ArticlePDF Available

Rediscovery Of The Enigmatic Blind Snake Genus Xenotyphlops In Northern Madagascar, With Description Of A New Species (Serpentes: Typhlopidae)

Authors:

Abstract and Figures

After more than a century the rare blind snake genus Xenotyphlops Wallach & Ineich (1996) has been rediscovered in Madagascar, with the collection of a specimen from the arid northern part of the country. This represents only the third known Xenotyphlops specimen and establishes the first precise locality for the genus. As it differs from Xenotyphlops grandidieri (Mocquard) in several external and numerous internal features, it is here described as a new species.
Content may be subject to copyright.
Accepted by P. David: 29 Nov. 2006; published: 1 Feb. 2007 59
ZOOTAXA
ISSN 1175-5326 (print edition)
ISSN 1175-5334 (online edition)
Copyright © 2007 · Magnolia Press
Zootaxa 1402: 5968 (20 07)
www.mapress.com/zootaxa/
Rediscovery of the enigmatic blind snake genus Xenotyphlops in northern
Madagascar, with description of a new species (Serpentes: Typhlopidae)
VAN WALLACH1, VINCENZO MERCURIO2 & FRANCO ANDREONE3,4
1Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. E-mail vwallach@oeb.harvard.edu
2Forschungsinstitut und Naturhistorisches Museum Senckenberg, Sektion Herpetologie, Senckenberganlage 25, D-60325, Frankfurt
a.M., Germany. E-mail vincenzomercurio@gmx.de
3Museo Regionale di Scienze Naturali, Via G. Giolitti, 36, I-10123, Torino, Italy. E-mail f.andreone@libero.it
4Corresponding author
Abstract
After more than a century the rare blind snake genus Xenotyphlops Wallach & Ineich (1996) has been rediscovered in
Madagascar, with the collection of a specimen from the arid northern part of the country. This represents only the third
known Xenotyphlops specimen and establishes the first precise locality for the genus. As it differs from Xenotyphlops
grandidieri (Mocquard) in several external and numerous internal features, it is here described as a new species.
Key words: Xenotyphlops, Typhlopidae, X. grandidieri, new species, Madagascar, viscera
Introduction
In the beginning of the twentieth century, the French herpetologist François Mocquard (1905) described a
most unusual typhlopid, named Typhlops grandidieri, based upon two specimens with the vague type locality
of “Madagascar.” This bizarre scolecophidian has been known solely from the type specimens for more than
100 years (Guibé, 1958; Blanc, 1971; Brygoo, 1983, 1987; McDiarmid et al., 1999). Wallach & Ineich (1996)
erected the genus Xenotyphlops to reflect the distinctness of this blind snake, which shared some peculiar
characteristics typical of the Leptotyphlopidae (e.g., single enlarged anal shield, absence of a tracheal lung,
cranially positioned heart with long heart-liver gap, heavily vascularized, unicameral right lung lacking avas-
cular terminal portion, and type G bronchial foramina). However, the majority of characters corroborated its
inclusion within the Typhlopidae (e.g., dentigerous maxilla and edentulous dentary, 20 midbody scale rows,
costal/vertebral ratio greater than 1.0, a single pelvic element, left liver lobe forming anterior extension, and
unipartite liver). On the other hand, some further characters suggested a relationship to the Rhinotyphlops (=
Letheobia fide Broadley & Wallach, 2000; Wallach, 2005) simoni and/or R. caecus species groups, such as the
lack of visible eye, reduction of most head shields, T-0 supralabial imbrication pattern, corneal cutting edge on
rostral, inferiorly located nostrils, elongated body with uniform diameter throughout, and absence of scale row
reduction, pigmentation and apical spine. Additionally, a unique scolecophidian feature was described: soft,
flexible cephalic papillae on the rostral shield (Wallach & Ineich, 1996: Fig. 1).
Guibé (1958) and Wallach & Ineich (1996) illustrated the species but it remained the only Malagasy
typhlopid for which no specific locality was available (Werner, 1921; Hahn, 1980; Glaw & Vences, 1994;
McDiarmid et al., 1999). The obscure phylogenetic position and the geographic vagueness of its provenance
made this typhlopid highly enigmatic. Due to this, the discovery of an individual clearly belonging to the
WALLACH ET AL.
60 · Zootaxa 1402 © 2007 Magnolia Press
genus Xenotyphlops, and resembling X. grandidieri, now permits a more accurate redefinition of the genus
and elucidates the first known locality for the genus in Madagascar. Based upon the differences between the
significant morphological characters presented below, in conjunction with comparative data, we consider this
specimen to represent a new species that we describe herein.
Materials and methods
Visceral characters are described in Wallach (1985, 1991, 1993b–c, 1998a–b) and Wallach & Ineich (1996),
and the references cited therein. The “prefrontal” shield of Leptotyphlopidae and Typhlopidae has been shown
to be homologous to the typical frontal (Wallach, 2003). Organ lengths and points, gaps and intervals, and
organ midpoint-midpoint segments presented as percent snout-vent length (% SVL), midpoint (MP) usually
following organ length parenthetically. Ratio of one organ to another presented as decimal fraction. Organ
length denoted by name of organ itself (i.e., heart = heart length) and % SVL indicated by % sign (liver MP
51.2% = liver midpoint at 51.2% SVL). In Table 2, MP refers to organ or interval midpoints. Museum acro-
nyms follow Leviton et al. (1985).
Taxonomy
Xenotyphlops mocquardi n. sp.
(Figs. 1–4)
Holotype. MRSN R3208 (field no. FAZC 13182), an adult female collected by V. Mercurio, on 14 January
2005.
Type locality. Ambodivahibe (approximately 12 km SE Antsiranana), Antsiranana Fivondronana, Antsir-
anana Faritany, 22°23’25”S, 49°26’20”E, elevation ca. 40 m.
