembles a final mutant sequence in which all specified target sites have been mutated. Conclusions ImiRP is a mutation generator program that enables selective disruption of specified miRNA target sites while ensuring predicted target sites for other miRNAs are not inadvertently created. ImiRP supports mutagenesis of single and multiple miRNA target sites within a given sequence, including sites that overlap. This software will be particularly useful for studies looking at microRNA cooperativity, where mutagenesis of multiple microRNA target sites may be desired. The software is available at imirp.org and is available open source for download through GitHub (https://github.com/imirp). Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1057-y) contains supplementary material, which is available to authorized users.
Article
Full-text available
We explored the response of a panel of selected microRNAs (miRNAs) in neuroprotection produced by ischemic preconditioning. Hippocampal neuronal cultures were exposed to a 30-min oxygen-glucose deprivation (OGD). In our hands, this duration of OGD does not result in neuronal loss in vitro but significantly reduces neuronal death from a subsequent 'lethal' OGD insult. RT-qPCR was used to determine the expression of 16 miRNAs of interest at 1 and 24-h post-OGD. One miRNA (miR-98) was significantly decreased at 1-h post-OGD. Ten miRNAs (miR-9, miR-21, miR-29b, miR-30e, miR-101a, miR-101b, miR-124a, miR-132, miR-153, miR-204) were increased significantly at 24-h post-OGD. No miRNAs were decreased at 24-h. The increases observed in the 24-h group suggested that these miRNAs might play a role in preconditioning-induced neuroprotection. We selected the widely studied miR-132, a brain enriched, CREB regulated miRNA, to explore its role in simulated ischemic insults. We found that hippocampal neurons transduced with lentiviral vectors expressing miR-132 were protected from OGD and NMDA treatment, but not hydrogen peroxide. These findings add to the growing literature that targeting neuroprotective pathways controlled by miRNAs may represent a therapeutic strategy for the treatment of ischemic brain injury.
Article
Full-text available
Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.
Chapter
Full-text available
Steroid hormones are produced in the adrenal cortex, testis, ovary, placenta and some peripheral tissues such as adipose tissue and brain (neurosteroids). They play important roles in carbohydrate metabolism (glucocorticoids), mineral balance (mineralocorticoids) and reproductive functions (gonadal steroids). Steroids also play a role in several other cellular processes including inflammatory responses, stress responses, bone metabolism, cardiovascular fitness, behavior, cognition and mood. The process of biosynthesis of steroids, termed steroidogenesis is a multistep and multienzyme process which uses cholesterol as the common precursor for the production of all types of steroid hormones. The process can be broadly divided into four major segments: (a) cholesterol acquisition, (b) cholesterol mobilization from lipid droplets, (c) cholesterol transport to and from the mitochondrial outer membrane to the inner membrane for side-chain cleavage to pregnenolone, and (d) efflux of pregnenolone to the endoplasmic reticulum for the tissue specific production of various steroid hormones. Trophic hormones regulate these steps under both acute and chronic conditions. Many tissue specific transcriptional regulators, steroidogenic enzymes, as well as cholesterol transport protein, steroidogenic acute regulatory protein (StAR protein), coordinately regulate steroid hormone production. In recent years accumulating evidence suggests that post-transcriptional and post-translational regulatory events such as phosphorylation/dephosphorylation and protein–protein interactions also contribute significantly to the regulation of steroidogenesis. In addition, emerging evidence suggests the involvement of specific miRNAs in the regulation of both the acute and chronic steroidogenesis. This chapter summarizes the recent advances associated with the post-transcriptional and post-translational regulation of steroid hormone biosynthesis.
Article
Bovine papillomavirus (BPV) types 1 and 2 play an important role in the pathogenesis of equine sarcoids (ES), the most common cutaneous tumour affecting horses. MicroRNAs (miRNAs), small non-coding RNAs that regulate essential biological and cellular processes, have been found dysregulated in a wide range of tumours. The aim of this study was to identify miRNAs associated with ES. Differential expression of miRNAs was assessed in control equine fibroblasts (EqPalFs) and EqPalFs transformed with the BPV-1 genome (S6-2 cells). Using a commercially available miRNA microarray, 492 mature miRNAs were interrogated. In total, 206 mature miRNAs were differentially expressed in EqPalFs compared with S6-2 cells. Aberrant expression of these miRNAs in S6-2 cells can be attributed to the presence of BPV-1 genomes. Furthermore, we confirm the presence of 124 miRNAs previously computationally predicted in the horse. Our data supports the involvement of miRNAs in the pathogenesis of ES.
