ArticlePDF Available

Crystal structure of triaqua-(1,10-phenanthroline)-(dihydrogen-3,3′,3′′-(2,4,6-trioxo-1,3,5-triazinane-1,3,5-triyl)tripropanoato) cobalt(II)dihydrogen-3,3′,3′′-(2,4,6-trioxo-1,3,5-triazinane-1,3,5-triyl)tripropanoate, C72H82Co2N16O42

Authors:

Abstract and Figures

C72H82Co2N16O42, triclinic, P1̅, a = 15.7653(19) Å, b = 16.955(2) Å, c = 18.838(2) Å, α = 70.35(2)°, β = 87.78(2)°, γ = 63.73(2)°, V = 4216.5(8) Å3, Z = 2, Rgt(F) = 0.0735, wRref(F2) = 0.1405, T = 296(2) K.
Content may be subject to copyright.
Z. Kristallogr. NCS 2016; 231(1): 185–189
Open Access
Guang-Jie He, Tian-Jun Ni and Zhi-Jun Yang*
Crystal structure of triaqua-(1,10-phenanthroline)-
(dihydrogen-3,3,3′′-(2,4,6-trioxo-1,3,5-
triazinane-1,3,5-triyl)tripropanoato) cobalt(II)
dihydrogen-3,3,3′′-(2,4,6-trioxo-1,3,5-triazinane-
1,3,5-triyl)tripropanoate, C72H82Co2N16O42
DOI 10.1515/ncrs-2015-0078
Received April 26, 2015; accepted December 14, 2015; available
online January 9, 2016
Abstract
C72H82Co2N16O42, triclinic, P¯
1,a=15.7653(19) Å,
b=16.955(2) Å, c=18.838(2) Å, α=70.35(2)°,β=87.78(2)°,
γ=63.73(2)°,V=4216.5(8) Å3,Z=2, Rgt(F) =0.0735,
wRref(F2)=0.1405, T=296(2) K.
CCDC no.: 1442433
The crystal structure is shown in the gure, Tables 1–3 contain
details of the measurement method and a list of the atoms
including atomic coordinates and displacement parameters.
*Corresponding author: Zhi-Jun Yang, School of Basic Medical
Sciences, Xinxiang Medical University, Xinxiang 453003, Henan
Province, P. R. China, e-mail: zjyang@xxmu.edu.cn
Guang-Jie He: Department of Forensic Medicine, Xinxiang Medical
University, Xinxiang 453003, Henan Province, P.R. China
Tian-Jun Ni: School of Basic Medical Sciences, Xinxiang Medical
University, Xinxiang 453003, Henan Province, P. R. China
Table 1: Data collection and handling.
Crystal: Red, Block, size
0.10×0.20×0.20 mm
Wavelength: Mo Kαradiation (0.71073 Å)
µ: 5.02 cm1
Diractometer, scan mode: CCD area detector, φand ωscans
2θmax: 50.1°
N(hkl)measured,N(hkl)unique: 22224, 1472
Criterion for Iobs,N(hkl)gt :Iobs >2σ(Iobs), 7580
N(param)rened: 1202
Programs: Bruker data collection
and reduction
software [7–9], SHELX [10]
Source of material
A mixture of Co(NO3)2·6H2O (0.030 g, 0.1mmol) 3,3,3′′-(2,4,6-
trioxo-1,3,5-triazinane-1,3,5-triyl)tripropanoic acid (TTA)
(0.036 g 0.1 mmol), 1,10-phenanthroline (phen) (0.020 g,
0.1 mmol), NaOH (0.2 M, 1.5 mL) and H2O (10 mL) was
stirred for about 30 min. The resulting solution was sealed
in a Teon-lined stainless autoclave and heated to 373 K
for 3 days. The bottle was cooled to ambient temperature
spontaneously. Red single crystals (about 66%, based on
Co input) were recovered by vacuum ltration, drying
in air.
Experimental details
The C-bound H atoms were geometrically placed (C—H =0.93,
0.97 Å) and rened as riding with Uiso(H) =1.2Ueq(C).
The O-bound H atoms were geometrically placed (O—
H=0.82 Å) and rened as riding with Uiso(H) =1.5Ueq(O).
Results and discussion
In recent years, extensive eorts have been focused on the
rational design and controlled synthesis of coordination
polymers, owing to their intriguing topological structures
©2016 Guang-Jie He et al., published by De Gruyter.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
186 |He et al.: C72H82 Co2N16O42
Table 2: Fractional atomic coordinates and isotropic or equivalent
isotropic displacement parameters 2).