Diagnosis. Xenotyphlops mocquardi can be immediately diagnosed from all other Typhlopidae by its lat-
eral snout profile (with greatly enlarged circular rostral that is nearly vertically oriented) or anal shield (which
is single and broad as in many Alethinophidia). Internally it is unique among the Typhlopidae in the absence
of a tracheal lung and expanded tracheal membrane, presence of type G tracheal foramina, and a long heart-
liver gap. From Letheobia (=Rhinotyphlops), which contains its apparently closest relatives, X. mocquardi can
be separated by a long tail (3.7% vs. < 0.7–2.2% total length with a length/width ratio of 2.7 vs. 0.7–1.7) that
does not taper distally, high number of subcaudals (22 vs. 6–17), and short snout-heart interval (26.4% vs.
29.5%–40.7% SVL). Additionally, Xenotyphlops mocquardi can be distinguished from its congener X. gran-
didieri by midbody scale rows (22 vs. 20), posterior scale row reduction present (vs. absent), third supralabial
(larger than fourth vs. fourth larger than third), orientation of anteroventral rostral point (ventrally vs. anteri-
orly), vestigial left lung (present vs. absent), and anterior liver extension (right lobe vs. left lobe).
Etymology. This species in named in honor of François Mocquard (1834–1917), the herpetologist who
described Xenotyphlops grandidieri. During his life Mocquard contributed in a substantial way to the knowl-
edge of Malagasy herpetofauna (Glaw & Vences, 1994), culminating in his grand systematic synopsis (Moc-
quard, 1909).
Description. An adult female with nearly uniform diameter throughout, snout-vent length 248.5 mm, tail
length 9.5 mm, tail/total length 3.7%, midbody diameter 4.1 mm (nuchal diameter 3.5 mm, cloacal diameter
3.6 mm), total length/midbody diameter ratio 62.9, midtail diameter 3.5 mm, tail length/tail width ratio 2.7;
scale rows 22-22-20, middorsals 478, subcaudals 22, dorsocaudals 21, anal shield transversely enlarged and
single, three scales wide with anterior margin bordered by five scales; tail with uniform diameter throughout,
Zootaxa 1402 © 2007 Magnolia Press · 61
REDISCOVERY OF THE ENIGMATIC BLIND SNAKE
apex rounded, lacking terminal spine; head narrower than neck, snout truncated in dorsal view; rostral nar-
rowly visible in dorsal view due to its angle; rostral very large, and sub-circular, covered with numerous
minute, dome-like convexities and with an acute, ventrally directed point projecting from narrow corneal cut-
ting edge; rostral width/head width ratio 0.90; frontal fused with supraoculars to form narrow broad shield
bordering caudal edge of rostral and contacting supranasals laterally; discrete parietals and occipitals lacking;
lateral profile of snout with plane of rostral nearly vertical, rostral with an acute apex directed ventrally; sec-
ond largest shield (after rostral) is supranasal, which widens ventrally and contacts supralabials I–III, minute
crescent-shaped infranasal separated completely from supranasal by inferior nostril (that contacts rostral) and
inferior nasal suture, which contacts supralabial II; preocular absent, presumably fused with supranasal; ocu-
lar small, eye invisible, subocular larger than ocular, in contact with supralabial III; 3 postoculars; SIP T-0,
supralabial I minute with pointed anterior end, supralabial II twice the size of supralabial I, supralabial III
largest, 1.5 times as long as tall, twice the size of supralabial IV and six times as large as supralabial II,
supralabial IV taller than broad with a medial indentation (indicative of fusion of two scales); mental shield
enlarged and projecting into notch in upper jaw.
FIGURE 1. Lateral view of head of the holotype (MRSN R3208) of Xenotyphlops mocquardi, showing unique profile
with vertically-oriented rostral.
FIGURE 2. Dorsal view of head of the holotype (MRSN R3208) of Xenotyphlops mocquardi, with extremely large ros-
tral, nearly as broad as the head.
WALLACH ET AL.
62 · Zootaxa 1402 © 2007 Magnolia Press
FIGURE 3. Ventrolateral view of head of the holotype (MRSN R3208) of Xenotyphlops mocquardi showing enlarged
supralabial III, minute infranasal, and projecting mental with corresponding rostral notch.
FIGURE 4. The female (MRSN R3208) photographed in life at Ambodivahibe, northern Madagascar (by V. Mercurio).
Colouration. In life the specimen exhibited a pink colouration, with some translucent parts that made vis-
ible the darker internal organs. In general, anyhow, pigmentation is lacking throughout the entire body. After
two years of collection the holotype is now whitish.
Viscera. Sternohyoideus muscle posterior tip 8.2%, sternohyoideus-heart gap 0.65; heart 3.0% (MP =
Zootaxa 1402 © 2007 Magnolia Press · 63
REDISCOVERY OF THE ENIGMATIC BLIND SNAKE
24.8%), elongate with right atrium 0.67 heart length, ventricle 0.53 heart length, and left atrium 0.40 heart
length, ventricle length/width 2.0, snout-heart interval 26.4%; heart-liver gap 7.6%, heart-liver interval
45.1%, heart-gall bladder gap 41.6%; liver narrow, straight, and unipartite, each lobe with a single notch (less
than width of lobe), colouration light brown with a pattern of black reticulations forming cris-crossing net-
work of roughly parallel lines, right liver lobe 30.2% (MP 53.3%), unsegmented but with notch at 45.5%, left
liver lobe 19.5% (MP 43.8%), unsegmented but with notch at 47.3%, total liver 49.7% (MP 51.2%), total liver
segments 2, left liver/right liver 0.65, anterior liver extension (0.12 liver length) on right lobe as in Lepto-
typhlopidae, posterior liver tail (0.43 liver length) also on right lobe; liver tip overlapping gall bladder
(liver-gall bladder gap - 0.4%), liver-gall bladder interval 31.4%, liver-kidney gap 21.3%, liver-kidney inter-
val 57.5%; gall bladder 1.6 % (MP 68.8%), anterior to and slightly overlapping pancreas (1.4%), spleen not
detectable; gall bladder-kidney gap 20.1%, gall bladder-kidney interval 27.8%, gall bladder-gonad gap 10.1%;
right ovary 3.6 % (MP 81.5%), left ovary 2.2% (MP 86.4%), total ovary 5.8% (MP 84.0%); right adrenal MP
82.9%, left adrenal MP 87.7%, total adrenal MP 85.3%; gonad-kidney gap 2.2%, kidneys smooth, right kid-
ney 4.4% (MP 92.0%), left kidney 4.4% (MP 93.6%), total kidney 8.8% (MP 92.8%), kidney overlap 0.47
kidney length, kidney-vent gap 4.2%, kidney-vent interval 10.3%; rectal caecum small (1.4%), bulbous and
twice the diameter of adjacent intestine, caecum-vent interval 10.9%, caecum/left kidney 0.32.