Article
Full-text available
Background: ADAM8 (a disintegrin and metalloproteinase 8) protein promotes the invasive and metastatic phenotype of triple-negative breast cancer (TNBC) cells. High ADAM8 expression in breast cancer patients is an independent predictor of poor prognosis. Here, we investigated whether ADAM8 regulates specific miRNAs, their roles in aggressive phenotype, and potential use as biomarkers of disease. Methods: Microarray analysis was performed on RNA from MDA-MB-231 cells after transient ADAM8 knockdown using TaqMan miRNA cards. Changes in miRNA levels were confirmed using two ADAM8 siRNAs in TNBC cell lines. Kinase inhibitors, β1-integrin antagonist antibody, and different forms of ADAM8 were employed to elucidate the signaling pathway required for miR-720 expression. miR-720 levels were modulated using a specific antagomiR or a mimic, and effects on aggressive phenotype of TNBC cells were determined using Boyden chamber and 3D-Matrigel outgrowth assays. Plasma was isolated from mice before and after implantation of MDA-MB-231 cells and analyzed for miR-720 levels. Serum samples of TNBC patients were evaluated for their ADAM8 and miR-720 levels. Results: We identified 68 miRNAs differentially regulated upon ADAM8 knockdown, including decreased levels of secreted miR-720. Ectopic overexpression of wild-type ADAM8 or forms that lack metalloproteinase activity similarly induced miR-720 levels. The disintegrin and cysteine-rich domains of ADAM8 were shown to induce miR-720 via activation of a β1-integrin to ERK signaling cascade. Knockdown of miR-720 led to a significant decrease in migratory and invasive abilities of TNBC cells. Conversely, miR-720 overexpression rescued these properties. A profound increase in plasma levels of miR-720 was detected 7 days after TNBC cell inoculation into mouse mammary fat pads when tumors were barely palpable. Concordantly, miR-720 levels were found to be significantly higher in serum samples of TNBC patients with high ADAM8 expression. Conclusions: We have shown for the first time that miR-720 is induced by ADAM8 signaling via ERK and plays an essential role in promoting the aggressive phenotype of TNBCs. miR-720 is elevated in serum of patients with ADAM8-high TNBC and, in a group with other miRNAs downstream of ADAM8, holds promise as a biomarker for early detection of or treatment response of ADAM8-positive TNBCs.
Article
Full-text available
A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA maturation. Alterations in the miRNA biogenesis machinery impact on the establishment and development of cancer programs. Accumulation of pri-microRNAs and corresponding depletion of mature microRNAs occurs in human cancers compared to normal tissues, strongly indicating an impairment of crucial steps in microRNA biogenesis. In agreement, inhibition of microRNA biogenesis, by depletion of Dicer1 and Drosha, tends to enhance tumorigenesis in vivo. The p53 tumor suppressor gene, TP53, is mutated in half of human tumors resulting in an oncogene with Gain-Of-Function activities. In this review we discuss recent studies that have underlined a role of mutant p53 (mutp53) on the global regulation of miRNA biogenesis in cancer. In particular we describe how a new transcriptionally independent function of mutant p53 in miRNA maturation, through a mechanism by which this oncogene is able to interfere with the Drosha processing machinery, generally inhibits miRNA processing in cancer and consequently impacts on carcinogenesis.
Article
Increasing evidence has been suggested that microRNA-144 (miR-144) involved in tumor initiation, development and metastasis in various cancers. However, the biological roles and potential mechanisms of miR-144 in laryngeal squamous cell carcinoma (LSCC) remain unclear. In the present study, we discovered that miR-144 expression levels in LSCC tissues were significantly lower than those of adjacent normal tissues. Furthermore, overexpression of miR-144 in LSCC cells inhibited cell proliferation, colony formation, migration, and invasion in vitro. Consistently, stable overexpression of miR-144 suppressed the growth of LSCC cell xenografts in vivo. Bioinformatic algorithms and luciferase reporter assays confirmed that insulin receptor substrate 1 (IRS1) is a direct target of miR-144. Overexpreesion of miR-144 obviously decreased IRS1 expression thereby suppressing phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation. Further functional studies suggested that downregulation of IRS1 had similar effects as that of miR-144 overexpression, and upregulation of IRS1 partially reversed the inhibitory effects of miR-144. These findings suggested that miR-144 functioned as a tumor suppressor in LSCC by targeting IRS1, and that miR-144 might serve as a potential target for LSCC treatment.