Atom Site x y z Uiso
H(1) 2i0.9032 0.0372 0.1503 0.051
H(2) 2i0.9997 0.0368 0.1219 0.058
H(3) 2i0.9827 0.1392 0.0022 0.057
H(5) 2i0.8960 0.2214 0.1356 0.062
H(6) 2i0.7822 0.2452 0.2202 0.073
H(8) 2i0.6444 0.2155 0.2492 0.092
H(9A) 2i0.5500 0.1430 0.2045 0.091
H(10) 2i0.5685 0.0569 0.0772 0.072
H(14A) 2i0.5390 0.1828 0.1887 0.050
H(14B) 2i0.4402 0.1845 0.1759 0.050
H(15A) 2i0.5210 0.2725 0.0574 0.061
H(15B) 2i0.4210 0.2764 0.0466 0.061
H(17A) 2i0.4732 0.5157 0.2154 0.091
H(17B) 2i0.5609 0.4537 0.1833 0.091
H(18A) 2i0.4292 0.6377 0.0982 0.087
H(18B) 2i0.5215 0.5757 0.0700 0.087
H(21A) 2i0.1571 0.4672 0.1588 0.097
H(21B) 2i0.1767 0.5315 0.1936 0.097
H(26A) 2i0.8415 0.1942 0.2263 0.070
H(26B) 2i0.7434 0.2814 0.2185 0.070
H(27A) 2i0.8280 0.2419 0.0920 0.055
H(27B) 2i0.7343 0.3327 0.0872 0.055
H(29A) 2i1.1302 0.3007 0.1911 0.059
H(29B) 2i1.1149 0.2102 0.2187 0.059
H(30A) 2i1.1530 0.2899 0.0725 0.064
H(30B) 2i1.1316 0.2032 0.0964 0.064
H(33A) 2i0.7617 0.6045 0.0631 0.060
H(33B) 2i0.8635 0.5985 0.0707 0.060
H(34A) 2i0.7608 0.5630 0.1949 0.063
H(34B) 2i0.8661 0.5470 0.2062 0.063
H(38A) 2i0.5847 0.0807 0.4354 0.051
H(38B) 2i0.5555 0.1453 0.4097 0.051
H(39A) 2i0.5152 0.0411 0.3188 0.049
H(39B) 2i0.4915 0.0235 0.2887 0.049
H(41A) 2i0.2855 0.2283 0.4365 0.046
H(41B) 2i0.1851 0.2302 0.4385 0.046
H(42A) 2i0.2498 0.3143 0.3058 0.048
H(42B) 2i0.1512 0.3124 0.3049 0.048
H(45A) 2i0.1551 0.0186 0.4157 0.050
H(45B) 2i0.2470 0.1037 0.4090 0.050
H(46A) 2i0.1058 0.0412 0.2883 0.053
H(46B) 2i0.2063 0.0234 0.2714 0.053
H(49) 2i0.3401 0.5863 0.3079 0.075
H(50) 2i0.5047 0.5283 0.3285 0.097
H(51) 2i0.5892 0.4131 0.4419 0.097
H(53) 2i0.5871 0.3065 0.5738 0.101
H(54) 2i0.5016 0.2674 0.6657 0.102
H(56) 2i0.3371 0.2908 0.7103 0.097
H(57) 2i0.1760 0.3626 0.6789 0.099
H(58) 2i0.1091 0.4692 0.5581 0.075
H(62A) 2i0.8355 0.3018 0.3370 0.064
H(62B) 2i0.9359 0.2312 0.3251 0.064
H(63A) 2i0.9683 0.1370 0.4502 0.057
H(63B) 2i0.8786 0.2121 0.4705 0.057
H(65A) 2i0.5730 0.1328 0.4461 0.074
Table 2: (continued)
Atom Site x y z Uiso
H(65B) 2i0.5825 0.2123 0.4646 0.074
H(66A) 2i0.5466 0.2155 0.3188 0.094
H(66B) 2i0.5723 0.2902 0.3316 0.094
H(3A) 2i0.7526 0.1124 0.2175 0.209
H(2A) 2i0.6633 0.0815 0.0958 0.209
H(1A) 2i0.8546 0.1824 0.0410 0.209
H(24A) 2i0.0062 0.6306 0.4063 0.209
H(22A) 2i0.0910 0.6506 0.2641 0.209
H(23A) 2i0.2001 0.6509 0.4596 0.209
H(22B) 2i0.1417 0.6417 0.2484 0.209
H(69A) 2i0.8567 0.1250 0.4390 0.057
H(69B) 2i0.9513 0.1158 0.4256 0.057
H(70A) 2i0.8052 0.0562 0.3087 0.046
H(70B) 2i0.8943 0.0374 0.2931 0.046
H(1B) 2i0.7690 0.1304 0.0107 0.074
H(2B) 2i0.6355 0.1233 0.0932 0.065
H(3B) 2i0.7990 0.1703 0.1798 0.058
H(7) 2i0.5909 0.7092 0.1188 0.110
H(9) 2i0.0459 0.6434 0.1775 0.108
H(13) 2i0.6931 0.1380 0.1343 0.083
H(17) 2i1.3674 0.1151 0.1033 0.098
H(23B) 2i0.0944 0.6840 0.4529 0.080
H(24B) 2i0.0253 0.5423 0.3943 0.079
H(28) 2i0.0532 0.1135 0.2635 0.085
H(31) 2i0.7886 0.2084 0.3882 0.070
H(35) 2i0.3794 0.3131 0.2764 0.272
H(38) 2i0.9918 0.3931 0.3295 0.087
and potential applications [1–3]. Aromatic multicarboxy-
lates, especially benzene multi-carboxylates, including
1,3-benzenedicarboxylate, 1,3,5-benzenetricarboxylate and
1,2,4,5- benzenetetracarboxylate have been widely utilized
to create novel CPs [1–3]. Compared to these rigid ligands,
3,3,3′′-(2,4,6-trioxo-1,3,5-triazinane-1,3,5-triyl)tripropanoic
acid (TTA) is semi-exible and longer ligand, and may
be good candidates for construction of CPs. In particular,
coordination polymers with exible ligands exhibit more
complex and unusual structures, as functional groups on
the ligands oer variable congurations. Some studies of
metal-organic networks based on TTA ligands were reported.
The results show that the ligand exhibits a special ability
to formulate the compounds, and can adopt dierent
coordination modes in dierent chemical environments [4–
6]. Most of these compounds have a 2D or 3D structure.
In this paper, we select TTA as spacer to obtain a cobalt
complex.