Respiratory system lacking tracheal lung, expanded tracheal membrane, left orifice and left bronchus but
with a small (0.6%) teardrop shaped expansion of vascular tissue on ventrolateral aspect of right lung just pos-
terior to heart apex (MP 27.1%), precisely where a vestigial left lung would be located. This structure has no
free edges, being fused with the parenchyma of the right lung, but has a hollow inner air chamber with a con-
nection to the tracheal airway via the small type G foramen between the tracheal tips. It is reminiscent of a
blind sac since no bronchus or typical large orifice are present, but since it is vascularized it must be consid-
ered a left lung. Trachea (25.6%, MP 13.6%) with pink cartilages and clear interspaces of equal width, lacking
free tips, numbering approximately 273 (or 107.7/10% SVL); tracheal membrane thin and avascular, extend-
ing along right lateral aspect of trachea, tracheal membrane/tracheal ring ratio at midpoint 0.33; terminal tra-
cheal entry into right lung, anterior tip of parenchyma 24.9%, cardiac lung 1.4%, right lung highly vascular,
23.1 % (MP 37.9%), with two layers of small, thin-walled faveoli along cranial third of organ, a single layer
of larger ediculae along caudal 2/3 of lung, lacking avascular portion, tapering to posterior tip at 49.5%; intra-
pulmonary bronchus short 7.0% with tiny type G foramina between the cartilage tips, posterior tip of bron-
chus at 33.4%, bronchus/right lung 0.30; trachea-bronchus 32.6% (MP 17.1%); trachea-bronchus/total lung
0.66.
Organ midpoint-organ midpoint segments include heart MP-right lung MP (13.1%), trachea MP-liver MP
(27.6%), heart MP-liver MP (28.5%), liver MP-total kidney MP (39.5%), trachea-bronchus MP-gall bladder
MP (39.6%), right lung MP-total adrenal MP (47.4%), heart MP-right gonad MP (56.7%), trachea MP-total
adrenal MP (59.6%), trachea-bronchus MP-total kidney MP (63.6%), and heart MP-total kidney MP (68.0%).
Reproduction. Right oviduct hypertrophied (2.5 mm wide), enlarged with thickened walls with two elon-
gate bulges posteriorly that retain the shape of what is interpreted as two large eggs (both exactly 5 mm long
or 2.0% SVL) that had been laid shortly before capture on January, thus suggesting that oviposition occurs in
the summer. The right ovary held 3 vitellogenic ova (1.5 x 0.75 mm [2] and 1.0 x 0.5 mm) and one small fol-
licle; the left ovary had eleven very small follicles.
Habitat. The specimen was found along a nearly dry sun exposed stream surrounded by riverside vegeta-
tion with thin sandy soil substratum and some scattered water pools with a deep of about 20–30 cm. Outside
the riverbed the area is characterized by a dry bushy savannah. This species appears similar ecologically to the
xeric-adapted Leptotyphlopidae (i.e., Leptotyphlops macrorhynchus) and Typhlopidae (i.e., Letheobia epis-
copa) that occupy moist fringes of sandy arid regions (Schleich et al., 1996; Franzen & Wallach, 2002; Baha
el Din, 2006).
WALLACH ET AL.
64 · Zootaxa 1402 © 2007 Magnolia Press
TABLE 1. Morphological comparison of Xenotyphlops grandidieri and X. mocquardi.
Justification for the new species. The two species differ in seven external characters enumerated in
Table 1 (see characters denoted by *) and for the numerous differences in size and position of the viscera as
shown in Table 2. Neither species can be confused with any other typhlopid based upon the unique lateral
head profile and anal shield. We are aware that the sample size is minimal but both specimens of Xeno-
typhlops (paralectotype of X. grandidieri MNHN 1905.271, and holotype of X. mocquardi, MRSN R3208) for
which visceral data are available are females of identical length so the data are comparable and the observed
differences cannot be attributed to either ontogeny or sexual dimorphism.
Revised definition of Xenotyphlops. Examination of the freshly preserved Xenotyphlops mocquardi
necessitates revision of the generic diagnosis of Xenotyphlops due to one major error in its description. A sup-
posedly unique character of Xenotyphlops was the presence of numerous soft, flexible papillae on the rostral
shield, which necessitated hypothesizing a wet microhabitat for the snake (Wallach & Ineich, 1996). It is now
obvious that the rostral shields of both X. grandidieri specimens had sloughed off, a not uncommon occur-
rence in century-old, poorly preserved serpents, and what was taken to be external papillae are actually the
soft tissue structures lying beneath the typical granular, dome-like convexities found in xeric-adapted typhlo-
pids and leptotyphlopids. Presumably these structures have a sensory function, as they appear to be extensions
of the nervous system.