Article
Full-text available
De novo transcriptome sequencing is a robust method for microRNA (miRNA) target gene prediction, especially for organisms without reference genomes. Following exposure of Megalobrama amblycephala to ammonia (0.1 or 20 mg L−1 ), two cDNA libraries were constructed from the fish gills and sequenced using Illumina HiSeq 2000. Over 90 million reads were generated and de novo assembled into 46, 615 unigenes, which were then extensively annotated by comparing to different protein databases, followed by biochemical pathway prediction. The expression of 2666 unigenes significantly differed; 1,961 were up-regulated, while 975 were down-regulated. Among these, 250 unigenes were identified as the targets for 10 conserved and 4 putative novel miRNA families by miRNA target computational prediction. We examined expression of ssa-miRNA-21 and its target genes by real-time quantitative PCR, and found agreement with the sequencing data. This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The transcriptome assembly data represent a substantial increase in the genomic resources available for Megalobrama amblycephala and will be useful for gene expression profile analysis and miRNA functional annotation.
Article
Full-text available
Understanding the mechanisms that regulate pluripotency of embryonic stem cells (ESCs) is important to ensure their safe clinical use. CHIR99021 (CHIR)-induced activation of Wnt/β-catenin signaling promotes self-renewal in mouse ESCs (mESCs). β-catenin functions individually or cooperates with transcription factors to activate stemness factors such as c-Myc, Esrrb, Pou5f1, and Nanog. However the relationship between the core pluripotent factor, Kruppel-like factor 4 (also known as GKLF or EZF) and Wnt/β-catenin signaling, remains ambiguous in J1 mESCs. DNA microarray analysis revealed that CHIR-treatment promoted pluripotency-maintaining transcription factors and repressed germ layer specification markers. CHIR also promoted genes related to the development of extracellular regions and the plasma membrane to maintain pluripotency of J1 mESCs. Among the CHIR-regulated genes, Klf4 has not been reported previously. We identified a novel cis element in the Klf4 gene that was activated by β-catenin in J1 mESCs. We determined that β-catenin interacted with this cis element, identifying Klf4 as a β-catenin target gene in this context. Moreover, several microRNAs that targeted the 3′-UTR of Klf4 mRNA were identified, with miR-7a being down-regulated by CHIR in a β-catenin-independent manner in J1 mESCs. These data collectively suggest that CHIR enhances Klf4 expression by repressing miR-7a expression or canonical Wnt pathway activation.
Article
Full-text available
Chondrosarcoma is the second most common type of primary bone malignancy in the United States after osteosarcoma. Surgical resections of these tumors are the only effective treatment to chondrosarcoma patients due to their resistance to conventional chemo- and radiotherapy. In this study, miR-125b was found to perform its tumor-suppressor function to inhibit glucose metabolism via the direct targeting of oncogene, ErbB2. We report miR-125b was downregulated in both chondrosarcoma patient samples and cell lines. The total 20 Asian chondrosarcoma patients showed significantly downregulated miR-125b expression compared with normal tissues. Meanwhile, miR-125 was downregulated in chondrosarcoma cells and doxorubicin resistant cells. Overexpression of miR-125 enhanced the sensitivity of both parental and doxorubicin resistant cells to doxorubicin through direct targeting on the ErbB2-mediated upregulation of glycolysis in chondrosarcoma cells. Moreover, restoration of the expression of ErbB2 and glucose metabolic enzymes in miR-125 pretransfected cells recovered the susceptibility to doxorubicin. Our study will provide a novel aspect on the overcoming chemoresistance in human chondrosarcoma cells and may help in the development of therapeutic strategies for the treatments of patients.