There are two crystallographically independent cobalt(II)
ions in the structure. Both the Col and Co2 ions are six-
coordinated by three oxygen atoms from three aqua ligands,
two nitrogen atoms frombidentate chelating phen ligand, and
one oxygen atom from one TTA ligand. Their coordination
He et al.: C72H82 Co2N16O42 |187
Table 3: Atomic displacement parameters 2).
Atom Site x y z U11 U22 U33 U12 U13 U23
Co(1) 2i0.72001(5) 0.02489(5) 0.06879(4) 0.0311(4) 0.0329(5) 0.0414(5) 0.0160(4) 0.0063(4) 0.0176(4)
Co(2) 2i0.17706(6) 0.55117(5) 0.40345(5) 0.0387(5) 0.0298(5) 0.0429(5) 0.0168(4) 0.0057(4) 0.0147(4)
C(1) 2i0.8933(4) 0.0070(4) 0.1019(4) 0.038(4) 0.043(4) 0.056(4) 0.021(3) 0.010(3) 0.025(3)
C(2) 2i0.9532(5) 0.0501(5) 0.0848(4) 0.050(4) 0.058(4) 0.053(5) 0.030(4) 0.006(3) 0.030(4)
C(3) 2i0.9426(4) 0.1109(5) 0.0141(4) 0.037(4) 0.063(5) 0.066(5) 0.032(4) 0.019(3) 0.040(4)
C(4) 2i0.8714(4) 0.1322(4) 0.0420(4) 0.039(4) 0.031(3) 0.058(4) 0.018(3) 0.014(3) 0.021(3)
C(5) 2i0.8571(5) 0.1922(4) 0.1197(4) 0.054(4) 0.035(4) 0.069(5) 0.025(3) 0.015(4) 0.016(4)
C(6) 2i0.7885(5) 0.2072(5) 0.1698(4) 0.068(5) 0.043(4) 0.055(5) 0.023(4) 0.006(4) 0.000(4)
C(7) 2i0.7251(5) 0.1664(4) 0.1478(4) 0.052(4) 0.043(4) 0.041(4) 0.017(4) 0.001(3) 0.002(3)
C(8) 2i0.6533(6) 0.1787(6) 0.1981(4) 0.078(6) 0.080(6) 0.051(5) 0.033(5) 0.015(4) 0.002(4)
C(9) 2i0.5970(6) 0.1364(6) 0.1714(5) 0.075(6) 0.084(6) 0.056(5) 0.038(5) 0.023(4) 0.005(5)
C(10) 2i0.6094(5) 0.0832(5) 0.0948(4) 0.050(4) 0.062(5) 0.066(5) 0.029(4) 0.014(4) 0.015(4)
C(11) 2i0.7352(4) 0.1089(4) 0.0726(4) 0.033(3) 0.033(4) 0.045(4) 0.008(3) 0.001(3) 0.014(3)
C(12) 2i0.8120(4) 0.0888(4) 0.0187(3) 0.028(3) 0.029(3) 0.043(4) 0.008(3) 0.004(3) 0.015(3)
C(13) 2i0.5443(4) 0.1009(4) 0.1275(4) 0.028(3) 0.033(4) 0.057(4) 0.010(3) 0.003(3) 0.019(3)
C(14) 2i0.4956(4) 0.1851(4) 0.1521(3) 0.036(4) 0.038(4) 0.058(4) 0.017(3) 0.005(3) 0.025(3)
C(15) 2i0.4654(5) 0.2744(4) 0.0822(4) 0.047(4) 0.041(4) 0.066(5) 0.012(3) 0.012(3) 0.032(4)
C(16) 2i0.4784(5) 0.3947(5) 0.1172(5) 0.038(4) 0.043(4) 0.110(7) 0.018(4) 0.011(4) 0.036(4)
C(17) 2i0.4958(5) 0.5036(5) 0.1697(5) 0.068(5) 0.071(6) 0.111(7) 0.045(5) 0.004(5) 0.039(5)
C(18) 2i0.4944(5) 0.5886(5) 0.1143(5) 0.067(5) 0.065(5) 0.104(7) 0.041(5) 0.007(5) 0.035(5)
C(19) 2i0.5518(5) 0.6212(6) 0.1497(5) 0.065(5) 0.064(5) 0.080(6) 0.044(5) 0.015(5) 0.035(5)
C(20) 2i0.3407(6) 0.5096(6) 0.1494(7) 0.048(5) 0.071(6) 0.24(1) 0.020(5) 0.031(6) 0.107(8)
C(21) 2i0.1815(6) 0.5127(6) 0.1497(5) 0.095(7) 0.102(7) 0.084(7) 0.070(6) 0.018(5) 0.044(6)
C(22) 2i0.1341(6) 0.5910(6) 0.0823(5) 0.073(6) 0.078(6) 0.082(6) 0.035(5) 0.025(5) 0.012(5)
C(23) 2i0.0261(6) 0.6457(6) 0.1030(6) 0.053(5) 0.069(6) 0.094(7) 0.032(5) 0.011(5) 0.050(6)
C(24) 2i0.3238(5) 0.3963(5) 0.1069(5) 0.040(4) 0.047(4) 0.119(7) 0.015(4) 0.005(4) 0.050(5)
C(25) 2i0.7293(4) 0.1776(4) 0.1976(4) 0.031(4) 0.040(4) 0.054(5) 0.012(3) 0.003(3) 0.019(4)
C(26) 2i0.7799(5) 0.2353(5) 0.1954(4) 0.052(4) 0.065(5) 0.082(6) 0.037(4) 0.007(4) 0.041(4)
C(27) 2i0.7955(4) 0.2865(4) 0.1173(4) 0.035(4) 0.042(4) 0.078(5) 0.026(3) 0.008(3) 0.030(4)
C(28) 2i0.9496(4) 0.2784(5) 0.1446(4) 0.041(4) 0.039(4) 0.059(5) 0.018(3) 0.012(3) 0.024(3)
C(29) 2i1.1056(4) 0.2652(5) 0.1750(4) 0.039(4) 0.056(4) 0.065(5) 0.024(3) 0.007(3) 0.032(4)