According to this new definition, the genus Xenotyphlops is distinguishable externally from all members
of the Typhlopidae by its greatly enlarged and nearly circular rostral shield that is nearly vertical in lateral
aspect (giving it a ‘bulldozer” appearance) and a single enlarged anal shield. Internally Xenotyphlops is
unique among typhlopids in lacking a tracheal lung and possessing an unexpanded tracheal membrane, type G
tracheal foramina, and a long heart-liver gap. Other characters that are rare within the family include absence
of a preocular, presence of a subocular that is larger than the ocular, absence of a visible eye, T-X supralabial
imbrication pattern, elongate body of uniform diameter, absence of an apical spine, pigmentless pattern, and
unipartite liver.
Character Xenotyphlops grandidieri Xenotyphlops mocquardi
Specimen MNHN 1905.272 MRSN R3208
Snout-vent length 248.0–249.0 mm 248.5 mm
Total length 257.0–257.0 mm 258.0 mm
Anterior scale rows 20 22
Midbody scale rows* 20 22
Posterior scale rows 20 20
Posterior scale row reduction* no yes
Inferior nasal suture contacts* second supralabial rostral
Largest supralabial* IV III
Postoculars 3–4 3
Rostral width/head width 0.65 0.90
Anterior rostral point directed* anteriorly ventrally
Left lung* absent present
Anterior liver extension* left lobe right lobe
Left liver/right liver ratio 0.98 0.65
Posterior liver tail (% liver length) 0.19 0.49
Kidney-vent interval/right liver length 0.43 0.34
Rectal caecum/heart 0.78 0.47
Rectal caecum/left kidney 0.58 0.32
Zootaxa 1402 © 2007 Magnolia Press · 65
REDISCOVERY OF THE ENIGMATIC BLIND SNAKE
TABLE 2. Comparison of the visceral characters of female Xenotyphlops grandidieri and X. mocquardi as % SVL.
MP = midpoint.
Little can be said about the affinities of the two species of Xenotyphlops with the other typhlopids of
Madagascar, since up to now no detailed phylogenetic analysis has been carried out. In the only phylogenetic
analysis to date on the Scolecophidia, which was unfortunately analyzed only to the species group level,
Character Xenotyphlops grandidieri Xenotyphlops mocquardi
Specimen MNHN 1905.271 MRSN R3208
Heart MP 22.3 24.8
Snout-heart interval 23.7 26.4
Heart-liver gap 4.8 7.6
Heart-liver interval 31.9 45.1
Right liver lobe 20.7 30.2
Total (left + right) liver length 41.0 49.7
Right liver MP 42.5 53.3
Left liver MP 38.7 43.8
Total (left + right) liver MP 40.7 51.2
Liver-gall bladder gap 8.6 0.4
Liver-kidney gap 38.2 21.3
Gall bladder-kidney gap 28.1 20.1
Gall bladder-kidney interval 34.7 27.8
Gall bladder-gonad gap 16.1 10.1
Right ovary length 1.4 3.6
Left ovary length 1.2 2.2
Right ovary MP 79.6 81.5
Left ovary MP 83.7 86.4
Total (left + right) ovary MP 81.7 84.0
Gonad-kidney gap 6.6 2.2
Left adrenal MP 85.5 87.7
Rectal caecum length 2.2 1.4
Trachea length 22.9 25.6
Right lung anterior tip 22.5 24.9
Right lung length 20.7 23.1
Right lung MP 34.0 37.9
Right lung posterior tip 44.4 49.5
Bronchus posterior tip 29.7 33.4
Trachea + bronchus length 28.9 32.6
Trachea-bronchus MP 15.3 17.1
Trachea MP-liver MP 30.3 27.6
Trachea MP-total adrenal MP 72.1 59.6
Trachea-bronchus MP-gall bladder MP 46.8 39.6
Trachea-bronchus MP-total kidney MP 78.3 63.6
Heart MP-liver MP 20.2 28.5
Liver MP-total kidney MP 51.1 39.5
WALLACH ET AL.
66 · Zootaxa 1402 © 2007 Magnolia Press
Xenotyphlops was found to be the sister group to the Ramphotyphlops angusticeps group of Australia, which
itself was sister group to the R. australis and R. bituberculatus groups with the basal R. affinis group being the
most primitive (Wallach, 1998b: Fig. 4). This surprising finding suggests a relationship to Australian rather
than Malagasy taxa. It is even more remarkable that Xenotyphlops shows some resemblance to the Lepto-
typhlopidae and we can add one additional character of X. mocquardi in the arrangement of the liver lobes: the
right liver lobe lies craniad of the left, a condition unknown among the Typhlopidae where the left liver lobe
extends cranially of the right (as also in X. grandidieri). It is possible that our specimen of X. mocquardi is
aberrant in possessing a shortened left liver lobe but that can only de determined with the examination of fur-
ther material. The presence of a vestige of the left lung is also noteworthy and indicates retention of a primi-
tive characteristic that is quite rare among scolecophidians (Wallach, 1993b).
Discussion
The collection of Xenotyphlops mocquardi in Madagascar provides evidence that Maurice de Rothschild, the
donor of X. grandidieri, obtained the two type specimens from some source in Madagascar, and not from
mainland Africa, even though he personally made only two African expeditions (Wallach & Ineich, 1996).
Anyhow, we do not have any information from where the types of Xenotyphlops grandidieri, although the
finding of a new species compels us to revise our view of the presumed habitat of this genus, providing there-
fore some indications of the presumed geographic localities. In fact, the absence of external soft rostral papil-
lae in Xenotyphlops, a generic character previously considered diagnostic (Wallach & Ineich, 1996), resolves
the difficult proposition that the genus inhabited a muddy or aquatic habitat. Instead, the presence of granular
domes (Figs. 2–3) covering these papillae indicates that the genus inhabits a xeric environment because those
leptotyphlopids and typhlopids having such structures come from very dry or desert areas. This consideration
has been just confirmed by the habitat observation regarding X. mocquardi, which was found in a dry savan-
nah. Therefore, we predict that X. grandidieri should inhabit the western coast of Madagascar, which contains
an abundance of xeric habitats.