Article
Full-text available
In this study, we investigated the molecular regulatory mechanisms of milk protein production in dairy cows by studying the miRNAomes of five key metabolic tissues involved in protein synthesis and metabolism from dairy cows fed high- and low-quality diets. In total, 340, 338, 337, 330, and 328 miRNAs were expressed in the rumen, duodenum, jejunum, liver, and mammary gland tissues, respectively. Some miRNAs were highly correlated with feed and nitrogen efficiency, with target genes involved in transportation and phosphorylation of amino acid (AA). Additionally, low-quality forage diets (corn stover and rice straw) influenced the expression of feed and nitrogen efficiency-associated miRNAs such as miR-99b in rumen, miR-2336 in duodenum, miR-652 in jejunum, miR-1 in liver, and miR-181a in mammary gland. Ruminal miR-21-3p and liver miR-2285f were predicted to regulate AA transportation by targeting ATP1A2 and SLC7A8, respectively. Furthermore, bovine-specific miRNAs regulated the proliferation and morphology of rumen epithelium, as well as the metabolism of liver lipids and branched-chain AAs, revealing bovine-specific mechanisms. Our results suggest that miRNAs expressed in these five tissues play roles in regulating transportation of AA for downstream milk production, which is an important mechanism that may be associated with low milk protein under low-quality forage feed.
Article
Full-text available
Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression.
Article
MicroRNA-10 (miR-10) was originally shown to regulate angiogenesis by directly modulating the levels of membrane-bound fms-related tyrosine kinase 1 (mflt1) and its soluble splice isoform sflt1 post-transcriptionally in zebrafish. In contrast, our data of real-time polymerase chain reaction, in situ hybridization and western blot analysis showed that neither mflt1 nor sflt1 levels were increased in miR-10 morphants at 24 nor 28 hours post fertilization. Thus, the regulatory mechanism of miR-10 in zebrafish angiogenesis needs to be further addressed. Firstly we demonstrated that miR-10a and miR-10b (miR-10a/10b) was highly enriched in embryonic zebrafish endothelial cells (ECs). Subsequently we proved loss of miR-10a/10b impaired blood vessel outgrowth through regulating tip cell behaviors. Mib1 was identified as a potential direct target of miR-10a/10b through in silicon analysis and in vitro luciferase sensor assay. In vivo reporter assay in zebrafish embryos confirmed the binding of miR-10 with 3'-UTR of zebrafish mib1. Furthermore inhibition of mib1 and Notch signaling rescued the angiogenic defects in miR-10-deficient zebrafish embryos. In addition, we provided evidences that miR-10 regulate human ECs behavior through targeting Mib1 as well. Taken together, these results indicate that miR-10 regulates the angiogenic behavior in a Notch-dependent manner by directly targeting mib1.
Article
Full-text available
MicroRNAs (miRNAs) are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs. Wushan black goats). Our results demonstrated that (1) miR-127-3p was extensively expressed in tissues of goats; (2) miR-127-3p was higher expressed in muscle, spleen, heart and skin in the muscular goats (Boer goats) than the control (the Wushan black goats). Then we further characterized the dynamical expression of miR-127-3p, MyoD, MyoG, Myf5, Mef2c and Myosin in the proliferating and differentiating C2C12 myoblasts at day of 0,1,3,5, and 7 in culture mediums. Especially, we found that miR-127-3p was significantly higher expressed in the proliferating than differentiating cells. Our findings suggest that miR-127-3p probably play roles in the proliferation and differentiation of myoblasts, which further underlies regulation of muscle phenotype in goats.
Article
Full-text available
Preeclampsia, a relatively common pregnancy disorder, is a major contributor to maternal mortality and morbidity worldwide. An elevation in microRNA-210 (miR-210) expression in the placenta has been reported to be associated with preeclampsia. Our bioinformatic analysis showed that thrombospondin type I domain containing 7A (THSD7A) is a predicted target for miR-210. The aim of this study was to determine whether miR-210 is involved in preeclampsia through its targeting of THSD7A in human placental trophoblasts. In preeclamptic placental tissues, THSD7A levels were significantly downregulated, and were inversely correlated with the levels of miR-210. THSD7A was validated as a direct target of miR-210 using quantitative real time PCR (qRT-PCR), Western blotting, and dual luciferase assays in HTR8/SVneo cells. Transwell insert invasion assays showed that THSD7A mediated the invasion-inhibitory effect of miR-210 in HTR8/SVneo cells. Interestingly, hypoxia markedly increased miR-210 expression while suppressing THSD7A expression in a time-dependent manner in HTR8/SVneo cells. This study provides novel data on the function of THSD7A in human placental cells, and extends our knowledge of how miR-210 is involved in the development of the preeclampsia.