C(30) 2i1.1593(4) 0.2348(5) 0.1148(4) 0.030(4) 0.073(5) 0.062(5) 0.018(3) 0.006(3) 0.037(4)
C(31) 2i1.2630(4) 0.1699(4) 0.1424(4) 0.036(4) 0.045(4) 0.055(5) 0.018(3) 0.007(3) 0.025(4)
C(32) 2i0.9650(4) 0.4201(4) 0.1263(4) 0.037(4) 0.044(4) 0.077(5) 0.020(3) 0.009(3) 0.036(4)
C(33) 2i0.8222(5) 0.5718(4) 0.0955(4) 0.053(4) 0.027(3) 0.071(5) 0.016(3) 0.002(4) 0.021(3)
C(34) 2i0.8065(5) 0.5846(4) 0.1722(4) 0.058(4) 0.034(4) 0.066(5) 0.020(3) 0.005(4) 0.018(3)
C(35) 2i0.7696(5) 0.6876(5) 0.1623(4) 0.062(5) 0.037(4) 0.052(5) 0.023(4) 0.011(4) 0.016(3)
C(36) 2i0.8078(5) 0.4299(5) 0.1060(4) 0.039(4) 0.048(4) 0.081(5) 0.024(4) 0.007(4) 0.037(4)
C(37) 2i0.6659(4) 0.1293(4) 0.3583(4) 0.032(4) 0.043(4) 0.053(4) 0.018(3) 0.005(3) 0.024(3)
C(38) 2i0.5748(4) 0.0957(4) 0.3920(3) 0.038(4) 0.044(4) 0.050(4) 0.022(3) 0.008(3) 0.018(3)
C(39) 2i0.4971(4) 0.0094(4) 0.3335(3) 0.028(3) 0.041(4) 0.054(4) 0.013(3) 0.011(3) 0.022(3)
C(40) 2i0.3703(4) 0.1043(4) 0.3773(4) 0.034(4) 0.036(4) 0.058(4) 0.015(3) 0.004(3) 0.022(3)
C(41) 2i0.2362(4) 0.2279(4) 0.4076(3) 0.039(4) 0.028(3) 0.055(4) 0.016(3) 0.008(3) 0.023(3)
C(42) 2i0.1980(4) 0.3144(4) 0.3353(3) 0.039(4) 0.030(3) 0.053(4) 0.013(3) 0.004(3) 0.022(3)
C(43) 2i0.1524(5) 0.4040(4) 0.3531(3) 0.047(4) 0.033(4) 0.047(4) 0.021(3) 0.004(3) 0.013(3)
C(44) 2i0.2175(4) 0.0997(4) 0.3906(3) 0.034(4) 0.030(3) 0.048(4) 0.017(3) 0.001(3) 0.014(3)
C(45) 2i0.2050(4) 0.0370(4) 0.3842(3) 0.050(4) 0.030(3) 0.053(4) 0.025(3) 0.004(3) 0.013(3)
C(46) 2i0.1603(4) 0.0207(4) 0.3074(4) 0.040(4) 0.033(4) 0.062(5) 0.021(3) 0.001(3) 0.013(3)
C(47) 2i0.1290(4) 0.0946(5) 0.3152(4) 0.040(4) 0.043(4) 0.055(5) 0.024(3) 0.001(3) 0.019(4)
C(48) 2i0.3502(4) 0.0222(4) 0.3590(3) 0.031(3) 0.029(3) 0.048(4) 0.014(3) 0.003(3) 0.014(3)
C(49) 2i0.3732(6) 0.5416(5) 0.3549(4) 0.080(6) 0.066(5) 0.063(5) 0.048(5) 0.018(4) 0.031(4)
C(50) 2i0.4732(6) 0.5058(7) 0.3667(6) 0.071(6) 0.102(7) 0.128(9) 0.065(6) 0.043(6) 0.079(7)
C(51) 2i0.5231(6) 0.4385(6) 0.4340(6) 0.044(5) 0.087(7) 0.141(9) 0.025(5) 0.016(6) 0.084(7)
C(52) 2i0.4735(5) 0.4077(5) 0.4920(5) 0.046(5) 0.060(5) 0.094(6) 0.018(4) 0.002(5) 0.055(5)
C(53) 2i0.5209(6) 0.3365(6) 0.5643(6) 0.065(6) 0.066(6) 0.115(9) 0.006(5) 0.028(6) 0.053(6)
C(54) 2i0.4695(7) 0.3129(5) 0.6187(6) 0.095(8) 0.042(5) 0.089(7) 0.011(5) 0.046(6) 0.013(5)
C(55) 2i0.3683(6) 0.3548(5) 0.6073(4) 0.079(6) 0.048(5) 0.057(5) 0.024(4) 0.021(5) 0.019(4)
C(56) 2i0.3096(8) 0.3340(6) 0.6615(5) 0.129(8) 0.064(6) 0.044(5) 0.050(6) 0.001(6) 0.003(4)
C(57) 2i0.2147(7) 0.3760(6) 0.6432(5) 0.114(8) 0.090(7) 0.055(6) 0.067(6) 0.009(5) 0.010(5)
C(58) 2i0.1751(6) 0.4401(5) 0.5700(4) 0.078(5) 0.072(5) 0.053(5) 0.050(5) 0.019(4) 0.020(4)
C(59) 2i0.3203(5) 0.4212(4) 0.5347(4) 0.063(5) 0.035(4) 0.047(4) 0.023(4) 0.005(4) 0.017(3)
C(60) 2i0.3750(5) 0.4484(4) 0.4769(4) 0.048(4) 0.035(4) 0.063(5) 0.017(3) 0.005(4) 0.027(4)
C(61) 2i0.9453(4) 0.3154(4) 0.3786(4) 0.041(4) 0.041(4) 0.066(5) 0.021(3) 0.012(4) 0.023(4)
C(62) 2i0.9009(5) 0.2597(5) 0.3606(4) 0.052(4) 0.058(5) 0.064(5) 0.036(4) 0.005(4) 0.024(4)
C(63) 2i0.9027(4) 0.1847(4) 0.4319(4) 0.043(4) 0.048(4) 0.065(5) 0.027(3) 0.000(3) 0.026(4)
C(64) 2i0.7497(5) 0.1824(5) 0.4268(4) 0.043(4) 0.051(4) 0.069(5) 0.028(4) 0.013(3) 0.036(4)
188 |He et al.: C72H82 Co2N16O42
Table 3: (continued)