The finding of this new typhlopid species indicates, once more, that most of the Malagasy herpetofauna is
highly secretive, and in general difficult to be detected. It is amazing that the genus Xenotyphlops remained
unconfirmed for more than one century, despite the many field surveys conducted in Madagascar. More sur-
prising was that the newly found individual belonged to a different species. Among the reptiles the existence
of species represented by a single or a few specimens is not unusual. This usually occurs particularly in fosso-
rial species, such as scolecophidian genera like Grypotyphlops, Rhinoleptus, and Cyclotyphlops (Peters, 1881;
Orejas-Miranda et al., 1970; Bosch & Ineich, 1994) and skinks belonging to the genera Pseudoacontias and
Paracontias (Nussbaum & Raxworthy, 1995; Andreone & Greer, 2002; Sakata & Ikida, 2003).
Thus, it is clear that fossorial reptiles are good candidate by "escaping" scientific surveys. One way to
increase the probability to get these animals is to work in a standardized manner by means of pitfall traps.
However, the new Xenotyphlops was found during opportunistic research, by moving on the ground surface.
Since no heavy rainfall occurred before we ignore the reason for this unusual behavior.
We hope that more individuals of Xenotyphlops mocquardi will be found in the future, likely conducting
more intensive research in the Ambodivahibe coastal area as done in the near renewed Montagne des
Français. Taken into consideration the high reptile endemism detected at the latter locality (Glaw et al., 2001,
2005a, 2005b), and the fact that the site hosts some relevant populations of Mantella viridis (Andreone et al.,
2006), it is suggested that Montagne des Français / Ambodivahibe should be included in the forthcoming pro-
tected area network for the safeguard of his rocky forested slopes and of the dry bushy savannah hosting an
unique herpetofauna.
Zootaxa 1402 © 2007 Magnolia Press · 67
REDISCOVERY OF THE ENIGMATIC BLIND SNAKE
Acknowledgments
The work in Madagascar was possible due to the agreement with Ministère des Eaux et Forets and Parc Bota-
nique et Zoologique de Tsimbazaza, which delivered the requested research and exportation authorizations. F.
Andreone and V. Mercurio beneficiated of financial funding from the Nando Peretti Foundation, Conservation
International, Istituto Oikos, the Gondwana Conservation and Research, and the Madagascar Fauna Group.
We thank the curators and staff of the following institutions who have provided access to comparative mate-
rial and permitted dissection of those specimens: CAS (R. C. Drewes and J. V. Vindum), FMNH (A. Resetar,
and H. K. Voris), MCZ (J. Rosado), and MNHN (I. Ineich). Special thanks go to R. M. Repetto, who astutely
attributed the present specimen to the genus Xenotyphlops when sorting the herpetological collection in Turin;
without his intuitive perception this paper would have never have seen the light of day, and the described blind
snake would have remained unknown for a much longer period of time.
Literature cited
Andreone, F. & Greer, A.E. (2002) Malagasy scincid lizards: descriptions of nine new species, with notes on the mor-
phology, reproduction and taxonomy of some previously described species (Reptilia, Squamata: Scincidae). Journal
of Zoology, 258, 139–181.
Andreone, F., Mercurio, V. & Mattioli, F. (2006) Between environmental degradation and international pet trade: conser-
vation strategies for the threatened amphibians of Madagascar. Natura - Società italiana di Scienze naturali e Museo
civico di Storia naturale di Milano, 95(2), 81–96.
Baha el Din, S. (2006) A guide to the reptiles and amphibians of Egypt. The American University in Cairo Press, Cairo,
xvi + 359 pp.
Blanc, Ch.P. (1971) Les reptiles de Madagascar et des îles voisines. Annales de l’Université de Madagascar, (8), 95–178.
Bosch, H.A.J. in den & Ineich, I. (1994) The Typhlopidae of Sulawesi (Indonesia): a review with description of a new
genus and a new species (Serpentes: Typhlopidae). Journal of Herpetology, 28(2), 206–217.
Broadley, D.G. & Wallach, V. (2000) A new blind snake (Serpentes: Typhlopidae) from montane forests of the Eastern
Arc Mountains in Tanzania. African Journal of Herpetology, 49(2), 165–168.
Brygoo, E.R. (1983) Les ophidiens de Madagascar. Memorias do Instituto Butantan, (1982) 46, 19–58.
Brygoo, E.R. (1987) L’endémisme des reptiles de Madagascar. Bulletin de la Société Zoologique de France, 112(1–2),
5–38.
Franzen, M. & Wallach, V. (2002) A new Rhinotyphlops from southeastern Turkey (Serpentes: Typhlopidae). Journal of
Herpetology, 36(2), 176–184.
Glaw, F., Franzen, M. & Vences, M. (2005a) A new species of colubrid snake (Liopholidophis) from northern Madagas-
car. Salamandra, 41(1/2), 83–90.
Glaw, F. & Vences M. (1994) Amphibians and reptiles of Madagascar. 2nd ed. Vences und Glaw Verlag, Cologne, 480 pp.
Glaw, F., Vences, M. & Nussbaum, R.A. (2005b) A new species of Heteroliodon (Reptilia: Squamata: Colubridae) from
Montagne des Français, far northern Madagascar. Herpetologica, 61, 275–280.
Glaw, F., Vences, M. & Schmidt, K. (2001) A new species of Paroedura Günther from northern Madagascar (Reptilia,
Squamata, Gekkonidae). Spixiana, 24(3), 249–256.
Guibé, J. (1958) Les serpents de Madagascar. Mémoires de l’Institut Scientifique de Madagascar, (sér. A, Biologie Ani-
male), 12, 189–260.
Hahn, D.E. (1980) Liste der rezenten Amphibien und Reptilien: Anomalepididae, Leptotyphlopida, Typhlopidae. Das
Tierreich, 101, xii + 1–93pp.