Article
Full-text available
Background The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors. Aims The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression. Methods Drosha expression and its subcellular location was investigated by immunohistochemical staining of a set of tissue microarrays composed of normal adjacent tissues (374), chronic gastritis (137), precancerous lesions (94), and gastric adenocarcinoma (829) samples, and in gastric cancer cell lines with varying differentiation by immunofluorescence and western blot assay. Results Gradual loss of cytoplasmic Drosha was accompanied by tumor progression in both gastric cancer tissues and cell lines, and was inversely associated with tumor volume (P = 0.002), tumor grade (P < 0.001), tumor stage (P = 0.018), and distant metastasis (P = 0.026). Aberrant high levels of cytoplasmic Drosha were apparent in intestinal metaplasia and dysplasia tissues. The levels of nuclear Drosha were sharply decreased in chronic gastritis and maintained through precancerous lesions to gastric cancer. High levels of cytoplasmic Drosha predicted longer survival (LR = 7.088, P = 0.008) in gastric cancer patients. Conclusions Our data provide novel insights into gastric cancer that cytoplasmic Drosha potentially plays a role in preventing carcinogenesis and tumor progression, and may be an independent predictor of patient outcome.
Article
Full-text available
Embryonic stem cells (ESCs) have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD), a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA-) induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation.
Article
Full-text available
Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18–24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.
Article
The development of a tissue engineered vascular graft (TEVG) holds great promise for advancing the field of cardiac surgery. Despite the successful translation of this technology, previous reports identify the primary mode of graft failure as stenosis secondary to intimal hyperplasia. MicroRNAs (miRNAs) regulate gene expression by interfering with mRNA function and recent research has suggested miRNA as a potential therapeutic target. The role of miRNAs in a TEVGs during neotissue formation is currently unknown. In this study, we investigated if miRNAs regulate the inhibition of graft stenosis. Biodegradable PGA-P(LA/CL) scaffolds were implanted as inferior vena cava interposition grafts in a murine model (n=14). Mice were sacrificed 14 days following implantation and TEVGs were harvested for histological analysis and miRNA profiling using Affymetrix miRNA arrays. Graft diameters were measured histologically, and the largest grafts (patent group) and smallest grafts (stenosed group) were profiled (n=4 for each group). Cell population in each graft was analyzed with immunohistochemistry using anti-smooth muscle cell actin (SMA) and anti-macrophage (F4/80) antibodies. The graft diameter was significantly greater in the patent group (0.63 ± 0.06 mm) than in the stenosed group (0.17 ± 0.06 mm) (p<0.01). Cell proliferation was significantly greater in the stenosed grafts than in patent grafts (p<0.01: SMA (187 ± 11 cells vs. 77 ± 8 cells) vs. p=0.025: F4/80 (245 ± 23 cells vs. 187 ± 11 cells)). MiRNA array of 1,416 genes showed that in stenosed grafts, mir-451, mir-338, and mir-466 were downregulated and mir-154 was upregulated. Mir-451 exhibited the greatest difference in expression between stenosed and patent grafts by -3.1 fold. Significant negative correlation was found between the expression of mir-451 and cell proliferation (SMA: r=-0.86, p=0.003; F4/80: r=-0.89, p=0.001). Our data, along with previous evidence that mir-451 regulates tumor suppressor genes, suggest that downregulation of mir-451 promotes acute proliferation of macrophages and smooth muscle cells, thereby inducing TEVG stenosis. Adequate expression of mir-451 may be critical for improving TEVG patency.