Atom Site x y z U11 U22 U33 U12 U13 U23
C(65) 2i0.5958(4) 0.1798(5) 0.4288(5) 0.036(4) 0.077(5) 0.110(7) 0.036(4) 0.041(4) 0.066(5)
C(66) 2i0.5448(5) 0.2476(5) 0.3533(5) 0.035(4) 0.059(5) 0.141(8) 0.020(4) 0.003(5) 0.037(6)
C(67) 2i0.4360(9) 0.3040(8) 0.370(1) 0.07(1) 0.055(7) 0.37(3) 0.044(7) 0.08(1) 0.01(1)
C(68) 2i0.7409(4) 0.0444(4) 0.4216(3) 0.048(4) 0.042(4) 0.046(4) 0.026(3) 0.008(3) 0.021(3)
C(69) 2i0.8839(5) 0.0861(4) 0.4072(3) 0.056(4) 0.032(4) 0.058(5) 0.020(3) 0.000(3) 0.018(3)
C(70) 2i0.8722(4) 0.0805(4) 0.3258(3) 0.038(4) 0.029(3) 0.042(4) 0.011(3) 0.000(3) 0.012(3)
C(71) 2i0.9281(4) 0.1764(4) 0.3193(4) 0.038(4) 0.028(3) 0.049(4) 0.011(3) 0.005(3) 0.018(3)
C(72) 2i0.8922(5) 0.0534(4) 0.4106(3) 0.040(4) 0.045(4) 0.045(4) 0.022(3) 0.006(3) 0.022(3)
N(1) 2i0.8228(3) 0.0264(3) 0.0523(3) 0.026(3) 0.036(3) 0.043(3) 0.014(2) 0.002(2) 0.018(3)
N(2) 2i0.6777(3) 0.0686(3) 0.0458(3) 0.033(3) 0.041(3) 0.047(3) 0.017(3) 0.000(2) 0.016(3)
N(3) 2i0.4203(4) 0.3604(3) 0.1007(3) 0.031(3) 0.036(3) 0.104(5) 0.011(3) 0.008(3) 0.038(3)
N(4) 2i0.4344(4) 0.4716(4) 0.1394(4) 0.046(4) 0.057(4) 0.159(7) 0.026(3) 0.014(4) 0.067(4)
N(5) 2i0.2872(4) 0.4731(5) 0.1296(5) 0.035(4) 0.081(5) 0.25(1) 0.024(4) 0.024(5) 0.114(6)
N(6) 2i0.8528(3) 0.3340(3) 0.1220(3) 0.032(3) 0.034(3) 0.084(4) 0.015(3) 0.005(3) 0.034(3)
N(7) 2i1.0022(3) 0.3243(3) 0.1474(3) 0.031(3) 0.040(3) 0.071(4) 0.017(3) 0.008(3) 0.031(3)
N(8) 2i0.8665(3) 0.4701(3) 0.1072(3) 0.034(3) 0.033(3) 0.075(4) 0.016(2) 0.010(3) 0.031(3)
N(9) 2i0.2593(3) 0.0154(3) 0.3785(3) 0.033(3) 0.033(3) 0.053(3) 0.021(2) 0.007(2) 0.023(3)
N(10) 2i0.2758(3) 0.1401(3) 0.3914(3) 0.035(3) 0.027(3) 0.046(3) 0.015(2) 0.005(2) 0.017(2)
N(11) 2i0.4035(3) 0.0228(3) 0.3618(3) 0.027(3) 0.031(3) 0.052(3) 0.014(2) 0.006(2) 0.017(2)
N(12) 2i0.3249(4) 0.5143(3) 0.4079(3) 0.052(3) 0.039(3) 0.048(3) 0.027(3) 0.016(3) 0.023(3)
N(13) 2i0.2259(4) 0.4620(3) 0.5161(3) 0.047(3) 0.040(3) 0.050(4) 0.023(3) 0.008(3) 0.016(3)
N(14) 2i0.8453(3) 0.1393(3) 0.4207(3) 0.038(3) 0.040(3) 0.060(4) 0.022(3) 0.004(3) 0.026(3)
N(15) 2i0.6997(3) 0.1330(3) 0.4269(3) 0.039(3) 0.047(3) 0.062(4) 0.027(3) 0.015(3) 0.034(3)
N(16) 2i0.8370(3) 0.0077(3) 0.4138(3) 0.042(3) 0.033(3) 0.050(3) 0.020(3) 0.004(2) 0.019(3)
O(1) 2i0.8035(3) 0.1310(3) 0.0212(2) 0.047(3) 0.049(3) 0.059(3) 0.017(2) 0.006(2) 0.033(2)
O(2) 2i0.6153(3) 0.0679(3) 0.0658(3) 0.035(2) 0.034(2) 0.065(3) 0.016(2) 0.001(2) 0.022(2)
O(3) 2i0.7808(3) 0.1160(3) 0.1776(2) 0.041(2) 0.030(2) 0.042(3) 0.013(2) 0.006(2) 0.015(2)
O(4) 2i0.6297(3) 0.0772(3) 0.1147(2) 0.032(2) 0.036(2) 0.066(3) 0.017(2) 0.011(2) 0.032(2)
O(5) 2i0.4982(3) 0.0601(3) 0.1184(3) 0.026(2) 0.049(3) 0.112(4) 0.019(2) 0.014(2) 0.049(3)
O(6) 2i0.5792(4) 0.5930(4) 0.2155(3) 0.127(5) 0.118(5) 0.076(4) 0.097(4) 0.012(4) 0.030(4)
O(7) 2i0.5637(4) 0.6897(4) 0.0980(3) 0.082(4) 0.070(4) 0.089(4) 0.046(3) 0.003(3) 0.034(3)
O(8) 2i0.0320(4) 0.7000(4) 0.0516(4) 0.059(4) 0.099(5) 0.091(5) 0.015(3) 0.015(3) 0.033(4)
O(9) 2i0.0110(3) 0.6274(4) 0.1749(3) 0.040(3) 0.056(3) 0.107(5) 0.004(3) 0.020(3) 0.037(3)
O(10) 2i0.5621(3) 0.3597(3) 0.1136(3) 0.033(3) 0.065(3) 0.157(6) 0.020(3) 0.010(3) 0.044(4)
O(11) 2i0.3057(4) 0.5732(4) 0.1762(5) 0.071(4) 0.101(5) 0.257(9) 0.027(4) 0.019(5) 0.129(6)