Leviton, A.E., Gibbs, R.H., Jr., Heal, E., & Dawson, C.E. (1985) Standards in herpetology and ichthyology: Part I. Stan-
dard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia, 1985(3), 802
832.
McDiarmid, R.W., Campbell, J.A., & Touré, T.A. (1999) Snake species of the world: a taxonomic and geographic refer-
ence. Volume 1. The Herpetologist’s League, Washington, 511 pp.
Mocquard, F. (1905) Note préliminaire sur une collection de reptiles et de batraciens offerte au Muséum par M. Maurice
de Rothschild. Bulletin du Muséum d’Histoire Naturelle, 11(5), 285–289.
Mocquard, F. (1909) Synopsis des familles, genres et espèces des reptiles écailleaux et des batraciens de Madagascar.
Nouvelles Archives du Muséum, Paris (sér. 5), 1, 1–110.
Nussbaum, R.A. & Raxworthy, C.J. (1995) Review of the scincine genus Pseudoacontias Barboza du Bocage (Reptilia:
WALLACH ET AL.
68 · Zootaxa 1402 © 2007 Magnolia Press
Squamata: Scincidae) of Madagascar. Herpetologica, 51, 91–99.
Orejas-Miranda, B.R., Roux-Estève, R. & Guibé, J. (1970) Un nouveau genre de leptotyphlopidés (Ophidia), Rhinolep-
tus koniagui (Villiers). Comunicaciones Zoologicas del Museo de Historia Natural de Montevideo, 10(127), 1–4.
Peters, W.C.H. (1881) Einige herpetologische Mittheilungen. 1. Uebersicht der zu den Familien der Typhlopes und
Stenostomi gehörigen Gattungen oder Untergattungen. Sitzungsberichte der Gesellschaft Naturforschenden Freunde
zu Berlin, 1881, 69–71.
Sakata, S. & Hikida, T. (2003) A new fossorial scincine lizard of the genus Pseudoacontias (Reptilia: Squamata: Scin-
cidae) from Nosy Be, Madagascar. Amphibia-Reptilia, 24(1), 57–64.
Schleich, H.H., Kästle, W. & Kabisch, K. (1996) Amphibians and reptiles of North Africa. Koeltz Scientific Books,
Koenigstein, 627 pp.
Wallach, V. (1985) A cladistic analysis of the terrestrial Australian Elapidae. In: Grigg, G., Shine, R. & Ehmann, H.
(Ed.), The biology of Australasian frogs and reptiles. Surrey Beatty and Sons & Royal Zoological Society of New
South Wales, Chipping Norton, pp. 223–253.
Wallach, V. (1991) Comparative visceral topography of African colubrid snakes of the subfamilies Aparallactinae and
Atractaspidinae. M.S. Thesis, Louisiana State University, Baton Rouge, xix + 490 pp.
Wallach, V. (1993a) The supralabial imbrication pattern of the Typhloidea (Reptilia: Serpentes). Journal of Herpetology,
27(2), 214–218.
Wallach, V. (1993b) Presence of a left lung in the Typhlopidae (Reptilia: Serpentes). Journal of the Herpetological Asso-
ciation of Africa, (42), 32–33.
Wallach, V. (1993c) A new species of blind snake, Typhlops marxi, from the Phillipines (Serpentes: Typhlopidae). The
Raffles Bulletin of Zoology, 41(2), 263–278.
Wallach, V. (1998a) The lungs of snakes. In: Gans, C. & Gaunt, A.S. (Ed.), Biology of the Reptilia. Volume 19 (Morphol-
ogy G) Visceral organs. Society for the Study of Amphibians and Reptiles, Ithaca, pp. 93–295.
Wallach, V. (1998b) The visceral anatomy of blindsnakes and wormsnakes and its systematic implications (Serpentes:
Anomalepididae, Typhlopidae, Leptotyphlopidae). Ph.D. Dissertation, Northeastern University, Boston, xxvi + 611
pp.
Wallach, V. (2003) Scolecophidia miscellanea. Hamadryad, 27(2), 222–240.
Wallach, V. (2005) Letheobia pauwelsi, a new species of blindsnake from Gabon (Serpentes: Typhlopidae). African Jour-
nal of Herpetology, 54(1), 85–91.
Wallach, V. & Ineich, I. (1996) Redescription of the rare Malagasy blind snake, Typhlops grandidieri Mocquard, with
placement in a new genus (Serpentes: Typhlopidae). Journal of Herpetology, 30(3), 367–376.
Werner, F. (1921) Synopsis der Schlangenfamilie der Typhlopiden auf Grund des Boulenger’schen Schlangenkatalogs
(1893–1896). Archiv für Naturgeschichte, 87A(7), 266–338.
... Many recent descriptions of new species (e. g. Cadle, 1996a Cadle, – b, 1999 Nussbaum & Raxworthy, 2000; Glaw et al., 2005a Glaw et al., –b, 2007 Glaw et al., , 2009 Mercurio & Andreone 2005; Wallach et al., 2007; Franzen et al., 2009) indicate that the inventory of Malagasy snakes is still far from complete. All Malagasy snake species except the probably introduced cosmopolitan Ramphotyphlops braminus Daudin (1803) are naturally endemic to Madagascar. ...
... The enigmatic T. grandidieri has been recognized as a very divergent species and transferred into the new genus Xenotyphlops (Wallach & Ineich, 1996), and a second Xenotyphlops species (X. mocquardi Wallach et al., 2007) has recently been described. This relative lack of taxonomic activity indicates that the typhlopid fauna of Madagascar might be much more species-rich than hitherto recognized, especially because the cryptic Typhlops species are notoriously difficult to collect without digging and/or the use of pitfalls (Gower et al., 2004). ...
... Additional museum acronyms in the appendix are used according to Leviton et al. (1985). Visceral characters are described in Wallach (1985 Wallach ( , 1991 Wallach ( , 1993b–c, 1998a–b), Wallach & Ineich (1996), and Wallach et al. (2007) and the references cited therein. The supralabial imbrication pattern (SIP) is discussed by Wallach (1993a). ...