Article
Full-text available
MicroRNAs (miRNAs) are endogenously encoded single-stranded RNAs of about 22 nucleotides (nts) in length that play essential roles in a large variety of physiological processes in animals and plants (Ambros, 2004; Bushati and Cohen, 2007). Mature miRNAs are integrated into the RNA-induced silencing complex (RISC), whose core component is one of the Argonaute family proteins. MiRNAs then direct RISCs to target mRNAs, which are recognized through partial sequence complementarity. Bioinformatic prediction and experimental target gene identification have shown that a miRNA binds mRNAs of hundreds of protein coding genes, which often span a broad spectrum of functional categories (Bartel, 2009; Chi et al., 2009; Hafner et al., 2010). The functional consequence of miRNA-target mRNA interaction and the mechanism of miRNA action have been under intensive investigation and remain a matter of hot debate. It was initially thought that miRNAs repress the protein output of a small number of target genes without significantly affecting their mRNA levels in animals (Lee et al., 1993; Wightman et al., 1993). Subsequent genetic studies in C. elegans and zebrafish showed that miRNAs promote the degradation of their target mRNAs (Bagga et al., 2005; Giraldez et al., 2006). Later, a series of genome-wide studies of in vitro cultured mammalian cell lines transiently transfected with chemically synthesized miRNA mimics led to the conclusion that the predominant functional consequence of miRNA action is target mRNA degradation (Guo et al., 2010). A follow-up study employing temporal dissection of zebrafish development seems to reconcile these two opposite observations by revealing that translational repression precedes target mRNA decay, and suggesting that the immediate outcome of miRNA-target mRNA interaction is translation inhibition but mRNA degradation can follow (Bazzini et al., 2012). Similarly, re-analysis of the previous datasets from cultured cell lines transiently transfected with synthetic miRNA mimics also found that translation repression precedes mRNA degradation (Larsson and Nadon, 2013).
Article
Full-text available
The beneficial health promoting effects of ginseng from vitalizing the body to enhancing long life have been well explored very rapidly in the past few years. Up till now many ginsenosides have been discovered for their marvelous therapeutic effects. However during past three years, a novel ginseng compound has been discovered, called gintonin, that differs from other ginsenosides on the basis of its signal transduction and chemical nature. Gintonin has been widely studied for its anti-Alzheimer’s disease activities and other neuropathies. However, its anti-inflammatory activity remained unexplored. In our study we have reported for the first time the anti-inflammatory activity of gintonin on RAW 264.7 cells. We found that gintonin potently suppresses the nitric oxide production without any cytotoxicity at given doses and also efficiently suppressed the levels of proinflammatory cytokines. Moreover, it mediaes its signal transduction via MAPK and NF- κ B pathways and revives the levels of mir-34a and mir-93. These findings are valuable for the anti-inflammatory effects of this new compound with particular reference to microRNA involvement in the ginseng family.
Article
Full-text available
Background: The receptor tyrosine kinase-like orphan receptors (ROR) family contains the atypical member ROR1, which plays an oncogenic role in several malignant tumors. However, the clinical potentials and underlying mechanisms of ROR1 in gastric cancer progression remain largely unknown. In this study, we validated the microRNA-mediated gene repression mechanism involved in the role of ROR1. Methods: Bioinformatic prediction, luciferase reporter assay, quantitative real-time PCR (qRT-PCR) and western blotting were used to reveal the regulatory relationship between miR-27b-3p and ROR1. The expression patterns of miR-27b-3p and ROR1 in human gastric cancer (GC) specimens and cell lines were determined by microRNA RT-PCR and western blotting. Cell proliferation, colony formation assay in soft agar in vitro and tumorigenicity in vivo were performed to observe the effects of downregulation and upregulation miR-27b-3p expression on GC cell phenotypes. Results: miR-27b-3p suppressed ROR1 expression by binding to the 3'UTR of ROR1 mRNA in GC cells. miR-27b-3p was significantly downregulated and reversely correlated with ROR1 protein levels in clinical samples. Analysis of the clinicopathological significance showed that miR-27b-3p and ROR1 were closely correlated with GC characteristics. Ectopic miR-27b-3p expression suppressed cell proliferation, colony formation in soft agar, xenograft tumors of GC cells. By contrast, miR-27b-3p knockdown enhanced these malignant behaviors. Our studies further revealed that the c-Src/STAT3 signaling pathway was involved in miR-27b-3p-ROR1-mediated cell proliferation regulation. Conclusions: These results show that miR-27b-3p suppresses ROR1 expression through the binding site in the 3'UTR inhibiting the cell proliferation. These findings indicate that miR-27b-3p exerts tumor-suppressive effects in GC through the suppression of oncogene ROR1 expression and suggest a therapeutic application of miR-27b-3p in GC.