O(12) 2i0.2758(3) 0.3628(3) 0.0938(3) 0.044(3) 0.067(3) 0.163(6) 0.026(3) 0.010(3) 0.073(4)
O(13) 2i0.7236(3) 0.1672(3) 0.1320(3) 0.051(3) 0.065(3) 0.082(4) 0.039(3) 0.025(2) 0.047(3)
O(14) 2i0.7006(4) 0.1446(4) 0.2531(3) 0.080(4) 0.079(4) 0.060(4) 0.050(3) 0.012(3) 0.020(3)
O(15) 2i0.9859(3) 0.1940(3) 0.1612(3) 0.042(3) 0.042(3) 0.121(5) 0.017(2) 0.007(3) 0.039(3)
O(16) 2i1.2982(3) 0.1422(4) 0.2069(3) 0.043(3) 0.089(4) 0.064(4) 0.014(3) 0.005(3) 0.017(3)
O(17) 2i1.3107(3) 0.1490(4) 0.0869(3) 0.037(3) 0.085(4) 0.083(4) 0.017(3) 0.011(2) 0.056(3)
O(18) 2i1.0130(3) 0.4588(3) 0.1269(3) 0.046(3) 0.058(3) 0.146(5) 0.032(3) 0.014(3) 0.058(3)
O(19) 2i0.6827(3) 0.7420(3) 0.1392(3) 0.051(3) 0.034(3) 0.087(4) 0.018(2) 0.004(3) 0.025(3)
O(20) 2i0.8287(3) 0.7126(3) 0.1781(3) 0.048(3) 0.039(3) 0.075(3) 0.018(2) 0.008(2) 0.028(2)
O(21) 2i0.7219(3) 0.4760(3) 0.0909(3) 0.032(3) 0.049(3) 0.164(6) 0.013(2) 0.005(3) 0.048(3)
O(22) 2i0.1354(3) 0.6450(3) 0.2917(2) 0.083(3) 0.041(3) 0.039(3) 0.016(3) 0.008(2) 0.016(2)
O(23) 2i0.1456(3) 0.6688(3) 0.4360(3) 0.068(3) 0.046(3) 0.059(3) 0.030(3) 0.017(3) 0.030(2)
O(24) 2i0.0363(3) 0.5751(3) 0.4123(3) 0.045(3) 0.041(3) 0.082(4) 0.023(2) 0.011(2) 0.029(2)
O(25) 2i0.2070(3) 0.4351(3) 0.3675(2) 0.038(2) 0.043(3) 0.070(3) 0.021(2) 0.009(2) 0.033(2)
O(26) 2i0.0639(3) 0.4444(3) 0.3522(3) 0.038(3) 0.044(3) 0.105(4) 0.019(2) 0.010(3) 0.041(3)
O(27) 2i0.1341(3) 0.1348(3) 0.4010(3) 0.034(3) 0.049(3) 0.085(4) 0.020(2) 0.014(2) 0.033(3)
O(28) 2i0.0648(3) 0.0696(3) 0.2589(3) 0.066(3) 0.055(3) 0.062(3) 0.040(3) 0.003(3) 0.018(3)
O(29) 2i0.1610(4) 0.1694(3) 0.3651(3) 0.098(4) 0.040(3) 0.085(4) 0.044(3) 0.038(3) 0.008(3)
O(30) 2i0.3814(3) 0.0926(3) 0.3427(3) 0.042(3) 0.041(3) 0.092(4) 0.014(2) 0.007(2) 0.040(3)
O(31) 2i0.7401(3) 0.1956(3) 0.4090(2) 0.030(2) 0.045(3) 0.059(3) 0.012(2) 0.007(2) 0.018(2)
O(32) 2i0.6695(3) 0.0986(3) 0.2911(3) 0.043(3) 0.082(4) 0.044(3) 0.014(3) 0.011(2) 0.022(3)
O(33) 2i0.4182(3) 0.1419(3) 0.3789(3) 0.049(3) 0.064(3) 0.147(5) 0.040(3) 0.027(3) 0.061(3)
O(34) 2i0.4003(7) 0.310(1) 0.404(1) 0.095(7) 0.29(2) 0.60(3) 0.140(8) 0.19(1) 0.39(2)
O(35) 2i0.3967(6) 0.3471(7) 0.2873(7) 0.075(6) 0.115(7) 0.32(1) 0.052(5) 0.053(8) 0.031(9)
O(36) 2i0.7116(3) 0.2593(3) 0.4324(3) 0.052(3) 0.055(3) 0.126(5) 0.028(3) 0.023(3) 0.058(3)
O(37) 2i0.9572(4) 0.3166(4) 0.4414(3) 0.096(4) 0.089(4) 0.069(4) 0.069(3) 0.032(3) 0.049(3)
O(38) 2i0.9682(3) 0.3640(3) 0.3177(3) 0.063(3) 0.056(3) 0.070(3) 0.038(3) 0.004(3) 0.023(3)
O(39) 2i0.9752(3) 0.0195(3) 0.4028(3) 0.038(3) 0.063(3) 0.105(4) 0.025(3) 0.015(3) 0.048(3)
O(40) 2i0.9981(3) 0.1891(3) 0.2821(2) 0.036(2) 0.039(2) 0.060(3) 0.019(2) 0.007(2) 0.024(2)
O(41) 2i0.9033(3) 0.2387(3) 0.3519(2) 0.032(2) 0.032(2) 0.071(3) 0.013(2) 0.008(2) 0.022(2)
O(42) 2i0.6957(3) 0.0020(3) 0.4239(3) 0.060(3) 0.058(3) 0.084(4) 0.042(3) 0.019(3) 0.035(3)
He et al.: C72H82 Co2N16O42 |189
geometry can be described as a distorted octahedron. The
Co—N and Co—O bond distances are comparable to those
reported for other cobalt complexes. There are four unique
TTA anions in the asymmetric unit. Two carboxyl groups
of BTB ligand are protonated, so each TTA ligand carries a
charge of 1, satisfying the charge balance. Two BTB an-
ions do not participate in the coordination of the Co(II)
atoms. In comparable structures, TTA can adopt a µ5-mode