Article
Full-text available
We describe a new Typhlops species from mid-altitude rainforest (ca. 950 m elevation) of the Andasibe region in central eastern Madagascar. Typhlops andasibensis sp. nov. is a medium-sized species (up to 340 mm total length) and can be separated from all other Malagasy typhlopids by the combination of 26 midbody scale rows, less than 400 middorsals, and a T-V supralabial imbrication pattern. Typhlops microcephalus is confirmed as a valid species, T. boettgeri is resurrected from the synonymy of T. arenarius, and T. capensis is synonymized with Ramphotyphlops exocoeti. Keys to the three genera and 14 described species of Madagascar and Comoro typhlopids are provided.
... Many species are microendemic or regionally endemic, including the snakes Heteroliodon fohy, Thamnosophis martae, the chameleon Brookesia tristis, the gecko Paroedura lohatsara, and the frogs Stumpffia staffordi and Mantella viridis (Glaw et al. 2001Glaw et al. , 2005aGlaw et al. , b, 2012 Köhler et al. 2010a Köhler et al. , Crottini et al. 2012). Beside the limestone massif, the sandy dune habitats and dry forests surrounding Montagne des Français to the north and east are a hotspot of microendemic reptile species as well, including Paracontias rothschildi, P. minimus, P. fasika, Xenotyphlops grandidieri, and Madascincus arenicola (Wallach et al. 2007; Köhler et al. 2010b; Miralles et al. 2011). Most of these species were recently assessed as "Critically Endangered" or at least "Endangered" (Thamnosophis martae, Heteroliodon fohy), suggesting that the area including Montagne des Français plus the surrounding littoral forest habitats is a major hotspot of highly threatened reptiles in Madagascar. ...
Article
Full-text available
Herpetological surveys in the dry forests of the limestone massif Montagne des Français in the far north of Madagascar have recently yielded a number of undescribed reptile species. Here we describe an additional new and potentially microendemic species of the snake genus Madagascarophis (Squamata: Serpentes: Pseudoxyrhophiinae) which lives in this massif syntopically with M. colubrinus septentrionalis and differs distinctly from M. colubrinus and M. meridionalis in its mitochondrial and nuclear DNA sequences. Morphologically Madagascarophis fuchsi sp. nov. is characterized by a broad contact between the posterior inframaxillaries (genials), 25 dorsal scale rows at midbody, and a low number of ventrals (171–172). We re-describe the holotype of M. ocellatus and present new data on the morphological variation of the northern subspecies M. c. septentrionalis and M. c. citrinus. Although Montagne des Français has recently been included into the network of nature reserves in Madagascar, continuous deforestation is strongly threatening this important center of reptile endemism. In line with the assessment of other microendemic reptiles of this massif we suggest to consider the new species as Critically Endangered according to the IUCN criteria and encourage new efforts to protect this area more efficiently.
... Xenotyphlops is distinguishable externally by its greatly enlarged and nearly circular rostral shield that is nearly vertical in the lateral aspect and a single enlarged anal shield. Internally Xenotyphlops is unique among blindsnakes in lacking a tracheal lung and possessing an unexpanded tracheal membrane, type G tracheal foramina and a long heart –liver gap (Wallach et al. 2007). Included species are X. ...
Article
Full-text available
Worm-like snakes (scolecophidians) are small, burrowing species with reduced vision. Although largely neglected in vertebrate research, knowledge of their biogeographical history is crucial for evaluating hypotheses of snake origins. We constructed a molecular dataset for scolecophidians with detailed sampling within the largest family, Typhlopidae (blindsnakes). Our results demonstrate that scolecophidians have had a long Gondwanan history, and that their initial diversification followed a vicariant event: the separation of East and West Gondwana approximately 150 Ma. We find that the earliest blindsnake lineages, representing two new families described here, were distributed on the palaeolandmass of India+Madagascar named here as Indigascar. Their later evolution out of Indigascar involved vicariance and several oceanic dispersal events, including a westward transatlantic one, unexpected for burrowing animals. The exceptional diversification of scolecophidians in the Cenozoic was probably linked to a parallel radiation of prey (ants and termites) as well as increased isolation of populations facilitated by their fossorial habits.
Article
Full-text available
The blindsnake superfamily Typhlopoidea (Gerrhopilidae, Typhlopidae, and Xenotyphlopidae) is a diverse, widespread part of the global snake fauna. A recent systematic revision based on molecular phylogenetic analyses and some morphological evidence presented a preliminary solution to the non-monophyly of many previously recognized genera, but additional clarification is needed regarding the recognition of some species and genera. We rectify these problems here with a new molecular phylogenetic analysis including 95 of the 275 currently recognized, extant typhlopoids, incorporating both nuclear and mitochondrial loci. We supplement this with data on the external, visceral, and hemipenial morphology of nearly all species to generate a revised classification for Typhlopoidea. Based on morphological data, we re-assign Cathetorhinus from Typhlopidae to Gerrhopilidae. Xenotyphlopidae maintains its current contents (Xenotyphlops). In Typhlopidae, one monotypic genus is synonymized with its larger sister-group as it cannot be unambiguously diagnosed morphologically (Sundatyphlops with Anilios), and two genera are synonymizedwith Typhlops (Antillotyphlops and Cubatyphlops), as they are not reciprocally monophyletic. The genus Asiatyphylops is renamed Argyrophis, the senior synonym for the group. We erect one new genus (Lemuriatyphlops) for a phylogenetically distinct species-group in Asiatyphlopinae. Fourteen of eighteen recognized typhlopid genera are maintained in four subfamilies: Afrotyphlopinae (Afrotyphlops, Grypotyphlops [re-assigned from Asiatyphlopinae], Letheobia, and Rhinotyphlops), Asiatyphlopinae (Acutotyphlops, Anilios, Cyclotyphlops, Indotyphlops, Malayotyphlops, Ramphotyphlops, and Xerotyphlops), Madatyphlopinae (Madatyphlops), and Typhlopinae (Amerotyphlops and Typhlops), some with altered contents. Diagnoses based on morphology are provided for all 19 typhlopoid genera, accounting for all 275 species. This taxonomy provides a robust platform for future revisions and description of new species.