Article
Full-text available
The biological effects of microRNAs (miRNAs) and TNF-α in atherosclerosis have been widely studied. The circulating miR-17-92 cluster has been recently shown to be significantly downregulated in patients with injured vascular endothelium. However, it remains unclear whether the miR-17-92 cluster plays a significant role in vascular endothelial repair. The aim of this study was to investigate the relationship between the miR-17-92 cluster and TNF-α-induced endothelial cell apoptosis. We determined that the down-regulation of miR-19b level among patients with coronary artery disease was consistent with miRNA expression changes in endothelial cells following 24â ‰h of TNF-α treatment. In vitro, the overexpression of miR-19b significantly alleviated the endothelial cells apoptosis, whereas the inhibition of miR-19b significantly enhanced apoptosis. The increased levels of Afap1 and caspase7 observed in our apoptosis model could be reduced by miR-19b, and this effect could be due to miR-19b binding 3′-UTRs of Afap1 and caspase7 mRNA. Therefore our results indicate that miR-19b plays a key role in the attenuation of TNF-α-induced endothelial cell apoptosis and that this function is closely linked to the Apaf1/caspase-dependent pathway.
Article
Full-text available
Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration.
Article
Full-text available
MicroRNAs (miRNAs) play an important role in the regulation of gene expression. Previous studies on miRNA functions mainly focused on their target sites in the 3′ untranslated regions (UTRs) of mRNAs. However, increasing evidence has revealed that miRNAs can also induce mRNA degradation and mediate translational repression via complementary interactions with the coding sequence (CDS) and 5′UTR of mRNAs. In this study, we developed a novel database, MtiBase, to facilitate the comprehensive exploration of CDS- and 5′UTR-located miRNA target sites identified from cross-linking immunoprecipitation sequencing (CLIP-Seq) datasets and to uncover their regulatory effects on mRNA stability and translation from expression profile datasets. By integrating 61 Argonaute protein-binding CLIP-Seq datasets and miRNA target sites predicted by five commonly used programs, we identified approximately 4 400 000 CDS-located and 470 000 5′UTR-located miRNA target sites. Moreover, we evaluated the regulatory effects of miRNAs on mRNA stability and translation using the data from 222 gene expression profiles, and 28 ribosome-protected fragment sequencing, and six pulsed stable isotope labeling with amino acids in culture. Finally, the effects of SNPs on the functions of miRNA target sites were systematically evaluated. Our study provides a useful tool for functional studies of miRNAs in regulating physiology and pathology. Database URL:http://mtibase.sysu.edu.cn
Article
Full-text available
Background MicroRNAs (miRNAs) are small noncoding RNAs that potentially play a critical role in tumorigenesis. Mounting evidence indicates that one specific miRNA: miR-320b is down regulated in numerous human cancers, including colorectal cancer (CRC); making the hypothesis that miR-320b may play a key role in tumorigenesis plausible. However, its role in carcinogenesis remains poorly defined. The goal of this study is to better clarify the role of miR-320b in tumor growth of CRC. Methods Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was conducted to detect the expression of miR-320b in CRC tissues and 5 CRC cell lines. The effect of miR-320b on cell proliferation was analyzed in vitro and in vivo. Furthermore, a luciferase reporter assay was performed to measure the target effects of miR-320b. Lastly, the messenger RNA (mRNA) and protein levels of the gene c-MYC were measured in CRC cell lines and tissues by qRT-PCR, and confirmed via Western blot and Immunohistochemical (IHC) staining. Results The results presented here showed that miR-320b expression was down regulated in both CRC tissues and cells. Overexpression of miR-320b in CRC cells was statistically correlated with a decrease of cell growth in vitro and in vivo, while c-MYC was identified as a target gene of miR-320b in CRC. Furthermore, it was found that up-regulation of c-Myc can attenuate the effects induced by miR-320b. Conclusions Our identification of c-MYC as a target gene of miR-320b provides new insights into the pathophysiology of CRC proliferation, and identifies miR-320b as a novel therapeutic target for the treatment of CRC.