to bind metal centers [4, 5], and all carboxyl oxygen atoms
are involved in metal coordination. In the title compound,
the complex cations and dihydrogen TTA ligands align in
neat alternating mode, which is made possible by the well
matched ionic size, and interact with each other O—H· · · O
hydrogen bonds between the carboxyl groups and coordi-
nated water molecules resulting in the formation of in-
nite chains. Adjacent chains are linked by O—H· · · O hydro-
gen bonds formed between the carboxyl groups and coor-
dinated water molecules to create three dimensional net-
works.
Acknowledgements: This work was nancially supported
by the National Natural Science Foundation (No. 21371148
and 81401470), the nancial support from Key Scientic and
Technological Project of Henan Province (No. 122102310196)
and the nancial support from Education Project of Henan
Province (No. 12 A150019).
References
1. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W.: Hydrogen
storage in metal-organic frameworks. Chem. Rev. 112 (2012)
782–835.
2. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; VanDuyne, R.
P.; Hupp, J. T.: Metal-organic framework materials as chemical
sensors. Chem. Rev. 112 (2012) 1105–1125.
3. O’Keee, M.; Yaghi, O. M.: Deconstructing the crystal structures
of metal-organic frameworks and related materials into their
underlying nets. Chem. Rev. 112 (2012) 675–702.
4. Han, Z. B.; Zhang, G. X.: Solvothermal synthesis of two
unique metal-organic frameworks: a 3-fold interpenetrating
(3,4,5)-connected network and a 2-fold interpenetrating
(4,5)-connected network. CrystEngComm 12 (2010) 348–351.
5. Han, Z. B.; Zhang, G. X.; Zeng M. H.; Ge, C. H.; Zou, X. H.; Han,
G. X.: Synthesis, crystal structure and magnetic properties
of two 3-D gadolinium complexes. CrystEngComm 11 (2009)
2629–2633.
6. Li, H. J.; Xu, Z. Q.; Zhao, B.; Jia, Y. Y.; Hou, H. W.; Fan, Y. T.:
Nuclearity control of manganese polymers dependent on
structural dierences in the coligands and magnetic properties
studies. CrystEngComm 16 (2014) 2470–2479.
7. Bruker (2007) SADABS. Brucker AXS Inc., Madison, Wisconsin,
USA.
8. Bruker (2007) SMART and SAINT. Brucker AXS Inc., Madison,
Wisconsin, USA.
9. Bruker AXS (2003) SHELXTL Version 6.14. Brucker AXS Inc.,
Madison, Wisconsin, USA.
10. Sheldrick, G. M.: Crystal structure renement with SHELXL. Acta
Cryst. C71 (2015) 3–8.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.
Article
Full-text available
Metal-organic frameworks (MOF) have versatile structures, high surface areas, and high pore volumes, and thus can be regarded as good materials for H 2 storage. The high H 2 capacities of MOFs at cryogenic temperatures dramatically decrease as the temperature increases to room temperature. Despite a relatively low isosteric heat of H 2 adsorption, the MOFs constructed from hexacarboxylic acid and with open copper sites have the highest excess H 2 uptake capacity at 77 K reported to date. Doping MOFs with catalysts is an effective approach to increase hydrogen storage capacities at ambient temperature because H 2 adsorption in MOFs promoted by metal-catalysts will take place by atomic hydrogen instead of molecular hydrogen, which will provide a high adsorption enthalpy much greater than 20 kJ mol -1.