Article
Full-text available
We present morphological data of nine recently collected Xenotyphlops specimens from the coastal region east of Antsiranana in northern Madagascar, and compare them with data of the three hitherto known individuals of the family Xenotyphlopidae (the two type specimens of X. grandidieri and the holotype of X. mocquardi). We assign the newly collected material to X. grandidieri because of a lack of convincing and constant morphological differences from the types of this species. Our results indicate that the morphological variability of X. grandidieri is greater than formerly known. DNA sequences of the cytochrome b gene provide no indication of the occurrence of more than one species of Xenotyphlops in the Baie de Sakalava area despite the morphological variation found in specimens from this site. Due to the absence of clear diagnostic characters we propose to consider X. mocquardi a junior synonym of X. grandidieri resulting in a monotypic genus Xenotyphlops and a monotypic family Xenotyphlopidae. This conclusion is supported by the distribution ranges of both taxa, which are in close geographic proximity. To protect this unique relict species as well as other presumed endemics classified as Critically Endangered by the IUCN we suggest establishing a littoral (coastal) nature reserve along the coast east and southeast of Antsiranana.
Article
Full-text available
We describe a strikingly distinct new species of Acutotyphlops from Kalinga Province of Luzon Island, Philippines. The new species is most closely related to other members of the genus Acutotyphlops from Papua New Guinea and the Solomon Islands and represents a new genus and species group record for the Philippines. A revised definition of Acutotyphlops is presented along with a synopsis of the genus. The discovery of this species, combined with consideration of its morphology and distribution, represents a curious new systematic and biogeographical problem in Southeast Asian and southwest Pacific scolecophidian snake systematics.
Article
Full-text available
Typhlops grandidieri, a Malagasy blind snake known only from two syntypes collected in 1905, is redescribed on the basis of external and internal morphology. A lectotype is designated and a description of the soft anatomy is given for the paralectotype. Certain features indicate a relationship to the Leptotyphlopidae, particularly Rhinoleptus koniagui (single anal shield, absence of tracheal lung, cranially located heart, highly vascularized right lung with type G bronchial foramina). On the basis of total evidence these characters are considered convergent; presence of maxillary teeth and a costal/vertebral ratio of 1.8 confirm membership in the Typhlopidae while other anatomical features suggest a relationship to Rhinotyphlops simoni (reduced head shields, T-0 supralabial imbrication pattern, horizontal cutting edge on rostral, attenuated body, long tail, absence of apical spine). Because of the mosaic of conflicting systematic characters, in conjunction with the unique cephalic papilla-like projections, Xenotyphlops gen. nov. is proposed to accomodate the species T. grandidieri.
Article
Full-text available
Typhlops grandidieri, a Malagasy blind snake known only from two syntypes collected in 1905, is redescribed on the basis of external and internal morphology. A lectotype is designated and a description of the soft anatomy is given for the paralectotype. Certain features indicate a relationship to the Leptotyphlopidae, particularly Rhinoleptus koniagui (single anal shield, absence of tracheal lung, cranially located heart, highly vascularized right lung with type G bronchial foramina). On the basis of total evidence these characters are considered convergent; presence of maxillary teeth and a costal/vertebral ratio of 1.8 confirm membership in the Typhlopidae while other anatomical features suggest a relationship to Rhinotyphlops simoni (reduced head shields, T-O supralabial imbrication pattern, horizontal cutting edge on rostral, attenuated body, long tail, absence of apical spine). Because of the mosaic of conflicting systematic characters, in conjunction with the unique cephalic papilla-like projections, Xenotyphlops gen. nov. is proposed to accomodate the species T. grandidieri.
Article
Full-text available
A review and key to the Typhlopidae of Sulawesi is presented. A recently collected specimen from the southwestern peninsula is described as a new species allocated to a new genus. The pileus constellation is unique among reptiles. The large central circular head shield -- around which smaller scales radiate -- might cover what could be a parietal eye, which has never been found in snakes before. Typhlops hedraeus is shown not to be conspecific with Typhlops ater. Additional characters are presented for the diagnosis of Typhlops conradi. Two of the four Sulawesian typhlopid species now known are considered endemic. /// Nous révisons les Serpents Typhlopidae du Sulawesi (ex Célèbes) et nous en fournissons une clé de détermination. Un spécimen collecté récemment de la péninsule sud-ouest est décrit comme une nouvelle espèce attribuée à un genre nouveau. Son écaillure supra-céphalique est unique parmi les reptiles. La grande plaque céphalique centrale circulaire -- autour de laquelle se placent des écailles concentriques -- recouvre une structure qui ressemble beaucoup à un oeil pinéal, ce qui pourrait être la première mention de cet organe chez les serpents. Nous montrons que Typhlops hedraeus n'est pas conspécifique de Typhlops ater et présentons des caractères diagnostiques complémentaires pour Typhlops conradi. Deux des quatre typhlopidés actuellement connus du Sulawesi sont endémiques.
Article
Full-text available
We describe a new species of the colubrid snake genus Liopholidophis from the far north of Madagascar. Liopholidophis martae sp. n. from the dry forest of the limestone massif Montagne des Français belongs to the L. stumpffi group and is characterized by 19 dorsal scale rows, 185 ventrals, 109 subcaudals, and colouration (lack of well defined, continuous light dorsolateral stripes, presence of extensive dark spots and stripes on venter, postocular bar extends diagonally across the ultimate supralabial). We emphasize the importance of Montagne des Français as a center of endemism for reptiles and strongly suggest including this massif into the network of nature reserves in Madagascar.