Article
Full-text available
We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers.
Article
Full-text available
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization.
Article
MicroRNAs (miRNAs) are known to be as important post-transcription regulators of gene expression. Aberrant miRNA expression is associated with pathological disease processes, including carcinogenesis. Therefore, miRNAs are considered as significant therapeutic targets for cancer therapy. MiRNAs do not act alone, but exhibit their functions by forming RNA-induced silencing complex (RISC). Thus, the regulation of RISC activity is a promising approach for cancer therapy. MiRNA is a core component of RISC and is an essential to RISC for recognizing target mRNA. Thereby, it is expected that development of the method to promote the release of miRNA from RISC would be an effective approach for inhibition of RISC activity. In this study, we synthesized novel peptide-conjugated oligonucleotides (RINDA-as) to promote the release of miRNA from RISC. RINDA-as showed a high rate of miRNA release from RISC and high level of inhibitory effect on RISC activity.
Article
Full-text available
Background: MicroRNA-720 (miR-720), a nonclassical miRNA, is involved in the initiation and progression of several tumors. In our previous studies, miR-720 was shown to be significantly upregulated in cervical cancer tissues compared with normal cervical tissues. However, the precise biological functions of miR-720, and its molecular mechanisms of action, are still unknown. Results: Microarray expression profiles, luciferase reporter assays, and western blot assays were used to validate Rab35 as a target gene of miR-720 in HEK293T and HeLa cells. The regulation of Rab35 expression by miR-720 was assessed using qRT-PCR and western blot assays, and the effects of exogenous miR-720 and Rab35 on cell migration were evaluated in vitro using Transwell(®) assay, wound healing assay, and real-time analyses in HeLa cells. The influences of exogenous miR-720 on cell proliferation were evaluated in vitro by the MTT assay in HeLa cells. In addition, expression of E-cadherin and vimentin associated with epithelial-mesenchymal transition were also assessed using western blot analyses after transfection of miR-720 mimics and Rab35 expression vectors. The results showed that the small GTPase, Rab35, is a direct functional target of miR-720 in cervical cancer HeLa cells. By targeting Rab35, overexpression of miR-720 resulted in a decrease in E-cadherin expression and an increase in vimentin expression and finally led to promotion of HeLa cell migration. Furthermore, reintroduction of Rab35 3'-UTR(-) markedly reversed the induction of cell migration in miR-720-expressing HeLa cells. Conclusions: The miR-720 promotes cell migration of HeLa cells by downregulating Rab35. The results show that miR-720 is a novel cell migration-associated gene in cervical cancer cells.
Article
Background: MicroRNAs are a class of endogenous single strand non-coding RNAs that are involved in many important physiological and pathological processes. The purpose of this study was to investigate the expression levels of miR-29c in human bladder cancer and its potential role in disease pathogenesis. Methods: The expression level of miR-29c was measured in 40 bladder cancer specimens and adjacent normal breast tissues by quantitative polymerase chain reaction (qPCR). Over-expression of miR-29c was established by transfecting mimics into T24.MTT assays, colony formation assays, transwell assays and cell cycle assays were used to explore the potential function of miR-29c inT24 bladder cancer cells. Luciferase reporter assays were performed to analyze the regulation of putative target of miR-29c. The effects of modulating miR-29c on endogenous levels of this target were subsequently confirmed via qRT-PCR and Western blot. Results: The expression of miR-29c in bladder cancer specimens was lower than adjacent normal tissues (P<0.01). Overexpression of miR-29c inhibited cellular growth, suppressed cellular migration and caused an accumulation of cells in the G1 phase of the cell cycle, Dual-luciferase reporter assays showed that miR-29c binds the 3'-untranslated region (3'-UTR) of CDK6, suggesting that CDK6 is a direct target of miR-29c. Furthermore, through qPCR and Western blot assays confirmed that overexpression of miR-29c reduced CDK6 mRNA and protein levels. Conclusions: miR-29c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. in the future, it could be used as a therapeutic target for the treatment of bladder cancer.
ResearchGate has not been able to resolve any references for this publication.