Article
A solvothermal reaction of Zn(OAc)2, 4,4′-bipyridine (bpy) and tri(2-carboxyethyl)isocyanurate (H3tci) in presence or absence of NaOH leads to the generation of two novel coordination polymers, [Zn3(tci)2(bpy)1.5(H2O)2]·6H2O (1) and [ZnNa(tci)(bpy)0.5(H2O)]·2H2O (2), which feature a three-fold interpenetrating (3,4,5)-connected 3D network and a two-fold interpenetrating (4,5)-connected (43.63)(43.66.8)-fsx network, respectively.
Article
A series of polymers containing MnII clusters varying from dinuclear, tetranuclear, hexanuclear, to rod-shaped uniform chains has been synthesized. The polymer [Mn4(Htci)2(ptptp)2(H2O)6]·8H2O (1) (H3tci = tris(2-carboxyethyl)isocyanurate, H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-y-1H-1,2,4-triazol-3-yl}pyrazine) shows an interesting ladder based on dinuclear Mn clusters. The polymer {[Mn3(tci)2(pbbm)(H2O)3]·H2O}n (2) (pbbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) has a 2D 3,6-connected framework with tetranuclear and dinuclear Mn clusters. The polymer {[Mn3(tci)2(bbbm)(H2O)3](H2O)}n (3) (bbbm = 1,1′-(1,4-butanediyl)bis-1H-benzimidazole) belongs an uncommon 3D 3,12-connected framework assembled by hexanuclear clusters. And the polymer {Mn(Htci)(dpp)}n (4) (dpp = 1,3-di(4-pyridyl)propane) based upon rod-shaped uniform Mn chains exhibits a 2D framework. Magnetic susceptibility measurements indicate that all of the polymers show weak antiferromagnetic interactions.
Article
Two new gadolinium coordination polymers, Gd(tci)(H2O)]·DMF·2H2O (1) and [Gd(bci)(H2O)]·2H2O(2) (H3tci = tri(2-carboxyethyl)isocyanurate, H3bci = bis(2-carboxyethyl)isocyanurate), have been synthesized under solvothermal conditions by the reaction of gadolinium nitrate and H3tci or H3bci with presence of DMF and H2O. 1 and 2 feature an interesting 3D metal–organic framework which contains infinite linear Gd-(µ-O)2-Gd chains in the structures. The carboxylategroups bridge two Gd(III) centers in µ2-carboxylato-κ1O: κ1O′ and µ2O;κ2O,O′ patterns for 1 and µ2O;κ2O,O′ fashion for 2. The magnetic studies indicate that there exist antiferromagnetic interactions in 1 and ferromagnetic interactions in 2. The best fittings to the experimental magnetic susceptibilities gave J = −0.015 cm−1, g = 1.98 for 1 and J = 0.055 cm−1, g = 1.98 for 2.
Article
A critical review of the literature on metal-organic frameworks (MOF) as chemical sensors is presented. Functional groups on the surface may nucleate MOF growth in a specific crystallographic direction, leading to preferentially oriented films. Lan and co-workers reported two fluorescent Zn-based MOFs capable of sensing nitro-containing molecules relevant to detection of explosives. Feng et al. expanded the concept of using MOF structure to tune luminescence by demonstrating that both dynamic structural changes and incorporation of extrinsic dopants within the MOF pores can be used to create intense new emission. Robinson and co-workers reported humidity detection over a very broad concentration range using SAWs coated with Cu-BTC. The MOF film was grown directly on the quartz of 96.5 MHz devices without an intervening SAM, using the layer-by-layer (LBL) growth method developed by Fischer et al.
Article
The identification and description of the nets that describe the underlying topology of metal-organic frameworks (MOF) is presented. Alexandrov et al. discussed a crystal of linked paddle wheels reported by Chun. In this material, the four points of extension of the Zn 2(CO 2) 4 paddle wheel are linked to methyl isophthalic acid. A MOF formed by coordination of alkali metal ions by γ-cyclodextrin (CD), a symmetrical cyclic oligosaccharide consisting of a ring of eight C 6 monosaccharide units that is readily available in large quantities, is also studied. A structure discussed by Alexandrov et al. consists of CuN 6 octahedra linked by triazole/tetrazole linkers. The net is identified as a binodal (4,6)-c net with vertices corresponding to the Cu atoms, and the center of the linkers are considered as tetratopic.
  • M P Suh
  • H J Park
  • T K Prasad
  • D W Lim
.....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() C((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() C((() i .....(() .....(() ....(() ...(() ....(() ...(() −....(() −...(() −...(() C((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() C((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() C((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() C((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() −....(() −....(() C((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() −.....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ...(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() N((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i −.....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O(() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() −....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() −....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() −....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() −....(() −....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() −....(() ....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() ....(() ....(() ....(() ...(() ...(() −....(() ...(() −...(() O((() i .....(() .....(() .....(() ....(() ....(() ...(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() −.....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() O((() i .....(() .....(() .....(() ....(() ....(() ....(() −....(() ....(() −....(() Unauthenticated Download Date | 1/15/16 10:59 PM References 1. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112 (2012) 782–835.
SHELXTL Version 6.14
  • Axs Bruker
Bruker AXS (2003) SHELXTL Version 6.14. Brucker AXS Inc., Madison, Wisconsin, USA.
  • Bruker
Bruker (2007) SADABS. Brucker AXS Inc., Madison, Wisconsin, USA.